1
|
Shi J, Wu Q, Sang M, Mao L. Common Regulatory Mechanisms Mediated by Cuproptosis Genes in Inflammatory Bowel Disease and Major Depressive Disorder. Genes (Basel) 2025; 16:339. [PMID: 40149491 PMCID: PMC11942124 DOI: 10.3390/genes16030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The prevalence of major depressive disorder (MDD) among patients with inflammatory bowel disease (IBD) is significantly higher compared to the general population, suggesting a potential link between their pathogeneses. Cuproptosis, defined as cell death caused by intracellular copper accumulation, has not been thoroughly investigated in the context of IBD and MDD. This study aims to uncover the molecular mechanisms of cuproptosis-related genes (CRGs) in both conditions and to explore novel therapeutic strategies by the modulation of CRGs. METHODS In this study, we identified differentially expressed CRGs between normal and disease samples. We calculated the correlation among CRGs and between CRGs and immune cell infiltrations across various tissues. Four machine learning algorithms were employed to identify key CRGs associated with IBD and MDD. Additionally, drug sensitivity, molecular docking, and molecular dynamics simulations were conducted to predict therapeutic drugs for IBD and MDD. RESULTS We identified DLD, DLAT, DLST, PDHB, and DBT as common DE-CRGs, and DLD, LIAS, SLC31A1, SCO2, and CDKN2A as key CRGs associated with both IBD and MDD. Consequently, DLD was recognized as a shared biomarker in both diseases. A total of 37 potential therapeutic drugs were identified for IBD and MDD. Based on the molecular docking and molecular dynamics simulation analyses, barasertib and NTP-TAE684, which target DLAT, were predicted to be the most effective compounds. CONCLUSIONS These findings have substantially enhanced our understanding of the similarities and differences in the regulatory mechanisms of CRGs within brain-gut axis diseases. Key biomarkers have been identified, and potential therapeutic drugs have been predicted to effectively target IBD and MDD.
Collapse
Affiliation(s)
- Jiyuan Shi
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (J.S.); (Q.W.)
| | - Qianyi Wu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (J.S.); (Q.W.)
| | - Mengmeng Sang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (J.S.); (Q.W.)
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (J.S.); (Q.W.)
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
2
|
Otálora-Otálora BA, Payán-Gómez C, López-Rivera JJ, Pedroza-Aconcha NB, Arboleda-Mojica SL, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Interplay of Transcriptomic Regulation, Microbiota, and Signaling Pathways in Lung and Gut Inflammation-Induced Tumorigenesis. Cells 2024; 14:1. [PMID: 39791702 PMCID: PMC11720097 DOI: 10.3390/cells14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Inflammation can positively and negatively affect tumorigenesis based on the duration, scope, and sequence of related events through the regulation of signaling pathways. A transcriptomic analysis of five pulmonary arterial hypertension, twelve Crohn's disease, and twelve ulcerative colitis high throughput sequencing datasets using R language specialized libraries and gene enrichment analyses identified a regulatory network in each inflammatory disease. IRF9 and LINC01089 in pulmonary arterial hypertension are related to the regulation of signaling pathways like MAPK, NOTCH, human papillomavirus, and hepatitis c infection. ZNF91 and TP53TG1 in Crohn's disease are related to the regulation of PPAR, MAPK, and metabolic signaling pathways. ZNF91, VDR, DLEU1, SATB2-AS1, and TP53TG1 in ulcerative colitis are related to the regulation of PPAR, AMPK, and metabolic signaling pathways. The activation of the transcriptomic network and signaling pathways might be related to the interaction of the characteristic microbiota of the inflammatory disease, with the lung and gut cell receptors present in membrane rafts and complexes. The transcriptomic analysis highlights the impact of several coding and non-coding RNAs, suggesting their relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during lung and gut cell adaptation to inflammatory phenotypes.
Collapse
Affiliation(s)
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia; (C.P.-G.); (N.B.P.-A.)
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| | - Natalia Belén Pedroza-Aconcha
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia; (C.P.-G.); (N.B.P.-A.)
| | | | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Carlos Arturo Álvarez-Moreno
- Infectious Diseases Department, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| |
Collapse
|
3
|
Peters DE. Targeting glutamate carboxypeptidase II in IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:265-285. [PMID: 39521603 DOI: 10.1016/bs.apha.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Over the past decade, the zinc metalloenzyme glutamate carboxypeptidase (GCPII) has emerged as a novel therapeutic target for IBD. This enzyme is minimally expressed in healthy ileum or colon, but is profoundly upregulated in multiple IBD subtypes including: adult and pediatric Crohn's disease (CD), adult and pediatric ulcerative colitis (UC), and UC pouchitis. Encouragingly, small molecule GCPII inhibitors display promising efficacy in chemical and genetic preclinical colitis models. In this chapter we will: (1) review GCPII biology, (2) present the data confirming its upregulation in IBD patients at gene and protein levels, (3) discuss foundational pre-clinical studies that established the anti-colitis efficacy of small molecule GCPII inhibitors, and (4) introduce the rationale and development of a novel class of GCPII inhibitors, including lead compound (S)-IBD3540, which hold therapeutic promise for IBD.
Collapse
Affiliation(s)
- Diane E Peters
- Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
4
|
Li J, Simmons AJ, Hawkins CV, Chiron S, Ramirez-Solano MA, Tasneem N, Kaur H, Xu Y, Revetta F, Vega PN, Bao S, Cui C, Tyree RN, Raber LW, Conner AN, Pilat JM, Jacobse J, McNamara KM, Allaman MM, Raffa GA, Gobert AP, Asim M, Goettel JA, Choksi YA, Beaulieu DB, Dalal RL, Horst SN, Pabla BS, Huo Y, Landman BA, Roland JT, Scoville EA, Schwartz DA, Washington MK, Shyr Y, Wilson KT, Coburn LA, Lau KS, Liu Q. Identification and multimodal characterization of a specialized epithelial cell type associated with Crohn's disease. Nat Commun 2024; 15:7204. [PMID: 39169060 PMCID: PMC11339313 DOI: 10.1038/s41467-024-51580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Crohn's disease (CD) is a complex chronic inflammatory disorder with both gastrointestinal and extra-intestinal manifestations associated immune dysregulation. Analyzing 202,359 cells from 170 specimens across 83 patients, we identify a distinct epithelial cell type in both terminal ileum and ascending colon (hereon as 'LND') with high expression of LCN2, NOS2, and DUOX2 and genes related to antimicrobial response and immunoregulation. LND cells, confirmed by in-situ RNA and protein imaging, are rare in non-IBD controls but expand in active CD, and actively interact with immune cells and specifically express IBD/CD susceptibility genes, suggesting a possible function in CD immunopathogenesis. Furthermore, we discover early and late LND subpopulations with different origins and developmental potential. A higher ratio of late-to-early LND cells correlates with better response to anti-TNF treatment. Our findings thus suggest a potential pathogenic role for LND cells in both Crohn's ileitis and colitis.
Collapse
Affiliation(s)
- Jia Li
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Caroline V Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sophie Chiron
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisol A Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harsimran Kaur
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shunxing Bao
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Can Cui
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Regina N Tyree
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry W Raber
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna N Conner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Pilat
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriella A Raffa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Dawn B Beaulieu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robin L Dalal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara N Horst
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baldeep S Pabla
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth A Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David A Schwartz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Ken S Lau
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Chen KA, Nishiyama NC, Kennedy Ng MM, Shumway A, Joisa CU, Schaner MR, Lian G, Beasley C, Zhu LC, Bantumilli S, Kapadia MR, Gomez SM, Furey TS, Sheikh SZ. Linking gene expression to clinical outcomes in pediatric Crohn's disease using machine learning. Sci Rep 2024; 14:2667. [PMID: 38302662 PMCID: PMC10834600 DOI: 10.1038/s41598-024-52678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
Pediatric Crohn's disease (CD) is characterized by a severe disease course with frequent complications. We sought to apply machine learning-based models to predict risk of developing future complications in pediatric CD using ileal and colonic gene expression. Gene expression data was generated from 101 formalin-fixed, paraffin-embedded (FFPE) ileal and colonic biopsies obtained from treatment-naïve CD patients and controls. Clinical outcomes including development of strictures or fistulas and progression to surgery were analyzed using differential expression and modeled using machine learning. Differential expression analysis revealed downregulation of pathways related to inflammation and extra-cellular matrix production in patients with strictures. Machine learning-based models were able to incorporate colonic gene expression and clinical characteristics to predict outcomes with high accuracy. Models showed an area under the receiver operating characteristic curve (AUROC) of 0.84 for strictures, 0.83 for remission, and 0.75 for surgery. Genes with potential prognostic importance for strictures (REG1A, MMP3, and DUOX2) were not identified in single gene differential analysis but were found to have strong contributions to predictive models. Our findings in FFPE tissue support the importance of colonic gene expression and the potential for machine learning-based models in predicting outcomes for pediatric CD.
Collapse
Affiliation(s)
- Kevin A Chen
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Nina C Nishiyama
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Departments of Genetics and Biology, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, 5022 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Meaghan M Kennedy Ng
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Departments of Genetics and Biology, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, 5022 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Alexandria Shumway
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Chinmaya U Joisa
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Matthew R Schaner
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Caroline Beasley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Lee-Ching Zhu
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Surekha Bantumilli
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Muneera R Kapadia
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Shawn M Gomez
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Terrence S Furey
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- Departments of Genetics and Biology, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, 5022 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| | - Shehzad Z Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
McAllister MJ, Hall R, Whelan RJ, Fischer LJ, Chuah CS, Cartlidge PD, Drury B, Rutherford DG, Duffin RM, Cartwright JA, Dorward DA, Rossi AG, Ho GT. Formylated Peptide Receptor-1-Mediated Gut Inflammation as a Therapeutic Target in Inflammatory Bowel Disease. CROHN'S & COLITIS 360 2024; 6:otae003. [PMID: 38352118 PMCID: PMC10862654 DOI: 10.1093/crocol/otae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Indexed: 02/16/2024] Open
Abstract
Background Formylated peptide receptor (FPR)-1 is a G-coupled receptor that senses foreign bacterial and host-derived mitochondrial formylated peptides (FPs), leading to innate immune system activation. Aim We sought to investigate the role of FPR1-mediated inflammation and its potential as a therapeutic target in inflammatory bowel disease (IBD). Methods We characterized FPR1 gene and protein expression in 8 human IBD (~1000 patients) datasets with analysis on disease subtype, mucosal inflammation, and drug response. We performed in vivo dextran-sulfate sodium (DSS) colitis in C57/BL6 FPR1 knockout mice. In ex vivo studies, we studied the role of mitochondrial FPs and pharmacological blockade of FPR1 using cyclosporin H in human peripheral blood neutrophils. Finally, we assess mitochondrial FPs as a potential mechanistic biomarker in the blood and stools of patients with IBD. Results Detailed in silico analysis in human intestinal biopsies showed that FPR1 is highly expressed in IBD (n = 207 IBD vs 67 non-IBD controls, P < .001), and highly correlated with gut inflammation in ulcerative colitis (UC) and Crohn's disease (CD) (both P < .001). FPR1 receptor is predominantly expressed in leukocytes, and we showed significantly higher FPR1+ve neutrophils in inflamed gut tissue section in IBD (17 CD and 24 UC; both P < .001). Further analysis in 6 independent IBD (data available under Gene Expression Omnibus accession numbers GSE59071, GSE206285, GSE73661, GSE16879, GSE92415, and GSE235970) showed an association with active gut inflammation and treatment resistance to infliximab, ustekinumab, and vedolizumab. FPR1 gene deletion is protective in murine DSS colitis with lower gut neutrophil inflammation. In the human ex vivo neutrophil system, mitochondrial FP, nicotinamide adenine dinucleotide dehydrogenase subunit-6 (ND6) is a potent activator of neutrophils resulting in higher CD62L shedding, CD63 expression, reactive oxygen species production, and chemotactic capacity; these effects are inhibited by cyclosporin H. We screened for mitochondrial ND6 in IBD (n = 54) using ELISA and detected ND6 in stools with median values of 2.2 gg/mL (interquartile range [IQR] 0.0-4.99; range 0-53.3) but not in blood. Stool ND6 levels, however, were not significantly correlated with paired stool calprotectin, C-reactive protein, and clinical IBD activity. Conclusions Our data suggest that FPR1-mediated neutrophilic inflammation is a tractable target in IBD; however, further work is required to clarify the clinical utility of mitochondrial FPs as a potential mechanistic marker for future stratification.
