1
|
Guo WT, Li WX, Liu YC, Zhao YB, Xu L, Zhou QX. Time-Dependent Transcriptional Dynamics of Contextual Fear Memory Retrieval Reveals the Function of Dipeptidyl Peptidase 9 in Reconsolidation. Neurosci Bull 2025; 41:16-32. [PMID: 39621238 PMCID: PMC11748732 DOI: 10.1007/s12264-024-01324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/26/2024] [Indexed: 01/19/2025] Open
Abstract
Numerous studies on the formation and consolidation of memory have shown that memory processes are characterized by phase-dependent and dynamic regulation. Memory retrieval, as the only representation of memory content and an active form of memory processing that induces memory reconsolidation, has attracted increasing attention in recent years. Although the molecular mechanisms specific to memory retrieval-induced reconsolidation have been gradually revealed, an understanding of the time-dependent regulatory mechanisms of this process is still lacking. In this study, we applied a transcriptome analysis of memory retrieval at different time points in the recent memory stage. Differential expression analysis and Short Time-series Expression Miner (STEM) depicting temporal gene expression patterns indicated that most differential gene expression occurred at 48 h, and the STEM cluster showing the greatest transcriptional upregulation at 48 h demonstrated the most significant difference. We then screened the differentially-expressed genes associated with that met the expression patterns of those cluster-identified genes that have been reported to be involved in learning and memory processes in addition to dipeptidyl peptidase 9 (DPP9). Further quantitative polymerase chain reaction verification and pharmacological intervention suggested that DPP9 is involved in 48-h fear memory retrieval and viral vector-mediated overexpression of DPP9 countered the 48-h retrieval-induced attenuation of fear memory. Taken together, our findings suggest that temporal gene expression patterns are induced by recent memory retrieval and provide hitherto undocumented evidence of the role of DPP9 in the retrieval-induced reconsolidation of fear memory.
Collapse
Affiliation(s)
- Wen-Ting Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Wen-Xing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yu-Chen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ya-Bo Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.
- CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai, 200031, China.
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.
| |
Collapse
|
2
|
Vingan I, Phatarpekar S, Tung VSK, Hernández AI, Evgrafov OV, Alarcon JM. Spatially resolved transcriptomic signatures of hippocampal subregions and Arc-expressing ensembles in active place avoidance memory. Front Mol Neurosci 2024; 17:1386239. [PMID: 39544521 PMCID: PMC11560897 DOI: 10.3389/fnmol.2024.1386239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
The rodent hippocampus is a spatially organized neuronal network that supports the formation of spatial and episodic memories. We conducted bulk RNA sequencing and spatial transcriptomics experiments to measure gene expression changes in the dorsal hippocampus following the recall of active place avoidance (APA) memory. Through bulk RNA sequencing, we examined the gene expression changes following memory recall across the functionally distinct subregions of the dorsal hippocampus. We found that recall induced differentially expressed genes (DEGs) in the CA1 and CA3 hippocampal subregions were enriched with genes involved in synaptic transmission and synaptic plasticity, while DEGs in the dentate gyrus (DG) were enriched with genes involved in energy balance and ribosomal function. Through spatial transcriptomics, we examined gene expression changes following memory recall across an array of spots encompassing putative memory-associated neuronal ensembles marked by the expression of the IEGs Arc, Egr1, and c-Jun. Within samples from both trained and untrained mice, the subpopulations of spatial transcriptomic spots marked by these IEGs were transcriptomically and spatially distinct from one another. DEGs detected between Arc + and Arc- spots exclusively in the trained mouse were enriched in several memory-related gene ontology terms, including "regulation of synaptic plasticity" and "memory." Our results suggest that APA memory recall is supported by regionalized transcriptomic profiles separating the CA1 and CA3 from the DG, transcriptionally and spatially distinct IEG expressing spatial transcriptomic spots, and biological processes related to synaptic plasticity as a defining the difference between Arc + and Arc- spatial transcriptomic spots.
Collapse
Affiliation(s)
- Isaac Vingan
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Shwetha Phatarpekar
- Institute for Genomics in Health, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Victoria Sook Keng Tung
- School of Graduate Studies, Program in Molecular and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Alejandro Iván Hernández
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Oleg V. Evgrafov
- Institute for Genomics in Health, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- School of Graduate Studies, Program in Molecular and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States
| | - Juan Marcos Alarcon
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
3
|
Lan Y, Han X, Huang F, Shi H, Wu H, Yang L, Hu Z, Wu X. Early Growth Response Gene-1 Deficiency Interrupts TGFβ1 Signaling Activation and Aggravates Neurodegeneration in Experimental Autoimmune Encephalomyelitis Mice. Neurosci Bull 2024; 40:283-292. [PMID: 37725245 PMCID: PMC10912064 DOI: 10.1007/s12264-023-01111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 09/21/2023] Open
Abstract
Early growth response protein 1 (Egr-1) triggers the transcription of many genes involved in cell growth, differentiation, synaptic plasticity, and neurogenesis. However, its mechanism in neuronal survival and degeneration is still poorly understood. This study demonstrated that Egr-1 was down-regulated at mRNA and protein levels in the central nervous system (CNS) of experimental autoimmune encephalomyelitis (EAE) mice. Egr-1 knockout exacerbated EAE progression in mice, as shown by increased disease severity and incidence; it also aggravated neuronal apoptosis, which was associated with weakened activation of the BDNF/TGFβ 1/MAPK/Akt signaling pathways in the CNS of EAE mice. Consistently, Egr-1 siRNA promoted apoptosis but mitigated the activation of BDNF/TGFβ 1/MAPK/Akt signaling in SH-SY5Y cells. Our results revealed that Egr-1 is a crucial regulator of neuronal survival in EAE by regulating TGFβ 1-mediated signaling activation, implicating the important role of Egr-1 in the pathogenesis of multiple sclerosis as a potential novel therapy target.
Collapse
Affiliation(s)
- Yunyi Lan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Yang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China.
| | - Zhibi Hu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Vingan I, Phatarpekar S, Tung VSK, Hernández AI, Evgrafov OV, Alarcon JM. Spatially Resolved Transcriptomic Signatures of Hippocampal Subregions and Arc-Expressing Ensembles in Active Place Avoidance Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573225. [PMID: 38260257 PMCID: PMC10802250 DOI: 10.1101/2023.12.30.573225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The rodent hippocampus is a spatially organized neuronal network that supports the formation of spatial and episodic memories. We conducted bulk RNA sequencing and spatial transcriptomics experiments to measure gene expression changes in the dorsal hippocampus following the recall of active place avoidance (APA) memory. Through bulk RNA sequencing, we examined the gene expression changes following memory recall across the functionally distinct subregions of the dorsal hippocampus. We found that recall induced differentially expressed genes (DEGs) in the CA1 and CA3 hippocampal subregions were enriched with genes involved in synaptic transmission and synaptic plasticity, while DEGs in the dentate gyrus (DG) were enriched with genes involved in energy balance and ribosomal function. Through spatial transcriptomics, we examined gene expression changes following memory recall across an array of spots encompassing putative memory-associated neuronal ensembles marked by the expression of the IEGs Arc, Egr1, and c-Jun. Within samples from both trained and untrained mice, the subpopulations of spatial transcriptomic spots marked by these IEGs were transcriptomically and spatially distinct from one another. DEGs detected between Arc+ and Arc- spots exclusively in the trained mouse were enriched in several memory-related gene ontology terms, including "regulation of synaptic plasticity" and "memory." Our results suggest that APA memory recall is supported by regionalized transcriptomic profiles separating the CA1 and CA3 from the DG, transcriptionally and spatially distinct IEG expressing spatial transcriptomic spots, and biological processes related to synaptic plasticity as a defining the difference between Arc+ and Arc- spatial transcriptomic spots.
Collapse
Affiliation(s)
- Isaac Vingan
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Shwetha Phatarpekar
- Institute of Genomics in Health, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Victoria Sook Keng Tung
- School of Graduates Studies, Program in Molecular and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - A. Iván Hernández
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural & Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Oleg V. Evgrafov
- Institute of Genomics in Health, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- School of Graduates Studies, Program in Molecular and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Juan Marcos Alarcon
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural & Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
5
|
CaMKIV mediates spine growth deficiency of hippocampal neurons by regulation of EGR3/BDNF signal axis in congenital hypothyroidism. Cell Death Dis 2022; 8:482. [PMID: 36473844 PMCID: PMC9723595 DOI: 10.1038/s41420-022-01270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Congenital hypothyroidism (CH) will cause cognitive impairment in the condition of delayed treatment. The hippocampus is one of the most affected tissues by CH, in which the functional structures of hippocampal neurons manifest deficiency due to aberrant expression of effector molecules. The Ca2+/Calmodulin-dependent protein kinase, CaMKIV, is downregulated in the hippocampal neurons, influencing the growth of dendritic spines in response to CH. However, the underlying mechanism is not fully elucidated. In the present study, the early growth response factor 3 (EGR3) was regulated by CaMKIV in the hippocampal neurons of CH rat pups, as was analyzed by transcriptome sequencing and in vitro cell experiments. EGR3 localized within hippocampal neurons in CA1, CA3, and dentate gyrus regions. Deficient EGR3 in the primary hippocampal neurons significantly reduced the density of dendritic spines by downregulating the expression of BDNF, and such effects could be rescued by supplementing recombinant BDNF protein. Taken together, CH mediates cognitive impairment of pups through the inactivation of CaMKIV in the hippocampal neurons, which decreases the expression of EGR3 and further reduces the production of BDNF, thereby impairing the growth of dendritic spines. Identifying CaMKIV/EGR3/BDNF pathway in the hippocampal neurons in the context of CH will benefit the drug development of intellectual disability caused by CH.
