1
|
Kosicka-Noworzyń K, Romaniuk-Drapała A, Sheng YH, Yohn C, Brunetti L, Kagan L. Obesity-related drug-metabolizing enzyme expression alterations in the human liver. Biomed Pharmacother 2025; 187:118155. [PMID: 40359692 DOI: 10.1016/j.biopha.2025.118155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025] Open
Abstract
OBJECTIVE Implications of obesity extend beyond the association with various health conditions, impacting physiological changes that affect the liver and the activity of metabolizing enzymes. Given the prevalence of obesity and the risk for drug-drug interactions owing to the comorbidity burden, the current drug dosage recommendations may need reevaluation for patients with obesity. This study evaluated the implications of obesity on the gene expression of hepatic drug-metabolizing enzymes. As drug clearance is an essential pharmacokinetic parameter for maintaining drug dosing regimens, investigating alterations in metabolizing enzymes expression is a critical step. METHODS Human liver samples were collected post-mortem from 32 individuals and classified into the control (18.5 ≤ BMI <25 kg/m2; range 18.9-24.4 kg/m2; median 22.3 kg/m2) and the study group (BMI ≥25 kg/m2; range 25.1-55.5 kg/m2; median 31.2 kg/m2). Real-time quantitative PCR was performed for the analysis of 168 drug-metabolizing enzymes. RESULTS Our studies revealed several potential physiologically relevant differences, but the statistical significance was reached only for ALDH3B1, PTGS1, and CEL (all being up-regulated in the study group). CONCLUSIONS The study adds to our understanding of the mechanisms of pharmacokinetic changes in overweight and obesity. The findings require further exploration on the protein level, through proteomic and functional studies.
Collapse
Affiliation(s)
- Katarzyna Kosicka-Noworzyń
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3, Poznań 60-806, Poland; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, Poznań 60-806, Poland; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Yi-Hua Sheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Christine Yohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Luigi Brunetti
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Park J, Lee Y, Lee JY, Kang HY, Kim S, Kim S, Kim BS, Kim DH. Overfeeding in rainbow trout (Oncorhynchus mykiss): Metabolic disruptions, impaired immunity, and increased infection risk. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110224. [PMID: 39988219 DOI: 10.1016/j.fsi.2025.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Excess adiposity impairs immune function and host defense in obese individuals, but studies on this concept in fish remain limited. In aquaculture, rapid growth is often encouraged through intensive farming practices, leading to overfeeding and negatively impacting production. This study aimed to induce obesity in rainbow trout through overfeeding, exploring metabolic abnormalities, immune response alterations, and infection susceptibility via transcriptomic and metabolomic analyses. In the overfed group, fish were fed until they refused to eat, while the control group was fed according to recommended feeding rates for four weeks. Sampling was conducted at weeks 1, 2, and 4 for serological, histopathological, metabolomic, and transcriptomic analyses. After four weeks, mortality rates were compared following Aeromonas salmonicida challenge, and immunological changes assessed one day post-infection. Overfed fish exhibited significant increases in weight gain (WG), body mass index (BMI), elevated AST/ALT levels, hepatocyte hypertrophy, lipid droplet formation, and triglyceride accumulation. At 1, 2, and 4 wpf, the overfed group exhibited distinct metabolic changes, with key alterations in glycolysis/gluconeogenesis, lipid metabolism and amino acid metabolism. KEGG analysis of transcriptomic data revealed a significant decrease in complement and coagulation cascades, including C3, FB, FH, an FI, accompanied by heightened TNF and IL-17 signaling pathways, involving the upregulation of genes such as TNF-α, IL-1β, and IL-6, indicating an enhanced inflammatory response. The overfed group experienced higher mortality post-infection. Excess energy from overfeeding led to hepatic fat accumulation, liver damage, and reduced innate immune responses, particularly in complement activation. These physiological disruptions compromised immune function, highlighting the detrimental effects of overfeeding-induced obesity on fish health. This study offers critical insights into the immunological mechanisms linking obesity to increased disease susceptibility.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Yoonhang Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Ju-Yeop Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Hyo-Young Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Seonghye Kim
- Department of Chemistry, Center for Proteome Biophysics, Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics, Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Bo Seong Kim
- Department of Aquatic Life Medicine, College of Ocean & Bioscience, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
3
|
Zuo R, Wang M, Wang YT, ShenTu Y, Moura AK, Zhou Y, Roudbari K, Hu JZ, Li PL, Hao J, Li X, Zhang Y. Ablation of Hepatic Asah1 Gene Disrupts Hepatic Lipid Homeostasis and Promotes Fibrotic Nonalcoholic Steatohepatitis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:542-560. [PMID: 39719015 PMCID: PMC11983695 DOI: 10.1016/j.ajpath.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 12/26/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of chronic liver conditions, ranging from simple steatosis to nonalcoholic steatohepatitis, which may progress to fibrosis/cirrhosis. Here, the GSE163211 data set was analyzed, and Asah1 (encoding acid ceramidase) was identified as a crucial lysosomal gene that positively correlated with NAFLD stages in obese patients. To evaluate the role of Asah1 in the progression of NAFLD, Asah1fl/fl/Albcre mice (hepatocyte-specific deletion of Asah1) and Asah1 floxed (Asah1fl/fl/wild-type) mice were fed with either a normal diet or a high-fat, high-cholesterol paigen diet (PD) for 20 weeks. Hepatocyte-specific Asah1 ablation markedly aggravated PD-induced hepatic steatosis, hepatitis, and apoptosis, and resulted in marked fibrotic changes. In addition, Asah1 gene ablation exacerbated PD-induced portal venous hemodynamic abnormality. In cultured hepatocytes, Asah1 gene knockdown resulted in increased ceramide and cholesterol levels but did not affect triglyceride level. Knocking down Asah1 gene also exhibited broad impacts on lipid homeostasis pathways, including lipogenesis, fatty acid uptake, fatty acid oxidation, and lipid transport. Furthermore, Asah1 knockdown resulted in increased endoplasmic reticulum stress and lipid droplet biogenesis. Finally, Asah1 gene knockdown impaired chaperone-mediated autophagy. These results suggest that Asah1 functions as an important regulator of hepatic lipid homeostasis, and its deficiency exacerbates hepatocyte lipotoxicity and injury, and promotes the development of fibrotic nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Mi Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas; Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - YangPing ShenTu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas; Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Alexandra K Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Ying Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas; Department Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kiana Roudbari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Jenny Z Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - JiuKuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas.
| |
Collapse
|
4
|
Smiriglia A, Lorito N, Bacci M, Subbiani A, Bonechi F, Comito G, Kowalik MA, Perra A, Morandi A. Estrogen-dependent activation of TRX2 reverses oxidative stress and metabolic dysfunction associated with steatotic disease. Cell Death Dis 2025; 16:57. [PMID: 39890799 PMCID: PMC11785963 DOI: 10.1038/s41419-025-07331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of hepatic disorders, ranging from simple steatosis to steatohepatitis, with the most severe outcomes including cirrhosis, liver failure, and hepatocellular carcinoma. Notably, MASLD prevalence is lower in premenopausal women than in men, suggesting a potential protective role of estrogens in mitigating disease onset and progression. In this study, we utilized preclinical in vitro models-immortalized cell lines and hepatocyte-like cells derived from human embryonic stem cells-exposed to clinically relevant steatotic-inducing agents. These exposures led to lipid droplet (LD) accumulation, increased reactive oxygen species (ROS) levels, and mitochondrial dysfunction, along with decreased expression of markers associated with hepatocyte functionality and differentiation. Estrogen treatment in steatotic-induced liver cells resulted in reduced ROS levels and LD content while preserving mitochondrial integrity, mediated by the upregulation of mitochondrial thioredoxin 2 (TRX2), an antioxidant system regulated by the estrogen receptor. Furthermore, disruption of TRX2, either pharmacologically using auranofin or through genetic interference, was sufficient to counteract the protective effects of estrogens, highlighting a potential mechanism through which estrogens may prevent or slow MASLD progression.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Angela Subbiani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Francesca Bonechi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy.