Collapse
Affiliation(s)
- Milly J McAllister
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Rebecca Hall
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Robert J Whelan
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Lena J Fischer
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Cher S Chuah
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Peter D Cartlidge
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Broc Drury
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Duncan G Rutherford
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Rodger M Duffin
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jennifer A Cartwright
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - David A Dorward
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Adriano G Rossi
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Gwo-tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
7
|
Sun Z, Braga-Neto MB, Xiong Y, Bhagwate AV, Gibbons HR, Sagstetter MR, Hamdan FH, Baheti S, Friton J, Nair A, Ye Z, Faubion WA. Hypomethylation and Overexpression of Th17-Associated Genes is a Hallmark of Intestinal CD4+ Lymphocytes in Crohn's Disease. J Crohns Colitis 2023; 17:1847-1857. [PMID: 37280154 PMCID: PMC10673812 DOI: 10.1093/ecco-jcc/jjad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/14/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND The development of Crohn's disease [CD] involves immune cell signalling pathways regulated by epigenetic modifications. Aberrant DNA methylation has been identified in peripheral blood and bulk intestinal tissue from CD patients. However, the DNA methylome of disease-associated intestinal CD4+ lymphocytes has not been evaluated. MATERIALS AND METHODS Genome-wide DNA methylation sequencing was performed from terminal ileum CD4+ cells from 21 CD patients and 12 age- and sex-matched controls. Data were analysed for differentially methylated CpGs [DMCs] and methylated regions [DMRs]. Integration was performed with RNA-sequencing data to evaluate the functional impact of DNA methylation changes on gene expression. DMRs were overlapped with regions of differentially open chromatin [by ATAC-seq] and CCCTC-binding factor [CTCF] binding sites [by ChIP-seq] between peripherally derived Th17 and Treg cells. RESULTS CD4+ cells in CD patients had significantly increased DNA methylation compared to those from the controls. A total of 119 051 DMCs and 8113 DMRs were detected. While hypermethylated genes were mostly related to cell metabolism and homeostasis, hypomethylated genes were significantly enriched within the Th17 signalling pathway. The differentially enriched ATAC regions in Th17 cells [compared to Tregs] were hypomethylated in CD patients, suggesting heightened Th17 activity. There was significant overlap between hypomethylated DNA regions and CTCF-associated binding sites. CONCLUSIONS The methylome of CD patients shows an overall dominant hypermethylation yet hypomethylation is more concentrated in proinflammatory pathways, including Th17 differentiation. Hypomethylation of Th17-related genes associated with areas of open chromatin and CTCF binding sites constitutes a hallmark of CD-associated intestinal CD4+ cells.
Collapse
Affiliation(s)
- Zhifu Sun
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Manuel B Braga-Neto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuning Xiong
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Adytia V Bhagwate
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hunter R Gibbons
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary R Sagstetter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Feda H Hamdan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Saurabh Baheti
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jessica Friton
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Asha Nair
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Greehey Children’s Cancer Research Institute, UT Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Jagirdhar GSK, Perez JA, Perez AB, Surani S. Integration and implementation of precision medicine in the multifaceted inflammatory bowel disease. World J Gastroenterol 2023; 29:5211-5225. [PMID: 37901450 PMCID: PMC10600960 DOI: 10.3748/wjg.v29.i36.5211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex disease with variability in genetic, environmental, and lifestyle factors affecting disease presentation and course. Precision medicine has the potential to play a crucial role in managing IBD by tailoring treatment plans based on the heterogeneity of clinical and temporal variability of patients. Precision medicine is a population-based approach to managing IBD by integrating environmental, genomic, epigenomic, transcriptomic, proteomic, and metabolomic factors. It is a recent and rapidly developing medicine. The widespread adoption of precision medicine worldwide has the potential to result in the early detection of diseases, optimal utilization of healthcare resources, enhanced patient outcomes, and, ultimately, improved quality of life for individuals with IBD. Though precision medicine is promising in terms of better quality of patient care, inadequacies exist in the ongoing research. There is discordance in study conduct, and data collection, utilization, interpretation, and analysis. This review aims to describe the current literature on precision medicine, its multiomics approach, and future directions for its application in IBD.
Collapse
Affiliation(s)
| | - Jose Andres Perez
- Department of Medicine, Saint Francis Health Systems, Tulsa, OK 74133, United States
| | - Andrea Belen Perez
- Department of Research, Columbia University, New York, NY 10027, United States
| | - Salim Surani
- Department of Medicine and Pharmacology, Texas A&M University, College Station, TX 77413, United States
| |
Collapse
|
9
|
Gao X, Wang C, Shen XT, Li CY, Li YC, Gao H, Qian JM, Zhang XL. Pyroptosis burden is associated with anti-TNF treatment outcome in inflammatory bowel disease: new insights from bioinformatics analysis. Sci Rep 2023; 13:15821. [PMID: 37740137 PMCID: PMC10516897 DOI: 10.1038/s41598-023-43091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Biological agents known as anti-tumor necrosis factor (TNF) drugs are frequently utilized in the treatment of inflammatory bowel disease (IBD). In this study, we analyzed the shared processes of pyroptosis in Ulcerative colitis (UC) and Crohn's disease (CD), as well as explored the correlation between the burden of pyroptosis and the results of anti-TNF treatment based on bioinformatics analyses. We identified CAPS1, CASP5, GSDMD, AIM2, and NLRP3 as the hub genes, with AIM2 being the most effective indicator for predicting the response to anti-TNF therapy. We also noticed that non-responders received anti-TNF therapy exhibited elevated AIM2 protein expression. Subsequently, we conducted a cluster analysis based on AIM2-inflammasome-related genes and discovered that patients with a higher burden of AIM2 inflammasome displayed stronger immune function and a poor response to anti-TNF therapy. Overall, our study elucidates the pathway of pyroptosis in IBD and reveals AIM2 expression level as a potential biomarker for predicting the effectiveness of anti-TNF therapy.
Collapse
Affiliation(s)
- Xin Gao
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China
| | - Chen Wang
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China
| | - Xiao-Tong Shen
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China
| | - Chen-Yang Li
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China
| | - Yan-Chen Li
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China
| | - He Gao
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China
| | - Jia-Ming Qian
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China.
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xiao-Lan Zhang
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
10
|
Peters DE, Norris LD, Tenora L, Šnajdr I, Ponti AK, Zhu X, Sakamoto S, Veeravalli V, Pradhan M, Alt J, Thomas AG, Majer P, Rais R, McDonald C, Slusher BS. A gut-restricted glutamate carboxypeptidase II inhibitor reduces monocytic inflammation and improves preclinical colitis. Sci Transl Med 2023; 15:eabn7491. [PMID: 37556558 PMCID: PMC10661206 DOI: 10.1126/scitranslmed.abn7491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
There is an urgent need to develop therapeutics for inflammatory bowel disease (IBD) because up to 40% of patients with moderate-to-severe IBD are not adequately controlled with existing drugs. Glutamate carboxypeptidase II (GCPII) has emerged as a promising therapeutic target. This enzyme is minimally expressed in normal ileum and colon, but it is markedly up-regulated in biopsies from patients with IBD and preclinical colitis models. Here, we generated a class of GCPII inhibitors designed to be gut-restricted for oral administration, and we interrogated efficacy and mechanism using in vitro and in vivo models. The lead inhibitor, (S)-IBD3540, was potent (half maximal inhibitory concentration = 4 nanomolar), selective, gut-restricted (AUCcolon/plasma > 50 in mice with colitis), and efficacious in acute and chronic rodent colitis models. In dextran sulfate sodium-induced colitis, oral (S)-IBD3540 inhibited >75% of colon GCPII activity, dose-dependently improved gross and histologic disease, and markedly attenuated monocytic inflammation. In spontaneous colitis in interleukin-10 (IL-10) knockout mice, once-daily oral (S)-IBD3540 initiated after disease onset improved disease, normalized colon histology, and attenuated inflammation as evidenced by reduced fecal lipocalin 2 and colon pro-inflammatory cytokines/chemokines, including tumor necrosis factor-α and IL-17. Using primary human colon epithelial air-liquid interface monolayers to interrogate the mechanism, we further found that (S)-IBD3540 protected against submersion-induced oxidative stress injury by decreasing barrier permeability, normalizing tight junction protein expression, and reducing procaspase-3 activation. Together, this work demonstrated that local inhibition of dysregulated gastrointestinal GCPII using the gut-restricted, orally active, small-molecule (S)-IBD3540 is a promising approach for IBD treatment.
Collapse
Affiliation(s)
- Diane E. Peters
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren D. Norris
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lukáš Tenora
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 160 00 Prague, Czechia
| | - Ivan Šnajdr
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 160 00 Prague, Czechia
| | - András K. Ponti
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shinji Sakamoto
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vijayabhaskar Veeravalli
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manisha Pradhan
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 160 00 Prague, Czechia
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christine McDonald
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Messerschmidt JL, Azin M, Dempsey KE, Demehri S. TSLP/dendritic cell axis promotes CD4+ T cell tolerance to the gut microbiome. JCI Insight 2023; 8:e160690. [PMID: 37427591 PMCID: PMC10371333 DOI: 10.1172/jci.insight.160690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) overexpression is widely associated with atopy. However, TSLP is expressed in normal barrier organs, suggesting a homeostatic function. To determine the function of TSLP in barrier sites, we investigated the impact of endogenous TSLP signaling on the homeostatic expansion of CD4+ T cells in adult mice. Surprisingly, incoming CD4+ T cells induced lethal colitis in adult Rag1-knockout animals that lacked the TSLP receptor (Rag1KOTslprKO). Endogenous TSLP signaling was required for reduced CD4+ T cell proliferation, Treg differentiation, and homeostatic cytokine production. CD4+ T cell expansion in Rag1KOTslprKO mice was dependent on the gut microbiome. The lethal colitis was rescued by parabiosis between Rag1KOTslprKO and Rag1KO animals and wild-type dendritic cells (DCs) suppressed CD4+ T cell-induced colitis in Rag1KOTslprKO mice. A compromised T cell tolerance was noted in TslprKO adult colon, which was exacerbated by anti-PD-1 and anti-CTLA-4 therapy. These results reveal a critical peripheral tolerance axis between TSLP and DCs in the colon that blocks CD4+ T cell activation against the commensal gut microbiome.