Collapse
|
6
|
Patoori S, Barnada SM, Large C, Murray JI, Trizzino M. Young transposable elements rewired gene regulatory networks in human and chimpanzee hippocampal intermediate progenitors. Development 2022; 149:dev200413. [PMID: 36052683 PMCID: PMC9641669 DOI: 10.1242/dev.200413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/21/2022] [Indexed: 01/19/2023]
Abstract
The hippocampus is associated with essential brain functions, such as learning and memory. Human hippocampal volume is significantly greater than expected compared with that of non-human apes, suggesting a recent expansion. Intermediate progenitors, which are able to undergo multiple rounds of proliferative division before a final neurogenic division, may have played a role in evolutionary hippocampal expansion. To investigate the evolution of gene regulatory networks underpinning hippocampal neurogenesis in apes, we leveraged the differentiation of human and chimpanzee induced pluripotent stem cells into TBR2 (or EOMES)-positive hippocampal intermediate progenitor cells (hpIPCs). We found that the gene networks active in hpIPCs are significantly different between humans and chimpanzees, with ∼2500 genes being differentially expressed. We demonstrate that species-specific transposon-derived enhancers contribute to these transcriptomic differences. Young transposons, predominantly endogenous retroviruses and SINE-Vntr-Alus (SVAs), were co-opted as enhancers in a species-specific manner. Human-specific SVAs provided substrates for thousands of novel TBR2-binding sites, and CRISPR-mediated repression of these SVAs attenuated the expression of ∼25% of the genes that are upregulated in human intermediate progenitors relative to the same cell population in the chimpanzee.
Collapse
Affiliation(s)
- Sruti Patoori
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Samantha M. Barnada
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher Large
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John I. Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Hajian S, Mazdeh M, Nouri F, Roshanaei G, Soleimani M. Association study of promoter polymorphisms of interferon alpha and beta receptor subunit 1 (IFNAR1) gene and therapeutic response to interferon-beta in patients with multiple sclerosis. Mol Biol Rep 2021; 48:6007-6013. [PMID: 34328599 DOI: 10.1007/s11033-021-06602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease described by inflammatory neuronal losses and resultant failures. The disease could abate by interferon-beta (IFN-β) therapy in MS patients. However, the drug response productivity is changeable between patients, and the accurate mechanism of action of the IFN-β is not obvious. The present study aims to investigate the role of interferon alpha and beta receptor subunit 1 (IFNAR1) promoter polymorphisms towards IFN-β treatment response in MS patients. METHODS The subjects herein were separated into either responder (n = 57) or non-responder (n = 43) groups according to IFN-β treatment and Expanded Disability Status Scale score. The Sanger sequencing method was used for genotyping. RESULTS Among nearly 64 Single Nucleotide Polymorphisms (SNPs), we found a significant association between the rs2850015 polymorphism and the responders and non-responders to IFN-β treatment in the recessive model of inheritance (P = 0.02). The results also revealed a significant change in the two groups of responders and non-responders to the treatment for rs36158718 as an Insertion/Deletion (INDEL) (P = 0.02). Moreover, bioinformatic analyses predicted a remarkable role for both rs2850015 and rs36158718 related to the changes of binding affinity of transcription factors and alterations in their alleles. CONCLUSION The present study results suggest that the genetic heterogeneity in the promoter region of IFNAR1 could affect the response to IFN-β. However, further studies with a larger sample size are needed to further demonstrate this relationship.
Collapse
Affiliation(s)
- Samin Hajian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Shahid Fahmide Blvd, 6517838678, Hamadan, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Shahid Fahmide Blvd, 6517838678, Hamadan, Iran
| | - Ghodratollah Roshanaei
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Shahid Fahmide Blvd, 6517838678, Hamadan, Iran.
| |
Collapse
|
8
|
Expression of Pea3 protein subfamily members in hippocampus and potential regulation following neuronal stimulation. Neurosci Lett 2020; 738:135348. [PMID: 32891673 DOI: 10.1016/j.neulet.2020.135348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Pea3 proteins belong to a subfamily of the E-twentysix (ETS) domain superfamily of transcription factors, which play various roles during development. Polyoma Enhancer-Activator 3 (Pea3) proteins Pea3, ERM and Er81 are particularly involved in tissues with branching morphogenesis, including kidney, lung, mammary gland and nervous system development. A recent transcriptomic study on novel targets of Pea3 transcription factor revealed various axon guidance and nervous system development related targets, supporting a role of Pea3 proteins in motor neuron connectivity, as well as novel targets in signaling pathways involved in synaptic plasticity. This study focuses on the expression of Pea3 family members in hippocampal neurons, and regulation of putative Pea3 targets in Pea3-overexpressing cell lines and following induction of long-term potentiation or seizure in vivo. We show that Pea3 proteins are expressed in hippocampus in both neuronal and non-neuronal cells, and that Pea3 represses Elk-1 but activates Prkca and Nrcam expression in hippocampal cell lines. We also show that mRNA and protein levels of Pea3 family members are differentially regulated in the dentate gyrus and CA1 region upon MECS stimulation, but not upon LTP induction.
Collapse
|
9
|
Kerr J. Early Growth Response Gene Upregulation in Epstein-Barr Virus (EBV)-Associated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules 2020; 10:biom10111484. [PMID: 33114612 PMCID: PMC7692278 DOI: 10.3390/biom10111484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic multisystem disease exhibiting a variety of symptoms and affecting multiple systems. Psychological stress and virus infection are important. Virus infection may trigger the onset, and psychological stress may reactivate latent viruses, for example, Epstein-Barr virus (EBV). It has recently been reported that EBV induced gene 2 (EBI2) was upregulated in blood in a subset of ME/CFS patients. The purpose of this study was to determine whether the pattern of expression of early growth response (EGR) genes, important in EBV infection and which have also been found to be upregulated in blood of ME/CFS patients, paralleled that of EBI2. EGR gene upregulation was found to be closely associated with that of EBI2 in ME/CFS, providing further evidence in support of ongoing EBV reactivation in a subset of ME/CFS patients. EGR1, EGR2, and EGR3 are part of the cellular immediate early gene response and are important in EBV transcription, reactivation, and B lymphocyte transformation. EGR1 is a regulator of immune function, and is important in vascular homeostasis, psychological stress, connective tissue disease, mitochondrial function, all of which are relevant to ME/CFS. EGR2 and EGR3 are negative regulators of T lymphocytes and are important in systemic autoimmunity.
Collapse
Affiliation(s)
- Jonathan Kerr
- Department of Microbiology, Norfolk & Norwich University Hospital (NNUH), Colney Lane, Norwich, Norfolk NR4 7UY, UK
| |
Collapse
|
10
|
Pan B, Zhou Y, Li H, Li Y, Xue X, Li L, Liu Q, Zhao X, Niu Q. Relationship between occupational aluminium exposure and histone lysine modification through methylation. J Trace Elem Med Biol 2020; 61:126551. [PMID: 32470791 DOI: 10.1016/j.jtemb.2020.126551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Aluminium is an environmental neurotoxin to which human beings are extensively exposed. However, the molecular mechanism of aluminium toxicity remains unclear. METHODS The changes in cognitive function of aluminum exposed workers under long-term occupational exposure were evaluated, and the relationship between cognitive changes, plasma memory related BDNF and EGR1 protein expression, and variations of epigenetic markers H3K4me3, H3K9me2, H3K27me3 expression levels in blood was explored. RESULTS MMSE, DSFT, DST scores in cognitive function and the levels of plasma BDNF and EGR1 protein expression decreased with the increase of blood aluminum level. H3K4me3, H3K9me2, H3K27me3 expression levels in peripheral blood lymphocytes of aluminum exposed workers were statistically different (all P<0.05). H3K4me3, H3K9me2 and H3K27me3 expression levels in lymphocytes were correlated with blood aluminum level. BDNF, EGR1 protein level and H3K4me3, H3K9me2, H3K27me3 expression levels have different degrees of correlation. There was a linear regression relationship between plasma BDNF, H3K4me3 and H3K9me2. H3K9me2 had a greater effect on BDNF than H3K4me3. There is a linear regression relationship between EGR1, H3K4me3 and H3K27me3, and the influence of H3K4me3 on EGR1 is greater than that of H3K27me3 on EGR1. CONCLUSION Alummnum may regulate the expression of BDNF and EGR1 by regulating H3K4me3, H3K27me3 and H3K9me2, and affect the cognitive function of workers by affecting the expression of BDNF and EGR1.
