1
|
Lu H, Yu X, Li W, Zhang Y, Sun S. Prognosis and metabolism with a Golgi apparatus-related genes-based formula in breast cancer. Medicine (Baltimore) 2024; 103:e39177. [PMID: 39151519 PMCID: PMC11332736 DOI: 10.1097/md.0000000000039177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/20/2024] [Accepted: 07/15/2024] [Indexed: 08/19/2024] Open
Abstract
The Golgi apparatus (GA), an organelle that processes, sorts, and transports proteins synthesized by the endoplasmic reticulum, is also involved in many cellular processes associated with cancer, such as angiogenesis, the innate immune response, and tumor invasion and migration. We aimed to construct a breast cancer (BC) prognosis prediction model based on GA-related genetic information to evaluate the prognosis of patients with BC more accurately than existing models and to stratify patients for clinical therapy. In this study, The Cancer Genome Atlas-breast invasive carcinoma was used as the training cohort, and the Molecular Taxonomy of Breast Cancer International Consortium cohort was used as the validation cohort. Using bioinformatics methods, we constructed a GA-related gene risk score (GRS). The GRS was used to divide BC patients into a high-GRS group and a low-GRS group, and functional analysis, survival analysis, mutation analysis, immune landscape analysis, and metabolic analysis were performed to compare the 2 groups. Finally, a nomogram was constructed for clinical application. The genes in the GRS model were mainly related to the glucose metabolism pathway, and the main mutations in the 2 groups of patients were mutations in TP53 and CHD1. The mutation rate in the high-GRS group was greater than that in the low-GRS group. The high GRS group had higher tumor immune activity glycolysis; the pentose phosphate pathway tended to be the dominant metabolic pathways in this group, while fatty acid oxidation and glutamine catabolism tended to be dominant in the low-GRS group. GA-related genes were used to construct a prediction model for BC patients and had high accuracy in predicting prognosis. The mutations associated with the GRS are mainly TP53 and CDH1. Interestingly, the GRS is correlated with glucose metabolism in terms of gene expression and functional enrichment. In summary, the role of GRS-related genes in glucose metabolism is worthy of further study.
Collapse
Affiliation(s)
- Hang Lu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cardiovascular Surgery, Xijing Hospital, Xi’an, China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, China
| | - Yimin Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Lu H, Yu X, Xu Z, Deng J, Zhang MJ, Zhang Y, Sun S. Prognostic Value of IGFBP6 in Breast Cancer: Focus on Glucometabolism. Technol Cancer Res Treat 2024; 23:15330338241271998. [PMID: 39275851 PMCID: PMC11402086 DOI: 10.1177/15330338241271998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/24/2024] [Indexed: 09/16/2024] Open
Abstract
IGFBP6, a member of the IGF binding protein (IGFBP) family, is a specific inhibitor of insulin-like growth factor II (IGF-II) and can inhibit the growth of malignant tumors overexpressing IGF-II. Type 2 diabetes (T2D) is a basic disorder of glucose metabolism that can be regulated by IGF-related pathways. We performed bioinformatics analysis of the TCGA database to explore the possible mechanism of IGFBP6 in breast cancer (BC) metabolism and prognosis and collected clinical samples from BC patients with and without T2D to compare and verify the prognostic effect of IGFBP6. In our study, the levels of IGFBP1-6 were positively correlated with overall survival (OS) in patients with breast cancer. IGFBP6 was upregulated in estrogen receptor (ER)-positive BC, and ER-positive and progesterone receptor (PR) positive patients had a higher expression level of IGFBP6 than ER-negative and PR-negative patients. IGFBP6 could be used as an independent prognostic factor in BC. The expression of IGFBP6 was decreased in BC tissue, and BC tissue from patients with T2D had lower IGFBP6 expression levels than BC tissue from patients without T2D. IGFBP6 is mainly involved in the PI3K-Akt and TGF-β signaling pathways and tumor microenvironment regulation. In terms of metabolism, the expression of IGFBP6 was negatively correlated with that of most glucose metabolism-related genes. IGFBP6 expression was mainly correlated with mutations in TP53, PIK3CA, CDH1, and MAP3K1. In addition, the upregulation of IGFBP6 in BC increased the drug sensitivity to docetaxel, paclitaxel and gemcitabine. Overall, these results indicated that high expression of IGFBP6 is associated with a good prognosis in BC patients, especially in those without T2D. It is not only involved in the maintenance of the tumor microenvironment in BC but also inhibits the energy metabolism of cancer cells through glucose metabolism-related pathways. These findings may provide a new perspective on IGFBP6 as a potential prognostic marker for BC.
Collapse
Affiliation(s)
- Hang Lu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Cardiovascular Surgery, Xijing Hospital, Xian, Shanxi, China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiliang Xu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingwen Deng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Master Jingwen Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yimin Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Breves JP, Duffy TA, Einarsdottir IE, Björnsson BT, McCormick SD. In vivo effects of 17α-ethinylestradiol, 17β-estradiol and 4-nonylphenol on insulin-like growth-factor binding proteins (igfbps) in Atlantic salmon. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:28-39. [PMID: 30075440 DOI: 10.1016/j.aquatox.2018.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Feminizing endocrine disrupting compounds (EDCs) affect the growth and development of teleost fishes. The major regulator of growth performance, the growth hormone (Gh)/insulin-like growth-factor (Igf) system, is sensitive to estrogenic compounds and mediates certain physiological and potentially behavioral consequences of EDC exposure. Igf binding proteins (Igfbps) are key modulators of Igf activity, but their alteration by EDCs has not been examined. We investigated two life-stages (fry and smolts) of Atlantic salmon (Salmo salar), and characterized how the Gh/Igf/Igfbp system responded to waterborne 17α-ethinylestradiol (EE2), 17β-estradiol (E2) and 4-nonylphenol (NP). Fry exposed to EE2 and NP for 21 days had increased hepatic vitellogenin (vtg) mRNA levels while hepatic estrogen receptor α (erα), gh receptor (ghr), igf1 and igf2 mRNA levels were decreased. NP-exposed fry had reduced body mass and total length compared to controls. EE2 and NP reduced hepatic igfbp1b1, -2a, -2b1, -4, -5b2 and -6b1, and stimulated igfbp5a. In smolts, hepatic vtg mRNA levels were induced following 4-day exposures to all three EDCs, while erα only responded to EE2 and E2. EDC exposures did not affect body mass or fork length; however, EE2 diminished plasma Gh and Igf1 levels in parallel with reductions in hepatic ghr and igf1. In smolts, EE2 and E2 diminished hepatic igfbp1b1, -4 and -6b1, and stimulated igfbp5a. There were no signs of compromised ionoregulation in smolts, as indicated by unchanged branchial ion pump/transporter mRNA levels. We conclude that hepatic igfbps respond (directly and/or indirectly) to environmental estrogens during two key life-stages of Atlantic salmon, and thus may modulate the growth and development of exposed individuals.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Tara A Duffy
- Department of Marine and Environmental Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Ingibjörg E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530, Gothenburg, Sweden.
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530, Gothenburg, Sweden.
| | - Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, S. O. Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA 01376, USA.
| |
Collapse
|
4
|
Oliva CR, Halloran B, Hjelmeland AB, Vazquez A, Bailey SM, Sarkaria JN, Griguer CE. IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling. Cell Commun Signal 2018; 16:61. [PMID: 30231881 PMCID: PMC6148802 DOI: 10.1186/s12964-018-0273-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Glioblastomas (GBMs), the most common and most lethal of the primary brain tumors, are characterized by marked intra-tumor heterogeneity. Several studies have suggested that within these tumors a restricted population of chemoresistant glioma cells is responsible for recurrence. However, the gene expression patterns underlying chemoresistance are largely unknown. Numerous efforts have been made to block IGF-1R signaling pathway in GBM. However, those therapies have been repeatedly unsuccessful. This failure may not only be due to the complexity of IGF receptor signaling, but also due to complex cell-cell interactions in the tumor mass. We hypothesized that differential expression of proteins in the insulin-like growth factor (IGF) system underlie cell-specific differences in the resistance to temozolomide (TMZ) within GBM tumors. METHODS Expression of IGF-1R was analyzed in cell lines, patient-derived xenograft cell lines and human biopsies by cell surface proteomics, flow cytometry, immunofluorescence and quantitative real time polymerase chain reaction (qRT-PCR). Using gain-of-function and loss-of-function strategies, we dissected the molecular mechanism responsible for IGF-binding protein 6 (IGFBP6) tumor suppressor functions both in in vitro and in vivo. Site direct mutagenesis was used to study IGFBP6-IGF2 interactions. RESULTS We determined that in human glioma tissue, glioma cell lines, and patient-derived xenograft cell lines, treatment with TMZ enhances the expression of IGF1 receptor (IGF-1R) and IGF2 and decreases the expression of IGFBP6, which sequesters IGF2. Using chemoresistant and chemosensitive wild-type and transgenic glioma cells, we further found that a paracrine mechanism driven by IGFBP6 secreted from TMZ-sensitive cells abrogates the proliferation of IGF-1R-expressing TMZ-resistant cells in vitro and in vivo. In mice bearing intracranial human glioma xenografts, overexpression of IGFBP6 in TMZ-resistant cells increased survival. Finally, elevated expression of IGF-1R and IGF2 in gliomas associated with poor patient survival and tumor expression levels of IGFBP6 directly correlated with overall survival time in patients with GBM. CONCLUSIONS Our findings support the view that proliferation of chemoresistant tumor cells is controlled within the tumor mass by IGFBP6-producing tumor cells; however, TMZ treatment eliminates this population and enriches the TMZ-resistant cell populationleading to accelerated growth of the entire tumor mass.
Collapse
Affiliation(s)
- Claudia R. Oliva
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242 USA
- Free Radical & Radiation Biology Program, 4210 Medical Education and Biomedical Research Facility (MERF), The University of Iowa, Iowa City, IA 52242-1181 USA
| | - Brian Halloran
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Ana Vazquez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48823 USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48823 USA
| | - Shannon M. Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902 USA
| | - Corinne E. Griguer
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
5
|
Qiu F, Gao W, Wang B. Correlation of IGFBP-6 expression with apoptosis and migration of colorectal carcinoma cells. Cancer Biomark 2018; 21:893-898. [PMID: 29439316 DOI: 10.3233/cbm-170947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in digestive tract. Previous study found close correlation between insulin-like growth factor binding proteins (IGFBPs) and occurrence of multiple tumors. This study aims to analyze the effects of IGFBP6 on the apoptosis and migration of tumor cells, and to investigate underlying mechanism. HCT-116 or SW480 cell was cultured with 1.0 mg/l, 10 mg/l and 100 mg/l IGFBP-6. MTT assay was employed to test the proliferation activity of tumor cells after differential treatment. The cell cycle of tumor cells was detected by flow cytometry, while Transwell assay was used to quantify the invasion and migration of tumor cells after IGFBP-6 intervention. In experimental group with IGFPB-6 application, the proliferation rate of HCG-116 or SW480 cells was gradually decreased with higher concentrations of IGFBP-6 (p< 0.05). The ratio of cells at G0/G1 phase was increased while S phase and G2/M phase ratio were all decreased with IGFPB-6. With further elevated concentration of IGFPB-6, there was more potency of higher G0/G1 ratio and lower S phase or G2/M phase (p< 0.05). Both invasion and migration ability of HCT-116 or SW480 cells in experimental group were decreased. With elevated IGFBP-6 concentration, cell invasion and migration were further weakened (p< 0.05).IGFBP-6 could inhibit invasion and migration of colorectal carcinoma cells possibly via inhibiting proliferation activity and arresting cell cycle of HCT-116 or SW480 cells.