Collapse
|
12
|
Xiao S, Xie W, Zhang Y, Pan Y, Lei L. The Immune Landscape and Molecular Subtypes of Pediatric Crohn's Disease: Results from In Silico Analysis. J Pers Med 2023; 13:jpm13040571. [PMID: 37108957 PMCID: PMC10142949 DOI: 10.3390/jpm13040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 04/29/2023] Open
Abstract
Pediatric Crohn's disease (CD) presents a distinct phenotype from adult-onset disease. A dysregulated immune response is critical in CD pathogenesis; thus, it is clinically important to describe immune cell alterations and to identify a new molecular classification for pediatric CD. To this end, in this study, a RNA-seq derived dataset GSE101794-which contains the expression profiles of 254 treatment-naïve pediatric CD samples, including CIBERSORTx and weighted gene-co-expression network analysis (WGCNA)-were performed to estimate the ratio of immune cells and to identify modules and genes related to specific immune cell infiltration, respectively. Hub genes derived from WGCNA were further employed to create a molecular classification using unsupervised K-means clustering. In the pediatric CD samples, it was found that M2 macrophages, CD4+ memory resting T cells, CD8+ T cells, and resting mast cells were the most prominent immune cells in intestinal tissues. Then, 985 up-regulated genes and 860 down-regulated genes were identified in samples with high immune cell infiltration. Of these differential genes, 10 hub genes (APOA1, CYB5A, XPNPEP2, SLC1A7, SLC4A6, LIPE, G6PC, AGXT2, SLC13A1, and SOAT2) were associated with CD8+T cell infiltration. Clinically, the higher expression of these 10 hub genes was strongly associated with an earlier age of CD onset and colonic-type CD. Furthermore, based on these key genes, pediatric CD could be classified into three molecular subtypes, displaying a different immune landscape. Altogether, this in silico analysis provides a novel insight into the immune signature of pediatric CD, and a new classification of pediatric CD is presented, which may help us develop more personalized disease management and treatments for pediatric CD.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 100034, China
| | - Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing 100034, China
| | - Yinghui Zhang
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 100034, China
| | - Yan Pan
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 100034, China
| | - Lei Lei
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 100034, China
| |
Collapse
|
13
|
Dovrolis N, Filidou E, Tarapatzi G, Kokkotis G, Spathakis M, Kandilogiannakis L, Drygiannakis I, Valatas V, Arvanitidis K, Karakasiliotis I, Vradelis S, Manolopoulos VG, Paspaliaris V, Bamias G, Kolios G. Co-expression of fibrotic genes in inflammatory bowel disease; A localized event? Front Immunol 2022; 13:1058237. [PMID: 36632136 PMCID: PMC9826764 DOI: 10.3389/fimmu.2022.1058237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Extracellular matrix turnover, a ubiquitous dynamic biological process, can be diverted to fibrosis. The latter can affect the intestine as a serious complication of Inflammatory Bowel Diseases (IBD) and is resistant to current pharmacological interventions. It embosses the need for out-of-the-box approaches to identify and target molecular mechanisms of fibrosis. METHODS AND RESULTS In this study, a novel mRNA sequencing dataset of 22 pairs of intestinal biopsies from the terminal ileum (TI) and the sigmoid of 7 patients with Crohn's disease, 6 with ulcerative colitis and 9 control individuals (CI) served as a validation cohort of a core fibrotic transcriptomic signature (FIBSig), This signature, which was identified in publicly available data (839 samples from patients and healthy individuals) of 5 fibrotic disorders affecting different organs (GI tract, lung, skin, liver, kidney), encompasses 241 genes and the functional pathways which derive from their interactome. These genes were used in further bioinformatics co-expression analyses to elucidate the site-specific molecular background of intestinal fibrosis highlighting their involvement, particularly in the terminal ileum. We also confirmed different transcriptomic profiles of the sigmoid and terminal ileum in our validation cohort. Combining the results of these analyses we highlight 21 core hub genes within a larger single co-expression module, highly enriched in the terminal ileum of CD patients. Further pathway analysis revealed known and novel inflammation-regulated, fibrogenic pathways operating in the TI, such as IL-13 signaling and pyroptosis, respectively. DISCUSSION These findings provide a rationale for the increased incidence of fibrosis at the terminal ileum of CD patients and highlight operating pathways in intestinal fibrosis for future evaluation with mechanistic and translational studies.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Georgios Kokkotis
- Gastrointestinal (GI) Unit, 3 Department of Internal Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Spathakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Ioannis Drygiannakis
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, Heraklion, Greece
| | - Vassilis Valatas
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, Heraklion, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stergios Vradelis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | | | - Giorgos Bamias
- Gastrointestinal (GI) Unit, 3 Department of Internal Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| |
Collapse
|
14
|
Gori SS, Thomas AG, Pal A, Wiseman R, Ferraris DV, Gao RD, Wu Y, Alt J, Tsukamoto T, Slusher BS, Rais R. D-DOPA Is a Potent, Orally Bioavailable, Allosteric Inhibitor of Glutamate Carboxypeptidase II. Pharmaceutics 2022; 14:pharmaceutics14102018. [PMID: 36297453 PMCID: PMC9608075 DOI: 10.3390/pharmaceutics14102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Glutamate carboxypeptidase-II (GCPII) is a zinc-dependent metalloenzyme implicated in numerous neurological disorders. The pharmacophoric requirements of active-site GCPII inhibitors makes them highly charged, manifesting poor pharmacokinetic (PK) properties. Herein, we describe the discovery and characterization of catechol-based inhibitors including L-DOPA, D-DOPA, and caffeic acid, with sub-micromolar potencies. Of these, D-DOPA emerged as the most promising compound, with good metabolic stability, and excellent PK properties. Orally administered D-DOPA yielded high plasma exposures (AUCplasma = 72.7 nmol·h/mL) and an absolute oral bioavailability of 47.7%. Unfortunately, D-DOPA brain exposures were low with AUCbrain = 2.42 nmol/g and AUCbrain/plasma ratio of 0.03. Given reports of isomeric inversion of D-DOPA to L-DOPA via D-amino acid oxidase (DAAO), we evaluated D-DOPA PK in combination with the DAAO inhibitor sodium benzoate and observed a >200% enhancement in both plasma and brain exposures (AUCplasma = 185 nmol·h/mL; AUCbrain = 5.48 nmol·h/g). Further, we demonstrated GCPII target engagement; orally administered D-DOPA with or without sodium benzoate caused significant inhibition of GCPII activity. Lastly, mode of inhibition studies revealed D-DOPA to be a noncompetitive, allosteric inhibitor of GCPII. To our knowledge, this is the first report of D-DOPA as a distinct scaffold for GCPII inhibition, laying the groundwork for future optimization to obtain clinically viable candidates.
Collapse
Affiliation(s)
- Sadakatali S. Gori
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Arindom Pal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Robyn Wiseman
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dana V. Ferraris
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Run-duo Gao
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Takashi Tsukamoto
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Correspondence: (B.S.S.); (R.R.)
| | - Rana Rais
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Correspondence: (B.S.S.); (R.R.)
| |
Collapse
|
15
|
Ngollo M, Perez K, Hammoudi N, Gorelik Y, Delord M, Auzolle C, Bottois H, Cazals-Hatem D, Bezault M, Nancey S, Nachury M, Treton X, Fumery M, Buisson A, Barnich N, Seksik P, Shen-Orr SS, Le Bourhis L, Allez M. Identification of Gene Expression Profiles Associated with an Increased Risk of Post-Operative Recurrence in Crohn's Disease. J Crohns Colitis 2022; 16:1269-1280. [PMID: 35143619 DOI: 10.1093/ecco-jcc/jjac021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Ileocolonic resection is frequently needed in the course of Crohn's disease [CD] treatment and post-operative recurrence is extremely common. Our main objective was to analyse gene expression in the mucosa of CD patients at the time of surgery and at post-operative endoscopy, in order to identify predictors and mechanisms of early endoscopic recurrence. METHODS We conducted transcriptome analyses on ileal mucosa samples collected from inflamed sections of the surgical specimens [n = 200], from ileal resection margins [n = 149] and in the neo-terminal ileum 6 months after surgery [n = 122]; these were compared with non-inflammatory bowel disease controls [n = 25]. The primary endpoint was post-operative endoscopic recurrence at 6 months. We applied regression models to identify gene signatures predicting endoscopic recurrence. RESULTS Chronic inflammation was associated with strong expression of inflammatory genes [IL-6, IL-8, IL-1B] and decreased expression of genes involved in metabolic processes, but with a high inter-individual heterogeneity. Gene signatures associated with early endoscopic recurrence were mainly characterized by upregulation of TNFα, IFNγ, IL23A and IL17A. Pathway analyses showed that upregulation of mitochondrial dysfunction within the inflamed sections and JAK/STAT at the ileal margin were predictive of post-operative recurrence. A combined model integrating these top pathway signatures improved the prediction of endoscopic recurrence [area under the curve of 0.79]. STAT3 phosphorylation at the surgical ileal margin was associated with severe recurrence at 6 months. CONCLUSION We identified several biological pathways in surgical ileal mucosa specimens associated with an increased risk of disease recurrence. Integration of the JAK/STAT and mitochondrial dysfunction pathways in the clinical model improved the prediction of post-operative recurrence.
Collapse
Affiliation(s)
- Marjolaine Ngollo
- Université de Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, F-75010, Paris, France
| | - Kevin Perez
- Université de Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, F-75010, Paris, France
| | - Nassim Hammoudi
- Université de Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, F-75010, Paris, France.,Gastroenterology Department, Hôpital Saint-Louis - APHP, F-75010, Paris, France
| | - Yuri Gorelik
- Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel
| | - Marc Delord
- Université de Paris, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Claire Auzolle
- Université de Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, F-75010, Paris, France.,Gastroenterology Department, Hôpital Saint-Louis - APHP, F-75010, Paris, France
| | - Hugo Bottois
- Université de Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, F-75010, Paris, France
| | | | | | - Stéphane Nancey
- Gastroenterology Department, Hospices Civils De Lyon, F-69002, Lyon, France
| | - Maria Nachury
- Gastroenterology Department, Hôpital Claude Huriez, Université De Lille 2, F-59000, Lille, France
| | - Xavier Treton
- Gastroenterology Department, Hôpital Beaujon, MICI et Assistance Nutritive, F-92110, Clichy, France
| | - Mathurin Fumery
- Hepato-Gastroenterology Department, CHU d'Amiens, F-80000, Amiens, France
| | - Anthony Buisson
- Hepato-Gastroenterology Department, CHU de Clermont-Ferrand, F-6300, Clermont-Ferrand, France
| | - Nicolas Barnich
- Université Clermont Auvergne, INSERM U1071, M2iSH, USC-INRA 2018, F-63000, Clermont-Ferrand, France
| | - Philippe Seksik
- Gastroenterology Department, Hôpital Saint-Antoine, Université de la Sorbonne, AP-HP, F-75012, Paris, France
| | | | - Shai S Shen-Orr
- Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel
| | - Lionel Le Bourhis
- Université de Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, F-75010, Paris, France
| | - Matthieu Allez
- Université de Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, F-75010, Paris, France.,Gastroenterology Department, Hôpital Saint-Louis - APHP, F-75010, Paris, France.,REMIND group, Hôpital Saint-Louis, F-75010, Paris, France
| |
Collapse
|
16
|
Chang HW, Yan D, Singh R, Bui A, Lee K, Truong A, Milush JM, Somsouk M, Liao W. Multiomic Analysis of the Gut Microbiome in Psoriasis Reveals Distinct Host‒Microbe Associations. JID INNOVATIONS 2022; 2:100115. [PMID: 35757783 PMCID: PMC9214347 DOI: 10.1016/j.xjidi.2022.100115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic, inflammatory skin disease that affects 2‒3% of the global population. Besides skin manifestations, patients with psoriasis have increased susceptibility to a number of comorbidities, including psoriatic arthritis, cardiovascular disease, and inflammatory bowel disease. To understand the systemic component of psoriasis pathogenesis, we performed a pilot study to examine the fecal metagenome, host colonic transcriptome, and host peripheral blood immune profiles of patients with psoriasis and healthy controls. Our study showed increased functional diversity in the gut microbiome of patients with psoriasis. In addition, we identified microbial species that preferentially associate with patients with psoriasis and which have been previously found to associate with other autoimmune diseases. Intriguingly, our data revealed three psoriasis subgroups that have distinct microbial and host features. Integrating these features revealed host‒microbe associations that are specific to psoriasis or particular psoriasis subgroups. Our findings provide insight into the factors that may affect the development of comorbidities in patients with psoriasis and may hold diagnostic potential for early identification of patients with psoriasis at risk for these comorbidities.
Collapse
Affiliation(s)
- Hsin-Wen Chang
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Di Yan
- Ronald O. Perelman Department of Dermatology, New York University Langone Health, New York, New York, USA
| | - Rasnik Singh
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Audrey Bui
- Department of Biology, St. Bonaventure University, St. Bonaventure, New York, USA
| | - Kristina Lee
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Alexa Truong
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA
| | - Jeffrey M. Milush
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Ma Somsouk
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Vatn SS, Lindstrøm JC, Moen AEF, Brackmann S, Tannæs TM, Olbjørn C, Bergemalm D, Keita ÅV, Gomollon F, Detlie TE, Lüders T, Kalla R, Adams A, Satsangi J, Jahnsen J, Vatn MH, Halfvarson J, Ricanek P, Nilsen H. Mucosal Gene Transcript Signatures in Treatment Naïve Inflammatory Bowel Disease: A Comparative Analysis of Disease to Symptomatic and Healthy Controls in the European IBD-Character Cohort. Clin Exp Gastroenterol 2022; 15:5-25. [PMID: 35185343 PMCID: PMC8848803 DOI: 10.2147/ceg.s343468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Studies of the mucosal transcriptomic landscape have given new insight into the pathogenesis of inflammatory bowel disease (IBD). Recently, the predictive biomarker potential of gene expression signatures has been explored. To further investigate the mucosal gene expression in IBD, we recruited a cohort of treatment naïve patients and compared them to both symptomatic and healthy controls. Methods Altogether, 323 subjects were included: Crohn’s disease (N = 75), ulcerative colitis (N = 87) and IBD unclassified (N = 3). Additionally, there were two control groups: symptomatic controls (N = 131) and healthy controls (N = 27). Mucosal biopsies were collected during ileocolonoscopy and gene expression in inflamed and non-inflamed mucosa was explored. Gene expression profiling was performed using Agilent G3 Human Gene Expression 860K v3 One-Color microarray. We recorded information about treatment escalation to anti-TNF agents or surgery, and anti-TNF response, to explore predictive opportunities of the mucosal transcriptome. Results Gene expression profiles in symptomatic controls in whom IBD had been excluded resembled that of IBD patients and diverged from that of healthy controls. In non-inflamed Crohn’s disease and ulcerative colitis, gene set enrichment analysis revealed dysregulation of pathways involved in basic cellular biological processes. Mitochondria-associated pathways were dysregulated both in non-inflamed and inflamed Crohn’s disease and ulcerative colitis (>2.6 normalized enrichment scores <−1.8). Gene expression signatures of Crohn’s disease and ulcerative colitis did not predict time for treatment escalation (p = 0.175). No significant association was found between gene expression signatures and anti-TNF response. Conclusion Non-inflamed samples are probably superior to inflamed samples when exploring gene expression signatures in IBD and might reveal underlying mechanisms central for disease initiation. The gene expression signatures of the control groups were related to if they were symptomatic or not, which may have important implications for future study designs.