Collapse
Affiliation(s)
- Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), China
| | - Yue Zhou
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China
| | - Yaqin Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Xingli Xue
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Liang Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Qun Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Xiaoyan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China.
| |
Collapse
|
11
|
von Wittgenstein J, Zheng F, Wittmann MT, Balta EA, Ferrazzi F, Schäffner I, Häberle BM, Valero-Aracama MJ, Koehl M, Miranda CJ, Kaspar BK, Ekici AB, Reis A, Abrous DN, Alzheimer C, Lie DC. Sox11 is an Activity-Regulated Gene with Dentate-Gyrus-Specific Expression Upon General Neural Activation. Cereb Cortex 2020; 30:3731-3743. [PMID: 32080705 DOI: 10.1093/cercor/bhz338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 01/21/2023] Open
Abstract
Neuronal activity initiates transcriptional programs that shape long-term changes in plasticity. Although neuron subtypes differ in their plasticity response, most activity-dependent transcription factors (TFs) are broadly expressed across neuron subtypes and brain regions. Thus, how region- and neuronal subtype-specific plasticity are established on the transcriptional level remains poorly understood. We report that in young adult (i.e., 6-8 weeks old) mice, the developmental TF SOX11 is induced in neurons within 6 h either by electroconvulsive stimulation or by exploration of a novel environment. Strikingly, SOX11 induction was restricted to the dentate gyrus (DG) of the hippocampus. In the novel environment paradigm, SOX11 was observed in a subset of c-FOS expressing neurons (ca. 15%); whereas around 75% of SOX11+ DG granule neurons were c-FOS+, indicating that SOX11 was induced in an activity-dependent fashion in a subset of neurons. Environmental enrichment or virus-mediated overexpression of SOX11 enhanced the excitability of DG granule cells and downregulated the expression of different potassium channel subunits, whereas conditional Sox11/4 knock-out mice presented the opposite phenotype. We propose that Sox11 is regulated in an activity-dependent fashion, which is specific to the DG, and speculate that activity-dependent Sox11 expression may participate in the modulation of DG neuron plasticity.
Collapse
Affiliation(s)
- Julia von Wittgenstein
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.,Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marie-Theres Wittmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.,Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Elli-Anna Balta
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Benjamin M Häberle
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maria J Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Muriel Koehl
- Neurocentre Magendie U1215, INSERM and Université de Bordeaux, Bordeaux 33000, France
| | - Carlos J Miranda
- The Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Brian K Kaspar
- The Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Djoher Nora Abrous
- Neurocentre Magendie U1215, INSERM and Université de Bordeaux, Bordeaux 33000, France
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - D Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
12
|
Poiana G, Gioia R, Sineri S, Cardarelli S, Lupo G, Cacci E. Transcriptional regulation of adult neural stem/progenitor cells: tales from the subventricular zone. Neural Regen Res 2020; 15:1773-1783. [PMID: 32246617 PMCID: PMC7513981 DOI: 10.4103/1673-5374.280301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In rodents, well characterized neurogenic niches of the adult brain, such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus, support the maintenance of neural/stem progenitor cells (NSPCs) and the production of new neurons throughout the lifespan. The adult neurogenic process is dependent on the intrinsic gene expression signatures of NSPCs that make them competent for self-renewal and neuronal differentiation. At the same time, it is receptive to regulation by various extracellular signals that allow the modulation of neuronal production and integration into brain circuitries by various physiological stimuli. A drawback of this plasticity is the sensitivity of adult neurogenesis to alterations of the niche environment that can occur due to aging, injury or disease. At the core of the molecular mechanisms regulating neurogenesis, several transcription factors have been identified that maintain NSPC identity and mediate NSPC response to extrinsic cues. Here, we focus on REST, Egr1 and Dbx2 and their roles in adult neurogenesis, especially in the subventricular zone. We review recent work from our and other laboratories implicating these transcription factors in the control of NSPC proliferation and differentiation and in the response of NSPCs to extrinsic influences from the niche. We also discuss how their altered regulation may affect the neurogenic process in the aged and in the diseased brain. Finally, we highlight key open questions that need to be addressed to foster our understanding of the transcriptional mechanisms controlling adult neurogenesis.
Collapse
Affiliation(s)
- Giancarlo Poiana
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Serena Sineri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Silvia Cardarelli
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Berardino BG, Fesser EA, Belluscio LM, Gianatiempo O, Pregi N, Cánepa ET. Effects of cocaine base paste on anxiety-like behavior and immediate-early gene expression in nucleus accumbens and medial prefrontal cortex of female mice. Psychopharmacology (Berl) 2019; 236:3525-3539. [PMID: 31280332 DOI: 10.1007/s00213-019-05321-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/30/2019] [Indexed: 12/21/2022]
Abstract
RATIONALE Cocaine base paste (CBP) is an illegal drug of abuse usually consumed by adolescents in a socio-economically vulnerable situation. Repeated drug use targets key brain circuits disrupting the processes that underlie emotions and cognition. At the basis of such neuroadaptations lie changes in the expression of immediate-early genes (IEGs). Nevertheless, changes in transcriptional regulation associated with CBP consumption remain unknown. OBJECTIVES We aimed to describe behavioral phenotype related to locomotion, anxiety-like behavior, and memory of CBP-injected mice and to study IEGs expression after an abstinence period. METHODS Five-week-old female CF-1 mice were i.p. injected daily with vehicle or CBP (40 mg/kg) for 10 days and subjected to a 10-day period of abstinence. Open field and novel object recognition tests were used to evaluate locomotion and anxiety-like behaviors and recognition memory, respectively, during chronic administration and after abstinence. After abstinence, prefrontal cortex (mPFC) and nucleus accumbens (NAc) were isolated and gene expression analysis performed through real-time PCR. RESULTS We found an increase in locomotion and anxiety-like behavior during CBP administration and after the abstinence period. Furthermore, the CBP group showed impaired recognition memory after abstinence. Egr1, FosB, ΔFosB, Arc, Bdnf, and TrkB expression was upregulated in CBP-injected mice in NAc and FosB, ΔFosB, Arc, and Npas4 expression was downregulated in mPFC. We generated an anxiety score and found positive and negative correlations with IEGs expression in NAc and mPFC, respectively. CONCLUSION Our results suggest that chronic CBP exposure induced alterations in anxiety-like behavior and recognition memory. These changes were accompanied by altered IEGs expression.
Collapse
Affiliation(s)
- Bruno G Berardino
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, CONICET, C1428EGA, Buenos Aires, Argentina
| | - Estefanía A Fesser
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, CONICET, C1428EGA, Buenos Aires, Argentina
| | - Laura M Belluscio
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, CONICET, C1428EGA, Buenos Aires, Argentina
| | - Octavio Gianatiempo
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, CONICET, C1428EGA, Buenos Aires, Argentina
| | - Nicolás Pregi
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, CONICET, C1428EGA, Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, CONICET, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Postretrieval Relearning Strengthens Hippocampal Memories via Destabilization and Reconsolidation. J Neurosci 2018; 39:1109-1118. [PMID: 30587543 DOI: 10.1523/jneurosci.2618-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022] Open
Abstract
Memory reconsolidation is hypothesized to be a mechanism by which memories can be updated with new information. Such updating has previously been shown to weaken memory expression or change the nature of the memory. Here we demonstrate that retrieval-induced memory destabilization also allows that memory to be strengthened by additional learning. We show that for rodent contextual fear memories, this retrieval conditioning effect is observed only when conditioning occurs within a specific temporal window opened by retrieval. Moreover, it necessitates hippocampal protein degradation at the proteasome and engages hippocampal Zif268 protein expression, both of which are established mechanisms of memory destabilization-reconsolidation. We also demonstrate a conceptually analogous pattern of results in human visual paired-associate learning. Retrieval-relearning strengthens memory performance, again only when relearning occurs within the temporal window of memory reconsolidation. These findings link retrieval-mediated learning in humans to the reconsolidation literature, and have potential implications both for the understanding of endogenous memory gains and strategies to boost weakly learned memories.SIGNIFICANCE STATEMENT Memory reconsolidation allows existing memories to be updated with new information. Previous research has demonstrated that reconsolidation can be manipulated pharmacologically and behaviorally to impair problematic memories. In this article, we show that reconsolidation can also be exploited to strengthen memory. This is shown both in rats, in a fear memory setting, and in a human declarative memory setting. For both, the behavioral conditions necessary to observe the memory strengthening match those that are required to trigger memory reconsolidation. There are several behavioral approaches that have previously been shown convincingly to strengthen memory. The present demonstration that reconsolidation can underpin long-lasting memory improvements may both provide an underlying mechanism for such approaches and provide new strategies to boost memories.
