1
|
Zhang R, Qin C, Zhang J, HonghongRen, Wang Y, Wu Y, Zhao L, Wang J, Zhang J, Liu F. DNA hypomethylation of Syk induces oxidative stress and apoptosis via the PKCβ/P66shc signaling pathway in diabetic kidney disease. FASEB J 2024; 38:e23564. [PMID: 38522019 DOI: 10.1096/fj.202301579r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Epigenetic alterations, especially DNA methylation, have been shown to play a role in the pathogenesis of diabetes mellitus (DM) and its complications, including diabetic kidney disease (DKD). Spleen tyrosine kinase (Syk) is known to be involved in immune and inflammatory disorders. We, therefore, investigated the possible involvement of Syk promoter methylation in DKD, and the mechanisms underlying this process. Kidney tissues were obtained from renal biopsies of patients with early and advanced DKD. A diabetic mouse model (ApoE-/- DM) was generated from ApoE knockout (ApoE-/-) mice using a high-fat and high-glucose diet combined with low-dose streptozocin intraperitoneal injection. We also established an in vitro model using HK2 cells. A marked elevation in the expression levels of Syk, PKCβ, and P66shc in renal tubules was observed in patients with DKD. In ApoE-/- DM mice, Syk expression and the binding of Sp1 to the Syk gene promoter were both increased in the kidney. In addition, the promoter region of the Syk gene exhibited hypomethylation. Syk inhibitor (R788) intervention improved renal function and alleviated pathologic changes in ApoE-/- DM mice. Moreover, R788 intervention alleviated oxidative stress and apoptosis and downregulated the expression of PKCβ/P66shc signaling pathway proteins. In HK2 cells, oxLDL combined with high-glucose stimulation upregulated Sp1 expression in the nucleus (compared with control and oxLDL groups), and this was accompanied by an increase in the binding of Sp1 to the Syk gene promoter. SP1 silencing downregulated the expression of Syk and inhibited the production of reactive oxygen species and cell apoptosis. Finally, PKC agonist intervention reversed the oxidative stress and apoptosis induced by Syk inhibitor (R406). In DKD, hypomethylation at the Syk gene promoter was accompanied by an increase in Sp1 binding at the promoter. As a consequence of this enhanced Sp1 binding, Syk gene expression was upregulated. Syk inhibitors could attenuate DKD-associated oxidative stress and apoptosis via downregulation of PKCβ/P66shc signaling pathway proteins. Together, our results identify Syk as a promising target for intervention in DKD.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Qin
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Nephrology, Luzhou People's Hospital, Luzhou, Sichuan, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - HonghongRen
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lijun Zhao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiali Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, Chengdu, Sichuan, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Dartora VFC, Passos JS, Costa-Lotufo LV, Lopes LB, Panitch A. Thermosensitive Polymeric Nanoparticles for Drug Co-Encapsulation and Breast Cancer Treatment. Pharmaceutics 2024; 16:231. [PMID: 38399285 PMCID: PMC10892816 DOI: 10.3390/pharmaceutics16020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Despite advances in breast cancer treatment, there remains a need for local management of noninvasive, low-grade ductal carcinoma in situ (DCIS). These focal lesions are well suited for local intraductal treatment. Intraductal administration supported target site drug retention, improved efficacy, and reduced systemic exposure. Here, we used a poly(N-isopropyl acrylamide, pNIPAM) nanoparticle delivery system loaded with cytotoxic piplartine and an MAPKAP Kinase 2 inhibitor (YARA) for this purpose. For tumor environment targeting, a collagen-binding peptide SILY (RRANAALKAGELYKSILYGSG-hydrazide) was attached to pNIPAM nanoparticles, and the nanoparticle diameter, zeta potential, drug loading, and release were assessed. The system was evaluated for cytotoxicity in a 2D cell culture and 3D spheroids. In vivo efficacy was evaluated using a chemical carcinogenesis model in female Sprague-Dawley rats. Nanoparticle delivery significantly reduced the IC50 of piplartine (4.9 times) compared to the drug in solution. The combination of piplartine and YARA in nanoparticles further reduced the piplartine IC50 (~15 times). Treatment with these nanoparticles decreased the in vivo tumor incidence (5.2 times). Notably, the concentration of piplartine in mammary glands treated with nanoparticles (35.3 ± 22.4 μg/mL) was substantially higher than in plasma (0.7 ± 0.05 μg/mL), demonstrating targeted drug retention. These results indicate that our nanocarrier system effectively reduced tumor development with low systemic exposure.
Collapse
Affiliation(s)
- Vanessa Franco Carvalho Dartora
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil; (V.F.C.D.); (J.S.P.); (L.V.C.-L.); (L.B.L.)
- Department of Biomedical Engineering, College of Engineering, University of California Davis, Davis, CA 95616, USA
| | - Julia S. Passos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil; (V.F.C.D.); (J.S.P.); (L.V.C.-L.); (L.B.L.)
| | - Leticia V. Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil; (V.F.C.D.); (J.S.P.); (L.V.C.-L.); (L.B.L.)
| | - Luciana B. Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil; (V.F.C.D.); (J.S.P.); (L.V.C.-L.); (L.B.L.)
| | - Alyssa Panitch
- Department of Biomedical Engineering, College of Engineering, University of California Davis, Davis, CA 95616, USA
- Wallace H. Coulter Department of Biomedical Engineering, College of Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Bu F, Zhu X, Liu S, Lin K, Zhu J, Huang J. Comprehensive analysis of Syk gene methylation in colorectal cancer. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:923-931. [PMID: 33979042 PMCID: PMC8342196 DOI: 10.1002/iid3.449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metastasis of colorectal cancer (CRC) extremely affects the prognosis of CRC patients. Recently, the genetic methylation has been shown to associate with tumor metastasis. This research aimed to explore the Syk gene, which is frequently hypermethylated in different cancers, and its impact on the metastasis of CRC cells. METHODS We employed the UALCAN database for the detection of the methylation levels of Syk in different cancers. CIBERSORT, TIMER and TISIDB tools were employed to analyze the association of Syk expression with immune features of CRC. Treatment with decitabine has been noted to restore the expression of Syk in CRC cells. The invasion and migration abilities of CRC cell lines were determined using transwell and wound healing assays. The correlation between Syk and c-Myc was established using the GEPIA2 database and Western blot assays. Results: Our results, based on UALCAN, revealed that the methylation level of Syk was altered in diverse cancers including colon adenocarcinoma. We found that expression profile and methylation level of Syk was correlated with immune features of colon adenocarcinoma. Decitabine can restore the expression of Syk in HCT116 and SW480 cells, hence affecting their migration and invasion. Results from GEPIA2 showed that Syk expression was correlated with c-Myc, while Western blotting analysis revealed a negative association between the expression level of Syk and c-Myc. Conclusions: This study demonstrates that the expression of Syk could be restored by decitabine in colorectal cancer, thus affecting the migration and invasion abilities of CRC cells.