Collapse
|
6
|
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellular space, (ii) interaction with and modulation of other growth factor pathways including EGF, TGF-β and VEGF, and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.
Collapse
Affiliation(s)
- L A Bach
- Department of Medicine (Alfred)Monash University, Melbourne, Australia
- Department of Endocrinology and DiabetesAlfred Hospital, Melbourne, Australia
| |
Collapse
|
7
|
Samanta SK, Lee J, Hahm ER, Singh SV. Peptidyl-prolyl cis/trans isomerase Pin1 regulates withaferin A-mediated cell cycle arrest in human breast cancer cells. Mol Carcinog 2018; 57:936-946. [PMID: 29603395 DOI: 10.1002/mc.22814] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
We have reported previously that withaferin A (WA) prevents breast cancer development in mouse mammary tumor virus-neu (MMTV-neu) transgenic mice, but the mechanism is not fully understood. Unbiased proteomics of the mammary tumors from control- and WA-treated MMTV-neu mice revealed downregulation of peptidyl-prolyl cis/trans isomerase (Pin1) protein by WA administration. The present study extends these findings to elucidate the role of Pin1 in cancer chemopreventive mechanisms of WA. The mammary tumor level of Pin1 protein was lower by about 55% in WA-treated rats exposed to N-methyl-N-nitrosourea, compared to control. Exposure of MCF-7 and SK-BR-3 human breast cancer cells to WA resulted in downregulation of Pin1 protein. Ectopic expression of Pin1 attenuated G2 and/or mitotic arrest resulting from WA treatment in both MCF-7 and SK-BR-3 cells. WA-induced apoptosis was increased by Pin1 overexpression in MCF-7 cells but not in the SK-BR-3 cell line. In addition, molecular docking followed by mass spectrometry indicated covalent interaction of WA with cysteine 113 of Pin1. Overexpression of Pin1C113A mutant failed to attenuate WA-induced mitotic arrest or apoptosis in the MCF-7 cells. Furthermore, antibody array revealed upregulation of proapoptotic insulin-like growth factor binding proteins (IGFBPs), including IGFBP-3, IGFBP-4, IGFBP-5, and IGFBP-6, in Pin1 overexpressing MCF-7 cells following WA treatment when compared to empty vector transfected control cells. These data support a crucial role of the Pin1 for mitotic arrest and apoptosis signaling by WA at least in the MCF-7 cells.
Collapse
Affiliation(s)
- Suman K Samanta
- Life Science Division, Institute of Advance Study in Science and Technology, Guwahati, India
| | - Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju, South Korea
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Chen Q, Qin S, Liu Y, Hong M, Qian CN, Keller ET, Zhang J, Lu Y. IGFBP6 is a novel nasopharyngeal carcinoma prognostic biomarker. Oncotarget 2018; 7:68140-68150. [PMID: 27623076 PMCID: PMC5356544 DOI: 10.18632/oncotarget.11886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) play critical roles in carcinogenesis. This study assessed the impact of IGFBP6 on the progression of nasopharyngeal carcinoma (NPC). Using immunohistochemical analysis, we found that IGFBP6 was differentially expressed in primary malignant NPC tissues. Clinical samples were divided into two groups: IGFBP6(+) and IGFBP6(−). Five years of follow-up revealed that overall survival and distant metastasis-free survival rates were significantly higher in the IGFBP6(+) than IGFBP6(−) group. We also used real-time PCR, ELISA and western blot assays to measure IGFBP6 levels in five NPC cell lines (CNE1, CNE2, HONE1, HK1 and SUNE1). All the cell lines expressed IGFBP6, but at different levels, reflecting disease heterogeneity. In addition, exogenous expression of IGFBP6 inhibited CNE2 cell proliferation and invasion in vitro. IGFBP6 knockdown activated the GSK3β/β-catenin/cyclin D1 pathway and enhanced CNE2 tumor cell growth and metastasis in a mouse model. These results suggest that IGFBP6 may be an independent prognostic biomarker for NPC.
Collapse
Affiliation(s)
- Qiuyan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Siyuan Qin
- Key Laboratory of Longevity and Aging-related Diseases, Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Liu
- Key Laboratory of Longevity and Aging-related Diseases, Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Minghuang Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Evan T Keller
- Department of Urology and Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jian Zhang
- Key Laboratory of Longevity and Aging-related Diseases, Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yi Lu
- Key Laboratory of Longevity and Aging-related Diseases, Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Zeng C, Feng X, Wang W, Lv L, Fang C, Chi L, Huang L, Zhou Z. Decreased expression of insulin-like growth factor binding protein 6 is associated with gastric adenocarcinoma prognosis. Oncol Lett 2017; 13:4161-4168. [PMID: 28588703 PMCID: PMC5452904 DOI: 10.3892/ol.2017.5993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 03/09/2017] [Indexed: 01/28/2023] Open
Abstract
The present study aimed to investigate the expression and prognostic significance of insulin-like growth factor binding protein 6 (IGFBP-6) in gastric adenocarcinoma. The expression of IGFBP-6 was examined in 263 specimens from gastric adenocarcinoma patients using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and immunohistochemical (IHC) staining. The association between IGFBP-6 expression, clinicopathological factors and clinical outcomes was investigated. Akaike information criterion (AIC) and Harrell's concordance index (c-index) were used to evaluate the accuracy of the predictive prognosis. RT-qPCR and western blotting results showed that IGFBP-6 mRNA expression was lower in the tumors compared with that in adjacent non-tumor tissues. IGFBP-6 showed significantly decreased expression in 170 out of 263 patients based on IHC data and this was associated with a larger tumor size (P<0.001) and poorly-differentiated adenocarcinoma (P=0.001), as well as with palliative gastrectomy (P=0.015). Additionally, decreased expression of IGFBP-6 was associated with stage T3/4a/4b disease and lymph node-positive metastasis (P<0.001). The association between decreased expression and a poor prognosis was revealed by Kaplan-Meier curves. Cox regression model identified IGFBP-6 as an independent prognostic factor. The prognostic value of the model with IGFBP-6 expression (AIC, 924.881; c-index, 0.878) was superior to that without IGFBP-6 expression (AIC, 947.164; c-index, 0.825). In conclusion, IGFBP-6 involves the development and progression of gastric adenocarcinoma, and its decreased expression predicts poor clinical outcomes.
Collapse
Affiliation(s)
- Changqing Zeng
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China.,Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xingyu Feng
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong 510060, P.R. China
| | - Wei Wang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Lin Lv
- Department of Oncology, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Cheng Fang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Liangjie Chi
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Liangxiang Huang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhiwei Zhou
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
10
|
Breves JP, Fujimoto CK, Phipps-Costin SK, Einarsdottir IE, Björnsson BT, McCormick SD. Variation in branchial expression among insulin-like growth-factor binding proteins (igfbps) during Atlantic salmon smoltification and seawater exposure. BMC PHYSIOLOGY 2017; 17:2. [PMID: 28100217 PMCID: PMC5242021 DOI: 10.1186/s12899-017-0028-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023]
Abstract
Background In preparation for migration from freshwater to marine habitats, Atlantic salmon (Salmo salar L.) undergo smoltification, a transformation that includes the acquisition of hyposmoregulatory capacity. The growth hormone (Gh)/insulin-like growth-factor (Igf) axis promotes the development of branchial ionoregulatory functions that underlie ion secretion. Igfs interact with a suite of Igf binding proteins (Igfbps) that modulate hormone activity. In Atlantic salmon smolts, igfbp4,−5a,−5b1,−5b2,−6b1 and−6b2 transcripts are highly expressed in gill. We measured mRNA levels of branchial and hepatic igfbps during smoltification (March, April, and May), desmoltification (July) and following seawater (SW) exposure in March and May. We also characterized parallel changes in a broad suite of osmoregulatory (branchial Na+/K+-ATPase (Nka) activity, Na+/K+/2Cl−cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator 1 (cftr1) transcription) and endocrine (plasma Gh and Igf1) parameters. Results Indicative of smoltification, we observed increased branchial Nka activity, nkcc1 and cftr1 transcription in May. Branchial igfbp6b1 and -6b2 expression increased coincidentally with smoltification. Following a SW challenge in March, igfbp6b1 showed increased expression while igfbp6b2 exhibited diminished expression. igfbp5a,−5b1 and−5b2 mRNA levels did not change during smolting, but each had lower levels following a SW exposure in March. Conclusions Salmonids express an especially large suite of igfbps. Our data suggest that dynamic expression of particular igfbps accompanies smoltification and SW challenges; thus, transcriptional control of igfbps may provide a mechanism for the local modulation of Igf activity in salmon gill.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N Broadway, Saratoga Springs, 12866, NY, USA.
| | - Chelsea K Fujimoto
- Department of Biology, Skidmore College, 815 N Broadway, Saratoga Springs, 12866, NY, USA
| | - Silas K Phipps-Costin
- Department of Biology, Skidmore College, 815 N Broadway, Saratoga Springs, 12866, NY, USA
| | - Ingibjörg E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530, Gothenburg, Sweden
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530, Gothenburg, Sweden
| | - Stephen D McCormick
- USGS, Leetown Science Center, S.O. Conte Anadromous Fish Research Center, P.O. Box 796, One Migratory Way, Turners Falls, 01376, MA, USA
| |
Collapse
|
11
|
Wang C, Ma Y, Hu Q, Xie T, Wu J, Zeng F, Song F. Bifidobacterial recombinant thymidine kinase-ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors. BMC Cancer 2016; 16:545. [PMID: 27464624 PMCID: PMC4964087 DOI: 10.1186/s12885-016-2608-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/25/2016] [Indexed: 01/10/2023] Open
Abstract
Background Directly targeting therapeutic suicide gene to a solid tumor is a hopeful approach for cancer gene therapy. Treatment of a solid tumor by an effective vector for a suicide gene remains a challenge. Given the lack of effective treatments, we constructed a bifidobacterial recombinant thymidine kinase (BF-rTK) -ganciclovir (GCV) targeting system (BKV) to meet this requirement and to explore antitumor mechanisms. Methods Bifidobacterium (BF) or BF-rTK was injected intratumorally with or without ganciclovir in a human colo320 intestinal xenograft tumor model. The tumor tissues were analyzed using apoptosis antibody arrays, real time PCR and western blot. The colo320 cell was analyzed by the gene silencing method. Autophagy and necroptosis were also detected in colo320 cell. Meanwhile, three human digestive system xenograft tumor models (colorectal cancer colo320, gastric cancer MKN-45 and liver cancer SSMC-7721) and a breast cancer (MDA-MB-231) model were employed to validate the universality of BF-rTK + GCV in solid tumor gene therapy. The survival rate was evaluated in three human cancer models after the BF-rTK + GCV intratumor treatment. The analysis of inflammatory markers (TNF-α) in tumor indicated that BF-rTK + GCV significantly inhibited TNF-α expression. Results The results suggested that BF-rTK + GCV induced tumor apoptosis without autophagy and necroptosis occurrence. The apoptosis was transduced by multiple signaling pathways mediated by FasL and TNFR2 and mainly activated the mitochondrial control of apoptosis via Bid and Bim, which was rescued by silencing Bid or/and Bim. However, BF + GCV only induced apoptosis via Fas/FasL signal pathway accompanied with increased P53 expression. We further found that BF-rTK + GCV inhibited the expression of the inflammatory maker of TNF-α. However, BF-rTK + GCV did not result in necroptosis and autophagy. Conclusions BF-rTK + GCV induced tumor apoptosis mediated by FasL and TNFR2 through the mitochondrial control of apoptosis via Bid and Bim without inducing necroptosis and autophagy. Furthermore, BF-rTK + GCV showed to repress the inflammation of tumor through downregulating TNF-α expression. Survival analysis results of multiple cancer models confirmed that BF-rTK + GCV system has a wide field of application in solid tumor gene therapy.