Collapse
|
15
|
LaVallee J, Grant T, D'Angelo-Early S, Kletsov S, Berry NA, Abt KM, Bloch CP, Muscedere ML, Adams KW. Refining the nuclear localization signal within the Egr transcriptional coregulator NAB2. FEBS Lett 2018; 593:107-118. [PMID: 30411343 DOI: 10.1002/1873-3468.13288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023]
Abstract
NAB1 and 2 are coregulators for early growth response (Egr) transcription factors. The NAB1 nuclear localization signal (NLS) was previously described as a bipartite NLS of sequence R(X2 )K(X11 )KRXK. The sequence is conserved in NAB2 as K(X2 )R(X11 )KKXK; however, whether it functions as the NAB2 NLS has not been tested. We show that the KKXK motif in NAB2 is necessary and sufficient to mediate nuclear localization. Mutation of the KKXK motif to AAXA causes cytoplasmic localization of NAB2, while Lys/Arg-to-Ala mutations of the upstream K(X2 )R motif have no effect. Fusion of the KKXK motif to cytoplasmic protein eIF2Bε causes nuclear localization. Altogether, this study refines our knowledge of the NAB2 NLS, demonstrating that KKXK343-346 is necessary and sufficient for nuclear localization.
Collapse
Affiliation(s)
- Jacquelyn LaVallee
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Terrain Grant
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | | | - Sergey Kletsov
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Nicole A Berry
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Kimberly M Abt
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Christopher P Bloch
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | | | - Kenneth W Adams
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| |
Collapse
|
16
|
Mukilan M, Bogdanowicz W, Marimuthu G, Rajan KE. Odour discrimination learning in the Indian greater short-nosed fruit bat ( Cynopterus sphinx): differential expression of Egr-1, C-fos and PP-1 in the olfactory bulb, amygdala and hippocampus. ACTA ACUST UNITED AC 2018; 221:jeb.175364. [PMID: 29674380 DOI: 10.1242/jeb.175364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/16/2018] [Indexed: 01/05/2023]
Abstract
Activity-dependent expression of immediate-early genes (IEGs) is induced by exposure to odour. The present study was designed to investigate whether there is differential expression of IEGs (Egr-1, C-fos) in the brain region mediating olfactory memory in the Indian greater short-nosed fruit bat, Cynopterus sphinx We assumed that differential expression of IEGs in different brain regions may orchestrate a preference odour (PO) and aversive odour (AO) memory in C. sphinx We used preferred (0.8% w/w cinnamon powder) and aversive (0.4% w/v citral) odour substances, with freshly prepared chopped apple, to assess the behavioural response and induction of IEGs in the olfactory bulb, hippocampus and amygdala. After experiencing PO and AO, the bats initially responded to both, later only engaging in feeding bouts in response to the PO food. The expression pattern of EGR-1 and c-Fos in the olfactory bulb, hippocampus and amygdala was similar at different time points (15, 30 and 60 min) following the response to PO, but was different for AO. The response to AO elevated the level of c-Fos expression within 30 min and reduced it at 60 min in both the olfactory bulb and the hippocampus, as opposed to the continuous increase noted in the amygdala. In addition, we tested whether an epigenetic mechanism involving protein phosphatase-1 (PP-1) acts on IEG expression. The observed PP-1 expression and the level of unmethylated/methylated promoter revealed that C-fos expression is possibly controlled by odour-mediated regulation of PP-1. These results in turn imply that the differential expression of C-fos in the hippocampus and amygdala may contribute to olfactory learning and memory in C. sphinx.
Collapse
Affiliation(s)
- Murugan Mukilan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Wieslaw Bogdanowicz
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland
| | - Ganapathy Marimuthu
- Department of Animal Behavior and Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
17
|
Mukilan M, Rajathei DM, Jeyaraj E, Kayalvizhi N, Rajan KE. MiR-132 regulated olfactory bulb proteins linked to olfactory learning in greater short-nosed fruit bat Cynopterus sphinx. Gene 2018; 671:10-20. [PMID: 29859284 DOI: 10.1016/j.gene.2018.05.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
Earlier, we showed that micro RNA-132 (miR-132) regulate the immediate early genes (IEGs) in the olfactory bulb (OB) of fruit bat Cynopterus sphinx during olfactory learning. This study was designed to examine whether the miR-132 regulate other proteins in OB during olfactory learning. To test this, miR-132 anti-sense oligodeoxynucleotide (AS-ODN) was delivered to the OB and then trained to novel odor. The 2-dimensional gel electrophoresis analysis showed that inhibition of miR-132 altered olfactory training induced expression of 321 proteins. Further, liquid chromatography-mass spectrometry (LC-MS/MS) analysis reveals the identity of differently expressed proteins such as phosphoribosyl transferase domain containing protein (PRTFDC 1), Sorting nexin-8 (SNX8), Creatine kinase B-type (CKB) and Annexin A11 (ANX A11). Among them PRTFDC 1 showing 189 matching peptides with highest sequence coverage (67.0%) and protein-protein interaction analysis showed that PRTFDC 1 is a homolog of hypoxanthine phosphoribosyltransferase-1 (HPRT-1). Subsequent immunohistochemical analysis (IHC) showed that inhibition of miR-132 down-regulated HPRT expression in OB of C. sphinx. In addition, western blot analysis depicts that HPRT, serotonin transporter (SERT), N-methyl-d-asparate (NMDA) receptors (2A,B) were down-regulated, but not altered in OB of non-sense oligodeoxynucleotide (NS-ODN) infused groups. These analyses suggest that miR-132 regulates the process of olfactory learning and memory formation through SERT and NMDA receptors signalling, which is possibly associated with the PRTFDC1-HPRT interaction.
Collapse
Affiliation(s)
- Murugan Mukilan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - David Mary Rajathei
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Edwin Jeyaraj
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | | | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
18
|
de Bartolomeis A, Buonaguro EF, Latte G, Rossi R, Marmo F, Iasevoli F, Tomasetti C. Immediate-Early Genes Modulation by Antipsychotics: Translational Implications for a Putative Gateway to Drug-Induced Long-Term Brain Changes. Front Behav Neurosci 2017; 11:240. [PMID: 29321734 PMCID: PMC5732183 DOI: 10.3389/fnbeh.2017.00240] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
An increasing amount of research aims at recognizing the molecular mechanisms involved in long-lasting brain architectural changes induced by antipsychotic treatments. Although both structural and functional modifications have been identified following acute antipsychotic administration in humans, currently there is scarce knowledge on the enduring consequences of these acute changes. New insights in immediate-early genes (IEGs) modulation following acute or chronic antipsychotic administration may help to fill the gap between primary molecular response and putative long-term changes. Moreover, a critical appraisal of the spatial and temporal patterns of IEGs expression may shed light on the functional "signature" of antipsychotics, such as the propensity to induce motor side effects, the potential neurobiological mechanisms underlying the differences between antipsychotics beyond D2 dopamine receptor affinity, as well as the relevant effects of brain region-specificity in their mechanisms of action. The interest for brain IEGs modulation after antipsychotic treatments has been revitalized by breakthrough findings such as the role of early genes in schizophrenia pathophysiology, the involvement of IEGs in epigenetic mechanisms relevant for cognition, and in neuronal mapping by means of IEGs expression profiling. Here we critically review the evidence on the differential modulation of IEGs by antipsychotics, highlighting the association between IEGs expression and neuroplasticity changes in brain regions impacted by antipsychotics, trying to elucidate the molecular mechanisms underpinning the effects of this class of drugs on psychotic, cognitive and behavioral symptoms.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Rodolfo Rossi
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
19
|
Gröger N, Mannewitz A, Bock J, de Schultz TF, Guttmann K, Poeggel G, Braun K. Infant avoidance training alters cellular activation patterns in prefronto-limbic circuits during adult avoidance learning: I. Cellular imaging of neurons expressing the synaptic plasticity early growth response protein 1 (Egr1). Brain Struct Funct 2017; 222:3639-3651. [DOI: 10.1007/s00429-017-1423-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/03/2017] [Indexed: 12/24/2022]
|
20
|
Duclot F, Kabbaj M. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Front Behav Neurosci 2017; 11:35. [PMID: 28321184 PMCID: PMC5337695 DOI: 10.3389/fnbeh.2017.00035] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