Collapse
Affiliation(s)
- Simen Svendsen Vatn
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- Correspondence: Simen Svendsen Vatn, Akershus University Hospital, Postbox 1000, Lørenskog, 1478, Norway, Tel +47 94277594, Email
| | - Jonas Christoffer Lindstrøm
- Health Services Research Unit (HØKH), Akershus University Hospital, Lørenskog, Norway
- Department of Methods Development and Analytics, Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Aina E F Moen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Methods Development and Analytics, Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Section for Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Stephan Brackmann
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Tone M Tannæs
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section for Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Christine Olbjørn
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Trond Espen Detlie
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Torben Lüders
- Section for Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Rahul Kalla
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, Division of Medical and Radiological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alex Adams
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, Division of Medical and Radiological Sciences, University of Edinburgh, Edinburgh, UK
- Translational Gastroenterology Unit, Medical Sciences/ Experimental medicine Division, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, Division of Medical and Radiological Sciences, University of Edinburgh, Edinburgh, UK
- Translational Gastroenterology Unit, Medical Sciences/ Experimental medicine Division, University of Oxford, Oxford, UK
| | - Jørgen Jahnsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Morten H Vatn
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Petr Ricanek
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section for Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | | |
Collapse
|
18
|
Chandekar KR, Tanigassalam S, Kavanal AJ, Singh H, Bhattacharya A, Mavuduru RS. [68 Ga]Ga-PSMA-11 Small Bowel Uptake in Crohn’s Disease: Revisiting the “Non-specificity” of PSMA Ligands. Nucl Med Mol Imaging 2022; 56:102-104. [PMID: 35464671 PMCID: PMC8976716 DOI: 10.1007/s13139-021-00732-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022] Open
Abstract
The rapidly evolving clinical utility of prostate-specific membrane antigen (PSMA) PET/CT as an imaging modality for prostate cancer (PCa) has brought to the forefront a multitude of non-prostatic diseases also exhibiting PSMA radioligand uptake. We report a case of a 71-year-old male with PCa who underwent PSMA PET/CT for recurrence evaluation. The scan demonstrated [68 Ga]Ga-PSMA-11 uptake in the distal ileum. Retrospective enquiry revealed that the patient was a known case of Crohn's disease. This case highlights an uncommon finding of PSMA radioligand uptake in the distal small bowel (non-prostatic benign pathological uptake) in a patient with known Crohn's disease, which may be misinterpreted in the evaluation of PCa.
Collapse
|
19
|
Rana N, Privitera G, Kondolf HC, Bulek K, Lechuga S, De Salvo C, Corridoni D, Antanaviciute A, Maywald RL, Hurtado AM, Zhao J, Huang EH, Li X, Chan ER, Simmons A, Bamias G, Abbott DW, Heaney JD, Ivanov AI, Pizarro TT. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell 2022; 185:283-298.e17. [PMID: 35021065 PMCID: PMC8879997 DOI: 10.1016/j.cell.2021.12.024] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/09/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023]
Abstract
Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.
Collapse
Affiliation(s)
- Nitish Rana
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Departments of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hannah C Kondolf
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Katarzyna Bulek
- Department of Inflammation & Immunity, Learner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Susana Lechuga
- Department of Inflammation & Immunity, Learner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Carlo De Salvo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Daniele Corridoni
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Agne Antanaviciute
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rebecca L Maywald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander M Hurtado
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Junjie Zhao
- Department of Inflammation & Immunity, Learner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Emina H Huang
- Departments of Cancer Biology and Colon & Rectal Surgery, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoxia Li
- Department of Inflammation & Immunity, Learner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alison Simmons
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon & Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrei I Ivanov
- Department of Inflammation & Immunity, Learner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
20
|
Shi H, Sun S, Zhou X, He Y, Peng Q. GBP4 is an immune-related biomarker for patients with ileocolonic Crohn’s disease by comprehensive analysis. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Extensive evidence has shown that immune cell infiltration is associated with the pathogenesis of Crohn’s disease (CD). Methods: Differentially expressed genes (DEGs) from the GSE179285 dataset in the intestinal mucosa of CD patients and healthy individuals were then identified. The infiltration pattern of 22 immune cell types was assessed using the CIBERSORT algorithm. The DEGs and 22 immune cell types were combined to find the key gene network using weighted gene co-expression network analysis (WGCNA). A linear regression model for the relationship between the expression of the hub genes in CD patients and infiltration of immune cells was also developed. The utility and accuracy of the hub genes for CD diagnosis were assessed using receiver operating characteristic (ROC) analysis. The accuracy of the model was validated using the GSE20881 dataset. Results: There were 1135 DEGs between the intestinal mucosal tissue of CD patients and healthy individuals. Of these DEGs, 711 genes were upregulated, whereas 424 of them were downregulated. There was also a significant difference in the infiltration of immune cells to the intestinal mucosal between the CD patients and healthy individuals. WGCNA revealed that the turquoise module genes were strongly correlated with the infiltration of M1 macrophages (cor =0.68, p = 10−16). Finally, the expression of GBP4, the identified hub gene, strongly correlated with the infiltration of M1 macrophages (adjusted r-squared =0.661, p < 2×10−16), and is a relatively good marker for CD diagnostic prediction (AUC =0.736). The relationship between GBP4 expression and infiltration of M1 macrophages (adjusted r-squared =0.435, p < 2×10−16) and diagnostic value of the gene (AUC =0.702) were verified using the GSE20881 validation dataset. Conclusion: The expression of GBP4 is associated with the infiltration of M1 macrophages to the intestinal mucosa of CD patients.
Collapse
Affiliation(s)
- Heng Shi
- Department of Gastroenterology, The Central Hospital of Shaoyang, University of South China, Shaoyang, Hunan Province, China
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, China
| | - Shengyun Sun
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, China
| | - Xianling Zhou
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, China
| | - Yushan He
- Department of Gastroenterology, The Central Hospital of Shaoyang, University of South China, Shaoyang, Hunan Province, China
| | - Qin Peng
- Department of Gastroenterology, The Central Hospital of Shaoyang, University of South China, Shaoyang, Hunan Province, China
| |
Collapse
|
21
|
Jacobsen GE, Fernández I, Quintero MA, Santander AM, Pignac-Kobinger J, Damas OM, Deshpande AR, Kerman DH, Ban Y, Gao Z, Silva TC, Wang L, Beecham AH, McCauley JL, Burgueño JF, Abreu MT. Lamina Propria Phagocyte Profiling Reveals Targetable Signaling Pathways in Refractory Inflammatory Bowel Disease. GASTRO HEP ADVANCES 2022; 1:380-392. [PMID: 36061955 PMCID: PMC9438737 DOI: 10.1016/j.gastha.2022.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Gillian E. Jacobsen
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Irina Fernández
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Maria A. Quintero
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ana M. Santander
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Judith Pignac-Kobinger
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Oriana M. Damas
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Amar R. Deshpande
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - David H. Kerman
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Yuguang Ban
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Zhen Gao
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Tiago C. Silva
- Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ashley H. Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan F. Burgueño
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Maria T. Abreu
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
22
|
Casimiro-Garcia A, Allais C, Brennan A, Choi C, Dower G, Farley KA, Fleming M, Flick A, Frisbie RK, Hall J, Hepworth D, Jones H, Knafels JD, Kortum S, Lovering FE, Mathias JP, Mohan S, Morgan PM, Parng C, Parris K, Pullen N, Schlerman F, Stansfield J, Strohbach JW, Vajdos FF, Vincent F, Wang H, Wang X, Webster R, Wright SW. Discovery of a Series of Pyrimidine Carboxamides as Inhibitors of Vanin-1. J Med Chem 2021; 65:757-784. [PMID: 34967602 DOI: 10.1021/acs.jmedchem.1c01849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A diaryl ketone series was identified as vanin-1 inhibitors from a high-throughput screening campaign. While this novel scaffold provided valuable probe 2 that was used to build target confidence, concerns over the ketone moiety led to the replacement of this group. The successful replacement of this moiety was achieved with pyrimidine carboxamides derived from cyclic secondary amines that were extensively characterized using biophysical and crystallographic methods as competitive inhibitors of vanin-1. Through optimization of potency and physicochemical and ADME properties, and guided by co-crystal structures with vanin-1, 3 was identified with a suitable profile for advancement into preclinical development.
Collapse
Affiliation(s)
- Agustin Casimiro-Garcia
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Christophe Allais
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Agnes Brennan
- Inflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Chulho Choi
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Gabriela Dower
- Inflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Kathleen A Farley
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Margaret Fleming
- Inflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Andrew Flick
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Richard K Frisbie
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Justin Hall
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - David Hepworth
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Hannah Jones
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - John D Knafels
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Steve Kortum
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Frank E Lovering
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - John P Mathias
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Sashi Mohan
- Inflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Paul M Morgan
- Inflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Chuenlei Parng
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Kevin Parris
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Nick Pullen
- Inflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Franklin Schlerman
- Inflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - John Stansfield
- Early Clinical Development Non-Clinical Statistics, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Joseph W Strohbach
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Felix F Vajdos
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Fabien Vincent
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Hong Wang
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Xiaolun Wang
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Robert Webster
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Stephen W Wright
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| |
Collapse
|
23
|
Tran A, Scholtes C, Songane M, Champagne C, Galarneau L, Levasseur MP, Fodil N, Dufour CR, Giguère V, Saleh M. Estrogen-related receptor alpha (ERRα) is a key regulator of intestinal homeostasis and protects against colitis. Sci Rep 2021; 11:15073. [PMID: 34302001 PMCID: PMC8302669 DOI: 10.1038/s41598-021-94499-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The estrogen-related receptor alpha (ERRα) is a primary regulator of mitochondrial energy metabolism, function and dynamics, and has been implicated in autophagy and immune regulation. ERRα is abundantly expressed in the intestine and in cells of the immune system. However, its role in inflammatory bowel disease (IBD) remains unknown. Here, we report a protective role of ERRα in the intestine. We found that mice deficient in ERRα were susceptible to experimental colitis, exhibiting increased colon inflammation and tissue damage. This phenotype was mediated by impaired compensatory proliferation of intestinal epithelial cells (IEC) following injury, enhanced IEC apoptosis and necrosis and reduced mucus-producing goblet cell counts. Longitudinal analysis of the microbiota demonstrated that loss of ERRα lead to a reduction in microbiome α-diversity and depletion of healthy gut bacterial constituents. Mechanistically, ERRα mediated its protective effects by acting within the radio-resistant compartment of the intestine. It promoted disease tolerance through transcriptional control of key genes involved in intestinal tissue homeostasis and repair. These findings provide new insights on the role of ERRα in the gut and extends our current knowledge of nuclear receptors implicated in IBD.
Collapse
Affiliation(s)
- Allan Tran
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Charlotte Scholtes
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Mario Songane
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Claudia Champagne
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Luc Galarneau
- Cedars Cancer Centre, Medical Physics, McGill University Health Centre, Montreal, H4A 3J1, Canada
| | - Marie-Pier Levasseur
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Biochemistry, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Nassima Fodil
- Department of Biochemistry, McGill University, Montreal, QC, H3A 2B4, Canada
| | | | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada
- Department of Biochemistry, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Maya Saleh
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada.
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada.