Collapse
Affiliation(s)
- Changdong Wang
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Yongping Ma
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China.
| | - Qiongwen Hu
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Tingting Xie
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Jiayan Wu
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Fan Zeng
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Fangzhou Song
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| |
Collapse
|
12
|
Abstract
Insulin-like growth factor binding proteins (IGFBPs) 4-6 have important roles as modulators of IGF actions. IGFBP-4 and IGFBP-6 predominantly inhibit IGF actions, whereas IGFBP-5 may enhance these actions under some circumstances. IGFBP-6 is unique among the IGFBPs for its marked IGF-II binding preference. IGFBPs 4-6 are found in the circulation as binary complexes with IGFs that can enter tissues. Additionally, about half of the circulating IGFBP-5 is found in ternary complexes with IGFs and an acid labile subunit; this high molecular complex cannot leave the circulation and acts as an IGF reservoir. IGFBPs 4-6 also have IGF-independent actions. These IGFBPs are regulated in a cell-specific manner and their dysregulation may play a role in a range of diseases including cancer. However, there is no clear clinical indication for measuring serum levels of these IGFBPs at present.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran, 3181, Australia; Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, 3004, Australia.
| |
Collapse
|
13
|
Bach LA. Recent insights into the actions of IGFBP-6. J Cell Commun Signal 2015; 9:189-200. [PMID: 25808083 DOI: 10.1007/s12079-015-0288-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/16/2015] [Indexed: 12/28/2022] Open
Abstract
IGFBP-6 is an O-linked glycoprotein that preferentially binds IGF-II over IGF-I. It is a relatively selective inhibitor of IGF-II actions including proliferation, survival and differentiation of a wide range of cells. IGFBP-6 has recently been shown to have a number of IGF-independent actions, including promotion of apoptosis in some cells and inhibition of angiogenesis. IGFBP-6 also induces migration of tumour cells including rhabdomyosarcomas by an IGF-independent mechanism. This chemotactic effect is mediated by MAP kinases. IGFBP-6 binds to prohibitin-2 on the cell surface and the latter is required for IGFBP-6-induced migration by a mechanism that is independent of MAP kinases. IGFBP-6 may enter the nucleus and modulate cell survival and differentiation. IGFBP-6 expression is decreased in a number of cancer cells and it has been postulated to act as a tumour suppressor. IGFBP-6 expression is increased in a smaller number of cancers, which may reflect a compensatory mechanism to control IGF-II actions or IGF-independent actions. The relative balance of IGF-dependent and IGF-independent actions of IGFBP-6 in vivo together with the related question regarding the roles of IGFBP-6 binding to IGF and non-IGF ligands are keys to understanding the physiological role of this protein.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran, 3181, Australia,
| |
Collapse
|
14
|
Yang Y, Sheng M, Huang F, Bu D, Liu X, Yao Y, Dai C, Sun B, Zhu J, Jiao Y, Wei Z, Zhu H, Lu L, Zhao Y, Jiang C, Wang R. Downregulation of Insulin-like growth factor binding protein 6 is associated with ACTH-secreting pituitary adenoma growth. Pituitary 2014; 17:505-13. [PMID: 24379119 DOI: 10.1007/s11102-013-0535-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Adrenocorticotrophic hormone (ACTH)-dependent Cushing's syndrome, called Cushing disease, is caused by a corticotroph tumor of the pituitary gland. Insulin-like growth factor binding protein 6 (IGFBP6), which regulates insulin-like growth factor (IGF) activity and inhibits several IGF2-dependent cancer growths, plays a pivotal role in the tumorigenesis of malignancy, but its roles in ACTH-secreting pituitary adenomas remain unclear. OBJECTIVE To investigate IGFBP6 expression in ACTH-secreting pituitary adenomas, and its involvement in tumor growth. METHODS Sporadic ACTH-secreting pituitary adenomas specimens (n = 41) and adjacent non-tumorous pituitary tissues (n = 9) were collected by transphenoidal surgery. IGFBP6 expression was assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and validated by Western blotting. Associations of IGFBP6 expression with maximum tumor diameter or Ki-67 labeling index were evaluated in ACTH-secreting pituitary adenomas. RESULTS IGFBP6 mRNA and protein expression were both decreased in ACTH-secreting pituitary adenomas, compared to adjacent non-tumorous pituitary tissues (P < 0.01). IGFBP6 expression was correlated inversely with maximum tumor diameter (Rho = -0.53, P < 0.0001) and Ki-67 levels (Rho = -0.52, P < 0.05). Moreover, IGFBP6 downregulation activated PI3 K-AKT-mTOR pathway in ACTH-secreting pituitary adenomas. CONCLUSIONS IGFBP6 attenuation in ACTH-secreting pituitary adenomas is associated with tumor growth, through activation of PI3K-AKT-mTOR pathway. The finding underlies IGFBP6 roles in Cushing disease and would potentially provide a novel target of medical therapies.
Collapse
Affiliation(s)
- Yakun Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao HM, Sheng MJ, Yu J. Expression of IGFBP-6 in a proliferative vitreoretinopathy rat model and its effects on retinal pigment epithelial cell proliferation and migration. Int J Ophthalmol 2014; 7:27-33. [PMID: 24634859 DOI: 10.3980/j.issn.2222-3959.2014.01.05] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 09/27/2013] [Indexed: 12/17/2022] Open
Abstract
AIM To investigate the expression of insulin-like growth factor binding protein-6 (IGFBP-6) in a proliferative vitreoretinopathy (PVR) model and its effects on proliferation and migration in retinal pigment epithelial (RPE) cells. METHODS A PVR Wistar rat model was established by the intravitreal injection of RPE-J cells combined with platelet-rich plasma (PRP). The expression levels of IGFBP-6 were tested by ELISA. ARPE-19 cell proliferation was evaluated by the MTS method, and cell migration was evaluated by wound healing assays. RESULTS The success rate of the PVR model was 89.3% (25/28). IGFBP-6 was expressed at higher levels in the vitreous, serum and retina of rats experiencing advanced PVR (grade 3) than in the control group (vitreous: 152.80±15.08ng/mL vs 105.44±24.81ng/mL, P>0.05; serum: 93.48±9.27ng/mL vs 80.59±5.20ng/mL, P<0.05; retina: 3.02±0.38ng/mg vs 2.05±0.53ng/mg, P<0.05). In vitro, IGFBP-6 (500ng/mL) inhibited the IGF-II (50ng/mL) induced ARPE-19 cell proliferation (OD value at 24h: from 1.38±0.05 to 1.30±0.02; 48h: from 1.44±0.06 to 1.35±0.05). However, it did not affect basal or VEGF-, TGF-β- and PDGF-induced cell proliferation. IGFBP-6 (500ng/mL) reduced the IGF-II (50ng/mL)-induced would healing rate [24h: from (43.91±3.85)% to (29.76±2.49)%; 48 h: from (66.09±1.67)% to (59.88±3.43)%]. CONCLUSION Concentrations of IGFBP-6 increased in the vitreous, serum, and retinas only in advanced PVR in vivo. IGFBP-6 also inhibited IGF-II-induced cell proliferation in a not dose or time dependent manner and migration. IGFBP-6 participates in the development of PVR and might play a protective role in PVR.
Collapse
Affiliation(s)
- Hong-Mei Zhao
- Department of Ophthalmology, the Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Min-Jie Sheng
- Department of Ophthalmology, the Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Jing Yu
- Department of Ophthalmology, the Tenth People's Hospital of Tongji University, Shanghai 200072, China
| |
Collapse
|
16
|
Yang Z, Bach LA. Differential Effects of Insulin-Like Growth Factor Binding Protein-6 (IGFBP-6) on Migration of Two Ovarian Cancer Cell Lines. Front Endocrinol (Lausanne) 2014; 5:231. [PMID: 25601855 PMCID: PMC4283657 DOI: 10.3389/fendo.2014.00231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/14/2014] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION IGFBP-6 inhibits angiogenesis as well as proliferation and survival of rhabdomyosarcoma cells. However, it promotes migration of these cells in an IGF-independent manner. The IGF system is implicated in ovarian cancer, so we studied the effects of IGFBP-6 in ovarian cancer cells. METHODS The effects of wild type (wt) and a non-IGF-binding mutant (m) of IGFBP-6 on migration of HEY and SKOV3 ovarian cancer cells, which, respectively, represent aggressive and transitional cancers, were studied. ERK and JNK phosphorylation were measured by Western blotting. RESULTS IGF-II, wt-, and mIGFBP-6 each promoted SKOV3 cell migration by 77-98% (p < 0.01). In contrast, IGF-II also increased HEY cell migration to 155 ± 13% of control (p < 0.001), but wt-IGFBP-6 and mIGFBP-6 decreased migration to 62 ± 5 and 66 ± 3%, respectively (p < 0.001). In these cells, coincubation of IGF-II with wt but not mIGFBP-6 increased migration. MAP kinase pathways are involved in IGFBP-6-induced rhabdomyosarcoma cell migration, so activation of these pathways was studied in HEY and SKOV3 cells. Wt and mIGFBP-6 increased ERK phosphorylation by 62-99% in both cell lines (p < 0.05). Wt-IGFBP-6 also increased JNK phosphorylation by 139-153% in both cell lines (p < 0.05), but the effect of mIGFBP-6 was less clear. ERK and JNK inhibitors partially inhibited the migratory effects of wt and mIGFBP-6 in SKOV3 cells, whereas the ERK inhibitor partially restored wt and mIGFBP-6-induced inhibition of HEY cell migration. The JNK inhibitor had a lesser effect on the actions of wtIGFBP-6 and no effect on the actions of mIGFBP-6 in HEY cells. CONCLUSION IGFBP-6 has opposing effects on migration of HEY and SKOV3 ovarian cancer cells, but activates MAP kinase pathways in both. Delineating the pathways underlying the differential effects on migration will increase our understanding of ovarian cancer metastasis and shed new light on the IGF-independent effects of IGFBP-6.