It is now clearly established that complex interactions between genes and environment are involved in multiple aspects of neuropsychiatric disorders, from determining an individual's vulnerability to onset, to influencing its response to therapeutic intervention. In this perspective, it appears crucial to better understand how the organism reacts to environmental stimuli and provide a coordinated and adapted response. In the central nervous system, neuronal plasticity and neurotransmission are among the major processes integrating such complex interactions between genes and environmental stimuli. In particular, immediate early genes (IEGs) are critical components of these interactions as they provide the molecular framework for a rapid and dynamic response to neuronal activity while opening the possibility for a lasting and sustained adaptation through regulation of the expression of a wide range of genes. As a result, IEGs have been tightly associated with neuronal activity as well as a variety of higher order processes within the central nervous system such as learning, memory and sensitivity to reward. The immediate early gene and transcription factor early growth response 1 (EGR1) has thus been revealed as a major mediator and regulator of synaptic plasticity and neuronal activity in both physiological and pathological conditions. In this review article, we will focus on the role of EGR1 in the central nervous system. First, we will summarize the different factors influencing its activity. Then, we will analyze the amount of data, including genome-wide, that has emerged in the recent years describing the wide variety of genes, pathways and biological functions regulated directly or indirectly by EGR1. We will thus be able to gain better insights into the mechanisms underlying EGR1's functions in physiological neuronal activity. Finally, we will discuss and illustrate the role of EGR1 in pathological states with a particular interest in cognitive functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
21
|
Adams KW, Kletsov S, Lamm RJ, Elman JS, Mullenbrock S, Cooper GM. Role for Egr1 in the Transcriptional Program Associated with Neuronal Differentiation of PC12 Cells. PLoS One 2017; 12:e0170076. [PMID: 28076410 PMCID: PMC5226839 DOI: 10.1371/journal.pone.0170076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/28/2016] [Indexed: 11/17/2022] Open
Abstract
PC12 cells are a well-established model to study how differences in signal transduction duration can elicit distinct cell behaviors. Epidermal growth factor (EGF) activates transient ERK signaling in PC12 cells that lasts 30–60 min, which in turn promotes proliferation; nerve growth factor (NGF) activates more sustained ERK signaling that lasts 4–6 h, which in turns induces neuronal differentiation. Data presented here extend a previous study by Mullenbrock et al. (2011) that demonstrated that sustained ERK signaling in response to NGF induces preferential expression of a 69-member gene set compared to transient ERK signaling in response to EGF and that the transcription factors AP-1 and CREB play a major role in the preferential expression of several genes within the set. Here, we examined whether the Egr family of transcription factors also contributes to the preferential expression of the gene set in response to NGF. Our data demonstrate that NGF causes transient induction of all Egr family member transcripts, but a corresponding induction of protein was detected for only Egr1 and 2. Chromatin immunoprecipitation experiments provided clearest evidence that, after induction, Egr1 binds 12 of the 69 genes that are preferentially expressed during sustained ERK signaling. In addition, Egr1 expression and binding upstream of its target genes were both sustained in response to NGF versus EGF within the same timeframe that its targets are preferentially expressed. These data thus provide evidence that Egr1 contributes to the transcriptional program activated by sustained ERK signaling in response to NGF, specifically by contributing to the preferential expression of its target genes identified here.
Collapse
Affiliation(s)
- Kenneth W Adams
- Department of Biological Sciences, Bridgewater State University, Bridgewater, Massachusetts, United States of America
| | - Sergey Kletsov
- Department of Biological Sciences, Bridgewater State University, Bridgewater, Massachusetts, United States of America
| | - Ryan J Lamm
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Jessica S Elman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Steven Mullenbrock
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Geoffrey M Cooper
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Consolidation and reconsolidation are impaired by oral propranolol administered before but not after memory (re)activation in humans. Neurobiol Learn Mem 2016; 142:118-125. [PMID: 28003127 DOI: 10.1016/j.nlm.2016.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 02/05/2023]
Abstract
Propranolol administered immediately after learning or after recall has been found to impair memory consolidation or reconsolidation (respectively) in animals, but less reliably so in humans. Since reconsolidation impairment has been proposed as a treatment for mental disorders that have at their core an emotional memory, it is desirable to understand how to reliably reduce the strength of pathogenic memories in humans. We postulated that since humans (unlike experimental animals) typically receive propranolol orally, this introduces a delay before this drug can exert its memory impairment effects, which may render it less effective. As a means to test this, in two double-blind placebo-controlled experiments, we examined the capacity of propranolol to impair consolidation and reconsolidation as a function of timing of ingestion in healthy subjects. In Experiment 1, (n=36), propranolol administered immediately after learning or recall failed to impair the consolidation or reconsolidation of the memory of a standardized slideshow with an accompanying emotional story. In Experiment 2 (n=50), propranolol given 60-75min before learning or recall successfully impaired memory consolidation and reconsolidation. These results suggest that it is possible to achieve reliable memory impairment in humans if propranolol is given before learning or before recall, but not after.
Collapse
|
23
|
Wu L, Feng XT, Hu YQ, Tang N, Zhao QS, Li TW, Li HY, Wang QB, Bi XY, Cai XK. Global Gene Expression Profile of the Hippocampus in a Rat Model of Vascular Dementia. TOHOKU J EXP MED 2016; 237:57-67. [PMID: 26353909 DOI: 10.1620/tjem.237.57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vascular dementia (VD) has been one of the most serious public health problems worldwide. It is well known that cerebral hypoperfusion is the key pathophysiological basis of VD, but it remains unclear how global genes in hippocampus respond to cerebral ischemia-reperfusion. In this study, we aimed to reveal the global gene expression profile in the hippocampus of VD using a rat model. VD was induced by repeated occlusion of common carotid arteries followed by reperfusion. The rats with VD were characterized by deficit of memory and cognitive function and by the histopathological changes in the hippocampus, such as a reduction in the number and the size of neurons accompanied by an increase in intercellular space. Microarray analysis of global genes displayed up-regulation of 7 probesets with genes with fold change more than 1.5 (P < 0.05) and down-regulation of 13 probesets with genes with fold change less than 0.667 (P < 0.05) in the hippocampus. Gene Ontology (GO) and pathway analysis showed that the up-regulated genes are mainly involved in oxygen binding and transport, autoimmune response and inflammation, and that the down-regulated genes are related to glucose metabolism, autoimmune response and inflammation, and other biological process, related to memory and cognitive function. Thus, the abnormally expressed genes are closely related to oxygen transport, glucose metabolism, and autoimmune response. The current findings display global gene expression profile of the hippocampus in a rat model of VD, providing new insights into the molecular pathogenesis of VD.
Collapse
Affiliation(s)
- Lin Wu
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pfaffenseller B, da Silva Magalhães PV, De Bastiani MA, Castro MAA, Gallitano AL, Kapczinski F, Klamt F. Differential expression of transcriptional regulatory units in the prefrontal cortex of patients with bipolar disorder: potential role of early growth response gene 3. Transl Psychiatry 2016; 6:e805. [PMID: 27163206 PMCID: PMC5070056 DOI: 10.1038/tp.2016.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 01/08/2023] Open
Abstract
Bipolar disorder (BD) is a severe mental illness with a strong genetic component. Despite its high degree of heritability, current genetic studies have failed to reveal individual loci of large effect size. In lieu of focusing on individual genes, we investigated regulatory units (regulons) in BD to identify candidate transcription factors (TFs) that regulate large groups of differentially expressed genes. Network-based approaches should elucidate the molecular pathways governing the pathophysiology of BD and reveal targets for potential therapeutic intervention. The data from a large-scale microarray study was used to reconstruct the transcriptional associations in the human prefrontal cortex, and results from two independent microarray data sets to obtain BD gene signatures. The regulatory network was derived by mapping the significant interactions between known TFs and all potential targets. Five regulons were identified in both transcriptional network models: early growth response 3 (EGR3), TSC22 domain family, member 4 (TSC22D4), interleukin enhancer-binding factor 2 (ILF2), Y-box binding protein 1 (YBX1) and MAP-kinase-activating death domain (MADD). With a high stringency threshold, the consensus across tests was achieved only for the EGR3 regulon. We identified EGR3 in the prefrontal cortex as a potential key target, robustly repressed in both BD signatures. Considering that EGR3 translates environmental stimuli into long-term changes in the brain, disruption in biological pathways involving EGR3 may induce an impaired response to stress and influence on risk for psychiatric disorders, particularly BD.