- Department of Life Sciences and Health, CNRS, ImmunoConcEpT, UMR 5164, The University of Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
24
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
25
|
Vornov JJ, Peters D, Nedelcovych M, Hollinger K, Rais R, Slusher BS. Looking for Drugs in All the Wrong Places: Use of GCPII Inhibitors Outside the Brain. Neurochem Res 2019; 45:1256-1267. [PMID: 31749072 DOI: 10.1007/s11064-019-02909-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
In tribute to our friend and colleague Michael Robinson, we review his involvement in the identification, characterization and localization of the metallopeptidase glutamate carboxypeptidase II (GCPII), originally called NAALADase. While Mike was characterizing NAALADase in the brain, the protein was independently identified by other laboratories in human prostate where it was termed prostate specific membrane antigen (PSMA) and in the intestines where it was named Folate Hydrolase 1 (FOLH1). It was almost a decade to establish that NAALADase, PSMA, and FOLH1 are encoded by the same gene. The enzyme has emerged as a therapeutic target outside of the brain, with the most notable progress made in the treatment of prostate cancer and inflammatory bowel disease (IBD). PSMA-PET imaging with high affinity ligands is proving useful for the clinical diagnosis and staging of prostate cancer. A molecular radiotherapy based on similar ligands is in trials for metastatic castration-resistant prostate cancer. New PSMA inhibitor prodrugs that preferentially block kidney and salivary gland versus prostate tumor enzyme may improve the clinical safety of this radiotherapy. The wide clinical use of PSMA-PET imaging in prostate cancer has coincidentally led to clinical documentation of GCPII upregulation in a wide variety of tumors and inflammatory diseases, likely associated with angiogenesis. In IBD, expression of the FOLH1 gene that codes for GCPII is strongly upregulated, as is the enzymatic activity in diseased patient biopsies. In animal models of IBD, GCPII inhibitors show substantial efficacy, suggesting potential theranostic use of GCPII ligands for IBD.
Collapse
Affiliation(s)
- James J Vornov
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Medpace, Cincinnati, OH, USA
| | - Diane Peters
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Mike Nedelcovych
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kristen Hollinger
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
26
|
Dash RP, Tichý T, Veeravalli V, Lam J, Alt J, Wu Y, Tenora L, Majer P, Slusher BS, Rais R. Enhanced Oral Bioavailability of 2-(Phosphonomethyl)-pentanedioic Acid (2-PMPA) from its (5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl (ODOL)-Based Prodrugs. Mol Pharm 2019; 16:4292-4301. [PMID: 31503493 DOI: 10.1021/acs.molpharmaceut.9b00637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
2-(Phosphonomethyl)-pentanedioic acid (2-PMPA) is a potent (IC50 = 300 pM) and selective inhibitor of glutamate carboxypeptidase II (GCPII) with efficacy in multiple neurological and psychiatric disease preclinical models and more recently in models of inflammatory bowel disease (IBD) and cancer. 2-PMPA (1), however, has not been clinically developed due to its poor oral bioavailability (<1%) imparted by its four acidic functionalities (c Log P = -1.14). In an attempt to improve the oral bioavailability of 2-PMPA, we explored a prodrug approach using (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl (ODOL), an FDA-approved promoiety, and systematically masked two (2), three (3), or all four (4) of its acidic groups. The prodrugs were evaluated for in vitro stability and in vivo pharmacokinetics in mice and dog. Prodrugs 2, 3, and 4 were found to be moderately stable at pH 7.4 in phosphate-buffered saline (57, 63, and 54% remaining at 1 h, respectively), but rapidly hydrolyzed in plasma and liver microsomes, across species. In vivo, in a single time-point screening study in mice, 10 mg/kg 2-PMPA equivalent doses of 2, 3, and 4 delivered significantly higher 2-PMPA plasma concentrations (3.65 ± 0.37, 3.56 ± 0.46, and 17.3 ± 5.03 nmol/mL, respectively) versus 2-PMPA (0.25 ± 0.02 nmol/mL). Given that prodrug 4 delivered the highest 2-PMPA levels, we next evaluated it in an extended time-course pharmacokinetic study in mice. 4 demonstrated an 80-fold enhancement in exposure versus oral 2-PMPA (AUC0-t: 52.1 ± 5.9 versus 0.65 ± 0.13 h*nmol/mL) with a calculated absolute oral bioavailability of 50%. In mouse brain, 4 showed similar exposures to that achieved with the IV route (1.2 ± 0.2 versus 1.6 ± 0.2 h*nmol/g). Further, in dogs, relative to orally administered 2-PMPA, 4 delivered a 44-fold enhanced 2-PMPA plasma exposure (AUC0-t for 4: 62.6 h*nmol/mL versus AUC0-t for 2-PMPA: 1.44 h*nmol/mL). These results suggest that ODOL promoieties can serve as a promising strategy for enhancing the oral bioavailability of multiply charged compounds, such as 2-PMPA, and enable its clinical translation.
Collapse
Affiliation(s)
| | - Tomáš Tichý
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic v.v.i. , Prague 166 10 , Czech Republic
| | | | | | | | | | - Lukáš Tenora
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic v.v.i. , Prague 166 10 , Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic v.v.i. , Prague 166 10 , Czech Republic
| | | | | |
Collapse
|
27
|
Giudici F, Lombardelli L, Russo E, Cavalli T, Zambonin D, Logiodice F, Kullolli O, Giusti L, Bargellini T, Fazi M, Biancone L, Scaringi S, Clemente AM, Perissi E, Delfino G, Torcia MG, Ficari F, Tonelli F, Piccinni MP, Malentacchi C. Multiplex gene expression profile in inflamed mucosa of patients with Crohn's disease ileal localization: A pilot study. World J Clin Cases 2019; 7:2463-2476. [PMID: 31559282 PMCID: PMC6745337 DOI: 10.12998/wjcc.v7.i17.2463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/12/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Crohn's disease (CD) is a complex disorder resulting from the interaction of genetic, environmental, and microbial factors. The pathogenic process may potentially affect any segment of the gastrointestinal tract, but a selective location in the terminal ileum was reported in 50% of patients. AIM To characterize clinical sub-phenotypes (colonic and/or ileal) within the same disease, in order to identify new therapeutic targets. METHODS 14 consecutive patients undergoing surgery for ileal CD were recruited for this study. Peripheral blood samples from each patient were collected and the main polymorphisms of the gene Card15/Nod2 (R702W, G908R, and 1007fs) were analyzed in each sample. In addition, tissue samples were taken from both the tract affected by CD and from the apparently healthy and disease-free margins (internal controls). We used a multiplex gene assay in specimens obtained from patients with ileal localization of CD to evaluate the simultaneous expression of 24 genes involved in the pathogenesis of the disease. We also processed surgery gut samples with routine light microscopy (LM) and transmission electron microscopy (TEM) techniques to evaluate their structural and ultrastructural features. RESULTS We found a significant increase of Th17 (IL17A and IL17F, IL 23R and CCR6) and Th1 (IFN-γ) gene expression in inflamed mucosa compared to non-inflamed sites of 14 CD patients. DEFB4 and HAMP, two genes coding for antimicrobial peptides, were also strongly activated in inflamed ileal mucosa, suggesting the overwhelming stimulation of epithelial cells by commensal microbiota. IFN-γ and CCR6 were more expressed in inflamed mucosa of CD patients with ileal localization compared with patients with colonic localization suggesting a more aggressive inflammation process in this site. Morphological analysis of the epithelial lining of Lieberkün crypts disclosed enhanced release activity from goblet mucocytes, whereas the lamina propria contained numerous cells pertaining to various lines. CONCLUSION We observed that the expression of ileal genes related to Th1 and Th17 activity is strongly activated as well as the expression of genes involved in microbiota regulation.
Collapse
Affiliation(s)
- Francesco Giudici
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Letizia Lombardelli
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Edda Russo
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Tiziana Cavalli
- Dipartimento Chirurgico Ortopedico, Ospedale Carlo Poma di Mantova, Firenze 50134, Italy
| | - Daniela Zambonin
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Federica Logiodice
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Ornela Kullolli
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Lamberto Giusti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze 50134, Italy
| | - Tatiana Bargellini
- Surgical Unit, Department of Surgery and Translational Medicine, University of Firenze, Firenze 50134, Italy
| | - Marilena Fazi
- Surgical Unit, Department of Surgery and Translational Medicine, University of Firenze, Firenze 50134, Italy
| | - Livia Biancone
- Department of Internal Medicine, University of Roma Tor Vergata, Roma 00133, Italy
| | - Stefano Scaringi
- Surgical Unit, Department of Surgery and Translational Medicine, University of Firenze, Firenze 50134, Italy
| | - Ann Maria Clemente
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Eloisa Perissi
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Giovanni Delfino
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze 50134, Italy
| | - Maria G Torcia
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Ferdinando Ficari
- Surgical Unit, Department of Surgery and Translational Medicine, University of Firenze, Firenze 50134, Italy
| | - Francesco Tonelli
- Surgical Unit, Department of Surgery and Translational Medicine, University of Firenze, Firenze 50134, Italy
| | | | - Cecilia Malentacchi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze 50134, Italy
| |
Collapse
|
28
|
Zhang Y, Zhang J, Sheng H, Li H, Wang R. Acute phase reactant serum amyloid A in inflammation and other diseases. Adv Clin Chem 2019; 90:25-80. [PMID: 31122611 DOI: 10.1016/bs.acc.2019.01.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute-phase reactant serum amyloid A (A-SAA) plays an important role in acute and chronic inflammation and is used in clinical laboratories as an indicator of inflammation. Although both A-SAA and C-reactive protein (CRP) are acute-phase proteins, the detection of A-SAA is more conclusive than the detection of CRP in patients with viral infections, severe acute pancreatitis, and rejection reactions to kidney transplants. A-SAA has greater clinical diagnostic value in patients who are immunosuppressed, patients with cystic fibrosis who are treated with corticoids, and preterm infants with late-onset sepsis. Nevertheless, for the assessment of the inflammation status and identification of viral infection in other pathologies, such as bacterial infections, the combinatorial use of A-SAA and other acute-phase proteins (APPs), such as CRP and procalcitonin (PCT), can provide more information and sensitivity than the use of any of these proteins alone, and the information generated is important in guiding antibiotic therapy. In addition, A-SAA-associated diseases and the diagnostic value of A-SAA are discussed. However, the relationship between different A-SAA isotypes and their human diseases are mostly derived from research laboratories with limited clinical samples. Thus, further clinical evaluations are necessary to confirm the clinical significance of each A-SAA isotype. Furthermore, the currently available A-SAA assays are based on polyclonal antibodies, which lack isotype specificity and are associated with many inflammatory diseases. Therefore, these assays are usually used in combination with other biomarkers in the clinic.
Collapse
Affiliation(s)
- Yan Zhang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China
| | - Jie Zhang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China
| | - Huiming Sheng
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haichuan Li
- C.N. Maternity & Infant Health Hospital, Shanghai, China
| | - Rongfang Wang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
29
|
Age-of-diagnosis dependent ileal immune intensification and reduced alpha-defensin in older versus younger pediatric Crohn Disease patients despite already established dysbiosis. Mucosal Immunol 2019; 12:491-502. [PMID: 30542108 PMCID: PMC6375755 DOI: 10.1038/s41385-018-0114-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 02/04/2023]
Abstract
Age-of-diagnosis associated variation in disease location and antimicrobial sero-reactivity has suggested fundamental differences in pediatric Crohn Disease (CD) pathogenesis. This variation may be related to pubertal peak incidence of ileal involvement and Peyer's patches maturation, represented by IFNγ-expressing Th1 cells. However, direct mucosal evidence is lacking. We characterize the global pattern of ileal gene expression and microbial communities in 525 treatment-naive pediatric CD patients and controls (Ctl), stratifying samples by their age-of-diagnosis. We show a robust ileal gene signature notable for higher expression of specific immune genes including GM-CSF and INFγ, and reduced expression of antimicrobial Paneth cell α-defensins, in older compared to younger patients. Reduced α-defensin expression in older patients was associated with higher IFNγ expression. By comparison, the CD-associated ileal dysbiosis, characterized by expansion of Enterobacteriaceae and contraction of Lachnospiraceae and Ruminococcaceae, was already established within the younger group and did not vary systematically with increasing age-of-diagnosis. Multivariate analysis considering individual taxa, however did demonstrate negative associations between Lachnospiraceae and IFNγ, and positive associations between Bacteroides and α-defensin expression. These data provide evidence for maturation of mucosal Th1 immune responses and loss of epithelial antimicrobial α-defensins which are associated with specific taxa with increasing age-of-diagnosis in pediatric CD.