Collapse
Affiliation(s)
- Fanqin Bu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaojian Zhu
- Department of Research Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Sicheng Liu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Kang Lin
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jinfeng Zhu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
4
|
Shinde A, Hardy SD, Kim D, Akhand SS, Jolly MK, Wang WH, Anderson JC, Khodadadi RB, Brown WS, George JT, Liu S, Wan J, Levine H, Willey CD, Krusemark CJ, Geahlen RL, Wendt MK. Spleen Tyrosine Kinase-Mediated Autophagy Is Required for Epithelial-Mesenchymal Plasticity and Metastasis in Breast Cancer. Cancer Res 2019; 79:1831-1843. [PMID: 30733195 PMCID: PMC6467765 DOI: 10.1158/0008-5472.can-18-2636] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/19/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
Abstract
The ability of breast cancer cells to transiently transition between epithelial and mesenchymal states contributes to their metastatic potential. Therefore, driving tumor cells into a stable mesenchymal state, as opposed to complete tumor cell eradication, presents an opportunity to pharmacologically limit disease progression by promoting an asymptomatic state of dormancy. Here, we compare a reversible model of epithelial-mesenchymal transition (EMT) induced by TGFβ to a stable mesenchymal phenotype induced by chronic exposure to the ErbB kinase inhibitor lapatinib. Only cells capable of returning to an epithelial phenotype resulted in skeletal metastasis. Gene expression analyses of the two mesenchymal states indicated similar transition expression profiles. A potently downregulated gene in both datasets was spleen tyrosine kinase (SYK). In contrast to this similar diminution in mRNA, kinome analyses using a peptide array and DNA-conjugated peptide substrates showed a robust increase in SYK activity upon TGFβ-induced EMT only. SYK was present in cytoplasmic RNA processing depots known as P-bodies formed during the onset of EMT, and SYK activity was required for autophagy-mediated clearance of P-bodies during mesenchymal-epithelial transition (MET). Genetic knockout of autophagy-related 7 (ATG7) or pharmacologic inhibition of SYK activity with fostamatinib, a clinically approved inhibitor of SYK, prevented P-body clearance and MET, inhibiting metastatic tumor outgrowth. Overall, this study suggests assessment of SYK activity as a biomarker for metastatic disease and the use of fostamatinib as a means to stabilize the latency of disseminated tumor cells. SIGNIFICANCE: These findings present inhibition of spleen tyrosine kinase as a therapeutic option to limit breast cancer metastasis by promoting systemic tumor dormancy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/8/1831/F1.large.jpg.See related commentary by Farrington and Narla, p. 1756.
Collapse
Affiliation(s)
- Aparna Shinde
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Shana D Hardy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Dongwook Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Saeed Salehin Akhand
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Wen-Hung Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama, Birmingham, Alabama
| | - Ryan B Khodadadi
- Department of Graduate Medical Education, Mayo Clinic, Rochester. Minnesota
| | - Wells S Brown
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Medical Science Training Program, Baylor College of Medicine, Houston, Texas
| | - Sheng Liu
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jun Wan
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | | | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
5
|
Cao X, Tang Q, Holland-Letz T, Gündert M, Cuk K, Schott S, Heil J, Golatta M, Sohn C, Schneeweiss A, Burwinkel B. Evaluation of Promoter Methylation of RASSF1A and ATM in Peripheral Blood of Breast Cancer Patients and Healthy Control Individuals. Int J Mol Sci 2018; 19:ijms19030900. [PMID: 29562656 PMCID: PMC5877761 DOI: 10.3390/ijms19030900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 01/26/2023] Open
Abstract
Breast cancer (BC) is the most common cancer among women and has high mortality rates. Early detection is supposed to be critical for the patient’s prognosis. In recent years, several studies have investigated global DNA methylation profiles and gene-specific DNA methylation in blood-based DNA to develop putative screening markers for cancer. However, most of the studies have not yet been validated. In our study, we analyzed the promoter methylation of RASSF1A and ATM in peripheral blood DNA of 229 sporadic patients and 151 healthy controls by the MassARRAY EpiTYPER assay. There were no significant differences in DNA methylation levels of RASSF1A and ATM between the sporadic BC cases and the healthy controls. Furthermore, we performed the Infinium HumanMethylation450 BeadChip (450K) array analysis using 48 sporadic BC cases and 48 healthy controls (cases and controls are the same from those of the MassARRAY EpiTYPER assay) and made a comparison with the published data. No significant differences were presented in DNA methylation levels of RASSF1A and ATM between the sporadic BC cases and the healthy controls. So far, the evidence for powerful blood-based methylation markers is still limited and the identified markers need to be further validated.
Collapse
Affiliation(s)
- Xue Cao
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
- Division of Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Qiuqiong Tang
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
- Division of Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Tim Holland-Letz
- Division of Biostatistics (C060), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Melanie Gündert
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
- Division of Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Katarina Cuk
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
- Division of Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Sarah Schott
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
| | - Jörg Heil
- Department of Gynecology and Obstetrics, University Women's Clinic, Heidelberg 69120, Germany.
| | - Michael Golatta
- Department of Gynecology and Obstetrics, University Women's Clinic, Heidelberg 69120, Germany.
| | - Christof Sohn
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
| | - Andreas Schneeweiss
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
- National Centre for Tumor Diseases, Heidelberg 69120, Germany.