| |
Collapse
|
5
|
Kasano-Camones CI, Yokota S, Ohashi M, Sakamoto N, Ito D, Saito Y, Uchida R, Ninomiya K, Inoue Y. Hepatocyte nuclear factor 4α is a critical factor for the production of complement components in the liver. In Vitro Cell Dev Biol Anim 2024; 60:1174-1183. [PMID: 39285151 DOI: 10.1007/s11626-024-00972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/23/2024] [Indexed: 12/19/2024]
Abstract
The complement system plays an important role in biological defense as an effector to eliminate microorganisms that invade an organism and it is composed of more than 50 proteins, most of which are produced in the liver. Of these proteins, the mRNA expression of C3 and Cfb is known to be positively regulated by the nuclear receptor HNF4α. To investigate whether HNF4α regulates the complement system, we analyzed the hepatic expression of genes involved in the complement activation pathway and membrane attack complex (MAC) formation within the complement system using liver-specific Hnf4a-null mice (Hnf4aΔHep mice) and tamoxifen-induced liver-specific Hnf4a-null mice (Hnf4af/f;AlbERT2cre mice). We found that hepatic expression of many complement genes including C8a, C8b, C8g, and C9 that are involved in formation of the MAC was markedly decreased in Hnf4aΔHep mice and Hnf4af/f;AlbERT2cre mice. Furthermore, expression of C8A, C8B, and C8G was also decreased in human hepatoma cell lines in which the expression of HNF4α was suppressed, and expression of C8G and C9 was induced in a human immortalized hepatocyte cell line with forced expression of HNF4α. Transactivation of C8g and C9 was dependent on HNF4α expression of HNF4α binding sites, indicating that C8g and C9 are novel target genes of HNF4α. The results suggest that hepatic HNF4α plays an important role in regulation of the complement system, mainly MAC formation.
Collapse
Affiliation(s)
- Carlos Ichiro Kasano-Camones
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Satomi Yokota
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Maiko Ohashi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Noriaki Sakamoto
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Daichi Ito
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Yoshifumi Saito
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Ryo Uchida
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Kazumi Ninomiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma, 371-8510, Japan
| | - Yusuke Inoue
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan.
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma, 371-8510, Japan.
| |
Collapse
|
6
|
Zhang Y, Zhang L, Li Z, Liu X, He P, Gu Y, Liu L, Jin Y, Cheng S, Zhou F, Jia Y. Gualou-Xiebai-Banxia-Tang regulates liver-gut axis to ameliorate Metabolic Syndrome in HFD-fed mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155320. [PMID: 38901285 DOI: 10.1016/j.phymed.2023.155320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 06/22/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS), characterized by obesity, hyperglycemia, and abnormal blood lipid levels, is the pathological basis of many cardiovascular diseases. Gualou-Xiebai-Banxia-Tang decoction (GT) was first described in the Synopsis of the Golden Chamber, the earliest traditional Chinese medicine (TCM) monograph on diagnosis and treatment of miscellaneous diseases in China. According to TCM precepts, based on its ability to activate yang to release stagnation, activate qi to reduce depression, remove phlegm, and broaden the chest, GT has been used for more than 2,000 years to treat cardiovascular ailments. However, the molecular bases of its therapeutic mechanisms remain unclear. PURPOSE The aim of this study was to identify lipid- and glucose-related hepatic genes differentially regulated by GT, and to assess GT impact on gut microbiota composition, in mice with high-fat diet (HFD)-induced MetS. STUDY DESIGN AND METHODS ApoE-/- mice were fed with an HFD for 24 weeks, with or without concurrent GT supplementation, to induce MetS. At the study's end, body weight, visceral fat weight, blood lipid levels, and insulin sensitivity were measured, and histopathological staining was used to evaluate hepatosteatosis and intestinal barrier integrity. Liver transcriptomics was used for analysis of differentially expressed genes in liver and prediction of relevant regulatory pathways. Hepatic lipid/glucose metabolism-related genes and proteins were detected by RT-qPCR and western blotting. Gut microbial composition was determined by 16S rRNA gene sequencing. RESULTS GT administration reduced MetS-related liver steatosis and weight gain, promoted insulin sensitivity and lipid metabolism, and beneficially modulated gut microbiota composition by decreasing the relative abundance of g_Lachnospiraceae_NK4A136_group and increasing the relative abundance of g_Alistipes. Liver transcriptomics revealed that GT regulated the expression of genes related to lipid and glucose metabolism (Pparγ, Igf1, Gpnmb, and Trem2) and of genes encoding chemokines/chemokine receptors (e.g. Cxcl9 and Cx3cr1). Significant, positive correlations were found for Ccr2, Ccl4, Ccr1, and Cx3cr1 and the g_Lachnospiraceae_NK4A136_group, and between Cxcl9, Ccr2, Ccl4, and Cx3cr1 and g_Desulfovibrio. GT treatment downregulated the protein expressions of SCD1 and CX3CR1 and upregulated the expression of PCK1 protein. CONCLUSION GT supplementation alleviates HFD-induced MetS in mice by improving hepatic lipid and glucose metabolism. The anti-metabolic syndrome effects of GT may be related to the regulation of the gut-liver axis.
Collapse
Affiliation(s)
- Yaxin Zhang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lifang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhaoyong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoyu Liu
- Pingshan General Hospital (Shenzhen Pingshan District Medical Healthcare Group), Southern Medical University, Shenzhen, Guangdong Province, China
| | - Peikun He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuyan Gu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - LinLing Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yao Jin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Jeong BK, Choi WI, Choi W, Moon J, Lee WH, Choi C, Choi IY, Lee SH, Kim JK, Ju YS, Kim P, Moon YA, Park JY, Kim H. A male mouse model for metabolic dysfunction-associated steatotic liver disease and hepatocellular carcinoma. Nat Commun 2024; 15:6506. [PMID: 39090079 PMCID: PMC11294468 DOI: 10.1038/s41467-024-50660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
The lack of an appropriate preclinical model of metabolic dysfunction-associated steatotic liver disease (MASLD) that recapitulates the whole disease spectrum impedes exploration of disease pathophysiology and the development of effective treatment strategies. Here, we develop a mouse model (Streptozotocin with high-fat diet, STZ + HFD) that gradually develops fatty liver, metabolic dysfunction-associated steatohepatitis (MASH), hepatic fibrosis, and hepatocellular carcinoma (HCC) in the context of metabolic dysfunction. The hepatic transcriptomic features of STZ + HFD mice closely reflect those of patients with obesity accompanying type 2 diabetes mellitus, MASH, and MASLD-related HCC. Dietary changes and tirzepatide administration alleviate MASH, hepatic fibrosis, and hepatic tumorigenesis in STZ + HFD mice. In conclusion, a murine model recapitulating the main histopathologic, transcriptomic, and metabolic alterations observed in MASLD patients is successfully established.
Collapse
Affiliation(s)
- Byung-Kwan Jeong
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Won-Il Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Wonsuk Choi
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.
| | - Jieun Moon
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Won Hee Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Chan Choi
- Department of Pathology, Chonnam National University Medical School, Hwasun, Korea
| | - In Young Choi
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd, Hwaseong, Korea
| | - Sang-Hyun Lee
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd, Hwaseong, Korea
| | - Jung Kuk Kim
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd, Hwaseong, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, 22212, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei Liver Center, Severance Hospital, Seoul, Korea.
| | - Hail Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea.