Collapse
|
30
|
Whiteoak SR, Claridge A, Balendran CA, Harris RJ, Gwiggner M, Bondanese VP, Erlandsson F, Hansen MB, Cummings JRF, Sanchez-Elsner T. MicroRNA-31 Targets Thymic Stromal Lymphopoietin in Mucosal Infiltrated CD4+ T Cells: A Role in Achieving Mucosal Healing in Ulcerative Colitis? Inflamm Bowel Dis 2018; 24:2377-2385. [PMID: 29889228 DOI: 10.1093/ibd/izy213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is characterized by disruption of the mucosal intestinal barrier. MicroRNAs, single-stranded noncoding RNAs of approximately 22nt, are dysregulated in UC. MicroRNAs targeting thymic stromal lymphopoietin (TSLP), a cytokine involved in T-cell maturation and polarization, may be involved in regulating UC inflammation and mucosal healing. METHODS Biopsy samples from non-UC (n = 38), inactive UC (n = 18), and active UC (n = 23) patients were analyzed for mRNA (real-time quantitative polymerase chain reaction) or TSLP protein expression (enzyme-linked immunosorbent assay). Flow cytometry was used to isolate CD4+ T cells from biopsies. The functional mechanism was shown using luciferase assays and antago-miR transfections. The TSLP/miR-31 association was analyzed on 196 subjects from a previous clinical trial that tested the anti-IL-13 drug tralokinumab, whereas mucosal healing effects were studied on a subset of patients (n = 13) from this trial. RESULTS We found that TSLP is reduced at both mRNA and protein levels in inflamed UC patients when compared with healthy subjects, in both whole biopsies and biopsy-isolated CD4+ CD25+ T cells. The expression of miR-31, predicted to target TSLP, inversely co-related to the levels of TSLP mRNA in T cells. Blocking miR-31 in vitro in T cells increased both TSLP mRNA expression and protein secretion. Luciferase assays showed that miR-31 directly targeted TSLP mRNA, suggesting a direct mechanistic link. We also found that TSLP is increased in patients who achieve mucosal healing, comparing biopsies before and after treatment from the tralokinumab trial. CONCLUSIONS Our data suggest a role for TSLP in promoting mucosal healing and regulating inflammation in UC, whereas miR-31 can directly block this effect.
Collapse
Affiliation(s)
- Simon R Whiteoak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom.,University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Andrew Claridge
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom.,University Hospital Southampton NHS FT, Southampton, United Kingdom
| | | | - Richard J Harris
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom.,University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Markus Gwiggner
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom.,University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Victor P Bondanese
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom
| | | | - Mark Berner Hansen
- AstraZeneca R&D, Mölndal, Sweden.,Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Denmark
| | - J R Fraser Cummings
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom.,University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom
| |
Collapse
|
31
|
Samie M, Lim J, Verschueren E, Baughman JM, Peng I, Wong A, Kwon Y, Senbabaoglu Y, Hackney JA, Keir M, Mckenzie B, Kirkpatrick DS, van Lookeren Campagne M, Murthy A. Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nat Immunol 2018; 19:246-254. [PMID: 29358708 DOI: 10.1038/s41590-017-0042-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
Abstract
Defective autophagy is linked to diseases such as rheumatoid arthritis, lupus and inflammatory bowel disease (IBD). However, the mechanisms by which autophagy limits inflammation remain poorly understood. Here we found that loss of the autophagy-related gene Atg16l1 promoted accumulation of the adaptor TRIF and downstream signaling in macrophages. Multiplex proteomic profiling identified SQSTM1 and Tax1BP1 as selective autophagy-related receptors that mediated the turnover of TRIF. Knockdown of Tax1bp1 increased production of the cytokines IFN-β and IL-1β. Mice lacking Atg16l1 in myeloid cells succumbed to lipopolysaccharide-mediated sepsis but enhanced their clearance of intestinal Salmonella typhimurium in an interferon receptor-dependent manner. Human macrophages with the Crohn's disease-associated Atg16l1 variant T300A exhibited more production of IFN-β and IL-1β. An elevated interferon-response gene signature was observed in patients with IBD who were resistant to treatment with an antibody to the cytokine TNF. These findings identify selective autophagy as a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Mohammad Samie
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Junghyun Lim
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Erik Verschueren
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | - Joshua M Baughman
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | - Ivan Peng
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Aaron Wong
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Youngsu Kwon
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Yasin Senbabaoglu
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA, USA
| | - Jason A Hackney
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA, USA
| | - Mary Keir
- Biomarker Discovery OMNI, Genentech, South San Francisco, CA, USA
| | - Brent Mckenzie
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | | | - Aditya Murthy
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
32
|
Ho GT, Aird RE, Liu B, Boyapati RK, Kennedy NA, Dorward DA, Noble CL, Shimizu T, Carter RN, Chew ETS, Morton NM, Rossi AG, Sartor RB, Iredale JP, Satsangi J. MDR1 deficiency impairs mitochondrial homeostasis and promotes intestinal inflammation. Mucosal Immunol 2018; 11:120-130. [PMID: 28401939 PMCID: PMC5510721 DOI: 10.1038/mi.2017.31] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/14/2017] [Accepted: 03/01/2017] [Indexed: 02/04/2023]
Abstract
The multidrug resistance-1 (MDR1) gene encodes an ATP-dependent efflux transporter that is highly expressed in the colon. In mice, loss of MDR1 function results in colitis with similarities to human inflammatory bowel diseases (IBD). Here, we show that MDR1 has an unexpected protective role for the mitochondria where MDR1 deficiency results in mitochondrial dysfunction with increased mitochondrial reactive oxygen species (mROS) driving the development of colitis. Exogenous induction of mROS accelerates, while inhibition attenuates colitis in vivo; these effects are amplified in MDR1 deficiency. In human IBD, MDR1 is negatively correlated to SOD2 gene expression required for mROS detoxification. To provide direct evidential support, we deleted intestinal SOD2 gene in mice and showed an increased susceptibility to colitis. We exploited the genome-wide association data sets and found many (∼5%) of IBD susceptibility genes with direct roles in regulating mitochondria homeostasis. As MDR1 primarily protects against xenotoxins via its efflux function, our findings implicate a distinct mitochondrial toxin+genetic susceptibility interaction leading to mitochondrial dysfunction, a novel pathogenic mechanism that could offer many new therapeutic opportunities for IBD.
Collapse
Affiliation(s)
- Gwo-Tzer Ho
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Gastrointestinal Unit, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Rhona E Aird
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Bo Liu
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC 27599-7032, USA
| | - Ray K Boyapati
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Gastrointestinal Unit, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Nicholas A Kennedy
- Gastrointestinal Unit, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David A Dorward
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Colin L Noble
- Gastrointestinal Unit, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, University of Chiba, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Roderick N Carter
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Etienne TS Chew
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Nicholas M Morton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Adriano G Rossi
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - R. Balfour Sartor
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC 27599-7032, USA
| | - John P Iredale
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- University of Bristol, Bristol BS8 1TH, UK
| | - Jack Satsangi
- Gastrointestinal Unit, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
33
|
Date AA, Rais R, Babu T, Ortiz J, Kanvinde P, Thomas AG, Zimmermann SC, Gadiano AJ, Halpert G, Slusher BS, Ensign LM. Local enema treatment to inhibit FOLH1/GCPII as a novel therapy for inflammatory bowel disease. J Control Release 2017; 263:132-138. [PMID: 28159515 PMCID: PMC5661937 DOI: 10.1016/j.jconrel.2017.01.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/17/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
Here we evaluate the potential for local administration of a small molecule FOLH1/GCPII inhibitor 2-phosphonomethyl pentanedioic acid (2-PMPA) as a novel treatment for inflammatory bowel disease (IBD). We found that FOLH1/GCPII enzyme activity was increased in the colorectal tissues of mice with TNBS-induced colitis, and confirmed that 2-PMPA inhibited FOLH1/GCPII enzyme activity ex vivo. In order to maximize local enema delivery of 2-PMPA, we studied the effect of vehicle tonicity on the absorption of 2-PMPA in the colon. Local administration of 2-PMPA in a hypotonic enema vehicle resulted in increased colorectal tissue absorption at 30min compared to 2-PMPA administered in an isotonic enema vehicle. Furthermore, local delivery of 2-PMPA in hypotonic enema vehicle resulted in prolonged drug concentrations for at least 24h with minimal systemic exposure. Finally, daily treatment with the hypotonic 2-PMPA enema ameliorated macroscopic and microscopic symptoms of IBD in the TNBS-induced colitis mouse model, indicating the potential of FOLH1/GCPII inhibitors for the local treatment of IBD.
Collapse
Affiliation(s)
- Abhijit A Date
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
| | - Rana Rais
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taarika Babu
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jairo Ortiz
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| | - Pranjali Kanvinde
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| | - Ajit G Thomas
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah C Zimmermann
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexandra J Gadiano
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gilad Halpert
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
| | - Barbara S Slusher
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Departments of Psychiatry and Behavioral Sciences, Medicine, and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Laura M Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
34
|
Lee HJ, Kim JH, Kim SW, Joo HA, Lee HW, Kim YS, Park SJ, Hong SP, Kim TI, Kim WH, Kim YH, Cheon JH. Proteomic Analysis of Serum Amyloid A as a Potential Marker in Intestinal Behçet's Disease. Dig Dis Sci 2017; 62:1953-1962. [PMID: 28523576 DOI: 10.1007/s10620-017-4606-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/04/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS Data regarding biomarkers to understand disease pathogenesis and to assess disease activity of intestinal Behçet's disease (BD) are limited. Therefore, we aimed to investigate the differentially expressed proteins in sera from patients with intestinal BD and to search for biomarkers using mass spectrometry-based proteomic analysis. METHODS Serum samples were pooled for the screening study, and two-dimensional electrophoresis (2-DE) was performed to characterize the proteins present in intestinal BD patients. Candidate protein spots were identified using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and bioinformatic analysis. To validate the proteomic results, serum samples from an independent cohort were assessed by enzyme-linked immunosorbent assay. RESULTS Pooled serum samples were used for 2-DE, and approximately 400 protein spots were detected in the sera of intestinal BD patients. Of the 22 differentially expressed proteins, 3 were successfully identified using MALDI-TOF/TOF MS. The three up-regulated proteins identified in the intestinal BD group included fibrin, apolipoprotein A-IV, and serum amyloid A (SAA). Serum SAA in intestinal BD patients (2.76 ± 2.50 ng/ml) was significantly higher than that in controls (1.68 ± 0.90 ng/ml, p = 0.007), which is consistent with the proteomic results. In addition, the level of IL-1β in patients with intestinal BD (8.96 ± 1.23 pg/ml) was higher than that in controls (5.40 ± 0.15 pg/ml, p = 0.009). SAA released by HT-29 cells was markedly increased by tumor necrosis factor-α (TNF-α) and lipopolysaccharides stimulation. CONCLUSIONS Our proteomic analysis revealed that SAA was up-regulated in intestinal BD patients.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jae Hyun Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Won Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ah Joo
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Hye Won Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - You Sun Kim
- Department of Internal Medicine, Inje University College of Medicine, Seoul, Korea
| | - Soo Jung Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sung Pil Hong
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Tae Il Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Won Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea.
| | - Jae Hee Cheon
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
35
|
Becerra-Díaz M, Wills-Karp M, Heller NM. New perspectives on the regulation of type II inflammation in asthma. F1000Res 2017; 6:1014. [PMID: 28721208 PMCID: PMC5497827 DOI: 10.12688/f1000research.11198.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the lungs which has been thought to arise as a result of inappropriately directed T helper type-2 (Th2) immune responses of the lungs to otherwise innocuous inhaled antigens. Current asthma therapeutics are directed towards the amelioration of downstream consequences of type-2 immune responses (i.e. β-agonists) or broad-spectrum immunosuppression (i.e. corticosteroids). However, few approaches to date have been focused on the primary prevention of immune deviation. Advances in molecular phenotyping reveal heterogeneity within the asthmatic population with multiple endotypes whose varying expression depends on the interplay between numerous environmental factors and the inheritance of a broad range of susceptibility genes. The most common endotype is one described as "type-2-high" (i.e. high levels of interleukin [IL]-13, eosinophilia, and periostin). The identification of multiple endotypes has provided a potential explanation for the observations that therapies directed at typical Th2 cytokines (IL-4, IL-5, and IL-13) and their receptors have often fallen short when they were tested in a diverse group of asthmatic patients without first stratifying based on disease endotype or severity. However, despite the incorporation of endotype-dependent stratification schemes into clinical trial designs, variation in drug responses are still apparent, suggesting that additional genetic/environmental factors may be contributing to the diversity in drug efficacy. Herein, we will review recent advances in our understanding of the complex pathways involved in the initiation and regulation of type-2-mediated immune responses and their modulation by host factors (genetics, metabolic status, and the microbiome). Particular consideration will be given to how this knowledge could pave the way for further refinement of disease endotypes and/or the development of novel therapeutic strategies for the treatment of asthma .