| | - Barbara Burwinkel
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
- Division of Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| |
Collapse
|
6
|
Zheng T, Wang A, Hu D, Wang Y. Molecular mechanisms of breast cancer metastasis by gene expression profile analysis. Mol Med Rep 2017; 16:4671-4677. [PMID: 28791367 PMCID: PMC5647040 DOI: 10.3892/mmr.2017.7157] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 05/18/2017] [Indexed: 01/08/2023] Open
Abstract
Metastasis is the main cause of breast cancer‑related mortalities. The present study aimed to uncover the relevant molecular mechanisms of breast cancer metastasis and to explore potential biomarkers that may be used for prognosis. Expression profile microarray data GSE8977, which contained 22 stroma samples (15 were from normal breast and 7 were from invasive ductal carcinoma tumor samples), were obtained from the Gene Expression Omnibus database. Following data preprocessing, differentially expressed genes (DEGs) were selected based on analyses conducted using the linear models for microarray analysis package from R and Bioconductor software. The resulting data were used in subsequent function and pathway enrichment analyses, as well as protein‑protein interaction (PPI) network and subnetwork analyses. Transcription factors (TFs) and tumor‑associated genes were also identified among the DEGs. A total of 234 DEGs were identified, which were enriched in immune response, cell differentiation and cell adhesion‑related functions and pathways. Downregulated DEGs included TFs, such as the proto‑oncogene SPI1, pre‑B‑cell leukemia homeobox 3 (PBX3) and lymphoid enhancer‑binding factor 1 (LEF1), as well as tumor suppressors (TSs), such as capping actin protein, gelsolin like (CAPG) and tumor protein p53‑inducible nuclear protein 1 (TP53INP1). Upregulated DEGs also included TFs and tumor suppressors, consisting of transcription factor 7‑like 2 (TCF7L2) and pleiomorphic adenoma gene‑like 1 (PLAGL1). DEGs that were identified at the hub nodes in the PPI network and the subnetwork were epidermal growth factor receptor (EGFR) and spleen‑associated tyrosine kinase (SYK), respectively. Several genes crucial in the metastasis of breast cancer were identified, which may serve as potential biomarkers, many of which were associated with cell adhesion, proliferation or immune response, and may influence breast cancer metastasis by regulating these function or pathways.
Collapse
Affiliation(s)
- Tianying Zheng
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Aijun Wang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dongyan Hu
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yonggang Wang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
7
|
Harman RM, Curtis TM, Argyle DJ, Coonrod SA, Van de Walle GR. A Comparative Study on the In Vitro Effects of the DNA Methyltransferase Inhibitor 5-Azacytidine (5-AzaC) in Breast/Mammary Cancer of Different Mammalian Species. J Mammary Gland Biol Neoplasia 2016; 21:51-66. [PMID: 27002722 DOI: 10.1007/s10911-016-9350-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 03/14/2016] [Indexed: 01/12/2023] Open
Abstract
Murine models are indispensible for the study of human breast cancer, but they have limitations: tumors arising spontaneously in humans must be induced in mice, and long-term follow up is limited by the short life span of rodents. In contrast, dogs and cats develop mammary tumors spontaneously and are relatively long-lived. This study examines the effects of the DNA methyltransferase (DNMT) inhibitor 5-Azacytidine (5-AzaC) on normal and tumoral mammary cell lines derived from dogs, cats and humans, as proof of concept that small companion animals are useful models of human breast cancer. Our findings show that treatment with 5-AzaC reduces in vitro tumorigenicity in all three species based on growth and invasion assays, mitochondrial activity and susceptibility to apoptosis. Interestingly, we found that the effects of 5-AzaC on gene expression varied not only between the different species but also between different tumoral cell lines within the same species, and confirmed the correlation between loss of methylation in a specific gene promotor region and increased expression of the associated gene using bisulfite sequencing. In addition, treatment with a high dose of 5-AzaC was toxic to tumoral, but not healthy, mammary cell lines from all species, indicating this drug has therapeutic potential. Importantly, we confirmed these results in primary malignant cells isolated from canine and feline adenocarcinomas. The similarities observed between the three species suggest dogs and cats can be useful models for the study of human breast cancer and the pre-clinical evaluation of novel therapeutics.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/adverse effects
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Azacitidine/adverse effects
- Azacitidine/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cats
- Cell Line
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA Modification Methylases/antagonists & inhibitors
- DNA Modification Methylases/metabolism
- Dogs
- Drug Evaluation, Preclinical
- Enzyme Inhibitors/adverse effects
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mammary Neoplasms, Animal/drug therapy
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Promoter Regions, Genetic/drug effects
- Proof of Concept Study
- Species Specificity
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA
| | - Theresa M Curtis
- Department of Biological Sciences, State University of New York at Cortland, Cortland, NY, USA
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Scott A Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
8
|
Callahan CL, Wang Y, Marian C, Weng DY, Eng KH, Tao MH, Ambrosone CB, Nie J, Trevisan M, Smiraglia D, Edge SB, Shields PG, Freudenheim JL. DNA methylation and breast tumor clinicopathological features: The Western New York Exposures and Breast Cancer (WEB) study. Epigenetics 2016; 11:643-652. [PMID: 27245195 DOI: 10.1080/15592294.2016.1192735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We evaluated the association between methylation of 9 genes, SCGB3A1, GSTP1, RARB, SYK, FHIT, CDKN2A, CCND2, BRCA1, and SFN in tumor samples from 720 breast cancer cases with clinicopathological features of the tumors and survival. Logistic regression was used to estimate odds ratios (OR) of methylation and Cox proportional hazards models to estimate hazard ratios (HR) between methylation and breast cancer related mortality. Estrogen receptor (ER) and progesterone receptor (PR) positivity were associated with increased SCGB3A1 methylation among pre- and post-menopausal cases. Among premenopausal women, compared with Stage 0 cases, cases of invasive cancer were more likely to have increased methylation of RARB (Stage I OR = 4.7, 95% CI: 1.1-19.0; Stage IIA/IIB OR = 9.7, 95% CI: 2.4-39.9; Stage III/IV OR = 5.6, 95% CI: 1.1-29.4) and lower methylation of FHIT (Stage I OR = 0.2, 95% CI: 0.1-0.9; Stage IIA/IIB OR = 0.2, 95% CI: 0.1-0.8; Stage III/IV OR = 0.6, 95% CI: 0.1-3.4). Among postmenopausal women, methylation of SYK was associated with increased tumor size (OR = 1.7, 95% CI: 1.0-2.7) and higher nuclear grade (OR = 2.0, 95% CI 1.2-3.6). Associations between methylation and breast cancer related mortality were observed among pre- but not post-menopausal women. Methylation of SCGB3A1 was associated with reduced risk of death from breast cancer (HR = 0.41, 95% CI: 0.17-0.99) as was BRCA1 (HR = 0.41, 95% CI: 0.16-0.97). CCND2 methylation was associated with increased risk of breast cancer mortality (HR = 3.4, 95% CI: 1.1-10.5). We observed differences in methylation associated with tumor characteristics; methylation of these genes was also associated with breast cancer survival among premenopausal cases. Understanding of the associations of DNA methylation with other clinicopathological features may have implications for prevention and treatment.