- Biomedical Research Center, KAIST, Daejeon, Korea.
| |
Collapse
|
8
|
von Morze C, Blazey T, Shaw A, Spees WM, Shoghi KI, Ohliger MA. Detection of early-stage NASH using non-invasive hyperpolarized 13C metabolic imaging. Sci Rep 2024; 14:14854. [PMID: 38937567 PMCID: PMC11211431 DOI: 10.1038/s41598-024-65951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized from its early stages by a profound remodeling of the liver microenvironment, encompassing changes in the composition and activities of multiple cell types and associated gene expression patterns. Hyperpolarized (HP) 13C MRI provides a unique view of the metabolic microenvironment, with potential relevance for early diagnosis of liver disease. Previous studies have detected changes in HP 13C pyruvate to lactate conversion, catalyzed by lactate dehydrogenase (LDH), with experimental liver injury. HP ∝ -ketobutyrate ( ∝ KB) is a close molecular analog of pyruvate with modified specificity for LDH isoforms, specifically attenuated activity with their LDHA-expressed subunits that dominate liver parenchyma. Building on recent results with pyruvate, we investigated HP ∝ KB in methionine-choline deficient (MCD) diet as a model of early-stage NASH. Similarity of results between this new agent and pyruvate (~ 50% drop in cytoplasmic reducing capacity), interpreted together with gene expression data from the model, suggests that changes are mediated through broad effects on intermediary metabolism. Plausible mechanisms are depletion of the lactate pool by upregulation of gluconeogenesis (GNG) and pentose phosphate pathway (PPP) flux, and a possible shift toward increased lactate oxidation. These changes may reflect high levels of oxidative stress and/or shifting macrophage populations in NASH.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA.
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - Ashley Shaw
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - William M Spees
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Nauffal V, Klarqvist MDR, Hill MC, Pace DF, Di Achille P, Choi SH, Rämö JT, Pirruccello JP, Singh P, Kany S, Hou C, Ng K, Philippakis AA, Batra P, Lubitz SA, Ellinor PT. Noninvasive assessment of organ-specific and shared pathways in multi-organ fibrosis using T1 mapping. Nat Med 2024; 30:1749-1760. [PMID: 38806679 DOI: 10.1038/s41591-024-03010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024]
Abstract
Fibrotic diseases affect multiple organs and are associated with morbidity and mortality. To examine organ-specific and shared biologic mechanisms that underlie fibrosis in different organs, we developed machine learning models to quantify T1 time, a marker of interstitial fibrosis, in the liver, pancreas, heart and kidney among 43,881 UK Biobank participants who underwent magnetic resonance imaging. In phenome-wide association analyses, we demonstrate the association of increased organ-specific T1 time, reflecting increased interstitial fibrosis, with prevalent diseases across multiple organ systems. In genome-wide association analyses, we identified 27, 18, 11 and 10 independent genetic loci associated with liver, pancreas, myocardial and renal cortex T1 time, respectively. There was a modest genetic correlation between the examined organs. Several loci overlapped across the examined organs implicating genes involved in a myriad of biologic pathways including metal ion transport (SLC39A8, HFE and TMPRSS6), glucose metabolism (PCK2), blood group antigens (ABO and FUT2), immune function (BANK1 and PPP3CA), inflammation (NFKB1) and mitosis (CENPE). Finally, we found that an increasing number of organs with T1 time falling in the top quintile was associated with increased mortality in the population. Individuals with a high burden of fibrosis in ≥3 organs had a 3-fold increase in mortality compared to those with a low burden of fibrosis across all examined organs in multivariable-adjusted analysis (hazard ratio = 3.31, 95% confidence interval 1.77-6.19; P = 1.78 × 10-4). By leveraging machine learning to quantify T1 time across multiple organs at scale, we uncovered new organ-specific and shared biologic pathways underlying fibrosis that may provide therapeutic targets.
Collapse
Affiliation(s)
- Victor Nauffal
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Matthew C Hill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Danielle F Pace
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paolo Di Achille
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joel T Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Pulkit Singh
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cody Hou
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenney Ng
- Center for Computational Health, IBM Research, Cambridge, MA, USA
| | - Anthony A Philippakis
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Lubitz
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Meroni M, De Caro E, Chiappori F, Longo M, Paolini E, Mosca E, Merelli I, Lombardi R, Badiali S, Maggioni M, Orro A, Mezzelani A, Valenti L, Fracanzani AL, Dongiovanni P. Hepatic and adipose tissue transcriptome analysis highlights a commonly deregulated autophagic pathway in severe MASLD. Obesity (Silver Spring) 2024; 32:923-937. [PMID: 38439203 DOI: 10.1002/oby.23996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly ramping up due to the spread of obesity, which is characterized by expanded and dysfunctional visceral adipose tissue (VAT). Previous studies have investigated the hepatic transcriptome across MASLD, whereas few studies have focused on VAT. METHODS We performed RNA sequencing in 167 hepatic samples from patients with obesity and in a subset of 79 matched VAT samples. Circulating cathepsin D (CTSD), a lysosomal protease, was measured by ELISA, whereas the autophagy-lysosomal pathway was assessed by Western blot in hepatic and VAT samples (n = 20). RESULTS Inflammation, extracellular matrix remodeling, and mitochondrial dysfunction were upregulated in severe MASLD in both tissues, whereas autophagy and oxidative phosphorylation were reduced. Tissue comparative analysis revealed 13 deregulated genes, including CTSD, which showed the most robust diagnostic accuracy in discriminating mild and severe MASLD. CTSD expression correlated with circulating protein, whose increase was further validated in 432 histologically characterized MASLD patients, showing a high accuracy in foreseeing severe liver injury. In addition, the assessment of serum CTSD increased the performance of fibrosis 4 in diagnosing advanced disease. CONCLUSIONS By comparing the hepatic and VAT transcriptome during MASLD, we refined the concept by which CTSD may represent a potential biomarker of severe disease.
Collapse
Affiliation(s)
- Marica Meroni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emilia De Caro
- Life and Medical Sciences Institute (LIMES), University of Bonn, Germany/System Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Federica Chiappori
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Miriam Longo
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Paolini
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ettore Mosca
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Rosa Lombardi
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sara Badiali
- Department of Surgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Alessandra Mezzelani
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Ludovica Fracanzani
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
11
|
Kiseleva OI, Pyatnitskiy MA, Arzumanian VA, Kurbatov IY, Ilinsky VV, Ilgisonis EV, Plotnikova OA, Sharafetdinov KK, Tutelyan VA, Nikityuk DB, Ponomarenko EA, Poverennaya EV. Multiomics Picture of Obesity in Young Adults. BIOLOGY 2024; 13:272. [PMID: 38666884 PMCID: PMC11048234 DOI: 10.3390/biology13040272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Obesity is a socially significant disease that is characterized by a disproportionate accumulation of fat. It is also associated with chronic inflammation, cancer, diabetes, and other comorbidities. Investigating biomarkers and pathological processes linked to obesity is especially vital for young individuals, given their increased potential for lifestyle modifications. By comparing the genetic, proteomic, and metabolomic profiles of individuals categorized as underweight, normal, overweight, and obese, we aimed to determine which omics layer most accurately reflects the phenotypic changes in an organism that result from obesity. We profiled blood plasma samples by employing three omics methodologies. The untargeted GC×GC-MS metabolomics approach identified 313 metabolites. To augment the metabolomic dataset, we integrated a label-free HPLC-MS/MS proteomics method, leading to the identification of 708 proteins. The genomic layer encompassed the genotyping of 647,250 SNPs. Utilizing omics data, we trained sparse Partial Least Squares models to predict body mass index. Molecular features exhibiting frequently non-zero coefficients were selected as potential biomarkers, and we further explored enriched biological pathways. Proteomics was the most effective in single-omics analyses, with a median absolute error (MAE) of 5.44 ± 0.31 kg/m2, incorporating an average of 24 proteins per model. Metabolomics showed slightly lower performance (MAE = 6.06 ± 0.33 kg/m2), followed by genomics (MAE = 6.20 ± 0.34 kg/m2). As expected, multiomic models demonstrated better accuracy, particularly the combination of proteomics and metabolomics (MAE = 4.77 ± 0.33 kg/m2), while including genomics data did not enhance the results. This manuscript is the first multiomics study of obesity in a gender-balanced cohort of young adults profiled by genomic, proteomic, and metabolomic methods. The comprehensive approach provides novel insights into the molecular mechanisms of obesity, opening avenues for more targeted interventions.