Collapse
Affiliation(s)
- B Pfaffenseller
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - P V da Silva Magalhães
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, 2350 Ramiro Barcelos Street, Porto Alegre 90035 903, Brazil. E-mail:
| | - M A De Bastiani
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Polytechnic Center, Curitiba, Brazil
| | - A L Gallitano
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - F Kapczinski
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - F Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
25
|
Duclot F, Kabbaj M. The estrous cycle surpasses sex differences in regulating the transcriptome in the rat medial prefrontal cortex and reveals an underlying role of early growth response 1. Genome Biol 2015; 16:256. [PMID: 26628058 PMCID: PMC4667491 DOI: 10.1186/s13059-015-0815-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/27/2015] [Indexed: 01/22/2023] Open
Abstract
Background Males and females differ in cognitive functions and emotional processing, which in part have been associated with baseline sex differences in gene expression in the medial prefrontal cortex. Nevertheless, a growing body of evidence suggests that sex differences in medial prefrontal cortex-dependent cognitive functions are attenuated by hormonal fluctuations within the menstrual cycle. Despite known genomic effects of ovarian hormones, the interaction of the estrous cycle with sex differences in gene expression in the medial prefrontal cortex remains unclear and warrants further investigations. Results We undertake a large-scale characterization of sex differences and their interaction with the estrous cycle in the adult medial prefrontal cortex transcriptome and report that females with high and low ovarian hormone levels exhibited a partly opposed sexually biased transcriptome. The extent of regulation within females vastly exceeds sex differences, and supports a multi-level reorganization of synaptic function across the estrous cycle. Genome-wide analysis of the transcription factor early growth response 1 binding highlights its role in controlling the synapse-related genes varying within females. Conclusions We uncover a critical influence of the estrous cycle on the adult rat medial prefrontal cortex transcriptome resulting in partly opposite sex differences in proestrus when compared to diestrus females, and we discovered a direct role for Early Growth Response 1 in this opposite regulation. In addition to illustrating the importance of accounting for the estrous cycle in females, our data set the ground for a better understanding of the female specificities in cognition and emotional processing. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0815-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA. .,Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA. .,Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|
26
|
Stein LR, Zorumski CF, Imai SI, Izumi Y. Nampt is required for long-term depression and the function of GluN2B subunit-containing NMDA receptors. Brain Res Bull 2015; 119:41-51. [PMID: 26481044 DOI: 10.1016/j.brainresbull.2015.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/13/2015] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is an essential coenzyme/cosubstrate for many biological processes in cellular metabolism. The rate-limiting step in the major pathway of mammalian NAD(+) biosynthesis is mediated by nicotinamide phosphoribosyltransferase (Nampt). Previously, we showed that mice lacking Nampt in forebrain excitatory neurons (CamKIIαNampt(-/-) mice) exhibited hyperactivity, impaired learning and memory, and reduced anxiety-like behaviors. However, it remained unclear if these functional effects were accompanied by synaptic changes. Here, we show that CamKIIαNampt(-/-) mice have impaired induction of long-term depression (LTD) in the Schaffer collateral pathway, but normal induction of long-term potentiation (LTP), at postnatal day 30. Pharmacological assessments demonstrated that CamKIIαNampt(-/-) mice also display dysfunction of synaptic GluN2B (NR2B)-containing N-methyl-d-aspartate receptors (NMDARs) prior to changes in NMDAR subunit expression. These results support a novel, important role for Nampt-mediated NAD(+) biosynthesis in LTD and in the function of GluN2B-containing NMDARs.
Collapse
Affiliation(s)
- Liana Roberts Stein
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Psychiatry, The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Charles F Zorumski
- Department of Psychiatry, The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Anatomy and Neurobiology, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Yukitoshi Izumi
- Department of Psychiatry, The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Peixoto LL, Wimmer ME, Poplawski SG, Tudor JC, Kenworthy CA, Liu S, Mizuno K, Garcia BA, Zhang NR, Giese K, Abel T. Memory acquisition and retrieval impact different epigenetic processes that regulate gene expression. BMC Genomics 2015; 16 Suppl 5:S5. [PMID: 26040834 PMCID: PMC4460846 DOI: 10.1186/1471-2164-16-s5-s5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background A fundamental question in neuroscience is how memories are stored and retrieved in the brain. Long-term memory formation requires transcription, translation and epigenetic processes that control gene expression. Thus, characterizing genome-wide the transcriptional changes that occur after memory acquisition and retrieval is of broad interest and importance. Genome-wide technologies are commonly used to interrogate transcriptional changes in discovery-based approaches. Their ability to increase scientific insight beyond traditional candidate gene approaches, however, is usually hindered by batch effects and other sources of unwanted variation, which are particularly hard to control in the study of brain and behavior. Results We examined genome-wide gene expression after contextual conditioning in the mouse hippocampus, a brain region essential for learning and memory, at all the time-points in which inhibiting transcription has been shown to impair memory formation. We show that most of the variance in gene expression is not due to conditioning and that by removing unwanted variance through additional normalization we are able provide novel biological insights. In particular, we show that genes downregulated by memory acquisition and retrieval impact different functions: chromatin assembly and RNA processing, respectively. Levels of histone 2A variant H2AB are reduced only following acquisition, a finding we confirmed using quantitative proteomics. On the other hand, splicing factor Rbfox1 and NMDA receptor-dependent microRNA miR-219 are only downregulated after retrieval, accompanied by an increase in protein levels of miR-219 target CAMKIIγ. Conclusions We provide a thorough characterization of coding and non-coding gene expression during long-term memory formation. We demonstrate that unwanted variance dominates the signal in transcriptional studies of learning and memory and introduce the removal of unwanted variance through normalization as a necessary step for the analysis of genome-wide transcriptional studies in the context of brain and behavior. We show for the first time that histone variants are downregulated after memory acquisition, and splicing factors and microRNAs after memory retrieval. Our results provide mechanistic insights into the molecular basis of cognition by highlighting the differential involvement of epigenetic mechanisms, such as histone variants and post-transcriptional RNA regulation, after acquisition and retrieval of memory.
Collapse
|
28
|
Kreutzmann JC, Havekes R, Abel T, Meerlo P. Sleep deprivation and hippocampal vulnerability: changes in neuronal plasticity, neurogenesis and cognitive function. Neuroscience 2015; 309:173-90. [PMID: 25937398 DOI: 10.1016/j.neuroscience.2015.04.053] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 01/19/2023]
Abstract
Despite the ongoing fundamental controversy about the physiological function of sleep, there is general consensus that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition. In agreement with this are numerous studies showing that sleep deprivation (SD) results in learning and memory impairments. Interestingly, such impairments appear to occur particularly when these learning and memory processes require the hippocampus, suggesting that this brain region may be particularly sensitive to the consequences of sleep loss. Although the molecular mechanisms underlying sleep and memory formation remain to be investigated, available evidence suggests that SD may impair hippocampal neuronal plasticity and memory processes by attenuating intracellular cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling which may lead to alterations in cAMP response element binding protein (CREB)-mediated gene transcription, neurotrophic signaling, and glutamate receptor expression. When restricted sleep becomes a chronic condition, it causes a reduction of hippocampal cell proliferation and neurogenesis, which may eventually lead to a reduction in hippocampal volume. Ultimately, by impairing hippocampal plasticity and function, chronically restricted and disrupted sleep contributes to cognitive disorders and psychiatric diseases.
Collapse
Affiliation(s)
- J C Kreutzmann
- Center for Behavior and Neurosciences, University of Groningen, The Netherlands; Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - R Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - T Abel
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - P Meerlo
- Center for Behavior and Neurosciences, University of Groningen, The Netherlands.
| |
Collapse
|
29
|
Activity-dependent expression of miR-132 regulates immediate-early gene induction during olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx. Neurobiol Learn Mem 2015; 120:41-51. [DOI: 10.1016/j.nlm.2015.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/24/2015] [Accepted: 02/17/2015] [Indexed: 01/13/2023]
|
30
|
Alberini CM, Kandel ER. The regulation of transcription in memory consolidation. Cold Spring Harb Perspect Biol 2014; 7:a021741. [PMID: 25475090 DOI: 10.1101/cshperspect.a021741] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
De novo transcription of DNA is a fundamental requirement for the formation of long-term memory. It is required during both consolidation and reconsolidation, the posttraining and postreactivation phases that change the state of the memory from a fragile into a stable and long-lasting form. Transcription generates both mRNAs that are translated into proteins, which are necessary for the growth of new synaptic connections, as well as noncoding RNA transcripts that have regulatory or effector roles in gene expression. The result is a cascade of events that ultimately leads to structural changes in the neurons that mediate long-term memory storage. The de novo transcription, critical for synaptic plasticity and memory formation, is orchestrated by chromatin and epigenetic modifications. The complexity of transcription regulation, its temporal progression, and the effectors produced all contribute to the flexibility and persistence of long-term memory formation. In this article, we provide an overview of the mechanisms contributing to this transcriptional regulation underlying long-term memory formation.