Collapse
Affiliation(s)
- Catherine L Callahan
- a Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo , Buffalo , NY , USA
| | - Youjin Wang
- a Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo , Buffalo , NY , USA
| | - Catalin Marian
- b Division of Cancer Prevention and Control , College of Medicine and The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA.,c Department of Biochemistry and Pharmacology , University of Medicine and Pharmacy Timisoara , Timisoara , Romania
| | - Daniel Y Weng
- b Division of Cancer Prevention and Control , College of Medicine and The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Kevin H Eng
- d Department of Biostatistics and Bioinformatics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Meng-Hua Tao
- e Department of Biostatistics and Epidemiology , University of North Texas Health Science Center , Fort Worth , TX , USA
| | - Christine B Ambrosone
- f Department of Cancer Prevention and Control , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Jing Nie
- a Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo , Buffalo , NY , USA
| | | | - Dominic Smiraglia
- h Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Stephen B Edge
- i Department of Healthcare Outcomes and Policy , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Peter G Shields
- b Division of Cancer Prevention and Control , College of Medicine and The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Jo L Freudenheim
- a Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo , Buffalo , NY , USA
| |
Collapse
|
9
|
Blancato J, Graves A, Rashidi B, Moroni M, Tchobe L, Ozdemirli M, Kallakury B, Makambi KH, Marian C, Mueller SC. SYK Allelic Loss and the Role of Syk-Regulated Genes in Breast Cancer Survival. PLoS One 2014; 9:e87610. [PMID: 24523870 PMCID: PMC3921124 DOI: 10.1371/journal.pone.0087610] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/20/2013] [Indexed: 11/26/2022] Open
Abstract
Heterozygotic loss of SYK, a non-receptor tyrosine kinase, gives rise to mouse mammary tumor formation where Syk protein levels are reduced by about half; loss of SYK mRNA is correlated with invasive cell behavior in in vitro models; and SYK loss has been correlated with distant metastases in patients. Here, allelic loss of the SYK gene was explored in breast ductal carcinoma in situ (DCIS) using fluorescence in situ hybridization and pyrosequencing, respectively, and in infiltrating ductal carcinoma (IDC) using genomic data from The Cancer Genome Atlas (TCGA). Allelic loss was present in a subset of DCIS cases where adjacent IDC was present. SYK copy number loss was found in about 26% of 1002 total breast cancer cases and 30% of IDC cases. Quantitative immunofluorescence revealed Syk protein to be six-fold higher in infiltrating immune cells compared with epithelial cells. This difference distorted tumor cell mRNA and protein levels in extracts. 20% of 1002 IDC cases contained elevated immune cell infiltration as estimated by elevated immune-specific mRNAs. In cases without immune cell infiltration, loss of SYK copy number was associated with a significant reduction of SYK mRNA. Here we define a 55 Gene Set consisting of Syk interacting, motility- and invasion-related genes. We found that overall survival was significantly reduced in IDC and Luminal A+B cases where copy number and mutations of these 55 genes were affected (Kaplan-Meier, Logrank test p-value 0.007141 and Logrank test p-value 0.001198, respectively). We conclude that reduction in Syk expression and contributions of genomic instability to copy number and mutations in the 55 Syk interacting genes significantly contribute to poorer overall patient survival. A closer examination of the role of Syk interacting motility and invasion genes and their prognostic and/or causative association with metastatic disease and patient outcome is warranted.
Collapse
Affiliation(s)
- Jan Blancato
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Ashley Graves
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Banafsheh Rashidi
- Department of Pathology, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Maria Moroni
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Leopold Tchobe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C., United States of America
- University of the District of Columbia/Lombardi Comprehensive Cancer Center Partnership, Washington, D. C., United States of America
| | - Metin Ozdemirli
- Department of Pathology, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Kepher H. Makambi
- Department of Biostatistics and Bioinformatics, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Catalin Marian
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Biochemistry Department, University of Medicine and Pharmacy, “Victor Babes”, Timisoara, Romania
| | - Susette C. Mueller
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C., United States of America
- * E-mail:
| |
Collapse
|
10
|
Hong J, Yuan Y, Wang J, Liao Y, Zou R, Zhu C, Li B, Liang Y, Huang P, Wang Z, Lin W, Zeng Y, Dai JL, Chung RT. Expression of variant isoforms of the tyrosine kinase SYK determines the prognosis of hepatocellular carcinoma. Cancer Res 2014; 74:1845-56. [PMID: 24477596 DOI: 10.1158/0008-5472.can-13-2104] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The spleen tyrosine kinase (SYK) has been reported as a novel biomarker for human hepatocellular carcinoma, but the functional contributions of its two isoforms SYK(L) and SYK(S) are undefined. In this study, we investigated their biologic functions and possible prognostic values in hepatocellular carcinoma. SYK(L) was downregulated in 38% of human specimens of hepatocellular carcinoma examined, whereas SYK(S) was detectable in 40% of these specimens but not in normal liver tissue samples without cirrhosis. SYK(S) expression correlated with pathologic parameters characteristic of tumor metastasis, including multiple tumors (P = 0.003) and vascular invasion (P = 0.001). Further, SYK(S) was specifically associated with epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma specimens. Functional studies showed that SYK(S) promoted tumor growth, suppressed apoptosis, and induced EMT through the extracellular signal-regulated kinase pathway, countering the opposite effects of SYK(L). Patients with SYK(L(+)/S(-)) tumors exhibited longer overall survival and time to recurrence than those with SYK(L(-)/S(-)) or SYK(L(+)/S(+)) tumors (P < 0.001). Taken together, our findings showed that SYK(S) enhances invasion, whereas SYK(L) inhibits metastasis in hepatocellular carcinoma. We suggest that SYK(L) downregulation or SYK(S) elevation are strong predictors of poor survival in patients with hepatocellular carcinoma, indicative of a need for aggressive therapeutic intervention.
Collapse
Affiliation(s)
- Jian Hong
- Authors' Affiliations: State Key Laboratory of Oncology in South China; Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center; Department of Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and Division of Pharmacy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chik F, Machnes Z, Szyf M. Synergistic anti-breast cancer effect of a combined treatment with the methyl donorS-adenosyl methionine and the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Carcinogenesis 2013; 35:138-44. [DOI: 10.1093/carcin/bgt284] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
12
|
Pang JMB, Dobrovic A, Fox SB. DNA methylation in ductal carcinoma in situ of the breast. Breast Cancer Res 2013; 15:206. [PMID: 23826974 PMCID: PMC3707020 DOI: 10.1186/bcr3420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor lesion of invasive carcinoma of the breast. Current prognostic markers based on histopathological examination are unable to accurately predict which DCIS cases will progress to invasive carcinoma or recur after surgical excision. Epigenetic changes have been shown to be a significant driver of tumorigenesis, and DNA methylation of specific gene promoters provides predictive and prognostic markers in many types of cancer, including invasive breast cancer. In general, the spectrum of genes that are methylated in DCIS strongly resembles that seen in invasive ductal carcinoma. The identification of specific prognostic markers in DCIS remains elusive and awaits additional work investigating a large panel of methylatable genes by using sensitive and reproducible technologies. This review critically appraises the role of methylation in DCIS and its use as a biomarker.