Collapse
Affiliation(s)
- Olga I. Kiseleva
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (O.I.K.)
| | - Mikhail A. Pyatnitskiy
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (O.I.K.)
- Faculty of Computer Science, National Research University Higher School of Economics, Moscow 101000, Russia
| | | | - Ilya Y. Kurbatov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (O.I.K.)
| | | | | | - Oksana A. Plotnikova
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russian Academy of Sciences, Moscow 109240, Russia
| | - Khaider K. Sharafetdinov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russian Academy of Sciences, Moscow 109240, Russia
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow 125993, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Moscow 119991, Russia
| | - Victor A. Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russian Academy of Sciences, Moscow 109240, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Moscow 119991, Russia
| | - Dmitry B. Nikityuk
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russian Academy of Sciences, Moscow 109240, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Moscow 119991, Russia
| | | | | |
Collapse
|
12
|
Lei X, Ishida E, Yoshino S, Matsumoto S, Horiguchi K, Yamada E. Calorie Restriction Using High-Fat/Low-Carbohydrate Diet Suppresses Liver Fat Accumulation and Pancreatic Beta-Cell Dedifferentiation in Obese Diabetic Mice. Nutrients 2024; 16:995. [PMID: 38613031 PMCID: PMC11013071 DOI: 10.3390/nu16070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
In diabetes, pancreatic β-cells gradually lose their ability to secrete insulin with disease progression. β-cell dysfunction is a contributing factor to diabetes severity. Recently, islet cell heterogeneity, exemplified by β-cell dedifferentiation and identified in diabetic animals, has attracted attention as an underlying molecular mechanism of β-cell dysfunction. Previously, we reported β-cell dedifferentiation suppression by calorie restriction, not by reducing hyperglycemia using hypoglycemic agents (including sodium-glucose cotransporter inhibitors), in an obese diabetic mice model (db/db). Here, to explore further mechanisms of the effects of food intake on β-cell function, db/db mice were fed either a high-carbohydrate/low-fat diet (db-HC) or a low-carbohydrate/high-fat diet (db-HF) using similar calorie restriction regimens. After one month of intervention, body weight reduced, and glucose intolerance improved to a similar extent in the db-HC and db-HF groups. However, β-cell dedifferentiation did not improve in the db-HC group, and β-cell mass compensatory increase occurred in this group. More prominent fat accumulation occurred in the db-HC group livers. The expression levels of genes related to lipid metabolism, mainly regulated by peroxisome proliferator-activated receptor α and γ, differed significantly between groups. In conclusion, the fat/carbohydrate ratio in food during calorie restriction in obese mice affected both liver lipid metabolism and β-cell dedifferentiation.
Collapse
Affiliation(s)
| | - Emi Ishida
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan
| | | | | | | | | |
Collapse
|
13
|
Tsouka S, Kumar P, Seubnooch P, Freiburghaus K, St-Pierre M, Dufour JF, Masoodi M. Transcriptomics-driven metabolic pathway analysis reveals similar alterations in lipid metabolism in mouse MASH model and human. COMMUNICATIONS MEDICINE 2024; 4:39. [PMID: 38443644 PMCID: PMC10914730 DOI: 10.1038/s43856-024-00465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disease worldwide, and can rapidly progress to metabolic dysfunction-associated steatohepatitis (MASH). Accurate preclinical models and methodologies are needed to understand underlying metabolic mechanisms and develop treatment strategies. Through meta-analysis of currently proposed mouse models, we hypothesized that a diet- and chemical-induced MASH model closely resembles the observed lipid metabolism alterations in humans. METHODS We developed transcriptomics-driven metabolic pathway analysis (TDMPA), a method to aid in the evaluation of metabolic resemblance. TDMPA uses genome-scale metabolic models to calculate enzymatic reaction perturbations from gene expression data. We performed TDMPA to score and compare metabolic pathway alterations in MASH mouse models to human MASH signatures. We used an already-established WD+CCl4-induced MASH model and performed functional assays and lipidomics to confirm TDMPA findings. RESULTS Both human MASH and mouse models exhibit numerous altered metabolic pathways, including triglyceride biosynthesis, fatty acid beta-oxidation, bile acid biosynthesis, cholesterol metabolism, and oxidative phosphorylation. We confirm a significant reduction in mitochondrial functions and bioenergetics, as well as in acylcarnitines for the mouse model. We identify a wide range of lipid species within the most perturbed pathways predicted by TDMPA. Triglycerides, phospholipids, and bile acids are increased significantly in mouse MASH liver, confirming our initial observations. CONCLUSIONS We introduce TDMPA, a methodology for evaluating metabolic pathway alterations in metabolic disorders. By comparing metabolic signatures that typify human MASH, we show a good metabolic resemblance of the WD+CCl4 mouse model. Our presented approach provides a valuable tool for defining metabolic space to aid experimental design for assessing metabolism.
Collapse
Affiliation(s)
- Sofia Tsouka
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Pavitra Kumar
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Patcharamon Seubnooch
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Katrin Freiburghaus
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Marie St-Pierre
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Jean-François Dufour
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
- Centre des Maladie Digestives, Lausanne, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
14
|
Zhang J, Wang L, Jiang M. Diagnostic value of sphingolipid metabolism-related genes CD37 and CXCL9 in nonalcoholic fatty liver disease. Medicine (Baltimore) 2024; 103:e37185. [PMID: 38394483 PMCID: PMC11309649 DOI: 10.1097/md.0000000000037185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
The development of nonalcoholic fatty liver disease (NAFLD) has been reported to be caused by sphingolipid family inducing insulin resistance, mitochondrial dysfunction, and inflammation, which can be regulated by multiple sphingolipid metabolic pathways. This study aimed to explore the molecular mechanism of crucial sphingolipid metabolism related genes (SMRGs) in NAFLD. Firstly, the datasets (GSE48452, GSE126848, and GSE63067) from the Gene Expression Omnibus database and sphingolipid metabolism genes (SMGs) from previous research were collected for this study. The differentially expressed genes (DEGs) between different NAFLD and controls were acquired through "limma," and the SMRGs were authenticated via weighted gene co-expression network analysis (WGCNA). After overlapping the DEGs and SMRGs, the causality between the intersection genes (DE-SMRGs) and NAFLD was explored to sort out the candidate biomarkers by Mendelian randomization (MR) study. The receiver operating characteristic (ROC) curves of candidate biomarkers in GSE48452 and GSE126848 were yielded to determine the biomarkers, followed by the nomogram construction and enrichment analysis. Finally, the immune infiltration analysis, the prediction of transcription factors (TFs) and drugs targeting biomarkers were put into effect. A total of 23 DE-SMRGs were acquired based on the differential analysis and weighted gene co-expression network analysis (WGCNA), of which 3 DE-SMRGs (CD37, CXCL9 and IL7R) were picked out for follow-up analysis through univariate and multivariate MR analysis. The values of area under ROC curve of CD37 and CXCL9 were >0.7 in GSE48452 and GSE126848, thereby being regarded as biomarkers, which were mainly enriched in amino acid metabolism. With respect to the Spearman analysis between immune cells and biomarkers, CD37 and CXCL9 were significantly positively associated with M1 macrophages (P < .001), whose proportion was observably higher in NAFLD patients compared with controls. At last, TFs (ZNF460 and ZNF384) of CD37 and CXCL9 and a total of 79 chemical drugs targeting CD37 and CXCL9 were predicted. This study mined the pivotal SMRGs, CD37 and CXCL9, and systematically explored the mechanism of action of both biomarkers based on the public databases, which could tender a fresh reference for the clinical diagnosis and therapy of NAFLD.