Collapse
Affiliation(s)
| | - Eric R Kandel
- Zuckerman Mind Brain Behavior Institute, New York State Psychiatric Institute, New York, New York 10032 Department of Neuroscience, New York State Psychiatric Institute, New York, New York 10032 Kavli Institute for Brain Science, New York State Psychiatric Institute, New York, New York 10032 Howard Hughes Medical Institute, New York State Psychiatric Institute, New York, New York 10032 College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
31
|
Motor skill learning enhances the expression of activity-regulated cytoskeleton-associated protein in the rat cerebellum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:959-66. [DOI: 10.1007/s00359-014-0942-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/11/2023]
|
32
|
Veyrac A, Besnard A, Caboche J, Davis S, Laroche S. The transcription factor Zif268/Egr1, brain plasticity, and memory. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:89-129. [PMID: 24484699 DOI: 10.1016/b978-0-12-420170-5.00004-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The capacity to remember our past experiences and organize our future draws on a number of cognitive processes that allow our brain to form and store neural representations that can be recalled and updated at will. In the brain, these processes require mechanisms of neural plasticity in the activated circuits, brought about by cellular and molecular changes within the neurons activated during learning. At the cellular level, a wealth of experimental data accumulated in recent years provides evidence that signaling from synapses to nucleus and the rapid regulation of the expression of immediate early genes encoding inducible, regulatory transcription factors is a key step in the mechanisms underlying synaptic plasticity and the modification of neural networks required for the laying down of memories. In the activated neurons, these transcriptional events are thought to mediate the activation of selective gene programs and subsequent synthesis of proteins, leading to stable functional and structural remodeling of the activated networks, so that the memory can later be reactivated upon recall. Over the past few decades, novel insights have been gained in identifying key transcriptional regulators that can control the genomic response of synaptically activated neurons. Here, as an example of this approach, we focus on one such activity-dependent transcription factor, Zif268, known to be implicated in neuronal plasticity and memory formation. We summarize current knowledge about the regulation and function of Zif268 in different types of brain plasticity and memory processes.
Collapse
Affiliation(s)
- Alexandra Veyrac
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| | - Antoine Besnard
- Harvard Stem Cell Institute, Harvard Medical School, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jocelyne Caboche
- INSERM, UMRS 952, Physiopathologie des Maladies du Système Nerveux Central, Paris, France; CNRS, UMR7224, Physiopathologie des Maladies du Système Nerveux Central, Paris, France; UPMC University Paris 6, Paris, France
| | - Sabrina Davis
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| | - Serge Laroche
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| |
Collapse
|
33
|
Penke Z, Morice E, Veyrac A, Gros A, Chagneau C, LeBlanc P, Samson N, Baumgärtel K, Mansuy IM, Davis S, Laroche S. Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130159. [PMID: 24298160 DOI: 10.1098/rstb.2013.0159] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is well established that Zif268/Egr1, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memory; however, it is as yet uncertain whether increasing expression of Zif268 in neurons can facilitate memory formation. Here, we used an inducible transgenic mouse model to specifically induce Zif268 overexpression in forebrain neurons and examined the effect on recognition memory and hippocampal synaptic transmission and plasticity. We found that Zif268 overexpression during the establishment of memory for objects did not change the ability to form a long-term memory of objects, but enhanced the capacity to form a long-term memory of the spatial location of objects. This enhancement was paralleled by increased long-term potentiation in the dentate gyrus of the hippocampus and by increased activity-dependent expression of Zif268 and selected Zif268 target genes. These results provide novel evidence that transcriptional mechanisms engaging Zif268 contribute to determining the strength of newly encoded memories.
Collapse
Affiliation(s)
- Zsuzsa Penke
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, , Orsay 91405, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep deprivation to impair memory consolidation and plasticity. In this review, we address these topics with a focus on the detrimental effects of post-learning sleep deprivation on memory consolidation. Obtaining adequate sleep is challenging in a society that values "work around the clock." Therefore, the development of interventions to combat the negative cognitive effects of sleep deprivation is key. However, there are a limited number of therapeutics that are able to enhance cognition in the face of insufficient sleep. The identification of molecular pathways implicated in the deleterious effects of sleep deprivation on memory could potentially yield new targets for the development of more effective drugs.
Collapse
Affiliation(s)
- Toni-Moi Prince
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
35
|
Recall and reconsolidation of contextual fear memory: differential control by ERK and Zif268 expression dosage. PLoS One 2013; 8:e72006. [PMID: 23977192 PMCID: PMC3745394 DOI: 10.1371/journal.pone.0072006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/11/2013] [Indexed: 12/04/2022] Open
Abstract
Compelling evidence points to the existence of independent cellular processes involved in the consolidation and reconsolidation of memory. For instance, a double dissociation has been reported between hippocampal Extracellular-Regulated Kinase-1/2 (ERK1/2) activity being necessary for contextual fear conditioning (CFC) consolidation but not reconsolidation. Conversely, hippocampal expression of the immediate early gene Zif268 is necessary for CFC reconsolidation but not consolidation. Since we previously reported that ERK1/2 controls the transcription of Zif268 in the hippocampus, we examined the precise role of ERK1/2 activity and Zif268 gene expression dosage in CFC memory processing. For this, we first assessed performance of Zif268 homozygous and heterozygous mutant mice in a CFC paradigm. Whereas Zif268−/− mice displayed a deficit of both consolidation and reconsolidation, Zif268+/− mice displayed a selective deficit of reconsolidation only, therefore pointing to the relationship between Zif268 gene expression dosage and CFC memory processing. Zif268 gene expression dosage interfered with the reconsolidation process if and only if CFC memory was relatively recently encoded and directly reactivated. Furthermore, CFC memory strengthening previously reported to involve Zif268 expression in the hippocampus was spared in Zif268+/− mice. Finally, blocking ERK1/2 activity prior to CFC retrieval prevented the deficit of reconsolidation observed in Zif268+/− mice. Collectively, these results highlight a tight relationship between Zif268 gene expression dosage and CFC memory processing. They also suggest that ERK1/2 activity upon CFC memory recall is necessary for its retrieval, a prerequisite for its reactivation and subsequent reconsolidation.
Collapse
|
36
|
Iacono G, Altafini C, Torre V. Early phase of plasticity-related gene regulation and SRF dependent transcription in the hippocampus. PLoS One 2013; 8:e68078. [PMID: 23935853 PMCID: PMC3720722 DOI: 10.1371/journal.pone.0068078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/25/2013] [Indexed: 02/07/2023] Open
Abstract
Hippocampal organotypic cultures are a highly reliable in vitro model for studying neuroplasticity: in this paper, we analyze the early phase of the transcriptional response induced by a 20 µM gabazine treatment (GabT), a GABA-Ar antagonist, by using Affymetrix oligonucleotide microarray, RT-PCR based time-course and chromatin-immuno-precipitation. The transcriptome profiling revealed that the pool of genes up-regulated by GabT, besides being strongly related to the regulation of growth and synaptic transmission, is also endowed with neuro-protective and pro-survival properties. By using RT-PCR, we quantified a time-course of the transient expression for 33 of the highest up-regulated genes, with an average sampling rate of 10 minutes and covering the time interval [10∶90] minutes. The cluster analysis of the time-course disclosed the existence of three different dynamical patterns, one of which proved, in a statistical analysis based on results from previous works, to be significantly related with SRF-dependent regulation (p-value<0.05). The chromatin immunoprecipitation (chip) assay confirmed the rich presence of working CArG boxes in the genes belonging to the latter dynamical pattern and therefore validated the statistical analysis. Furthermore, an in silico analysis of the promoters revealed the presence of additional conserved CArG boxes upstream of the genes Nr4a1 and Rgs2. The chip assay confirmed a significant SRF signal in the Nr4a1 CArG box but not in the Rgs2 CArG box.
Collapse
Affiliation(s)
- Giovanni Iacono
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
| | - Claudio Altafini
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
| | - Vincent Torre
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
- IIT Italian Institute of Technology, Genova, Italy
- * E-mail:
| |
Collapse
|
37
|
Yoshioka W, Endo N, Kurashige A, Haijima A, Endo T, Shibata T, Nishiyama R, Kakeyama M, Tohyama C. Fluorescence laser microdissection reveals a distinct pattern of gene activation in the mouse hippocampal region. Sci Rep 2012; 2:783. [PMID: 23136640 PMCID: PMC3491666 DOI: 10.1038/srep00783] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/10/2012] [Indexed: 02/06/2023] Open
Abstract
A histoanatomical context is imperative in an analysis of gene expression in a cell in a tissue to elucidate physiological function of the cell. In this study, we made technical advances in fluorescence laser microdissection (LMD) in combination with the absolute quantification of small amounts of mRNAs from a region of interest (ROI) in fluorescence-labeled tissue sections. We demonstrate that our fluorescence LMD-RTqPCR method has three orders of dynamic range, with the lower limit of ROI-size corresponding to a single cell. The absolute quantification of the expression levels of the immediate early genes in an ROI equivalent to a few hundred neurons in the hippocampus revealed that mice transferred from their home cage to a novel environment have distinct activation profiles in the hippocampal regions (CA1, CA3, and DG) and that the gene expression pattern in CA1, but not in the other regions, follows a power law distribution.