Collapse
Affiliation(s)
- Mireya Becerra-Díaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Nicola M. Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
36
|
Van Raay T, Allen-Vercoe E. Microbial Interactions and Interventions in Colorectal Cancer. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0004-2016. [PMID: 28643625 PMCID: PMC11687491 DOI: 10.1128/microbiolspec.bad-0004-2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Recently, several lines of evidence that indicate a strong link between the development of colorectal cancer (CRC) and aspects of the gut microbiota have become apparent. However, it remains unclear how changes in the gut microbiota might influence carcinogenesis or how regional organization of the gut might influence the microbiota. In this review, we discuss several leading theories that connect gut microbial dysbiosis with CRC and set this against a backdrop of what is known about proximal-distal gut physiology and the pathways of CRC development and progression. Finally, we discuss the potential for gut microbial modulation therapies, for example, probiotics, antibiotics, and others, to target and improve gut microbial dysbiosis as a strategy for the prevention or treatment of CRC.
Collapse
Affiliation(s)
- Terence Van Raay
- Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
37
|
Early Transcriptomic Changes in the Ileal Pouch Provide Insight into the Molecular Pathogenesis of Pouchitis and Ulcerative Colitis. Inflamm Bowel Dis 2017; 23:366-378. [PMID: 28221248 PMCID: PMC5988644 DOI: 10.1097/mib.0000000000001027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) only involves the colonic mucosa. Yet, nearly 50% of patients with UC who undergo total proctocolectomy with ileal pouch anal anastomosis develop UC-like inflammation of the ileal pouch (pouchitis). By contrast, patients with familial adenomatous polyposis (FAP) with ileal pouch anal anastomosis develop pouchitis far less frequently. We hypothesized that pathogenic events associated with the development of UC are recapitulated by colonic-metaplastic transcriptomic reprogramming of the UC pouch. METHODS We prospectively sampled pouch and prepouch ileum mucosal biopsies in patients with UC with ileal pouch anal anastomosis 4, 8, and 12 months after their pouch was in continuity. Mucosal samples were also obtained from patients with FAP. Transcriptional profiles of the UC and FAP pouch and prepouch ileum were investigated via RNA sequencing and compared with data from a previously published microarray study. RESULTS Unlike patients with FAP, subjects with UC exhibited a large set of differentially expressed genes between the pouch and prepouch ileum as early as 4 months after pouch functionalization. Functional pathway analysis of differentially expressed genes in the UC pouch revealed an enhanced state of immune/inflammatory response and extracellular matrix remodeling. Moreover, >70% of differentially expressed genes mapped to published inflammatory bowel diseases microarray data sets displayed directional changes consistent with active UC but not with Crohn's disease. CONCLUSIONS The UC pouch, well before histologic inflammation, already displays a systems-level gain of colon-associated genes and loss of ileum-associated genes. Patients with UC exhibit a unique transcriptomic response to ileal pouch creation that can be observed well before disease and may in part explain their susceptibility to the development of pouchitis.
Collapse
|
38
|
Park JH, Jeong DY, Peyrin-Biroulet L, Eisenhut M, Shin JI. Insight into the role of TSLP in inflammatory bowel diseases. Autoimmun Rev 2016; 16:55-63. [PMID: 27697608 DOI: 10.1016/j.autrev.2016.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Proinflammatory cytokines are thought to modulate pathogeneses of various inflammatory bowel diseases (IBDs). Thymic stromal lymphopoietin (TSLP), which has been studied in various allergic diseases such as asthma, atopic dermatitis (AD) and eosinophilic esophagitis (EoE), has been less considered to be involved in IBDs. However, mucosal dendritic cells (DCs) induced by various cytokines including TSLP were reported to cause polarization of T cell toward Th2 response, the differentiation of regulatory T-cell (Treg), and secretion of IgA by B cells. In this review, we discuss the concept that decreased TSLP has the potential to accelerate the development of Th1 response dominant diseases such as the Crohn's disease (CD) while increased TSLP has the potential to lead to a development of Th2 cell dominant diseases such the ulcerative colitis (UC). To examine TSLP's role as a potential determining factor for differentiating UC and CD, we analyzed the effects of other genes regulated by TSLP in regards to the UC and CD pathogeneses using data from online open access resources such as NetPath, GeneMania, and the String database. Our findings indicate that TSLP is a key mediator in the pathogenesis of IBDs and that further studies are needed to evaluate its role.
Collapse
Affiliation(s)
| | | | - Laurent Peyrin-Biroulet
- Inserm U954 and Department of Gastroenterology, Nancy University Hospital, Université de Lorraine, France
| | - Michael Eisenhut
- Luton & Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
39
|
Peloquin JM, Goel G, Kong L, Huang H, Haritunians T, Sartor RB, Daly MJ, Newberry RD, McGovern DP, Yajnik V, Lira SA, Xavier RJ. Characterization of candidate genes in inflammatory bowel disease-associated risk loci. JCI Insight 2016; 1:e87899. [PMID: 27668286 DOI: 10.1172/jci.insight.87899] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn's disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis.
Collapse
Affiliation(s)
- Joanna M Peloquin
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease.,Center for Computational and Integrative Biology
| | - Gautam Goel
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease.,Center for Computational and Integrative Biology
| | - Lingjia Kong
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease.,Center for Computational and Integrative Biology
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - R Balfour Sartor
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dermot P McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vijay Yajnik
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease
| | - Sergio A Lira
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease.,Center for Computational and Integrative Biology.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
40
|
Rais R, Jiang W, Zhai H, Wozniak KM, Stathis M, Hollinger KR, Thomas AG, Rojas C, Vornov JJ, Marohn M, Li X, Slusher BS. FOLH1/GCPII is elevated in IBD patients, and its inhibition ameliorates murine IBD abnormalities. JCI Insight 2016; 1. [PMID: 27536732 DOI: 10.1172/jci.insight.88634] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent gene-profiling analyses showed significant upregulation of the folate hydrolase (FOLH1) gene in the affected intestinal mucosa of patients with inflammatory bowel disease (IBD). The FOLH1 gene encodes a type II transmembrane glycoprotein termed glutamate carboxypeptidase II (GCPII). To establish that the previously reported increased gene expression was functional, we quantified the glutamate carboxypeptidase enzymatic activity in 31 surgical specimens and report a robust 2.8- to 41-fold increase in enzymatic activity in the affected intestinal mucosa of IBD patients compared with an uninvolved area in the same patients or intestinal mucosa from healthy controls. Using a human-to-mouse approach, we next showed a similar enzymatic increase in two well-validated IBD murine models and evaluated the therapeutic effect of the potent FOLH1/ GCPII inhibitor 2-phosphonomethyl pentanedioic acid (2-PMPA) (IC50 = 300 pM). In the dextran sodium sulfate (DSS) colitis model, 2-PMPA inhibited the GCPII activity in the colonic mucosa by over 90% and substantially reduced the disease activity. The significance of the target was confirmed in FOLH1-/- mice who exhibited resistance to DSS treatment. In the murine IL-10-/- model of spontaneous colitis, daily 2-PMPA treatment also significantly reduced both macroscopic and microscopic disease severity. These results provide the first evidence of FOLH1/GCPII enzymatic inhibition as a therapeutic option for IBD.
Collapse
Affiliation(s)
- Rana Rais
- Department of Neurology, Baltimore, Maryland, USA; Johns Hopkins Drug Discovery, Baltimore, Maryland, USA
| | - Weiwei Jiang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihong Zhai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Kristen R Hollinger
- Department of Neurology, Baltimore, Maryland, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Baltimore, Maryland, USA
| | - Camilo Rojas
- Johns Hopkins Drug Discovery, Baltimore, Maryland, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Michael Marohn
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xuhang Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barbara S Slusher
- Department of Neurology, Baltimore, Maryland, USA; Johns Hopkins Drug Discovery, Baltimore, Maryland, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
de Bruyn M, Vandooren J, Ugarte-Berzal E, Arijs I, Vermeire S, Opdenakker G. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit Rev Biochem Mol Biol 2016; 51:295-358. [PMID: 27362691 DOI: 10.1080/10409238.2016.1199535] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Tremblay É, Thibault MP, Ferretti E, Babakissa C, Bertelle V, Bettolli M, Burghardt KM, Colombani JF, Grynspan D, Levy E, Lu P, Mayer S, Ménard D, Mouterde O, Renes IB, Seidman EG, Beaulieu JF. Gene expression profiling in necrotizing enterocolitis reveals pathways common to those reported in Crohn's disease. BMC Med Genomics 2016; 9:6. [PMID: 26801768 PMCID: PMC4722613 DOI: 10.1186/s12920-016-0166-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/18/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is the most frequent life-threatening gastrointestinal disease experienced by premature infants in neonatal intensive care units. The challenge for neonatologists is to detect early clinical manifestations of NEC. One strategy would be to identify specific markers that could be used as early diagnostic tools to identify preterm infants most at risk of developing NEC or in the event of a diagnostic dilemma of suspected disease. As a first step in this direction, we sought to determine the specific gene expression profile of NEC. METHODS Deep sequencing (RNA-Seq) was used to establish the gene expression profiles in ileal samples obtained from preterm infants diagnosed with NEC and non-NEC conditions. Data were analyzed with Ingenuity Pathway Analysis and ToppCluster softwares. RESULTS Data analysis indicated that the most significant functional pathways over-represented in NEC neonates were associated with immune functions, such as altered T and B cell signaling, B cell development, and the role of pattern recognition receptors for bacteria and viruses. Among the genes that were strongly modulated in neonates with NEC, we observed a significant degree of similarity when compared with those reported in Crohn's disease, a chronic inflammatory bowel disease. CONCLUSIONS Gene expression profile analysis revealed a predominantly altered immune response in the intestine of NEC neonates. Moreover, comparative analysis between NEC and Crohn's disease gene expression repertoires revealed a surprisingly high degree of similarity between these two conditions suggesting a new avenue for identifying NEC biomarkers.
Collapse
Affiliation(s)
- Éric Tremblay
- Department of Anatomy and Cell Biology, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, 3001, 12th Avec North, J1H 5N4, Sherbrooke, QC, Canada.
| | - Marie-Pier Thibault
- Department of Anatomy and Cell Biology, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, 3001, 12th Avec North, J1H 5N4, Sherbrooke, QC, Canada.
| | - Emanuela Ferretti
- Division of Neonatology, Department of Pediatrics, CHEO, Ottawa, ON, Canada.
| | - Corentin Babakissa
- Department of Pediatrics, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Valérie Bertelle
- Division of Neonatology, Department of Pediatrics, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | | | | | | | - David Grynspan
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Emile Levy
- Department of Nutrition, Centre de recherche, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada.
| | - Peng Lu
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherland.
| | - Sandeep Mayer
- Department of Surgery, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Daniel Ménard
- Department of Anatomy and Cell Biology, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, 3001, 12th Avec North, J1H 5N4, Sherbrooke, QC, Canada.
| | | | - Ingrid B Renes
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherland.
- Emma Children's Hospital-AMC, Amsterdam, The Netherlands.
| | - Ernest G Seidman
- Division of Gastroenterology, McGill University, Montréal, QC, Canada.
| | - Jean-François Beaulieu
- Department of Anatomy and Cell Biology, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, 3001, 12th Avec North, J1H 5N4, Sherbrooke, QC, Canada.
| |
Collapse
|
43
|
Aubry C, Michon C, Chain F, Chvatchenko Y, Goffin L, Zimmerli SC, Leguin S, Langella P, Bermudez-Humaran L, Chatel JM. Protective effect of TSLP delivered at the gut mucosa level by recombinant lactic acid bacteria in DSS-induced colitis mouse model. Microb Cell Fact 2015; 14:176. [PMID: 26546058 PMCID: PMC4636794 DOI: 10.1186/s12934-015-0367-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is a cytokine known to mature dendritics cells, lower pro-inflammatory IL-12 secretion, induce differentiation of anti-inflammatory FoxP3+ regulatory T cells (Treg). Moreover, Crohn's disease patients have shown a reduction of intestinal TSLP expression. To understand the role of TSLP in inflammation, we constructed Lactococcus lactis strain producing TSLP (LL-TSLP) and investigated the effect of its administration on dextran sulfate sodium (DSS)-induced colitis model in mice. RESULTS LL-TSLP secrete an active molecule which lowers secretion of IL-12 by dendritic cells. Treatment with LL-TSLP, increases the amount of TGF-β secreted by T cells in Mesenteric Lymph Node in healthy mice. In acute DSS-induced colitis, LL-TSLP delayed the Disease Activity Index and lowered histological score and colonic INF-γ production. In a DSS-recovery model, LL-TSLP induced a better protective effect if the strain was administered at the beginning of the colitis. At Day 4 of colitis we observed an induction of Treg by LL-TSLP. CONCLUSIONS TSLP showed an anti-inflammatory protective role in DSS-induced colitis. We have demonstrated that a short and early administration of LL-TSLP is more efficient than a long lasting treatment.