Collapse
Affiliation(s)
- Jiayi Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lingfang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Meixiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
McBride DA, Jones RM, Bottini N, Shah NJ. The therapeutic potential of immunoengineering for systemic autoimmunity. Nat Rev Rheumatol 2024:10.1038/s41584-024-01084-x. [PMID: 38383732 DOI: 10.1038/s41584-024-01084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Disease-modifying drugs have transformed the treatment options for many systemic autoimmune diseases. However, an evolving understanding of disease mechanisms, which might vary between individuals, is paving the way for the development of novel agents that operate in a patient-tailored manner through immunophenotypic regulation of disease-relevant cells and the microenvironment of affected tissue domains. Immunoengineering is a field that is focused on the application of engineering principles to the modulation of the immune system, and it could enable future personalized and immunoregulatory therapies for rheumatic diseases. An important aspect of immunoengineering is the harnessing of material chemistries to design technologies that span immunologically relevant length scales, to enhance or suppress immune responses by re-balancing effector and regulatory mechanisms in innate or adaptive immunity and rescue abnormalities underlying pathogenic inflammation. These materials are endowed with physicochemical properties that enable features such as localization in immune cells and organs, sustained delivery of immunoregulatory agents, and mimicry of key functions of lymphoid tissue. Immunoengineering applications already exist for disease management, and there is potential for this new discipline to improve disease modification in rheumatology.
Collapse
Affiliation(s)
- David A McBride
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA, USA
| | - Ryan M Jones
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA, USA
| | - Nunzio Bottini
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Nisarg J Shah
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Nguyen VD, Hughes TR, Zhou Y. From complement to complosome in non-alcoholic fatty liver disease: When location matters. Liver Int 2024; 44:316-329. [PMID: 38010880 DOI: 10.1111/liv.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing public health threat and becoming the leading cause of liver transplantation. Nevertheless, no approved specific treatment is currently available for NAFLD. The pathogenesis of NAFLD is multifaceted and not yet fully understood. Accumulating evidence suggests a significant role of the complement system in the development and progression of NAFLD. Here, we provide an overview of the complement system, incorporating the novel concept of complosome, and summarise the up-to-date evidence elucidating the association between complement dysregulation and the pathogenesis of NAFLD. In this process, the extracellular complement system is activated through various pathways, thereby directly contributing to, or working together with other immune cells in the disease development and progression. We also introduce the complosome and assess the evidence that implicates its potential influence in NAFLD through its direct impact on hepatocytes or non-parenchymal liver cells. Additionally, we expound upon how complement system and the complosome may exert their effects in relation with hepatic zonation in NAFLD. Furthermore, we discuss the potential therapeutic implications of targeting the complement system, extracellularly and intracellularly, for NAFLD treatment. Finally, we present future perspectives towards a better understanding of the complement system's contribution to NAFLD.
Collapse
Affiliation(s)
- Van-Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
São José VPBD, Grancieri M, Toledo RCL, Mejia EGD, da Silva BP, Martino HSD. A bioactive compound digested chia protein is capable of modulating NFκB mediated hepatic inflammation in mice fed a high-fat diet. Food Res Int 2024; 175:113740. [PMID: 38128992 DOI: 10.1016/j.foodres.2023.113740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The consumption of diets high in saturated fat can induce damages in liver morphology and function, which leads to increased inflammation, oxidative stress, and hepatic steatosis. Chia seed (Salvia hispanica L.) is rich in protein, which provides bioactive peptides with potential benefits, including antioxidant and anti-inflammatory functions. Then, this study aimed to analyze the effect of digested total protein (DTP) of chia on inflammation, oxidative stress, and morphological changes in liver of C57BL/6 mice fed a diet rich in saturated fat. Male C57BL/6 mice (n = 8/group), 8 weeks old, were fed standard diet (AIN), high-fat diet (HF), standard diet added digested protein (AIN + DTP) or high-fat diet added digested protein (HF + DTP) for 8 weeks. In animals fed a high-fat diet, chia DTP was able to reduce weight gain, food efficiency ratio and hepatosomatic index. In addition, it presented antioxidant capacity, which reduced catalase activity and lipid peroxidation. DTP was also able to reduce hepatic inflammation by reducing p65-NFκB expression and IL-1β expression and quantification. The APSPPVLGPP peptide present in chia DTP presented binding capacity with PPAR-α, which contributed to the reduction of hepatic fat accumulation evidenced by histological analysis. Thus, chia DTP improved hepatic inflammatory and histological parameters, being an effective food in reducing the liver damage caused by a high-fat diet.
Collapse
Affiliation(s)
| | - Mariana Grancieri
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo, Alegre 29500-000, ES, Brazil
| | - Renata Celi Lopes Toledo
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil
| | - Elvira Gonzalez de Mejia
- Department of Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bárbara Pereira da Silva
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil.
| |
Collapse
|
18
|
Teixeira FS, Pimentel LL, Pintado ME, Rodríguez-Alcalá LM. Impaired hepatic lipid metabolism and biomarkers in fatty liver disease. Biochimie 2023; 215:69-74. [PMID: 37769937 DOI: 10.1016/j.biochi.2023.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
The liver plays a crucial role in lipid metabolism and metabolic homeostasis. Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common chronic liver disease worldwide and currently has no specific treatments. Lifestyle modifications such as weight loss, exercise, and dietary changes are recommended to reduce the risk factors associated with the disease. Oxidized cholesterol products, some phospholipids and diacylglycerols can activate inflammatory pathways and contribute to the progression to Non-Alcoholic Steatohepatitis. Monitoring the whole plasma and liver lipidome may provide insights into the onset, development, and prevention of inflammatory-related diseases. As Lipid Droplets (LDs) represent augmented lipid reservoirs in NAFLD, new developments are being made on different therapies focused on LD associated proteins modulation (seipin, PLIN-2), as well as LD lipophagy mechanisms. The information covered in this publication provides an overview of the available research on lipid biomarkers linked to NAFLD and can be used to guide the development of future pharmacological therapies.
Collapse
Affiliation(s)
- Francisca S Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Lígia L Pimentel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Luís M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
19
|
Meroni M, Chiappori F, Paolini E, Longo M, De Caro E, Mosca E, Chiodi A, Merelli I, Badiali S, Maggioni M, Mezzelani A, Valenti L, Ludovica Fracanzani A, Dongiovanni P. A novel gene signature to diagnose MASLD in metabolically unhealthy obese individuals. Biochem Pharmacol 2023; 218:115925. [PMID: 37981173 DOI: 10.1016/j.bcp.2023.115925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Visceral adipose tissue (VAT) contributes to metabolic dysfunction-associated steatotic liver disease (MASLD), releasing lipogenic substrates and cytokines which promote inflammation. Metabolic healthy obese individuals (MHO) may shift towardsunhealthy ones (MUHO) who develop MASLD, although the mechanisms are still unexplained. Therefore, we aimed to identify dysfunctional pathways and transcriptomic signatures shared by liver and VAT and to outline novel obesity-related biomarkers which feature MASLD in MUHO subjects, at higher risk of progressive liver disease and extrahepatic comorbidities. We performed RNA-sequencing in 167 hepatic samples and in a subset of 79 matched VAT, stratified in MHO and MUHO. A validation analysis was performed in hepatic samples and primary adipocytes from 12 bariatric patients, by qRT-PCR and western blot. We identified a transcriptomic signature that discriminate MUHO vs MHO, including 498 deregulated genes in liver and 189 in VAT. According to pathway and network analyses, oxidative phosphorylation resulted the only significantly downregulated pathway in both tissues in MUHO subjects. Next, we highlighted 5 genes commonly deregulated in liver and VAT, encompassing C6, IGF1, OXA1L, NDUFB11 and KLHL5 and we built a tissue-related score by integrating their expressions. Accordingly to RNAseq data, serum levels of C6 and IGF1, which are the only secreted proteins among those included in the gene signature were downregulated in MUHO vs MHO. Finally, the expression pattern of this 5-genes was confirmed in hepatic and VAT samples. We firstly identified the liver and VAT transcriptional phenotype of MUHO and a gene signature associated with the presence of MASLD in these at risk individuals.