Collapse
|
13
|
RASSF1A Promoter Methylation Levels Positively Correlate with Estrogen Receptor Expression in Breast Cancer Patients. Transl Oncol 2013; 6:297-304. [PMID: 23730409 DOI: 10.1593/tlo.13244] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 02/27/2013] [Accepted: 03/18/2013] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to investigate the relationship between the promoter methylation in five cancer-associated genes and clinicopathologic features for identification of molecular markers of tumor metastatic potential and hormone therapy response efficiency in breast cancer. The methylation levels in paraffin-embedded tumor tissues, plasma, and blood cells from 151 sporadic breast cancer patients and blood samples of 50 controls were evaluated by quantitative multiplex methylation-specific polymerase chain reaction. DNA methylation of RAS-association domain family member 1 (RASSF1A), estrogen receptor 1 (ESR1), cadherin 1, type 1, E-cadherin (CDH1), TIMP metallopeptidase inhibitor 3 (TIMP3) and spleen tyrosine kinase (SYK) genes was detected in the tumors of 124, 19, 15, 15, and 6 patients with mean levels of 48.45%, 3.81%, 2.36%, 27.55%, and 10.81%, respectively. Plasma samples exhibited methylation in the same genes in 25, 10, 15, 17, and 3 patients with levels of 22.54%, 17.20%, 22.87%, 31.93%, and 27.42%, respectively. Cumulative methylation results confirmed different spectra in tumor and plasma samples. Simultaneous methylation in tumors and plasma were shown in less than 17% of patients. RASSF1A methylation levels in tumor samples statistically differ according to tumor size (P = .029), estrogen receptor (ER) and progesterone receptor (PR) status (P = .000 and P = .004), and immunohistochemical subtype (P = .000). Moreover, the positive correlation was found between RASSF1A methylation levels and percentage of cancer cells expressing ER and PR. The direct relationship between RASSF1A promoter methylation and expression of ER could aid the prognosis of hormonal therapy response.
Collapse
|
14
|
Fei B, Yu S, Geahlen RL. Modulation by Syk of Bcl-2, calcium and the calpain-calpastatin proteolytic system in human breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2153-64. [PMID: 23684705 DOI: 10.1016/j.bbamcr.2013.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 01/02/2023]
Abstract
Syk is a 72kDa non-receptor tyrosine kinase that is best characterized in hematopoietic cells. While Syk is pro-tumorigenic in some cancer cell types, it also has been reported as a negative regulator of metastatic cell growth in others. An examination of the RelA (p65) subunit of NF-κB expressed in MCF7 breast cancer cells indicated that either treatment with pervanadate or stable expression of Syk protected RelA from calpain-mediated proteolysis. Similar results were observed with the tyrosine phosphatase, PTP1B, another sensitive calpain substrate. The activity of calpain in MCF7 cell lysates was inhibited by both treatment with hydrogen peroxide and expression of Syk, the former due to oxidative inactivation of calpain and the latter to enhanced expression of calpastatin (CAST), the endogenous calpain inhibitor. The level of CAST was elevated in the cytosolic fraction of Syk-positive breast cancer cells resulting in more CAST present in complex with calpain in cell lysates. The high levels of CAST coincided with elevated basal levels of calcium-and of intracellular calpain activity-in Syk-expressing cells resulting from decreased levels of Bcl-2, an inhibitor of IP3-receptor-mediated calcium release. The inhibition of cellular calpain stimulated the Syk-mediated enhancement of NF-κB induced by TNF-α, enhanced tyrosine phosphorylation resulting from integrin crosslinking, and increased the localization of Syk to the plasma membrane.
Collapse
Affiliation(s)
- Bei Fei
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
15
|
MacGlashan DW. IgE-dependent signaling as a therapeutic target for allergies. Trends Pharmacol Sci 2012; 33:502-9. [PMID: 22749712 PMCID: PMC3427396 DOI: 10.1016/j.tips.2012.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/02/2012] [Accepted: 06/07/2012] [Indexed: 01/21/2023]
Abstract
Atopic diseases are complex, with many immunological participants, but the central element in their expression is IgE antibody. In an atopic individual, the immune system pathologically reacts to environmental substances by producing IgE, and these allergen-specific IgE antibodies confer to IgE receptor-bearing cells responsiveness to the environmental substances. Mast cells and basophils are central to the immediate hypersensitivity reaction that is mediated by IgE. In humans, there are various other immune cells, notably dendritic cells and B cells, which can also bind IgE. For mast cells, basophils and dendritic cells, the receptor that binds IgE is the high-affinity receptor, FcɛRI. For B cells and a few other cell types, the low affinity receptor, FcɛRII, provides the cell with a means to sense the presence of IgE. This overview will focus on events following activation of the high-affinity receptor because FcɛRI generates the classical immediate hypersensitivity reaction.
Collapse
|
16
|
Identification of novel SNPs in SYK gene of breast cancer patients: computational analysis of SNPs in the 5′UTR. Mol Biol Rep 2012; 39:8345-51. [DOI: 10.1007/s11033-012-1684-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 06/05/2012] [Indexed: 11/26/2022]
|
17
|
Neuhaus B, Bühren S, Böck B, Alves F, Vogel WF, Kiefer F. Migration inhibition of mammary epithelial cells by Syk is blocked in the presence of DDR1 receptors. Cell Mol Life Sci 2011; 68:3757-70. [PMID: 21499918 PMCID: PMC11114838 DOI: 10.1007/s00018-011-0676-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/07/2011] [Accepted: 03/17/2011] [Indexed: 01/08/2023]
Abstract
The non-receptor tyrosine kinase Syk is a well-characterized hematopoietic signal transducer, which is also expressed in non-hematopoietic cells. In epithelial cells, the function of Syk is not wholly known. It interacts with the receptor tyrosine kinase DDR1 and is frequently lost from metastatic mammary tumors. Here, using genetic tracing, we demonstrate Syk expression in murine mammary epithelium, myoepithelium and skin epithelium, but not in intestinal or lung epithelia. Investigating possible functions of Syk, we found a substantial suppression of cell mobility that depended on Syk kinase activity in trans-well migration and wounding assays. Co-expression of DDR1 resulted in constitutive interaction and strong activation of Syk kinase. Most importantly, Syk-mediated migration inhibition was blocked in the presence of DDR1, while conversely DDR1 knockdown restored migration inhibition. Our study identifies Syk as a potent inhibitor of epithelial migration and describes a first functional consequence of the interaction with the collagen receptor DDR1.