Collapse
Affiliation(s)
- Zhiyong Yang
- Department of Medicine (Alfred), Monash University, Prahran, VIC, Australia
| | - Leon A. Bach
- Department of Medicine (Alfred), Monash University, Prahran, VIC, Australia
- Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, VIC, Australia
- *Correspondence: Leon A. Bach, Department of Endocrinology and Diabetes, Alfred Hospital, Commercial Road, Melbourne, VIC 3004, Australia e-mail:
| |
Collapse
|
17
|
Turo R, Smolski M, Esler R, Kujawa ML, Bromage SJ, Oakley N, Adeyoju A, Brown SCW, Brough R, Sinclair A, Collins GN. Diethylstilboestrol for the treatment of prostate cancer: past, present and future. Scand J Urol 2013; 48:4-14. [PMID: 24256023 DOI: 10.3109/21681805.2013.861508] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this review was to discuss the most recent data from current trials of diethylstilboestrol (DES) to identify its present role in advanced prostate cancer treatment as new hormonal therapies emerge. The most relevant clinical studies using DES in castration-refractory prostate cancer (CRPC) were identified from the literature. The safety, efficacy, outcomes and mechanisms of action are summarized. In the age of chemotherapy this review highlights the efficacy of oestrogen therapy in CRPC. The optimal point in the therapeutic pathway at which DES should be prescribed remains to be established.
Collapse
Affiliation(s)
- Rafal Turo
- Department of Urology, Stepping Hill Hospital, Stockport NHS Foundation Trust , Stockport , UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhu W, Wu Y, Cui C, Zhao HM, Ba J, Chen H, Yu J. Expression of IGFBP‑6 in proliferative vitreoretinopathy rat models and its effects on retinal pigment epithelial‑J cells. Mol Med Rep 2013; 9:33-8. [PMID: 24220750 DOI: 10.3892/mmr.2013.1794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/28/2013] [Indexed: 11/05/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is one of the most common causes for failed retinal detachment surgeries. The aim of the present study was to investigate the role of insulin‑like growth factor‑binding protein‑6 (IGFBP‑6) in PVR using rat models and its effects on retinal pigment epithelial‑J (RPE‑J) cells. PVR Wistar rat models were administered intravitreal injection of RPE‑J cells (1x106/5 µl) combined with platelet‑rich plasma (1x107/5 µl). The concentration of IGFBP‑6 in the vitreous and serum of rats was tested by an enzyme‑linked immunosorbent assay and the expression of IGFBP‑6 mRNA in the liver and retina of rats was determined by quantitative polymerase chain reaction (qPCR). The expression of IGFBP‑6 mRNA in the RPE‑J cells stimulated by vitreous or serum from PVR patients or normal volunteers was also determined by qPCR. The proliferation of RPE‑J cells was evaluated by the 3‑(4,5‑dimethylthiazol‑2‑yl)‑5‑(3‑carboxymethoxyphenyl)‑2‑(4‑sulfophenyl)‑2H‑tetrazolium, inner salt (MTS) method. The success rate of PVR rat model induction at the 8th week was 89.5% (34/38). The concentration of IGFBP‑6 in the vitreous and serum of PVR rats was significantly higher than that of the control group (P<0.05). The expression of IGFBP‑6 mRNA in the retina of PVR rats was also significantly higher compared with the control group (P<0.05). The vitreous from PVR patients and donors significantly stimulated the expression of IGFBP‑6 mRNA in the RPE‑J cells (P<0.05). IGFBP‑6 only inhibited IGF‑II‑stimulated proliferation but not the basal level of proliferation or the PDGF/VEGF‑stimulated RPE‑J cell proliferation. Thus, the trends and effects of IGFBP‑6 provide the possibility of PVR therapeutic targets, with the vitreous representing a significant environmental factor in the progression of PVR.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | | | | | | | | | | | | |
Collapse
|
19
|
Fu P, Yang Z, Bach LA. Prohibitin-2 binding modulates insulin-like growth factor-binding protein-6 (IGFBP-6)-induced rhabdomyosarcoma cell migration. J Biol Chem 2013; 288:29890-900. [PMID: 24003225 DOI: 10.1074/jbc.m113.510826] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor (IGF)-binding protein (IGFBP)-6 decreases cancer cell proliferation and survival by inhibiting the effects of IGF-II. More recently, IGFBP-6 was found to promote the migration of rhabdomyosarcoma (RMS) cells in an IGF-independent manner, and MAPK pathways were involved in this process. However, the precise molecular mechanisms of these IGF-independent migratory actions of IGFBP-6 are largely unknown. Here, we report that prohibitin-2 (PHB2), a single-span membrane protein, is a key regulator of IGFBP-6-induced RMS cell migration. PHB2 and IGFBP-6 co-localize on the RMS cell surface, and they specifically interact, as demonstrated by affinity chromatography, co-immunoprecipitation, biosensor analysis, and confocal microscopy. Binding affinities for PHB2 are 9.0 ± 1.0 nM for IGFBP-6 and 10.2 ± 0.5 nM for mIGFBP-6, a non-IGF-binding mutant of IGFBP-6. The C-domain but not the N-domain of IGFBP-6 is involved in PHB2 binding. In addition, IGFBP-6 indirectly increases PHB2 tyrosine phosphorylation on RMS membranes. Importantly, PHB2 knockdown completely abolished IGFBP-6-mediated RMS cell migration. In contrast, IGFBP-6-induced MAPK pathway activation was not affected, suggesting that PHB2 may act as a downstream effector of these pathways. These results indicate that PHB2 plays a key role in this IGF-independent action of IGFBP-6 and suggest a possible therapeutic target for RMS.
Collapse
Affiliation(s)
- Ping Fu
- From the Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Prahran, Victoria 3181, Australia and
| | | | | |
Collapse
|
20
|
Raykha C, Crawford J, Gan BS, Fu P, Bach LA, O'Gorman DB. IGF-II and IGFBP-6 regulate cellular contractility and proliferation in Dupuytren's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1511-9. [PMID: 23623986 DOI: 10.1016/j.bbadis.2013.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 11/17/2022]
Abstract
Dupuytren's disease (DD) is a common and heritable fibrosis of the palmar fascia that typically manifests as permanent finger contractures. The molecular interactions that induce the development of hyper-contractile fibroblasts, or myofibroblasts, in DD are poorly understood. We have identified IGF2 and IGFBP6, encoding insulin-like growth factor (IGF)-II and IGF binding protein (IGFBP)-6 respectively, as reciprocally dysregulated genes and proteins in primary cells derived from contracture tissues (DD cells). Recombinant IGFBP-6 inhibited the proliferation of DD cells, patient-matched control (PF) cells and normal palmar fascia (CT) cells. Co-treatments with IGF-II, a high affinity IGFBP-6 ligand, were unable to rescue these effects. A non-IGF-II binding analog of IGFBP-6 also inhibited cellular proliferation, implicating IGF-II-independent roles for IGFBP-6 in this process. IGF-II enhanced the proliferation of CT cells, but not DD or PF cells, and significantly enhanced DD and PF cell contractility in stressed collagen lattices. While IGFBP-6 treatment did not affect cellular contractility, it abrogated the IGF-II-induced contractility of DD and PF cells in stressed collagen lattices. IGF-II also significantly increased the contraction of DD cells in relaxed lattices, however this effect was not evident in relaxed collagen lattices containing PF cells. The disparate effects of IGF-II on DD and PF cells in relaxed and stressed contraction models suggest that IGF-II can enhance lattice contractility through more than one mechanism. This is the first report to implicate IGFBP-6 as a suppressor of cellular proliferation and IGF-II as an inducer of cellular contractility in this connective tissue disease.
Collapse
Affiliation(s)
- Christina Raykha
- Cell & Molecular Biology Laboratory, Hand & Upper Limb Centre, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Bid HK, London CA, Gao J, Zhong H, Hollingsworth RE, Fernandez S, Mo X, Houghton PJ. Dual targeting of the type 1 insulin-like growth factor receptor and its ligands as an effective antiangiogenic strategy. Clin Cancer Res 2013; 19:2984-94. [PMID: 23549869 DOI: 10.1158/1078-0432.ccr-12-2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In pediatric tumor xenograft models, tumor-derived insulin growth factor (IGF-2) results in intrinsic resistance to IGF-IR-targeted antibodies, maintaining continued tumor angiogenesis. We evaluated the antiangiogenic activity of a ligand-binding antibody (MEDI-573) alone or in combination with IGF-I receptor binding antibodies (MAB391, CP01-B02). METHODS IGF-stimulated signaling was monitored by increased Akt phosphorylation in sarcoma and human umbilical cord vascular endothelial cells (HUVEC). Angiogenesis was determined in vitro using capillary tube formation in HUVECs and in vivo using a VEGF-stimulated Matrigel assay. Tumor growth delay was examined in 4 sarcoma xenograft models. RESULTS The IGF ligand-binding antibody MEDI-573 suppressed Akt phosphorylation induced by exogenous IGF-I and IGF-2 in sarcoma cells. Receptor-binding antibodies suppressed IGF-I stimulation of Akt phosphorylation, but IGF-2 circumvented this effect and maintained HUVEC tube formation. MEDI-573 inhibited HUVEC proliferation and tube formation in vitro, but did not inhibit angiogenesis in vivo, probably because MEDI-573 binds murine IGF-I with low affinity. However, in vitro antiangiogenic activity of MEDI-573 was also circumvented by human recombinant IGF-I. The combination of receptor- and ligand-binding antibodies completely suppressed VEGF-stimulated proliferation of HUVECs in the presence of IGF-I and IGF-2, prevented ligand-induced phosphorylation of IGF-IR/IR receptors, and suppressed VEGF/IGF-2-driven angiogenesis in vivo. The combination of CP1-BO2 plus MEDI-573 was significantly superior to therapy with either antibody alone against IGF-I and IGF-2 secreting pediatric sarcoma xenograft models. CONCLUSIONS These results suggest that combination of antibodies targeting IGF receptor and ligands may be an effective therapeutic strategy to block angiogenesis for IGF-driven tumors.
Collapse
Affiliation(s)
- Hemant K Bid
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The IGF (insulin-like growth factor) system is essential for physiological growth and it is also implicated in a number of diseases including cancer. IGF activity is modulated by a family of high-affinity IGF-binding proteins, and IGFBP-6 is distinctive because of its marked binding preference for IGF-II over IGF-I. A principal role for IGFBP-6 is inhibition of IGF-II actions, but recent studies have indicated that IGFBP-6 also has IGF-independent effects, including inhibition of angiogenesis and promotion of cancer cell migration. The present review briefly summarizes the IGF system in physiology and disease before focusing on recent studies on the regulation and actions of IGFBP-6, and its potential roles in cancer cells. Given the widespread interest in IGF inhibition in cancer therapeutics, increasing our understanding of the mechanisms underlying the actions of the IGF ligands, receptors and binding proteins, including IGFBP-6, will enhance our ability to develop optimal treatments that can be targeted to the most appropriate patients.