Collapse
Affiliation(s)
- Marica Meroni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Chiappori
- National Research Council - Institute for Biomedical Technologies, (ITB-CNR), 20054 Segrate, Italy
| | - Erika Paolini
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Miriam Longo
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emilia De Caro
- Life and Medical Sciences Institute (LIMES), University of Bonn, Germany; System Medicine, Deutsches Zentrum Für Neurodegenerativen Erkrankugen (DZNE), Bonn, Germany
| | - Ettore Mosca
- National Research Council - Institute for Biomedical Technologies, (ITB-CNR), 20054 Segrate, Italy
| | - Alice Chiodi
- National Research Council - Institute for Biomedical Technologies, (ITB-CNR), 20054 Segrate, Italy
| | - Ivan Merelli
- National Research Council - Institute for Biomedical Technologies, (ITB-CNR), 20054 Segrate, Italy
| | - Sara Badiali
- Department of Surgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Mezzelani
- National Research Council - Institute for Biomedical Technologies, (ITB-CNR), 20054 Segrate, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Ludovica Fracanzani
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
20
|
Dandare A, Khan MJ, Naeem A, Liaquat A. Clinical relevance of circulating non-coding RNAs in metabolic diseases: Emphasis on obesity, diabetes, cardiovascular diseases and metabolic syndrome. Genes Dis 2023; 10:2393-2413. [PMID: 37554181 PMCID: PMC10404886 DOI: 10.1016/j.gendis.2022.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Non-coding RNAs (ncRNAs) participate in the regulation of several cellular processes including transcription, RNA processing and genome rearrangement. The aberrant expression of ncRNAs is associated with several pathological conditions. In this review, we focused on recent information to elucidate the role of various regulatory ncRNAs i.e., micro RNAs (miRNAs), circular RNAs (circRNAs) and long-chain non-coding RNAs (lncRNAs), in metabolic diseases, e.g., obesity, diabetes mellitus (DM), cardiovascular diseases (CVD) and metabolic syndrome (MetS). The mechanisms by which ncRNAs participated in disease pathophysiology were also highlighted. miRNAs regulate the expression of genes at transcriptional and translational levels. circRNAs modulate the regulation of gene expression via miRNA sponging activity, interacting with RNA binding protein and polymerase II transcription regulation. lncRNAs regulate the expression of genes by acting as a protein decoy, miRNA sponging, miRNA host gene, binding to miRNA response elements (MRE) and the recruitment of transcriptional element or chromatin modifiers. We examined the role of ncRNAs in the disease pathogenesis and their potential role as molecular markers for diagnosis, prognosis and therapeutic targets. We showed the involvement of ncRNAs in the onset of obesity and its progression to MetS and CVD. miRNA-192, miRNA-122, and miRNA-221 were dysregulated in all these metabolic diseases. Other ncRNAs, implicated in at least three diseases include miRNA-15a, miRNA-26, miRNA-27a, miRNA-320, and miRNA-375. Dysregulation of ncRNAs increased the risk of development of DM and MetS and its progression to CVD in obese individuals. Hence, these molecules are potential targets to arrest or delay the progression of metabolic diseases.
Collapse
Affiliation(s)
- Abdullahi Dandare
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Usmanu Danfodiyo University, Sokoto 840104, Nigeria
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Aisha Naeem
- Ministry of Public Health, POB42, Doha, Qatar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Afrose Liaquat
- Shifa College of Medicine, Shifa Tameer-E-Millat University, Islamabad 45550, Pakistan
| |
Collapse
|
21
|
Yang Z, Han X, Wang K, Fang J, Wang Z, Liu G. Combined with multiplex and network analysis to reveal the key genes and mechanisms of nonalcoholic fatty liver disease. Int Immunopharmacol 2023; 123:110708. [PMID: 37523974 DOI: 10.1016/j.intimp.2023.110708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) has become a significant cause of chronic liver disease in developed countries, as a result of the worldwide trend of obesity and associated metabolic syndrome. Obesity and high-fat diet (HFD) are very common in patients with NAFLD. However, how to screen out key differentially expressed genes (DEGs) is a challenging task. The purpose of this study is to study the screen of key genes and pathways of HFD on the formation process of non-alcoholic fatty liver through network pharmacological analysis. METHODS In this study, 173 genes associated with NAFLD were collected from the Gene Expression Omnibus (GEO) database. To find significant genes and pathways, combine network clustering analysis, topology analysis, and pathway analysis. RESULTS The results showed that there were four key signaling pathways related to HFD, including complement cascade, Atorvastatin ADME, Asthma and Aflatoxin activation and detoxification. In addition, we identified six representative key genes, including Ccl5, Tlr2, Cd274, Cxcl10, Cxcl9 and Cd74, and screened three intersecting genes in Mus musculus and Homo sapiens sample, including C3, F2 and C7. CONCLUSIONS In conclusion, our study constructed the NAFLD gene regulatory network of C57BL/6J mice for the first time and jointly analyzed the Mus musculus samples and Homo sapiens samples. It provides new insights for identifying potential biomarkers and valuable therapeutic clues, and puts forward a new method for web-based research. These findings may provide potential targets for early diagnosis, effective therapy and prognostic markers of NAFLD.
Collapse
Affiliation(s)
- Zhao Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Zheng Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
22
|
Ullah A, Ud Din A, Ding W, Shi Z, Pervaz S, Shen B. A narrative review: CXC chemokines influence immune surveillance in obesity and obesity-related diseases: Type 2 diabetes and nonalcoholic fatty liver disease. Rev Endocr Metab Disord 2023; 24:611-631. [PMID: 37000372 PMCID: PMC10063956 DOI: 10.1007/s11154-023-09800-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Adipose tissue develops lipids, aberrant adipokines, chemokines, and pro-inflammatory cytokines as a consequence of the low-grade systemic inflammation that characterizes obesity. This low-grade systemic inflammation can lead to insulin resistance (IR) and metabolic complications, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). Although the CXC chemokines consists of numerous regulators of inflammation, cellular function, and cellular migration, it is still unknown that how CXC chemokines and chemokine receptors contribute to the development of metabolic diseases (such as T2D and NAFLD) during obesity. In light of recent research, the objective of this review is to provide an update on the linkage between the CXC chemokine, obesity, and obesity-related metabolic diseases (T2D and NAFLD). We explore the differential migratory and immunomodulatory potential of CXC chemokines and their mechanisms of action to better understand their role in clinical and laboratory contexts. Besides that, because CXC chemokine profiling is strongly linked to leukocyte recruitment, macrophage recruitment, and immunomodulatory potential, we hypothesize that it could be used to predict the therapeutic potential for obesity and obesity-related diseases (T2D and NAFLD).