Collapse
Affiliation(s)
- Brit Neuhaus
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
- Present Address: Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Sebastian Bühren
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Barbara Böck
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
- Present Address: Division of Vascular Oncology and Metastasis (A190), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Frauke Alves
- Department of Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Wolfgang F. Vogel
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Science Building, Room 7334A, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Friedemann Kiefer
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| |
Collapse
|
18
|
Reactivation of Syk gene by AZA suppresses metastasis but not proliferation of breast cancer cells. Med Oncol 2011; 29:448-53. [PMID: 21347717 DOI: 10.1007/s12032-011-9865-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/11/2011] [Indexed: 12/11/2022]
Abstract
Spleen tyrosine kinase (Syk) is reported to be involved in the suppression of proliferation and invasion of breast cancer. Methylation-mediated Syk gene silencing is found in a subset of breast cancer. In this study, we used a DNA methyltransferase inhibitor, 5-aza-2-deoxycytidine (AZA), to restore Syk expression of breast cancer cells. Surprisingly, we found that AZA treatment could reestablish the expression of Syk, but not affect the proliferation of breast cancer cells. Moreover, tumor formation in situ by MDA-MB-435s treated with (+) or without (-) AZA in a nude mice MFP (Mammary fat pad) model did not show significant difference, too. Interestingly, pulmonary metastasis was still significantly suppressed in MDA-MB-435s(+) group (1/9 vs. 7/9). Our findings suggested Syk may be more correlated to metastasis rather than proliferation. This study implied a potential use of Syk methylation as a valuable biomarker to detect high metastatic potential cancerous lesions and the prospect of AZA to join the arsenal of drug candidates to be developed as a new reagent for management of advanced breast cancer.
Collapse
|
19
|
Liu HJ, Zang ZZ, Hou QY, Lu JY, Yang J, Lin Z, Zhao YZ. Clinical significance of Syk expression in human esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:33-38. [DOI: 10.11569/wcjd.v18.i1.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of spleen tyrosine kinase (Syk) mRNA and protein in human esophageal squamous cell carcinoma (ESCC) and analyze its correlation with the malignant biological behavior of ESCC.
METHODS: The expression of Syk protein in 48 ESCC specimens and matched adjacent non-carcinoma specimens was detected by immunohistochemistry. The expression of Syk mRNA in 43 ESCC specimens and matched adjacent non-carcinoma specimens was assayed by reverse transcription-polymerase chain reaction (RT-PCR). The correlations of Syk expression with tumor size, TNM stage and lymph node metastasis were analyzed.
RESULTS: The positive rate of Syk protein expression in ESCC tissue was significantly lower than that in adjacent non-carcinoma tissue (16.67% vs 89.58%, P < 0.05). The expression of Syk protein was correlated with tumor TNM stage in ESCC (χ2 = 6.713, P < 0.05). A significant difference was noted in Syk expression between ESCC with and without lymph node metastasis (3.03% vs 29.41%, P < 0.05). No significant correlation was observed between Syk expression and tumor size (χ2 = 0.017, P > 0.05). RT-PCR analysis showed that the expression level of Syk mRNA was significantly lower in ESCC than in adjacent non-carcinoma tissue (t = -11.27, P < 0.05).
CONCLUSION: Downregulation of Syk gene expression may be involved in the carcinogenesis and metastasis of ESCC. Syk gene is a novel candidate tumor suppressor gene in ESCC and can be used as a molecular marker for early diagnosis and treatment of ESCC.
Collapse
|
20
|
Layton T, Stalens C, Gunderson F, Goodison S, Silletti S. Syk tyrosine kinase acts as a pancreatic adenocarcinoma tumor suppressor by regulating cellular growth and invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2625-36. [PMID: 19893036 DOI: 10.2353/ajpath.2009.090543] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have identified the nonreceptor tyrosine kinase syk as a marker of differentiation/tumor suppressor in pancreatic ductal adenocarcinoma (PDAC). Syk expression is lost in poorly differentiated PDAC cells in vitro and in situ, and stable reexpression of syk in endogenously syk-negative Panc1 (Panc1/syk) cells retarded their growth in vitro and in vivo and reduced anchorage-independent growth in vitro. Panc1/syk cells exhibited a more differentiated morphology and down-regulated cyclin D1, akt, and CD171, which are overexpressed by Panc1 cells. Loss of PDAC syk expression in culture is due to promoter methylation, and reversal of promoter methylation caused reexpression of syk and concomitant down-regulation of CD171. Moreover, suppression of syk expression in BxPC3 cells caused de novo CD171 expression, consistent with the reciprocal expression of syk and CD171 we observe in situ. Importantly, Panc1/syk cells demonstrated dramatically reduced invasion in vitro. Affymetrix analysis identified statistically significant regulation of >2000 gene products by syk in Panc1 cells. Of these, matrix metalloproteinase-2 (MMP2) and tissue inhibitor of metalloproteinase-2 were down-regulated, suggesting that the MMP2 axis might mediate Panc1/mock invasion. Accordingly, MMP2 inhibition suppressed the in vitro invasion of Panc1/mock cells without effect on Panc1/syk cells. This study demonstrates a prominent role for syk in regulating the differentiation state and invasive phenotype of PDAC cells.