Collapse
Affiliation(s)
- Wataru Yoshioka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nozomi Endo
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akie Kurashige
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Asahi Haijima
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Current address: Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Toshihiro Endo
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiyuki Shibata
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryutaro Nishiyama
- Research/Clinical/Industrial Division, Leica Microsystems K.K., Tokyo 108-0072, Japan
| | - Masaki Kakeyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
38
|
Abstract
It is well established that the activity of chromatin-modifying enzymes is crucial for regulating gene expression associated with hippocampal-dependent memories. However, very little is known about how these epigenetic mechanisms influence the formation of cortically dependent memory, particularly when there is competition between opposing memory traces, such as that which occurs during the acquisition and extinction of conditioned fear. Here we demonstrate, in C57BL/6 mice, that the activity of p300/CBP-associated factor (PCAF) within the infralimbic prefrontal cortex is required for long-term potentiation and is necessary for the formation of memory associated with fear extinction, but not for fear acquisition. Further, systemic administration of the PCAF activator SPV106 enhances memory for fear extinction and prevents fear renewal. The selective influence of PCAF on fear extinction is mediated, in part, by a transient recruitment of the repressive transcription factor ATF4 to the promoter of the immediate early gene zif268, which competitively inhibits its expression. Thus, within the context of fear extinction, PCAF functions as a transcriptional coactivator, which may facilitate the formation of memory for fear extinction by interfering with reconsolidation of the original memory trace.
Collapse
|
39
|
Lipponen A, Woldemichael BT, Gurevicius K, Tanila H. Artificial theta stimulation impairs encoding of contextual fear memory. PLoS One 2012; 7:e48506. [PMID: 23133638 PMCID: PMC3486864 DOI: 10.1371/journal.pone.0048506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 09/26/2012] [Indexed: 11/19/2022] Open
Abstract
Several experiments have demonstrated an intimate relationship between hippocampal theta rhythm (4-12 Hz) and memory. Lesioning the medial septum or fimbria-fornix, a fiber track connecting the hippocampus and the medial septum, abolishes the theta rhythm and results in a severe impairment in declarative memory. To assess whether there is a causal relationship between hippocampal theta and memory formation we investigated whether restoration of hippocampal theta by electrical stimulation during the encoding phase also restores fimbria-fornix lesion induced memory deficit in rats in the fear conditioning paradigm. Male Wistar rats underwent sham or fimbria-fornix lesion operation. Stimulation electrodes were implanted in the ventral hippocampal commissure and recording electrodes in the septal hippocampus. Artificial theta stimulation of 8 Hz was delivered during 3-min free exploration of the test cage in half of the rats before aversive conditioning with three foot shocks during 2 min. Memory was assessed by total freezing time in the same environment 24 h and 28 h after fear conditioning, and in an intervening test session in a different context. As expected, fimbria-fornix lesion impaired fear memory and dramatically attenuated hippocampal theta power. Artificial theta stimulation produced continuous theta oscillations that were almost similar to endogenous theta rhythm in amplitude and frequency. However, contrary to our predictions, artificial theta stimulation impaired conditioned fear response in both sham and fimbria-fornix lesioned animals. These data suggest that restoration of theta oscillation per se is not sufficient to support memory encoding after fimbria-fornix lesion and that universal theta oscillation in the hippocampus with a fixed frequency may actually impair memory.
Collapse
Affiliation(s)
- Arto Lipponen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| | | | | | | |
Collapse
|
40
|
Besnard A, Caboche J, Laroche S. Reconsolidation of memory: A decade of debate. Prog Neurobiol 2012; 99:61-80. [PMID: 22877586 DOI: 10.1016/j.pneurobio.2012.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/13/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
41
|
Katche C, Goldin A, Gonzalez C, Bekinschtein P, Medina JH. Maintenance of long-term memory storage is dependent on late posttraining Egr-1 expression. Neurobiol Learn Mem 2012; 98:220-7. [PMID: 22906840 DOI: 10.1016/j.nlm.2012.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 12/20/2022]
Abstract
Expression of immediate-early genes, like Egr-1, has been shown to be induced by activity-dependent synaptic plasticity or behavioral training and is widely thought to play an important role in long-term memory (LTM) formation. However, little is known about the role of Egr-1 in the maintenance of memory storage. Here we show that dorsal hippocampal Egr-1 protein expression is upregulated between 12 and 24 h after strong inhibitory avoidance (IA) training in rats. Local infusion of antisense oligodeoxynucleotide (ASO) to specifically knockdown Egr-1 in the dorsal hippocampus 8 h posttraining impairs LTM tested 7 days, but not 1 day after training, indicating that a delayed learning-associated expression of Egr-1 is necessary for the persistence of LTM storage. In addition, we show that consolidation of the IA memory is accompanied by an increase in Egr-1 protein levels 3 h, but not immediately or 1 h after training. Local infusion of egr-1 ASO 30 min before training in the dorsal hippocampus persistently hinders memory formation measured 1 and 7 days after IA training, indicating the crucial role of Egr-1 in memory formation. Our findings demonstrate that there are at least two waves of Egr-1 expression in the dorsal hippocampus after IA training, an early wave which is involved in IA LTM formation, and a lasting late wave that peaks around 12-24 h after a strong training protocol which is specifically involved in the maintenance of LTM storage.
Collapse
Affiliation(s)
- Cynthia Katche
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
42
|
Havekes R, Vecsey CG, Abel T. The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cell Signal 2012; 24:1251-60. [PMID: 22570866 PMCID: PMC3622220 DOI: 10.1016/j.cellsig.2012.02.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sleep deprivation is a common feature in modern society, and one of the consequences of sleep loss is the impairment of cognitive function. Although it has been widely accepted that sleep deprivation affects learning and memory, only recently has research begun to address which molecular signaling pathways are altered by sleep loss and, more importantly, which pathways can be targeted to reverse the memory impairments resulting from sleep deprivation. In this review, we discuss the different methods used to sleep deprive animals and the effects of different durations of sleep deprivation on learning and memory with an emphasis on hippocampus-dependent memory. We then review the molecular signaling pathways that are sensitive to sleep loss, with a focus on those thought to play a critical role in the memory and synaptic plasticity deficits observed after sleep deprivation. Finally, we highlight several recent attempts to reverse the effects of sleep deprivation on memory and synaptic plasticity. Future research building on these studies promises to contribute to the development of novel strategies to ameliorate the effects of sleep loss on cognition.
Collapse
Affiliation(s)
- Robbert Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, USA
| | | | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
43
|
Snyder JS, Clifford MA, Jeurling SI, Cameron HA. Complementary activation of hippocampal-cortical subregions and immature neurons following chronic training in single and multiple context versions of the water maze. Behav Brain Res 2012; 227:330-9. [PMID: 21736899 PMCID: PMC3212609 DOI: 10.1016/j.bbr.2011.06.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 05/31/2011] [Accepted: 06/20/2011] [Indexed: 11/22/2022]
Abstract
Neurobiological studies of memory typically involve single learning sessions that last minutes or days. In natural settings, however, animals are constantly learning. Here we investigated how several weeks of spatial water maze training influences subsequent activation of neocortical and hippocampal subregions, including adult-born neurons. Mice were either trained in a single context or in a variant of the task in which the spatial cues and platform location changed every 3 days, requiring constant new learning. On the final day, half of the mice in each training group were tested in a novel context and the other half were tested in their previous, familiar context. Two hours later mice were perfused to measure subregion-specific expression of the immediate-early gene zif268, a marker of neuronal activation. None of the training paradigms affected the magnitude of adult neurogenesis. However, different neuronal populations were activated depending on prior training history, final context novelty, or a combination of these 2 factors. The anterior cingulate cortex was more activated by novel context exposure, regardless of the type of prior training. The suprapyramidal blade of the dentate gyrus and region CA3 showed greater activation in mice trained in multiple contexts, primarily after exposure to a familiar context. In immature granule neurons, multiple context training enhanced activation regardless of final context novelty. CA1 showed no significant changes in zif268 expression across any training condition. In naïve control mice, training on the final day increased zif268 expression in CA3, CA1 and the anterior cingulate cortex, but not the dentate gyrus, relative to mice that remained in their cages (transport controls). Unexpectedly, immature granule cells showed a decrease in zif268 expression in naïve learners relative to transport controls. These findings suggest novel and complementary roles for hippocampal, neocortical, and immature neuronal populations in learning and memory.
Collapse
Affiliation(s)
- Jason S Snyder
- Unit on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Building 35/3C911, MSC3718, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|