Collapse
Affiliation(s)
- Amin Ullah
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| | - Ahmad Ud Din
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Wen Ding
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Zheng Shi
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated hospital, Chengdu University, 610106, Chengdu, China
| | - Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Park SJ, Garcia Diaz J, Um E, Hahn YS. Major roles of kupffer cells and macrophages in NAFLD development. Front Endocrinol (Lausanne) 2023; 14:1150118. [PMID: 37274349 PMCID: PMC10235620 DOI: 10.3389/fendo.2023.1150118] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an important public health problem with growing numbers of NAFLD patients worldwide. Pathological conditions are different in each stage of NAFLD due to various factors. Preclinical and clinical studies provide evidence for a crucial role of immune cells in NAFLD progression. Liver-resident macrophages, kupffer cells (KCs), and monocytes-derived macrophages are the key cell types involved in the progression of NAFLD, non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). Their unique polarization contributes to the progression of NAFLD. KCs are phagocytes with self-renewal abilities and play a role in regulating and maintaining homeostasis. Upon liver damage, KCs are activated and colonized at the site of the damaged tissue. The secretion of inflammatory cytokines and chemokines by KCs play a pivotal role in initiating NAFLD pathogenesis. This review briefly describes the role of immune cells in the immune system in NAFLD, and focuses on the pathological role and molecular pathways of KCs and recruited macrophages. In addition, the relationship between macrophages and insulin resistance is described. Finally, the latest therapeutics that target KCs and macrophages are summarized for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Josefina Garcia Diaz
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Eugene Um
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
24
|
Sharpe MC, Pyles KD, Hallcox T, Kamm DR, Piechowski M, Fisk B, Albert CJ, Carpenter DH, Ulmasov B, Ford DA, Neuschwander-Tetri BA, McCommis KS. Enhancing Hepatic MBOAT7 Expression in Mice With Nonalcoholic Steatohepatitis. GASTRO HEP ADVANCES 2023; 2:558-572. [PMID: 37293574 PMCID: PMC10249591 DOI: 10.1016/j.gastha.2023.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Polymorphisms near the membrane bound O-acyltransferase domain containing 7 (MBOAT7) genes are associated with worsened nonalcoholic fatty liver (NASH), and nonalcoholic fatty liver disease (NAFLD)/NASH may decrease MBOAT7 expression independent of these polymorphisms. We hypothesized that enhancing MBOAT7 function would improve NASH. METHODS Genomic and lipidomic databases were mined for MBOAT7 expression and hepatic phosphatidylinositol (PI) abundance in human NAFLD/NASH. Male C57BL6/J mice were fed either choline-deficient high-fat diet or Gubra Amylin NASH diet and subsequently infected with adeno-associated virus expressing MBOAT7 or control virus. NASH histological scoring and lipidomic analyses were performed to assess MBOAT7 activity, hepatic PI, and lysophosphatidylinositol (LPI) abundance. RESULTS Human NAFLD/NASH decreases MBOAT7 expression and hepatic abundance of arachidonate-containing PI. Murine NASH models display subtle changes in MBOAT7 expression, but significantly decreased activity. After MBOAT7 overexpression, liver weights, triglycerides, and plasma alanine and aspartate transaminase were modestly improved by MBOAT7 overexpression, but NASH histology was not improved. Despite confirmation of increased activity with MBOAT7 overexpression, content of the main arachidonoylated PI species was not rescued by MBOAT7 although the abundance of many PI species was increased. Free arachidonic acid was elevated but the MBOAT7 substrate arachidonoyl-CoA was decreased in NASH livers compared to low-fat controls, likely due to the decreased expression of long-chain acyl-CoA synthetases. CONCLUSION Results suggest decreased MBOAT7 activity plays a role in NASH, but MBOAT7 overexpression fails to measurably improve NASH pathology potentially due to the insufficient abundance of its arachidonoyl-CoA substrate.
Collapse
Affiliation(s)
- Martin C. Sharpe
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kelly D. Pyles
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Taylor Hallcox
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Dakota R. Kamm
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Michaela Piechowski
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Bryan Fisk
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Carolyn J. Albert
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | | | - Barbara Ulmasov
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - David A. Ford
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Brent A. Neuschwander-Tetri
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kyle S. McCommis
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
25
|
Nguyen TK, Phung HH, Choi WJ, Ahn HC. Network Pharmacology and Molecular Docking Study on the Multi-Target Mechanisms of Aloe vera for Non-Alcoholic Steatohepatitis Treatment. PLANTS (BASEL, SWITZERLAND) 2022; 11:3585. [PMID: 36559697 PMCID: PMC9783676 DOI: 10.3390/plants11243585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease with limited treatment options. The widely distributed plant Aloe vera has shown protective effects against NASH in animals, yet the precise mechanism remains unknown. In this study, we investigated the potential mechanisms underlying the anti-NASH effects of Aloe vera using a network pharmacology and molecular docking approach. By searching online databases and analyzing the Gene Expression Omnibus dataset, we obtained 260 Aloe vera-NASH common targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the common targets were strongly associated with the key pathological processes implicated in NASH, including lipid and glucose metabolism, inflammation, apoptosis, oxidative stress, and liver fibrosis. Four core proteins, AKT serine/threonine kinase 1 (AKT1), tumor necrosis factor alpha (TNFα), transcription factor c-Jun, and tumor suppressor protein p53, were identified from compound-target-pathway and protein-protein interaction networks. Molecular docking analysis verified that the active ingredients of Aloe vera were able to interact with the core proteins, especially AKT1 and TNFα. The results demonstrate the multi-compound, multi-target, and multi-pathway mechanisms of Aloe vera against NASH. Our study has shown the scientific basis for further experiments in terms of the mechanism to develop Aloe vera-based natural products as complementary treatments for NASH. Furthermore, it identifies novel drug candidates based on the structures of Aloe vera's active compounds.
Collapse
|
26
|
Non-alcoholic fatty liver disease and liver secretome. Arch Pharm Res 2022; 45:938-963. [PMCID: PMC9703441 DOI: 10.1007/s12272-022-01419-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
|
27
|
Osganian SA, Subudhi S, Masia R, Drescher HK, Bartsch LM, Chicote ML, Chung RT, Gee DW, Witkowski ER, Bredella MA, Lauer GM, Corey KE, Dichtel LE. Expression of IGF-1 receptor and GH receptor in hepatic tissue of patients with nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Growth Horm IGF Res 2022; 65:101482. [PMID: 35780715 PMCID: PMC9885486 DOI: 10.1016/j.ghir.2022.101482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The GH and IGF-1 axis is a candidate disease-modifying target in nonalcoholic fatty liver disease (NAFLD) given its lipolytic, anti-inflammatory and anti-fibrotic properties. IGF-1 receptor (IGF-1R) and GH receptor (GHR) expression in adult, human hepatic tissue is not well understood across the spectrum of NAFLD severity. Therefore, we sought to investigate hepatic IGF-1R and GHR expression in subjects with NAFLD utilizing gene expression analysis (GEA) and immunohistochemistry (IHC). DESIGN GEA (n = 318) and IHC (n = 30) cohorts were identified from the Massachusetts General Hospital NAFLD Tissue Repository. GEA subjects were categorized based on histopathology as normal liver histology (NLH), steatosis only (Steatosis), nonalcoholic steatohepatitis (NASH) without fibrosis (NASH F0), and NASH with fibrosis (NASH F1-4) with GEA by the Nanostring nCounter assay. IHC subjects were matched for age, body mass index (BMI), sex, and diabetic status across three groups (n = 10 each): NLH, Steatosis, and NASH with fibrosis (NASH F1-3). IHC for IGF-1R, IGF-1 and GHR was performed on formalin-fixed, paraffin-embedded hepatic tissue samples. RESULTS IGF-1R gene expression did not differ across NAFLD severity while IGF-1 gene expression decreased with increasing NAFLD severity, including when controlled for BMI and age. GHR expression did not differ by severity of NAFLD based on GEA or IHC. CONCLUSIONS IGF-1R and GHR expression levels were not significantly different across NAFLD disease severity. However, expression of IGF-1 was lower with increasing severity of NAFLD. Additional research is needed regarding the contribution of the GH/IGF-1 axis to the pathophysiology of NAFLD and NASH.