Collapse
|
23
|
Italiano A, Chen J, Zhang L, Hajdu M, Singer S, DeMatteo RP, Antonescu CR. Patterns of deregulation of insulin growth factor signalling pathway in paediatric and adult gastrointestinal stromal tumours. Eur J Cancer 2012; 48:3215-22. [PMID: 22770876 DOI: 10.1016/j.ejca.2012.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/11/2012] [Accepted: 05/22/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Data regarding the patterns and the mechanisms of deregulation of the insulin growth factor (IGF) pathway in adult and paediatric gastrointestinal stromal tumours (GISTs) are limited. METHODS We investigated the expression profiling of the genes encoding the main components of the IGF signalling pathway in 131 GISTs (106 adults, 21 paediatric and four young adults) and 25 other soft-tissue sarcomas (STS) using an Affymetrix U133A platform. IGF2 was investigated for loss of imprinting (LOI) whereas IGF1R was analysed for copy number aberration and mutation. RESULTS IGF2 was the most highly overexpressed gene of the IGF pathway in GIST. IGF2 expression was also significantly higher than in other STS. IGF2 expression was correlated to the age onset and mutational status of GIST. Indeed, IGF2 expression was significantly higher in the 'adult' group than in the 'paediatric' and 'young adult' groups. Among adult GIST, IGF2 expression was higher in tumours lacking Homo sapiens v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) or alpha-type platelet-derived growth factor receptor (PDGFRA) mutations in comparison with mutated cases. A trend for a higher expression of IGF2 in resistant GIST in comparison to responsive GIST was also found. Overexpression of IGF2 was not related to LOI. Conversely, the expression of the IGF1R gene was significantly higher in the paediatric group than in the adult group. No copy number gains or mutations of IGF1R were observed. CONCLUSION The IGF pathway is deregulated in GIST with distinct patterns according to age onset and mutational status. The IGF pathway may represent a therapeutic target in patients with primary or secondary resistance to imatinib.
Collapse
Affiliation(s)
- Antoine Italiano
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang C, Lu L, Li Y, Wang X, Zhou J, Liu Y, Fu P, Gallicchio MA, Bach LA, Duan C. IGF binding protein-6 expression in vascular endothelial cells is induced by hypoxia and plays a negative role in tumor angiogenesis. Int J Cancer 2012; 130:2003-12. [PMID: 21618524 PMCID: PMC3259243 DOI: 10.1002/ijc.26201] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 05/06/2011] [Indexed: 12/12/2022]
Abstract
Hypoxia stimulates tumor angiogenesis by inducing the expression of angiogenic molecules. The negative regulators of this process, however, are not well understood. Here, we report that hypoxia induced the expression of insulin-like growth factor binding protein-6 (IGFBP-6), a tumor repressor, in human and rodent vascular endothelial cells (VECs) via a hypoxia-inducible factor (HIF)-mediated mechanism. Addition of human IGFBP-6 to cultured human VECs inhibited angiogenesis in vitro. An IGFBP-6 mutant with at least 10,000-fold lower binding affinity for IGFs was an equally potent inhibitor of angiogenesis, suggesting that this action of IGFBP-6 is IGF-independent. The functional relationship between IGFBP-6 and vascular endothelial growth factor (VEGF), a major hypoxia-inducible angiogenic molecule, was examined. While VEGF alone increased angiogenesis in vitro, co-incubation with IGFBP-6 abolished VEGF-stimulated angiogenesis. The in vivo role of IGFBP-6 in angiogenesis was tested in flk1:GFP zebrafish embryos, which exhibit green fluorescence protein in developing vascular endothelium, permitting visualization of developing blood vessels. Injection of human IGFBP-6 mRNA reduced the number of embryonic inter-segmental blood vessels by ∼40%. This anti-angiogenic activity is conserved in zebrafish because expression of zebrafish IGFBP-6b had similar effects. To determine the anti-angiogenic effect of IGFBP-6 in a tumor model, human Rh30 rhabdomyosarcoma cells stably transfected with IGFBP-6 were inoculated into athymic BALB/c nude mice. Vessel density was 52% lower in IGFBP-6-transfected xenografts than in vector control xenografts. These results suggest that the expression of IGFBP-6 in VECs is up-regulated by hypoxia and IGFBP-6 inhibits angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Chunyang Zhang
- Key Laboratory of Marine Drugs (Ocean University of China), Ministry of Education and School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Forbes BE, McCarthy P, Norton RS. Insulin-like growth factor binding proteins: a structural perspective. Front Endocrinol (Lausanne) 2012; 3:38. [PMID: 22654863 PMCID: PMC3356058 DOI: 10.3389/fendo.2012.00038] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/16/2012] [Indexed: 11/13/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBP-1 to -6) bind insulin-like growth factors-I and -II (IGF-I and IGF-II) with high affinity. These binding proteins maintain IGFs in the circulation and direct them to target tissues, where they promote cell growth, proliferation, differentiation, and survival via the type 1 IGF receptor. IGFBPs also interact with many other molecules, which not only influence their modulation of IGF action but also mediate IGF-independent activities that regulate processes such as cell migration and apoptosis by modulating gene transcription. IGFBPs-1 to -6 are structurally similar proteins consisting of three distinct domains, N-terminal, linker, and C-terminal. There have been major advances in our understanding of IGFBP structure in the last decade and a half. While there is still no structure of an intact IGFBP, several structures of individual N- and C-domains have been solved. The structure of a complex of N-BP-4:IGF-I:C-BP-4 has also been solved, providing a detailed picture of the structural features of the IGF binding site and the mechanism of binding. Structural studies have also identified features important for interaction with extracellular matrix components and integrins. This review summarizes structural studies reported so far and highlights features important for binding not only IGF but also other partners. We also highlight future directions in which structural studies will add to our knowledge of the role played by the IGFBP family in normal growth and development, as well as in disease.
Collapse
Affiliation(s)
- Briony E Forbes
- The School of Molecular and Biomedical Science, The University of Adelaide Adelaide, SA, Australia
| | | | | |
Collapse
|
26
|
Micutkova L, Diener T, Li C, Rogowska-Wrzesinska A, Mueck C, Huetter E, Weinberger B, Grubeck-Loebenstein B, Roepstorff P, Zeng R, Jansen-Duerr P. Insulin-like growth factor binding protein-6 delays replicative senescence of human fibroblasts. Mech Ageing Dev 2011; 132:468-79. [PMID: 21820463 PMCID: PMC3192261 DOI: 10.1016/j.mad.2011.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 07/08/2011] [Accepted: 07/15/2011] [Indexed: 01/10/2023]
Abstract
Cellular senescence can be induced by a variety of mechanisms, and recent data suggest a key role for cytokine networks to maintain the senescent state. Here, we have used a proteomic LC-MS/MS approach to identify new extracellular regulators of senescence in human fibroblasts. We identified 26 extracellular proteins with significantly different abundance in conditioned media from young and senescent fibroblasts. Among these was insulin-like growth factor binding protein-6 (IGFBP-6), which was chosen for further analysis. When IGFBP-6 gene expression was downregulated, cell proliferation was inhibited and apoptotic cell death was increased. Furthermore, downregulation of IGFBP-6 led to premature entry into cellular senescence. Since IGFBP-6 overexpression increased cellular lifespan, the data suggest that IGFBP-6, in contrast to other IGF binding proteins, is a negative regulator of cellular senescence in human fibroblasts.
Collapse
Affiliation(s)
- Lucia Micutkova
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | - Thomas Diener
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | - Chen Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Adelina Rogowska-Wrzesinska
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Christoph Mueck
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | - Eveline Huetter
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | - Beatrix Grubeck-Loebenstein
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | - Peter Roepstorff
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pidder Jansen-Duerr
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
- Corresponding author. Tel.: +43 512 583919 44; fax: +43 512 583919 8.
| |
Collapse
|
27
|
Cui J, Ma C, Qiu J, Ma X, Wang X, Chen H, Huang B. A novel interaction between insulin-like growth factor binding protein-6 and the vitamin D receptor inhibits the role of vitamin D3 in osteoblast differentiation. Mol Cell Endocrinol 2011; 338:84-92. [PMID: 21458526 DOI: 10.1016/j.mce.2011.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 01/25/2011] [Accepted: 03/10/2011] [Indexed: 01/24/2023]
Abstract
Insulin-like growth factor binding protein-6 (IGFBP-6) is a secreted glycoprotein that reduces the bioavailability of IGFs. It has both IGF-dependent and -independent effects on cell growth, however the mechanisms responsible for its IGF-independent actions of IGFBP-6 are not fully understood. In previous studies, we have shown that recombinant IGFBP-6 can be internalized and translocated to the nucleus. The present study shows that IGFBP-6 interacts with the vitamin D receptor (VDR). Physical interactions between IGFBP-6 and the VDR were confirmed by GST pulldown and co-immunoprecipitation assays. We also determined that the interaction binding sites were on the C-terminal region of the VDR. This interaction can influence retinoid X receptor (RXR):VDR heterodimerization. Furthermore, immunofluorescence colocalization studies showed that IGFBP-6 colocalized with the VDR predominantly in the cell's nucleus. Inductions of osteocalcin and growth hormone promoter activities by 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) were significantly decreased when cells were co-transfected with IGFBP-6 and the VDR compared with cells transfected with the VDR only. Moreover, we found that alkaline phosphatase activity (ALP, a general marker of osteoblast differentiation) was significantly decreased in osteoblast-like cells when they were transfected with IGFBP-6 in the presence of 1,25(OH)(2)D(3). No obvious difference in ALP activity was observed when cells were transfected with IGFBP-6 and endogenous VDR was knocked down by siRNA. These results demonstrate that IGFBP-6 inhibits osteoblastic differentiation mediated by 1,25(OH)(2)D(3) and the VDR through interacting with the VDR and inhibiting its function. This is a novel mechanism for IGFBP-6.
Collapse
Affiliation(s)
- Jian Cui
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Purification and characterization of native human insulin-like growth factor binding protein-6. J Cell Commun Signal 2011; 5:277-89. [PMID: 21484185 PMCID: PMC3245759 DOI: 10.1007/s12079-011-0126-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 02/28/2011] [Indexed: 12/12/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) are key regulators of insulin-like growth factor (IGF) mediated signal transduction and thereby can profoundly influence cellular phenotypes and cell fate. Whereas IGFBPs are extracellular proteins, intracellular activities were described for several IGFBP family members, such as IGFBP-3, which can be reinternalized by endocytosis and reaches the nucleus through routes that remain to be fully established. Within the family of IGFBPs, IGFBP-6 is unique for its specific binding to IGF-II. IGFBP-6 was described to possess additional IGF-independent activities, which have in part been attributed to its translocation to the nucleus; however, cellular uptake of IGFBP-6 was not described. To further explore IGFBP-6 functions, we developed a new method for the purification of native human IGFBP-6 from cell culture supernatants, involving a four-step affinity purification procedure, which yields highly enriched IGFBP-6. Whereas protein purified in this way retained the capacity to interact with IGF-II and modulate IGF-dependent signal transduction, our data suggest that, unlike IGFBP-3, human IGFBP-6 is not readily internalized by human tumor cells. To summarize, this work describes a novel and efficient method for the purification of native human insulin-like growth factor binding protein 6 (IGFBP-6) from human cell culture supernatants, applying a four-step chromatography procedure. Intactness of purified IGFBP-6 was confirmed by IGF ligand Western blot and ability to modulate IGF-dependent signal transduction. Cellular uptake studies were performed to further characterize the purified protein, showing no short-term uptake of IGFBP-6, in contrast to IGFBP-3.