Collapse
Affiliation(s)
- Tracy Layton
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093-0803, USA
| | | | | | | | | |
Collapse
|
21
|
Zhang X, Shrikhande U, Alicie BM, Zhou Q, Geahlen RL. Role of the protein tyrosine kinase Syk in regulating cell-cell adhesion and motility in breast cancer cells. Mol Cancer Res 2009; 7:634-44. [PMID: 19435818 PMCID: PMC2788757 DOI: 10.1158/1541-7786.mcr-08-0371] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The expression of the Syk protein tyrosine kinase in breast cancer cells is inversely correlated with invasive growth and metastasis. The expression of Syk inhibits cell motility while supporting the formation of cell clusters by enhancing cell-cell contacts and promoting the redistribution of the adhesion proteins cortactin and vinculin to these contacts. Syk associates physically with cortactin and catalyzes its phosphorylation on tyrosine. The clustering of integrins leads to the phosphorylation of Syk and of numerous cellular proteins in a manner dependent on the activity of the kinase and on the presence of tyrosine 342 located in the linker B region. The ability of Syk to participate in integrin-mediated protein tyrosine phosphorylation correlates well with its ability to inhibit cell motility.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Medicinal Chemistry, Purdue University, Hansen Life Sciences Research Building, 201 South University Street, West Lafayette, IN 47907-2064, USA
| | | | | | | | | |
Collapse
|
22
|
Ogane S, Onda T, Takano N, Yajima T, Uchiyama T, Shibahara T. Spleen tyrosine kinase as a novel candidate tumor suppressor gene for human oral squamous cell carcinoma. Int J Cancer 2009; 124:2651-7. [PMID: 19195024 DOI: 10.1002/ijc.24237] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We analyzed the mutational and methylation status of the spleen tyrosine kinase (Syk) gene and both mRNA and protein levels in primary oral squamous cell carcinoma (OSCC) and OSCC-derived cell lines and examined the function of the Syk gene in OSCC-derived cell lines in vitro. Using quantitative real-time reverse transcription polymerase chain reaction, Western blotting and immunofluorescence on 7 OSCC-derived cell lines and normal oral keratinocytes (NOKs), Syk mRNA and protein expression were commonly downregulated in all cell lines compared to the NOKs. Although no sequence variation in the coding region of the Syk gene was identified in these cell lines, we found frequent hypermethylation in the CpG island region. Syk expression was restored by experimental demethylation. In addition, using a wound healing assay and in vitro invasion assay, we performed functional analysis using Syk transfected into the OSCC-derived cell lines, and they showed significant inhibition of motility and invasiveness. In clinical samples, high frequencies of Syk downregulation were detected by immunohistochemistry (33 of 53 [62%]). Furthermore, the Syk expression status was correlated significantly (p = 0.047) with tumor metastasis to cervical lymph nodes. These results suggest that the Syk gene is frequently inactivated during oral carcinogenesis and that an epigenetic mechanism may regulate loss of expression possibly leading to metastasis.
Collapse
Affiliation(s)
- Satoru Ogane
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Jin SH, Akiyama Y, Fukamachi H, Yanagihara K, Akashi T, Yuasa Y. IQGAP2 inactivation through aberrant promoter methylation and promotion of invasion in gastric cancer cells. Int J Cancer 2008; 122:1040-6. [PMID: 17957782 DOI: 10.1002/ijc.23181] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasion and metastases of cancer cells are the main causes of treatment failure in cancer. IQ motif-containing GTPase activating protein 1 (IQGAP1), plays pivotal roles in intercellular adhesion, migration, invasion and metastases in various cancer cells. However, the role of another family member, IQGAP2, in carcinogenesis remains unknown. Here, we investigated IQGAP2 functions in gastric cancers. We found that IQGAP2 protein expression was lost in 5 of the 9 gastric cancer cell lines. Through analysis by the methylation-specific PCR, aberrant IQGAP2 methylation was detected in 3 gastric cancer cell lines. IQGAP2 mRNA was found to be activated after 5-aza-2'-deoxycytidine treatment of the methylation-positive cells. Moreover, IQGAP2 methylation was detected in 28 of the 59 (47%) primary gastric cancer tissues, but not in 12 normal gastric mucosa samples. Immunohistochemical staining revealed that 7 of the 8 (88%) gastric cancer tissues without methylation signals displayed IQGAP2 expression, whereas among 10 with methylation signals none expressed IQGAP2 (p = 0.0002), indicating that IQGAP2 methylation is highly associated with loss of the IQGAP2 expression in the primary gastric cancer tissues as well as gastric cancer cell lines. Furthermore, IQGAP2 methylation was also associated with tumor invasion and a poor prognosis. IQGAP2 knockdown with small interfering RNA increased the invasive capacity of a gastric cancer cell line. These results suggest that silencing of IQGAP2 by promoter methylation may contribute to gastric cancer development.
Collapse
Affiliation(s)
- Shun-Hua Jin
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Yuan Y, Wang J, Li J, Wang L, Li M, Yang Z, Zhang C, Dai JL. Frequent epigenetic inactivation of spleen tyrosine kinase gene in human hepatocellular carcinoma. Clin Cancer Res 2007; 12:6687-95. [PMID: 17121887 PMCID: PMC1832152 DOI: 10.1158/1078-0432.ccr-06-0921] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of present study was to investigate the methylation and expression status of spleen tyrosine kinase (SYK) in human hepatocellular carcinoma (HCC) and to evaluate this information for its ability to predict disease prognosis. E-cadherin and TIMP-3 methylation was also analyzed here as control because both were associated with poor prognosis in some types of tumors. EXPERIMENTAL DESIGN We analyzed the methylation status of SYK, E-cadherin, and TIMP-3 in 124 cases of HCC and assessed the correlation of such methylations with clinicopathologic variables and prognosis after tumor resection. RESULTS We found that SYK, E-cadherin, and TIMP-3 genes were methylated in 27%, 27%, and 42% of HCC neoplastic tissues, respectively. The loss of SYK mRNA or Syk protein expression was highly correlated with SYK gene methylation. The patients with methylated SYK in neoplastic tissues had a significantly lower overall survival rate after hepatectomy than those with unmethylated SYK. No significant difference in overall survival rates, however, was found between groups of patients with methylated and unmethylated E-cadherin or TIMP-3. Patients with negative Syk protein expression had a significantly lower overall survival rate than those with positive Syk protein expression. Multivariate analyses indicated that factors affecting overall survival were tumor-node-metastasis stage, Child-Pugh classification, SYK methylation, or Syk protein status. CONCLUSIONS Our results indicate that SYK methylation and loss of Syk expression in HCC neoplastic tissues are independent biomarkers of poor patient outcome and that determination of SYK methylation or Syk expression status may offer guidance for selecting appropriate treatments.