Collapse
Affiliation(s)
- Stephanie A Osganian
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Sonu Subudhi
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital (MGH), Boston, MA, USA; Harvard Medical School (HMS), Boston, MA, USA
| | - Ricard Masia
- Harvard Medical School (HMS), Boston, MA, USA; Department of Pathology, MGH, Boston, MA, USA
| | - Hannah K Drescher
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital (MGH), Boston, MA, USA; Harvard Medical School (HMS), Boston, MA, USA
| | - Lea M Bartsch
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital (MGH), Boston, MA, USA; Harvard Medical School (HMS), Boston, MA, USA
| | | | - Raymond T Chung
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital (MGH), Boston, MA, USA; Harvard Medical School (HMS), Boston, MA, USA
| | - Denise W Gee
- Harvard Medical School (HMS), Boston, MA, USA; Department of Surgery, MGH, Boston, MA, USA
| | - Elan R Witkowski
- Harvard Medical School (HMS), Boston, MA, USA; Department of Surgery, MGH, Boston, MA, USA
| | - Miriam A Bredella
- Harvard Medical School (HMS), Boston, MA, USA; Department of Radiology, Division of Musculoskeletal Radiology and Interventions, MGH, Boston, MA, USA
| | - Georg M Lauer
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital (MGH), Boston, MA, USA; Harvard Medical School (HMS), Boston, MA, USA
| | - Kathleen E Corey
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital (MGH), Boston, MA, USA; Harvard Medical School (HMS), Boston, MA, USA
| | - Laura E Dichtel
- Harvard Medical School (HMS), Boston, MA, USA; Neuroendocrine Unit, MGH, Boston, MA, USA.
| |
Collapse
|
28
|
Wang W, Liu X, Wei P, Ye F, Chen Y, Shi L, Zhang X, Li J, Lin S, Yang X. SPP1 and CXCL9 Promote Non-alcoholic Steatohepatitis Progression Based on Bioinformatics Analysis and Experimental Studies. Front Med (Lausanne) 2022; 9:862278. [PMID: 35514751 PMCID: PMC9063562 DOI: 10.3389/fmed.2022.862278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aims Non-alcoholic fatty liver disease (NAFLD) is a major chronic liver disease worldwide, and non-alcoholic steatohepatitis (NASH) is one of its pathological subtypes. The pathogenesis of NASH has not yet been fully elucidated. The purpose of this study was to identify the hub genes and pathways involved in NASH using bioinformatics methods. The hub genes were confirmed in human and animal models. Materials and Methods Three Gene Expression Omnibus (GEO) datasets (GSE48452, GSE58979, and GSE151158) of NASH patients and healthy controls were included in the study. We used GEO2R to identify differentially expressed genes (DEGs) between NASH patients and healthy controls. Functional enrichment analyses were then performed to explore the potential functions and pathways of the DEGs. In all DEGs, only two genes were highly expressed in NASH patients throughout the three datasets; these two genes, SPP1 and CXCL9, were further studied. Serum and liver tissues from NASH patients and healthy controls were collected. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured in NASH patients and healthy controls. Liver tissues were stained with hematoxylin and eosin. Immunohistochemical staining was used to evaluate the expression levels of the two genes in liver tissues. Male C57BL/6J mice were fed a methionine choline-deficient (MCD) diet for 8 weeks, after which serum ALT and AST levels were measured and liver tissues were stained. Results SPP1 and CXCL9 were the hub genes detected in the three datasets. “Lipid metabolism,” “inflammatory response,” and “lymphocyte activation” were the most significant biological functions in GSE48452, GSE58979, and GSE151158, respectively. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the toll-like receptor signaling pathway was significantly enriched in NASH patients. Serum ALT and AST levels were significantly increased in NASH patients compared to healthy controls. Liver tissues had more serious steatosis, hepatocyte ballooning degeneration, and lobular inflammatory infiltration, and the expression of SPP1 and CXCL9 in liver cells was significantly upregulated in NASH patients compared to healthy controls. MCD diet mice were consistent with NASH patients. Conclusion SPP1 and CXCL9 may play important roles in NASH pathogenesis and could be potential therapeutic targets and biomarkers of NASH in the future. Further experimental studies are needed to confirm our results.
Collapse
Affiliation(s)
- Wen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojing Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peiyao Wei
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yunru Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianzhou Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shumei Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shumei Lin
| | - Xueliang Yang
- Department of Nutrition, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Xueliang Yang
| |
Collapse
|
29
|
Stefan N, Cusi K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol 2022; 10:284-296. [PMID: 35183303 DOI: 10.1016/s2213-8587(22)00003-1] [Citation(s) in RCA: 332] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become an epidemic, much like other non-communicable diseases (NCDs), such as cancer, obesity, diabetes, and cardiovascular disease. The pathophysiology of NAFLD, particularly involving insulin resistance and subclinical inflammation, is not only closely linked to that of those NCDs but also to a severe course of the communicable disease COVID-19. Genetics alone cannot explain the large increase in the prevalence of NAFLD during the past 2 decades and the increase that is projected for the next decades. Impairment of glucose and lipid metabolic pathways, which has been propelled by the worldwide increase in the prevalence of obesity and type 2 diabetes, is most likely behind the increase in people with NAFLD. As the prevalence of NAFLD varies among subgroups of patients with diabetes and prediabetes identified by cluster analyses, stratification of people with diabetes and prediabetes by major pathological mechanistic pathways might improve the diagnosis of NAFLD and prediction of its progression. In this Review, we aim to understand how diabetes can affect the development of hepatic steatosis and its progression to advanced liver damage. First, we emphasise the extent to which NAFLD and diabetes jointly occur worldwide. Second, we address the major mechanisms that are involved in the pathogenesis of NAFLD and type 2 diabetes, and we discuss whether these mechanisms place NAFLD in an important position to better understand the pathogenesis of NCDs and communicable diseases, such as COVID-19. Third, we address whether this knowledge can be used for personalised treatment of NAFLD in the future. Finally, we discuss the current treatment strategies for people with type 2 diabetes and their effectiveness in treating the spectrum of hepatic diseases from simple steatosis to non-alcoholic steatohepatitis and hepatic fibrosis.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV and Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University Hospital Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| |
Collapse
|
30
|
Mahmoudi A, Butler AE, Majeed M, Banach M, Sahebkar A. Investigation of the Effect of Curcumin on Protein Targets in NAFLD Using Bioinformatic Analysis. Nutrients 2022; 14:1331. [PMID: 35405942 PMCID: PMC9002953 DOI: 10.3390/nu14071331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a prevalent metabolic disorder. Defects in function/expression of genes/proteins are critical in initiation/progression of NAFLD. Natural products may modulate these genes/proteins. Curcumin improves steatosis, inflammation, and fibrosis progression. Here, bioinformatic tools, gene−drug and gene-disease databases were utilized to explore targets, interactions, and pathways through which curcumin could impact NAFLD. METHODS: Significant curcumin−protein interaction was identified (high-confidence:0.7) in the STITCH database. Identified proteins were investigated to determine association with NAFLD. gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed for significantly involved targets (p < 0.01). Specificity of obtained targets with NAFLD was estimated and investigated in Tissue/Cells−gene associations (PanglaoDB Augmented 2021, Mouse Gene Atlas) and Disease−gene association-based EnrichR algorithms (Jensen DISEASES, DisGeNET). RESULTS: Two collections were constructed: 227 protein−curcumin interactions and 95 NAFLD-associated genes. By Venn diagram, 14 significant targets were identified, and their biological pathways evaluated. Based on gene ontology, most targets involved stress and lipid metabolism. KEGG revealed chemical carcinogenesis, the AGE-RAGE signaling pathway in diabetic complications and NAFLD as the most common significant pathways. Specificity to diseases database (EnrichR algorithm) revealed specificity for steatosis/steatohepatitis. CONCLUSION: Curcumin may improve, or inhibit, progression of NAFLD through activation/inhibition of NAFLD-related genes.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran;
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | | | - Maciej Banach
- Nephrology and Hypertension, Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| |
Collapse
|
31
|
Ravanbakhsh N, Kohli R. Biomarkers in Fatty Liver Disease-Here is the Skinny. J Clin Exp Hepatol 2021; 11:637-640. [PMID: 34866840 PMCID: PMC8617537 DOI: 10.1016/j.jceh.2021.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Naseem Ravanbakhsh
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, 4650 Sunset Blvd., Mailstop #78, Los Angeles, CA 90027, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, 4650 Sunset Blvd., Mailstop #78, Los Angeles, CA 90027, USA
| |
Collapse
|