Collapse
|
29
|
Bid HK, Houghton PJ. Targeting angiogenesis in childhood sarcomas. Sarcoma 2010; 2011:601514. [PMID: 21197468 PMCID: PMC3005857 DOI: 10.1155/2011/601514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 10/29/2010] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis and vasculogenesis constitute two processes in the formation of new blood vessels and are essential for progression of solid tumors. Consequently, targeting angiogenesis, and to a lesser extent vasculogenesis, has become a major focus in cancer drug development. Angiogenesis inhibitors are now being tested in pediatric populations whereas inhibitors of vasculogenesis are in an earlier stage of development. Despite the initial enthusiasm for targeting angiogenesis for treatment of cancer, clinical trials have shown only incremental increases in survival, and agents have been largely cytostatic rather than inducing tumor regressions. Consequently, the role of such therapeutic approaches in the context of curative intent for childhood sarcomas is less clear. Here we review the literature on blood vessel formation in sarcomas with a focus on pediatric sarcomas and developments in targeting angiogenesis for treatment of these rare cancers.
Collapse
Affiliation(s)
- Hemant K. Bid
- Center for Childhood Cancer, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Peter J. Houghton
- Center for Childhood Cancer, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| |
Collapse
|
30
|
Fu P, Liang GJ, Khot SS, Phan R, Bach LA. Cross-talk between MAP kinase pathways is involved in IGF-independent, IGFBP-6-induced Rh30 rhabdomyosarcoma cell migration. J Cell Physiol 2010; 224:636-43. [PMID: 20432455 DOI: 10.1002/jcp.22156] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin-like growth factor binding protein-6 (IGFBP-6) inhibits the tumorigenic properties of IGF-II-dependent cancer cells by directly inhibiting IGF-II actions. However, in some cases, IGFBP-6 is associated with increased cancer cell tumorigenicity, which is unlikely to be due to IGF-II inhibition. The mechanisms underlying the contradictory actions of IGFBP-6 remain unclear. We recently generated an IGFBP-6 mutant that does not bind IGFs (mIGFBP-6) to address this issue. Although RD rhabdomyosarcoma cells express IGF-II, we previously showed that mIGFBP-6 promoted migration through an IGF-independent, p38-dependent pathway. We further studied the role of MAP kinases in IGFBP-6-induced migration of Rh30 rhabdomyosarcoma cells, which also express IGF-II. In these cells, mIGFBP-6 induced chemotaxis rather than chemokinesis. Both wild-type (wt) and mIGFBP-6 transiently induced phosphorylation of ERK1/2 and JNK1, but not p38. Inhibition of ERK1/2 phosphorylation completely prevented mIGFBP-6-induced ERK1/2 activation and cell migration, whereas a JNK inhibitor partially prevented migration. Interestingly, p38 pathway inhibition completely prevented mIGFBP-6-induced ERK1/2 and JNK1 activation and migration despite mIGFBP-6 not activating p38. Furthermore, blocking the ERK1/2 pathway also inhibited mIGFBP-6-induced JNK1 activation. In contrast, IGFBP-6 had no effect on Akt phosphorylation and an Akt inhibitor had no effect on migration. These results indicate that IGFBP-6 promotes Rh30 rhabdomyosarcoma chemotaxis in an IGF-independent manner, and that MAPK signaling pathways and their cross-talk play an important role in this process. Therefore, besides decreasing Rh30 cell proliferation by inhibiting IGF-II, IGFBP-6 promotes their migration via a distinct pathway. Understanding these disparate actions of IGFBP-6 may lead to the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Ping Fu
- Department of Medicine, Central Clinical School, AMREP, Monash University, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
31
|
Kuo YS, Tang YB, Lu TY, Wu HC, Lin CT. IGFBP-6 plays a role as an oncosuppressor gene in NPC pathogenesis through regulating EGR-1 expression. J Pathol 2010; 222:299-309. [DOI: 10.1002/path.2735] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Wang X, Lu L, Li Y, Li M, Chen C, Feng Q, Zhang C, Duan C. Molecular and functional characterization of two distinct IGF binding protein-6 genes in zebrafish. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1348-57. [PMID: 19279291 DOI: 10.1152/ajpregu.90969.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor binding proteins (IGFBPs) are high-affinity binding partners for IGFs and play important roles in modulating IGF activities. In this study, we have identified and characterized two functional IGFBP-6 genes in zebrafish. Structural, phylogenetic, and comparative genomic analyses indicate that they are co-orthologs of the human IGFBP-6 gene. To gain insight into how the duplicated genes may have evolved through partitioning of ancestral functions, gene expression and functional studies were carried out. In adult fish, IGFBP-6a mRNA was most abundantly expressed in the muscle. The levels of IGFBP-6a mRNA in nonmuscle tissues were very low or barely detectable. In comparison, the levels of IGFBP-6b mRNA were high in the brain, heart, and muscle, but very low or undetectable in other adult tissues. During embryogenesis, the IGFBP-6a mRNA levels were relatively low. The IGFBP-6b mRNA levels were low during the initial 48 h. They became significantly higher at 72 and 96 h postfertilization. Overexpression of zebrafish IGFBP-6a and IGFBP-6b caused a similar degree of reduction in body size and developmental rate. No notable effects were observed on cell fate or patterning in these transgenic fish. These data suggest that the duplicated igfbp-6 genes encode two functionally similar proteins, but they have evolved distinct spatial and temporal expression patterns. These findings are consistent with the notion of an additional gene duplication event in teleost fish and have provided novel insight into the structural and functional evolution of the IGFBP gene family.
Collapse
Affiliation(s)
- Xianlei Wang
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Makawita S, Ho M, Durbin AD, Thorner PS, Malkin D, Somers GR. Expression of insulin-like growth factor pathway proteins in rhabdomyosarcoma: IGF-2 expression is associated with translocation-negative tumors. Pediatr Dev Pathol 2009; 12:127-35. [PMID: 18788888 DOI: 10.2350/08-05-0477.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 07/29/2008] [Indexed: 01/08/2023]
Abstract
Recent studies have shown a significant involvement of insulin-like growth factor (IGF) signaling components in the pathogenesis of rhabdomyosarcoma (RMS). Furthermore, there has been some evidence to indicate that differential expression of IGF pathway genes can distinguish RMS subtypes. The present study utilized immunohistochemistry to determine the expression patterns of IGF1, IGF2, IGF binding protein 2 (IGFBP2), IGF receptor 1 (IGF1R), and IGF receptor 2 (IGF2R) in 24 embryonal RMS (ERMS) and 8 alveolar RMS (ARMS). A majority of tumors were positive for IGF2, IGFBP2, IGF1R, and IGF2R and negative for IGF1 expression. However, only IGF2 showed a significant difference in expression between the ERMS and ARMS subtypes, with higher levels of expression in ERMS (P = 0.0003). Within the ARMS subtype, IGF2 positivity was limited to PAX/FKHR translocation-negative tumors. The staining pattern for all 5 proteins was diffuse cytoplasmic in the majority of tumors. Analysis of RMS cell lines by real-time reverse transcriptase-polymerase chain reaction for IGF2 expression revealed significantly higher mean expression levels in ERMS and translocation-negative ARMS cell lines when compared to translocation-positive ARMS cell lines (P = 0.0027). Stable introduction of PAX3/FKHR into an ERMS cell line also demonstrated a significant reduction in IGF2 expression. The results of this study show that expression of the IGF2 ligand is associated with translocation-negative tumors and may serve as a diagnostic aid in distinguishing RMS subtypes. Furthermore, the in vitro results are supportive of a role for the PAX3/FKHR fusion gene in the inhibition of IGF2 expression.
Collapse
Affiliation(s)
- Shalini Makawita
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
SEMA3B, a member of class 3 semaphorins, is a tumor suppressor. Competition with vascular endothelial growth factor (VEGF)165 explains a portion of the activity, whereas the VEGF-independent mechanism was not elucidated. We employed a microarray and screened for the genes whose expression was increased by SEMA3B in NCI-H1299 cells. Insulin-like growth factor-binding protein-6 (IGFBP-6), a tumor suppressor, showed greatest difference in the expression level. Introduction of IGFBP-6 cDNA reduced colony formation both on the dish surface and in soft agar. Insulin-like growth factor II, which antagonizes IGFBP-6, partly abrogated the effect. Inhibition of IGFBP-6 by small interfering RNA diminished the sub-G0/G1 population that was induced by SEMA3B and abrogated the growth suppressive effect of SEMA3B. We concluded that IGFBP-6 is the effector of tumor suppressor activity of SEMA3B in NCI-H1299 cells. It has been reported that beta-catenin suppresses the expression of IGFBP-6. Introduction of beta-catenin into the cells partly abrogated the growth suppressive effect of SEMA3B. Our result indicates that semaphorin signaling and beta-catenin signaling converge on IGFBP-6 and antithetically affect their functions.
Collapse
|
35
|
Iosef C, Gkourasas T, Jia CYH, Li SSC, Han VKM. A functional nuclear localization signal in insulin-like growth factor binding protein-6 mediates its nuclear import. Endocrinology 2008; 149:1214-26. [PMID: 18039785 DOI: 10.1210/en.2007-0959] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF binding protein (IGFBP)-6 is a member of the IGFBP family that regulates the actions of IGFs. Although IGFBPs exert their functions extracellularly in an autocrine/paracrine manner, several members of the family, such as IGFBP-3 and -5, possess nuclear localization signals (NLS). To date, no NLS has been described for IGFBP-6, an IGFBP that binds preferentially to IGF-II. We report here that both exogenous and endogenous IGFBP-6 could be imported into the nuclei of rhabdomyosarcoma and HEK-293 cells. Nuclear import of IGFBP-6 was mediated by a NLS sequence that bears limited homology to those found in IGFBP-3 and -5. IGFBP-6 nuclear translocation was an active process that required importins. A peptide corresponding to the IGFBP-6 NLS bound preferentially to importin-alpha. A comprehensive peptide array study revealed that, in addition to positively charged residues such as Arg and Lys, amino acids, notably Gly and Pro, within the NLS, played an important part in binding to importins. Overexpression of wild-type IGFBP-6 increased apoptosis, and the addition of IGF-II did not negate this effect. Only the deletion of the NLS segment abolished the apoptosis effect. Taken together, these results suggest that IGFBP-6 is translocated to the nucleus with functional consequences and that different members of the IGFBP family have specific nuclear import mechanisms.