Collapse
Affiliation(s)
- Camille Aubry
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| | - Christophe Michon
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| | - Florian Chain
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| | | | | | | | - Sylvia Leguin
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| | - Philippe Langella
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| | - Luis Bermudez-Humaran
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| | - Jean-Marc Chatel
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| |
Collapse
|
44
|
Hillen MR, Kruize AA, Bikker A, Wenting-van Wijk M, Radstake TRDJ, Hack CE, Lafeber FPJG, van Roon JAG. Decreased expression of thymic stromal lymphopoietin in salivary glands of patients with primary Sjögren’s syndrome is associated with increased disease activity. Mod Rheumatol 2015; 26:105-9. [DOI: 10.3109/14397595.2015.1054089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Hillen MR, Radstake TRDJ, Hack CE, van Roon JAG. Thymic stromal lymphopoietin as a novel mediator amplifying immunopathology in rheumatic disease: Fig. 1. Rheumatology (Oxford) 2015; 54:1771-9. [DOI: 10.1093/rheumatology/kev241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 11/14/2022] Open
|
46
|
Palmieri O, Creanza TM, Bossa F, Palumbo O, Maglietta R, Ancona N, Corritore G, Latiano T, Martino G, Biscaglia G, Scimeca D, De Petris MP, Carella M, Annese V, Andriulli A, Latiano A. Genome-wide Pathway Analysis Using Gene Expression Data of Colonic Mucosa in Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2015; 21:1260-1268. [PMID: 25901971 PMCID: PMC4450908 DOI: 10.1097/mib.0000000000000370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/27/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) and Crohn's disease (CD) share some pathogenetic features. To provide new steps on the role of altered gene expression, and the involvement of gene networks, in the pathogenesis of these diseases, we performed a genome-wide analysis in 15 patients with CD and 14 patients with UC by comparing the RNA from inflamed and noninflamed colonic mucosa. METHODS Two hundred ninety-eight differentially expressed genes in CD and 520 genes in UC were identified. By bioinformatic analyses, 34 pathways for CD, 6 of them enriched in noninflamed and 28 in inflamed tissues, and 19 pathways for UC, 17 in noninflamed and 2 in inflamed tissues, were also highlighted. RESULTS In CD, the pathways included genes associated with cytokines and cytokine receptors connection, response to external stimuli, activation of cell proliferation or differentiation, cell migration, apoptosis, and immune regulation. In UC, the pathways were associated with genes related to metabolic and catabolic processes, biosynthesis and interconversion processes, leukocyte migration, regulation of cell proliferation, and epithelial-to-mesenchymal transition. CONCLUSIONS In UC, the pattern of inflammation of colonic mucosa is due to a complex interaction network between host, gut microbiome, and diet, suggesting that bacterial products or endogenous synthetic/catabolic molecules contribute to impairment of the immune response, to breakdown of epithelial barrier, and to enhance the inflammatory process. In patients with CD, genes encoding a large variety of proteins, growth factors, cytokines, chemokines, and adhesion molecules may lead to uncontrolled inflammation with ensuing destruction of epithelial cells, inappropriate stimulation of antimicrobial and T cells differentiation, and inflammasome events.
Collapse
Affiliation(s)
- Orazio Palmieri
- Division of Gastroenterology, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Teresa M. Creanza
- Institute of Intelligent Systems for Automation, National Research Council, CNR-ISSIA Unit, Bari, Italy
| | - Fabrizio Bossa
- Division of Gastroenterology, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Rosalia Maglietta
- Institute of Intelligent Systems for Automation, National Research Council, CNR-ISSIA Unit, Bari, Italy
| | - Nicola Ancona
- Institute of Intelligent Systems for Automation, National Research Council, CNR-ISSIA Unit, Bari, Italy
| | - Giuseppe Corritore
- Division of Gastroenterology, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Tiziana Latiano
- Division of Gastroenterology, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Giuseppina Martino
- Division of Gastroenterology, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Giuseppe Biscaglia
- Division of Gastroenterology, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Daniela Scimeca
- Division of Gastroenterology, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Michele P. De Petris
- Innovation and Technological Development Unit, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy; and
| | - Massimo Carella
- Division of Gastroenterology, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Vito Annese
- Gastroenterology Unit 2, AOU Careggi Hospital, Florence, Italy
| | - Angelo Andriulli
- Division of Gastroenterology, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Anna Latiano
- Division of Gastroenterology, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| |
Collapse
|
47
|
Holgersen K, Kutlu B, Fox B, Serikawa K, Lord J, Hansen AK, Holm TL. High-resolution gene expression profiling using RNA sequencing in patients with inflammatory bowel disease and in mouse models of colitis. J Crohns Colitis 2015; 9:492-506. [PMID: 25795566 DOI: 10.1093/ecco-jcc/jjv050] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Proper interpretation of data from preclinical animal studies requires thorough knowledge of the pathophysiology of both the human disease and animal models. In this study, the expression of inflammatory bowel disease [IBD]-associated genes was characterised in mouse models of colitis to examine the underlying molecular pathways and assess the similarity between the experimental models and human disease. METHODS RNA sequencing was performed on colon biopsies from Crohn's disease [CD] patients, ulcerative colitis [UC] patients and non-IBD controls. Genes shown to be significantly dysregulated in human IBD were used to study gene expression in colons from a piroxicam-accelerated colitis interleukin-10 knockout [PAC IL-10 k.o.], an adoptive transfer [AdTr] and a dextran sulfate sodium [DSS] colitis mouse model. RESULTS Of 115 literature-defined genes linked to IBD, 92 were significantly differentially expressed in inflamed mucosa of CD and/or UC patients compared with non-IBD controls. The most upregulated genes were shared by both diseases, including REG1A, LCN2, NOS2, CXCL1-2, and S100A9. Of those 92 IBD-associated genes, 71 [77%] were significantly dysregulated in PAC IL-10 k.o. mice, whereas 59 [64%] were significantly dysregulated in AdTr mice compared with wild-type controls. Some of the most upregulated genes, including S100a8-9, Nos2, and Lcn2, were shared by the colitis models and correlated with disease activity. CONCLUSIONS IBD and experimental murine colitis have a high degree of similarity in the colonic transcriptional profile, probably secondary to non-specific inflammatory processes. However, differences do exist between models, emphasising the need for careful selection and interpretation of qualified animal models in preclinical research.
Collapse
Affiliation(s)
- Kristine Holgersen
- Novo Nordisk-LIFE In Vivo Pharmacology Centre, Frederiksberg, Denmark Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark Department of Immunopharmacology, Novo Nordisk A/S, Maaloev, Denmark
| | - Burak Kutlu
- NNRC-Molecular Immunology, Novo Nordisk Inc., Seattle, WA, USA
| | - Brian Fox
- NNRC-Molecular Immunology, Novo Nordisk Inc., Seattle, WA, USA
| | - Kyle Serikawa
- NNRC-Molecular Immunology, Novo Nordisk Inc., Seattle, WA, USA
| | - James Lord
- Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA, USA
| | - Axel Kornerup Hansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
48
|
Schaffner CA, Mwinyi J, Gai Z, Thasler WE, Eloranta JJ, Kullak-Ublick GA. The organic solute transporters alpha and beta are induced by hypoxia in human hepatocytes. Liver Int 2015; 35:1152-61. [PMID: 24703425 PMCID: PMC4407926 DOI: 10.1111/liv.12558] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/30/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The organic solute transporters alpha and beta (OSTα-OSTβ) form a heterodimeric transporter located at the basolateral membrane of intestinal epithelial cells and hepatocytes. Liver injury caused by ischaemia-reperfusion, cancer, inflammation or cholestasis can induce a state of hypoxia in hepatocytes. Here, we studied the effect of hypoxia on the expression of OSTα-OSTβ. METHODS OSTα-OSTβ expression was measured in Huh7 cells and primary human hepatocytes (PHH) exposed to chenodeoxycholic acid (CDCA), hypoxia or both. OSTα-OSTβ promoter activity was analysed in luciferase reporter gene assays. Binding of hypoxia-inducible factor-1 alpha (HIF-1α) to the OSTα-OSTβ gene promoters was studied in electrophoretic mobility shift assays (EMSA). RESULTS Expression of OSTα and OSTβ increased in PHH under conditions of hypoxia. Exposure of Huh7 cells or PHH to CDCA (50 μM) enhanced the effect of hypoxia on OSTα mRNA levels. In luciferase assays and EMSA, the inducing effect of low oxygen could be assigned to HIF-1α, which binds to hypoxia responsive elements (HRE) in the OSTα and OSTβ gene promoters. Site-directed mutagenesis of either the predicted HRE or the bile acid responsive FXR binding site abolished inducibility of the OSTα promoter, indicating that both elements need to be intact for induction by hypoxia and CDCA. In a rat model of chronic renal failure, the known increase in hepatic OSTα expression was associated with an increase in HIF-1α protein levels. CONCLUSION OSTα-OSTβ expression is induced by hypoxia. FXR and HIF-1α bind in close proximity to the OSTα gene promoter and produce synergistic effects on OSTα expression.
Collapse
Affiliation(s)
- Carlos A Schaffner
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
BACKGROUND The ability to measure the expression of proinflammatory cytokines from intestinal biopsies in patients with Crohn's disease in an accurate and reproducible way is critical for proof-of-concept and mechanism-of-action trials; however, the number of biopsies from a segment of the ileum or colon required to yield reproducible results has not been rigorously evaluated. We examined intestinal biopsies from patients with Crohn's disease to validate methods for detecting changes in inflammatory gene expression. METHODS To evaluate the reproducibility of gene expression measurements, intestinal biopsies were obtained from designated segments from 6 healthy controls, 6 patients with active Crohn's disease, and 6 patients with inactive Crohn's disease. Disease activity was based on the simple endoscopic score for Crohn's disease. Expression of 7 proinflammatory genes was measured from each biopsy using quantitative polymerase chain reaction. Using a linear mixed effects model, the power to detect transcriptional changes corresponding to active and inactive Crohn's disease was calculated. RESULTS Total simple endoscopic score for Crohn's disease score corresponds with expression of most inflammatory biomarkers. For most genes, 2 to 5 biopsies are needed to reduce sampling error to <25% for most genes. To measure changes in mRNA expression corresponding to active versus inactive Crohn's disease, 1 to 2 intestinal biopsies from 3 patients before and after treatment are needed to yield power of at least 80%. CONCLUSIONS Measuring proinflammatory gene expression from mucosal biopsies from patients with Crohn's disease is practicable and provides objective biomarkers that can be used in proof-of-concept and mechanism-of-action trials to assess response to therapy.
Collapse
|
50
|
Leoni G, Rosato A, Perozzi G, Murgia C. Zinc proteome interaction network as a model to identify nutrient-affected pathways in human pathologies. GENES AND NUTRITION 2014; 9:436. [PMID: 25367142 DOI: 10.1007/s12263-014-0436-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/08/2014] [Indexed: 12/22/2022]
Abstract
Zinc is an essential micronutrient playing fundamental roles in cellular metabolism. It acts mostly through binding a wide range of proteins, thus affecting a broad spectrum of biological processes, which include cell division, growth and differentiation. Full annotation of zinc-binding proteins showed them to represent about 10 % of the human proteome, with over 300 enzymes containing zinc ions within their catalytic domains. Also, hundreds of key regulatory proteins, including transcription factors, require zinc for their activity. In this study, the whole set of zinc-binding proteins together with their direct interactors was listed and defined as the zinc proteome (ZNP). We interrogated pathway analysis tools to identify the cellular processes that are predicted to be affected by zinc availability. Network and functional enrichment analyses highlighted biological processes potentially affected by deregulated zinc homeostasis. This computational approach was also tested on a real case study: The possible involvement of ZNP network proteins in Crohn's disease pathogenesis was assessed on genes transcriptionally regulated in the intestine of patients affected by this condition. The analysis produced a network of pathways likely to be influenced by zinc and associated with Crohn's disease. These results highlight a central role for zinc in the tissue remodeling process which occurs upon gut inflammation, pointing at novel disease pathways whose effect could be worsened by zinc dyshomeostasis and impaired zinc fluxes in specific damaged areas. Overall, our computational approach could provide novel insights into pathological conditions and could therefore be used to drive mechanistic research in under-investigated fields of research. An interactive version of the determined ZNP network is available at URL http://93.63.165.11/ZNnetwork/ .
Collapse
Affiliation(s)
- Guido Leoni
- CRA-NUT, Food and Nutrition Research Center, Agricultural Research Council, Via Ardeatina 546, 00178, Rome, Italy
| | | | | | | |
Collapse
|