Collapse
Affiliation(s)
- Cristiana Iosef
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | |
Collapse
|
36
|
Al-Romaih K, Somers GR, Bayani J, Hughes S, Prasad M, Cutz JC, Xue H, Zielenska M, Wang Y, Squire JA. Modulation by decitabine of gene expression and growth of osteosarcoma U2OS cells in vitro and in xenografts: identification of apoptotic genes as targets for demethylation. Cancer Cell Int 2007; 7:14. [PMID: 17845729 PMCID: PMC2034371 DOI: 10.1186/1475-2867-7-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 09/10/2007] [Indexed: 11/30/2022] Open
Abstract
Background Methylation-mediated silencing of genes is one epigenetic mechanism implicated in cancer. Studies regarding the role of modulation of gene expression utilizing inhibitors of DNA methylation, such as decitabine, in osteosarcoma (OS) have been limited. A biological understanding of the overall effects of decitabine in OS is important because this particular agent is currently undergoing clinical trials. The objective of this study was to measure the response of the OS cell line, U2OS, to decitabine treatment both in vitro and in vivo. Results Microarray expression profiling was used to distinguish decitabine-dependent changes in gene expression in U2OS cells, and to identify responsive loci with demethylated CpG promoter regions. U2OS xenografts were established under the sub-renal capsule of immune-deficient mice to study the effect of decitabine in vivo on tumor growth and differentiation. Reduced nuclear methylation levels could be detected in xenografts derived from treated mice by immunohistochemistry utilizing a 5-methylcytidine antibody. Decitabine treatment reduced tumor xenograft size significantly (p < 0.05). Histological analysis of treated U2OS xenograft sections revealed a lower mitotic activity (p < 0.0001), increased bone matrix production (p < 0.0001), and a higher number of apoptotic cells (p = 0.0329). Microarray expression profiling of U2OS cultured cells showed that decitabine treatment caused a significant induction (p < 0.0025) in the expression of 88 genes. Thirteen had a ≥2-fold change, 11 of which had CpG-island-associated promoters. Interestingly, 6 of these 11 were pro-apoptotic genes and decitabine resulted in a significant induction of cell death in U2OS cells in vitro (p < 0.05). The 6 pro-apoptotic genes (GADD45A, HSPA9B, PAWR, PDCD5, NFKBIA, and TNFAIP3) were also induced to ≥2-fold in vivo. Quantitative methylation pyrosequencing confirmed that the tested pro-apoptotic genes had CpG-island DNA demethylationas a result of U2OS decitabine treatment both in vitro and in xenografts Conclusion These data provide new insights regarding the use of epigenetic modifiers in OS, and have important implications for therapeutic trials involving demethylation drugs. Collectively, these data have provided biological evidence that one mode of action of decitabine may be the induction of apoptosis utilizing promoter-CpG demethylation of specific effectors in cell death pathways in OS.
Collapse
Affiliation(s)
- Khaldoun Al-Romaih
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. M5G 1L5
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada. M5G 2M9
| | - Gino R Somers
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. M5G 1L5
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada. M5G 1X8
| | - Jane Bayani
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada. M5G 2M9
| | - Simon Hughes
- Division of Tumor Biology, Institute of Cancer and Cancer Research, UK Clinical Centre, Barts and the London School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London, United Kingdom, EC1M 6BQ
| | - Mona Prasad
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada. M5G 2M9
| | - Jean-Claude Cutz
- Departments of Pathology & Molecular Medicine, and Laboratory Medicine, McMaster University, St. Joseph's Healthcare – Hamilton Regional Laboratory Medicine Program, Hamilton, Canada L8N 4A6
| | - Hui Xue
- Department of Cancer Endocrinology, British Columbia Cancer Agency, Vancouver, Canada. V5Z 1L3
| | - Maria Zielenska
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. M5G 1L5
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada. M5G 1X8
| | - Yuzhuo Wang
- Department of Cancer Endocrinology, British Columbia Cancer Agency, Vancouver, Canada. V5Z 1L3
- The Prostate Centre, Vancouver General Hospital, Vancouver, Canada, V6H 3Z6
| | - Jeremy A Squire
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. M5G 1L5
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada. M5G 2M9
- Department of Cancer Endocrinology, British Columbia Cancer Agency, Vancouver, Canada. V5Z 1L3
| |
Collapse
|
37
|
Fu P, Thompson JA, Bach LA. Promotion of cancer cell migration: an insulin-like growth factor (IGF)-independent action of IGF-binding protein-6. J Biol Chem 2007; 282:22298-306. [PMID: 17519236 DOI: 10.1074/jbc.m703066200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A family of six high affinity IGF-binding proteins (IGFBPs 1-6) plays an important role in modulating IGF activities. Recent studies suggest that some IGFBPs may have IGF-independent effects, including induction of apoptosis and modulation of cell migration. However, very little is known about possible IGF-independent actions of IGFBP-6. We have generated a non-IGF-binding IGFBP-6 mutant by substituting Ala for four amino acid residues (Pro(93)/Leu(94)/Leu(97)/Leu(98)) in its N-domain IGF-binding site. A >10,000-fold loss of binding affinity for IGF-I and IGF-II was observed using charcoal solution binding assay, BIAcore biosensor, and ligand blotting. Wild-type and mutant IGFBP-6, as well as IGF-II, induced cell migration in RD rhabdomyosarcoma and LIM 1215 colon cancer cells. Cell migration was mediated by the C-domain of IGFBP-6. Transient p38 phosphorylation was observed in RD cells after treatment with IGFBP-6, whereas no change was seen in phospho-ERK1/2 levels. Phospho-JNK was not detected. IGFBP-6-induced cell migration was inhibited by SB203580, an inhibitor of p38 MAPK, and PD98059, an inhibitor of ERK1/2 MAPK activation. In contrast, SP600125, a JNK MAPK inhibitor, had no effect on migration. Knockdown of p38 MAPK using short interfering RNA blocked IGFBP-6-induced migration of RD cells. These results indicate that p38 MAPK is involved in IGFBP-6-induced IGF-independent RD cell migration.
Collapse
Affiliation(s)
- Ping Fu
- Department of Medicine, Central and Eastern Clinical School, Monash University, Prahran Victoria 3181, Australia.
| | | | | |
Collapse
|
38
|
Chen Z, Chen H, Wang X, Ma X, Huang B. Expression, purification, and characterization of secreted recombinant human insulin-like growth factor-binding protein-6 in methylotrophic yeast Pichia pastoris. Protein Expr Purif 2007; 52:239-48. [PMID: 17188511 DOI: 10.1016/j.pep.2006.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 10/20/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
The mitogenic and metabolic activities of insulin-like growth factors (IGF) are modulated by a family of six high-affinity IGF-binding proteins (IGFBPs). This study describes the secretion and purification of the recombinant human IGFBP-6 expressed in methylotrophic yeast Pichia pastoris. In this research, a multicopy expression plasmid pA-O815/3xIGFBP-6 containing 3 copies of human IGFBP-6 expression cassette was constructed and transformed into P. pastoris GS115. The encoding sequence of alpha-factor leading peptide fused in-frame at the 5' end of human IGFBP-6 open reading frame and led expressed IGFBP-6 into the secretory pathway. After transformed cells were induced with methanol, medium supernatant was analyzed by SDS-PAGE and Western blotting. The two major protein bands of approximately 30 and approximately 18kDa were detected. The protein of approximately 30kDa was confirmed to be the glycosylated recombinant human IGFBP-6 (rhIGFBP-6), which was partially proteolyzed by protease Kex2 to produce a approximately 18kDa fragment. Approximately 95% homogeneity of the soluble form of 30kDa rhIGFBP-6 were achieved by two-step purification procedure using ion-exchange chromatography and then hydrophobic-interaction chromatography. The rhIGFBP-6 could be distributed to all of the cell body when cultured MDA-MB-231 cell with rhIGFBP-6 and the activities of rhIGFBP-6 were assayed by [(3)H]thymidine incorporation, which revealed that rhIGFBP-6 inhibited IGF-II-stimulated cell proliferation. Our results demonstrated that functional rhIGFBP-6 can be produced in sufficient quantities by using P. pastoris for further structural and functional studies.
Collapse
Affiliation(s)
- Zhaoli Chen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, PR China
| | | | | | | | | |
Collapse
|
39
|
Fu P, Thompson JA, Leeding KS, Bach LA. Insulin-like growth factors induce apoptosis as well as proliferation in LIM 1215 colon cancer cells. J Cell Biochem 2007; 100:58-68. [PMID: 16888814 DOI: 10.1002/jcb.20984] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The insulin-like growth factor (IGF) system plays an important role in cell proliferation and survival. However, more recently, a small number of studies have shown that IGFs induce apoptosis in some cells. Our initial studies showed this occurred in LIM 1215 colon cancer cells but not RD rhabdomyosarcoma cells. IGFs induced both proliferation and apoptosis in LIM 1215 cells, and the induction of apoptosis was dose-dependent. [R54, R55]IGF-II, which binds to the IGF-I receptor with normal affinity but does not bind to the IGF-II receptor, induced apoptosis to the same extent as IGF-II, whereas [L27]IGF-II, which binds to the IGF-I receptor with 1000-fold reduced affinity, had no effect on apoptosis. These results suggest that the IGF-I receptor is involved in induction of apoptosis. Western blot analyses demonstrated that Akt and Erk1/2 were constitutively activated in RD cells. In contrast, phosphorylation of Akt and Erk1/2 were transient and basal expression of Akt protein was lower in LIM 1215 cells. Analysis of apoptosis-related proteins showed that IGFs decreased pro-caspase-3 levels and increased expression of pro-apoptotic Bad in LIM 1215 cells. IGFs co-activate proliferative and apoptotic pathways in LIM 1215 cells, which may contribute to increased cell turnover. Since high turnover correlates with poor prognosis in colorectal cancer, this study provides further evidence for the role of the IGF system in its progression.
Collapse
Affiliation(s)
- Ping Fu
- Department of Medicine, Central & Eastern Clinical School, Alfred Hospital, Monash University, Prahran VIC 3181, Australia
| | | | | | | |
Collapse
|
40
|
Koike H, Ito K, Takezawa Y, Oyama T, Yamanaka H, Suzuki K. Insulin-like growth factor binding protein-6 inhibits prostate cancer cell proliferation: implication for anticancer effect of diethylstilbestrol in hormone refractory prostate cancer. Br J Cancer 2005; 92:1538-44. [PMID: 15846301 PMCID: PMC2362003 DOI: 10.1038/sj.bjc.6602520] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Diethylstilbestrol (DES) is a synthetic oestrogen, and its anticancer effects are exerted in androgen-dependent prostate cancer. The administration of DES decreases serum testosterone to castration levels. However, in androgen-independent prostate cancer patients, who are already orchiectomised, the administration of DES improves symptoms and decreases prostate-specific antigen (PSA). The mechanisms responsible for these direct inhibitory effects have been explained as biological actions not mediated by oestrogen receptors. We assessed the gene expression profiles of prostate cancer cells treated with DES, and investigated direct inhibitory effects of DES. DES inhibited the proliferation of LNCaP and PC-3 cells. cDNA microarray analysis showed that expression of many genes was downregulated by DES. However, insulin-like growth factor binding protein 6 (IGFBP-6) gene expression levels were upregulated in PC-3 cells. IGFBP-6 gene expression and protein levels significantly increased after DES treatment. Recombinant IGFBP-6 inhibited cell proliferation, and the inhibitory effect of DES was neutralised by anti-IGFBP-6 antibody. From the immunohistochemical analysis of IGFBP-6 using biopsy samples from androgen-independent prostate cancer, we found IGFBP-6 expression in androgen independent prostate cancer, and that DES treatment increased the IGFBP-6 staining intensity of the cancer cells in one sample. These findings suggested that DES induces IGFBP-6, which inhibits cell proliferation in an androgen-independent prostate cancer cell line, PC-3. IGFBP-6 therefore might be involved in the direct effects of DES in androgen-independent prostate cancer.
Collapse
Affiliation(s)
- H Koike
- Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511, Japan
| | - K Ito
- Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511, Japan
| | - Y Takezawa
- Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511, Japan
| | - T Oyama
- Department of Tumor Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511, Japan
| | - H Yamanaka
- Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511, Japan
| | - K Suzuki
- Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511, Japan
- Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511, Japan. E-mail:
| |
Collapse
|
41
|
Abstract
Insulin-like growth factor binding protein (IGFBP)-6 is unique among IGFBPs for its IGF-II binding specificity. IGFBP-6 inhibits growth of a number of IGF-II-dependent cancers, including rhabdomyosarcoma, neuroblastoma and colon cancer. Although the major action of IGFBP-6 appears to be inhibition of IGF-II actions, a number of studies suggest that it may also have IGF-independent actions. Gene array studies show regulation of IGFBP-6 in many circumstances that are consistent with antiproliferative actions. However, other studies show the opposite, so that IGFBP-6 may be acting as a counter-regulator in these situations or it may have other as yet undetermined actions. Both the N-terminal and C-terminal domains of IGFBP-6 contribute to high affinity IGF binding, and the C-terminal domain appears to confer its IGF-II specificity. The three-dimensional structure of the C-domain of IGFBP-6 contains a thyroglobulin type 1 fold, and the IGF-II binding site is located in the proximal half of this domain adjacent to the glycosaminoglycan binding site. Future studies are needed to further delineate the putative IGF-independent actions of IGFBP-6 and to build on the structural information to enhance our understanding of this IGFBP. This is particularly significant since IGFBP-6 provides an attractive basis for therapy of IGF-II-dependent tumors.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, Vic. 3004, Australia.
| |
Collapse
|
42
|
Headey SJ, Keizer DW, Yao S, Brasier G, Kantharidis P, Bach LA, Norton RS. C-terminal domain of insulin-like growth factor (IGF) binding protein-6: structure and interaction with IGF-II. Mol Endocrinol 2004; 18:2740-50. [PMID: 15308688 DOI: 10.1210/me.2004-0248] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
IGFs are important mediators of growth. IGF binding proteins (IGFBPs) 1-6 regulate IGF actions and have IGF-independent actions. The C-terminal domains of IGFBPs contribute to high-affinity IGF binding and modulation of IGF actions and confer some IGF-independent properties, but understanding how they achieve this has been constrained by the lack of a three-dimensional structure. We therefore determined the solution structure of the C-domain of IGFBP-6 using nuclear magnetic resonance (NMR). The domain consists of a thyroglobulin type 1 fold comprising an alpha-helix followed by a loop, a three-stranded antiparallel beta-sheet incorporating a second loop, and finally a disulfide-bonded flexible third loop. The IGF-II binding site on the C-domain was identified by examining NMR spectral changes upon complex formation. It consists of a largely hydrophobic surface patch involving the alpha-helix, the first beta-strand, and the first and second loops. The site was confirmed by mutagenesis of several residues, which resulted in decreased IGF binding affinity. The IGF-II binding site lies adjacent to surfaces likely to be involved in glycosaminoglycan binding of IGFBPs, which might explain their decreased IGF affinity when bound to glycosaminoglycans, and nuclear localization. Our structure provides a framework for understanding the roles of IGFBP C-domains in modulating IGF actions and conferring IGF-independent actions, as well as ultimately for the development of therapeutic IGF inhibitors for diseases including cancer.
Collapse
Affiliation(s)
- Stephen J Headey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Dake BL, Boes M, Bach LA, Bar RS. Effect of an insulin-like growth factor binding protein fusion protein on thymidine incorporation in neuroblastoma and rhabdomyosarcoma cell lines. Endocrinology 2004; 145:3369-74. [PMID: 15090464 DOI: 10.1210/en.2003-1667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A fusion protein, FP 6/3, composed of IGF binding protein (IGFBP)-6 and IGFBP-3 was synthesized where the complete sequences of each binding protein were fused together into a single chimeric protein. The orientation of this fusion protein's structure has the N terminus of IGFBP-3 fused to the C terminus of IGFBP-6, leaving the key binding areas of each open. FP 6/3 bound to cells via its IGFBP-3 component and retained the increased affinity for IGF-II via its IGFBP-6 component. The effect of FP 6/3 on growth was determined in cell lines from both neuroblastoma and rhabdomyosarcoma, where IGF-II is an autocrine growth factor. In studies using FP 6/3, IGFBP-3, or IGFBP-6, a growth inhibition effect was shown for all when present under coincubation conditions with IGF-II. However, with transient exposure, FP 6/3 was the only IGFBP that retained this growth-inhibition property. Under transient exposure conditions, FP 6/3 was found to be effective when exposure was limited to as few as 10 min and concentrations were as low as 1 nm. These findings with FP 6/3 suggest that it potentially could lead be used as therapy against cancers in which IGF-II is an autocrine growth factor because it brings an inhibition action directly to tumor cells.
Collapse
Affiliation(s)
- Brian L Dake
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa 52246, USA
| | | | | | | |
Collapse
|
44
|
Headey SJ, Keizer DW, Yao S, Wallace JC, Bach LA, Norton RS. Binding site for the C-domain of insulin-like growth factor (IGF) binding protein-6 on IGF-II; implications for inhibition of IGF actions. FEBS Lett 2004; 568:19-22. [PMID: 15196913 DOI: 10.1016/j.febslet.2004.04.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 04/16/2004] [Accepted: 04/22/2004] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factors (IGFs) are important mediators of growth and IGF-binding proteins (IGFBPs) 1-6 regulate IGF actions. As IGFBP C-terminal domains contribute to high-affinity IGF binding, we have defined the binding site for the C-domain of IGFBP-6 on IGF-II using NMR. This site lies adjacent to and between the binding sites for the IGFBP N-domain and IGF-I receptor (IGFIR), which have previously been found on opposite sides of the IGF molecule. The C-domain is therefore likely to interfere with IGF binding to the IGFIR, providing a structural basis for the potent inhibitory effects of intact IGFBPs on IGF actions.
Collapse
Affiliation(s)
- Stephen J Headey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Australia
| | | | | | | | | | | |
Collapse
|
45
|
Gallicchio MA, Kaun C, Wojta J, Binder B, Bach LA. Urokinase type plasminogen activator receptor is involved in insulin-like growth factor-induced migration of rhabdomyosarcoma cells in vitro. J Cell Physiol 2003; 197:131-8. [PMID: 12942549 DOI: 10.1002/jcp.10352] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Urokinase-type plasminogen activator (uPA) binds to its receptor, uPAR, on the surface of cancer cells, leading to the formation of plasmin. Rhabdomyosarcoma (RMS) cell lines secrete high levels of insulin-like growth factor II (IGF-II), suggesting autocrine IGFs play a major role in the unregulated growth and metastasis of RMS. In vitro, IGF-II and IGF-I increased migration of RD cells to 124+/-9% (P<0.01) and 131+/-8% (P<0.05) of control, respectively. IGF-II-induced migration was abolished by insulin-like growth factor binding protein-6 (IGFBP-6) (P<0.01), a relatively specific inhibitor of IGF-II, and by plasminogen activator inhibitor type 1 (PAI-1) (P<0.05). Aprotinin, a plasmin inhibitor, and mannosamine, which inhibits the synthesis of glycosylphosphatidylinositol (GPI), thereby preventing anchorage of GPI-linked proteins such as uPAR to the cell membrane, also decreased IGF-II- (P<0.05 for both) but not IGF-I-induced migration. [Arg54,Arg55]IGF-II and [Leu27]IGF-II, which preferentially bind to the IGF-I and IGF-II/mannose-6-phosphate receptors (IGF-II/M6PR), respectively, both induced RD cell migration to 146+/-8% (P<0.01) and 120+/-7% (P<0.05) of control, respectively. An anti-uPAR anti-serum reduced IGF-II- and IGF-I-induced migration (P<0.05 for both). An anti-low density lipoprotein-related protein (LRP) anti-serum reduced IGF-I-induced migration (P<0.05). IGF-I and -II both increased specific 125I-single chain uPA (scuPA) binding to RD cells in a dose-dependent manner (P<0.01). These results suggest involvement of the PA/plasmin system in IGF-induced migration and indicate important roles these systems may have in RMS metastasis.
Collapse
Affiliation(s)
- Marisa A Gallicchio
- Department of Medicine, University of Melbourne, Austin and Repatriation Medical Centre (Austin Campus), Heidelberg, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
Boes M, Dake BL, Booth BA, Sandra A, Bateman M, Knudtson K, Bar RS. Structure-function relationships of insulin-like growth factor binding protein 6 (IGFBP-6) and its chimeras. Growth Horm IGF Res 2002; 12:91-98. [PMID: 12175646 DOI: 10.1054/ghir.2001.0266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factor binding protein 6 (IGFBP-6) is a high-affinity IGFBP with substantially greater affinity for insulin-like growth factor-II (IGF-II) than IGF-I. IGFBP-6(3) is a chimera which has a 20 amino acidC -terminal portion of IGFBP-6 switched with the homologous area of IGFBP-3, P3. Unlike IGFBP-4(3), in which the P3 region was exchanged for the homologous region of IGFBP-4 (P4), IGFBP-6(3) does not bind to endothelial cells. Double mutations were made with the P3 region exchanged as well as a second area differing from IGFBP-3 to form IGFBP-6(3)A and IGFBP-6(3)B, by replacing this area with the homologous region of IGFBP-3. Neither [(125)I]IGFBP-6(3)A nor IGFBP-6(3)B specifically bound to endothelial cells. However, each double mutant competed for [(125)I]IGFBP-3 binding to cultured cells. In the perfused heart, transendothelial transport of IGFBP-6 and IGFBP-6(3) was only 25% of similar transendothelial transport of perfused IGFBP-3. We conclude that chimeras of IGFBP-6 and IGFBP-3(6) clearly differ from IGFBP-4(3) in their ability to bind specifically to endothelial cells and in their capacity to undergo transendothelial transportation in the perfused heart.
Collapse
Affiliation(s)
- M Boes
- Department of Internal Medicine, Veterans Administration Medical Center, Iowa City, IA 52246, USA
| | | | | | | | | | | | | |
Collapse
|