Collapse
Affiliation(s)
- Yunfei Yuan
- Department of Hepatobiliary Oncology, State Key Laboratory of Tumor Biology in Southern China, Sun Yat-sen University Cancer Center, and Department of Surgery, The First Affiliated Hospital, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Balaian L, Ball ED. Cytotoxic activity of gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukemia correlates with the expression of protein kinase Syk. Leukemia 2006; 20:2093-101. [PMID: 17051243 DOI: 10.1038/sj.leu.2404437] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) cells express the cell surface antigen CD33 that, upon ligation with a monoclonal antibody (mAb), is a downregulator of cell growth in a Syk-dependent manner. An anti-CD33 mAb coupled to a toxin, gemtuzumab ozogamicin (GO), is used for the treatment of AML (Mylotarg). Therefore, we investigated whether the response of AML cells to GO treatment also depends on Syk expression. Forty primary AML samples (25 Syk-positive and 15 Syk-negative) were tested for their response to the anti-proliferative effects of GO and unmodified anti-CD33 mAb. A correlation between Syk expression and the response of leukemia cells to GO and anti-CD33 mAb was found. 'Blocking' of Syk by small interfering RNA resulted in unresponsiveness of AML cells to both GO and anti-CD33 mAb-mediated cytotoxicity. Syk upregulation by the de-methylating agent 5-azacytidine (5-aza) induced re-expression of Syk in some cases, resulting in enhanced GO and anti-CD33-mediated inhibition of leukemia cell growth. Thus, the cytotoxicity of both GO and anti-CD33 in primary AML samples was associated with Syk expression. 5-Aza restored Syk and increased the sensitivity of originally Syk-negative, non-responsive cells to CD33 ligation to levels of Syk-positive cells. These data have clinical significance for predicting response to GO and designing clinical trials.
Collapse
MESH Headings
- Aminoglycosides/pharmacology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/immunology
- Antineoplastic Agents/pharmacology
- Azacitidine/pharmacology
- Cell Line, Tumor
- Gemtuzumab
- Humans
- Immunotoxins/pharmacology
- Intracellular Signaling Peptides and Proteins/analysis
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/pathology
- Protein-Tyrosine Kinases/analysis
- Protein-Tyrosine Kinases/antagonists & inhibitors
- RNA, Small Interfering
- Sialic Acid Binding Ig-like Lectin 3
- Syk Kinase
Collapse
Affiliation(s)
- L Balaian
- Blood and Marrow Transplantation Division, Department of Medicine and Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
26
|
Duta F, Ulanova M, Seidel D, Puttagunta L, Musat-Marcu S, Harrod KS, Schreiber AD, Steinhoff U, Befus AD. Differential expression of spleen tyrosine kinase Syk isoforms in tissues: effects of the microbial flora. Histochem Cell Biol 2006; 126:495-505. [PMID: 16708245 DOI: 10.1007/s00418-006-0188-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2006] [Indexed: 11/24/2022]
Abstract
Spleen tyrosine kinase (Syk) is expressed widely in hematopoietic and non-hematopoietic cells. The widespread distribution of Syk and its involvement in host defense and allergic reactions, prompted us analyze the influence of microbial exposure on Syk expression. We compared the distribution of Syk in various tissues of germ-free and conventional mice using immunohistochemistry, Western blot analysis and real time RT-PCR. Total Syk expression was similar between germ-free and conventional mice. Since it has been claimed that Syk isoforms are differentially expressed, we studied the distribution and abundance of Syk (L) and Syk (S) isoforms in tissues from these mice. In contrast to previous reports, we found broad tissue expression of Syk (S). Interestingly, in germ-free mice the amount of Syk (S) but not Syk L protein was selectively increased in lung and spleen. In summary, our study reveals new and broad tissue expression of both Syk isoforms and demonstrates that lack of microbial flora results in selectively increased expression of Syk (S) isoform in lung and spleen.
Collapse
Affiliation(s)
- Florentina Duta
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Coopman PJ, Mueller SC. The Syk tyrosine kinase: a new negative regulator in tumor growth and progression. Cancer Lett 2006; 241:159-73. [PMID: 16442709 DOI: 10.1016/j.canlet.2005.11.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/03/2005] [Accepted: 11/04/2005] [Indexed: 11/28/2022]
Abstract
The spleen tyrosine kinase Syk was long thought to be a hematopoietic cell-specific signaling molecule. Recent evidence demonstrated that it is also expressed by many non-hematopoietic cell types and that it plays a negative role in cancer. A significant drop in its expression was first observed during breast cancer progression, but an anomalous Syk expression has now also been evidenced in many other tumor types. Mechanistic studies using Syk re-expression demonstrated its suppressive function in tumorigenesis and metastasis formation, which is surprising for a tyrosine kinase. Loss of Syk expression is regulated, albeit not exclusively, by its promoter hypermethylation. The molecular mechanism of its tumor-suppressive function remains largely unknown; the identification of its activators and effectors in non-hematopoietic cells will be a challenge for the years to come. An increasing number of clinical studies reveal a correlation between reduced Syk expression and an increased risk for metastasis formation, and assign Syk as a potential new prognostic marker in different tumor types.
Collapse
Affiliation(s)
- Peter J Coopman
- CNRS UMR 5539, Université Montpellier 2, 34095 Montpellier, France.
| | | |
Collapse
|
28
|
Wang Y, Yu Q, Cho AH, Rondeau G, Welsh J, Adamson E, Mercola D, McClelland M. Survey of differentially methylated promoters in prostate cancer cell lines. Neoplasia 2005; 7:748-60. [PMID: 16207477 PMCID: PMC1501885 DOI: 10.1593/neo.05289] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 04/15/2005] [Accepted: 04/22/2005] [Indexed: 12/31/2022]
Abstract
DNA methylation and copy number in the genomes of three immortalized prostate epithelial and five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, and PC3M-LN4) were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme HpaII, followed by linker ligation, polymerase chain reaction (PCR) amplification, labeling, and hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5%) showed differential hybridization between immortalized prostate epithelial and cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, and TSPY) previously observed in prostate cancer and 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, and WIT-1). The majority of genes that appear to be both differentially methylated and differentially regulated between prostate epithelial and cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, and GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.
Collapse
Affiliation(s)
- Yipeng Wang
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - Qiuju Yu
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - Ann H Cho
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - Gaelle Rondeau
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - John Welsh
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - Eileen Adamson
- The Burnham Institute, Cancer Research Center, La Jolla, CA, USA
| | - Dan Mercola
- Department of Pathology, University of California at Irvine, Irvine, CA 92697, USA
| | - Michael McClelland
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| |
Collapse
|
29
|
Elkak AE, AL Sarakbi W, Mokbel K. SYK expression in human breast cancer. J Carcinog 2005; 4:7. [PMID: 15842733 PMCID: PMC1087860 DOI: 10.1186/1477-3163-4-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 04/20/2005] [Indexed: 11/10/2022] Open
Abstract
Background Syk (Splenic Tyrosine Kinase) is an intracellular receptor protein kinase involved in cell proliferation, differentiation and phagocytosis. It has been studied in T and B lymphocytes, NK cells and platelets. The strong expression of Syk in mammary gland prompted research into its potential role in mammary carcinogenesis. There have been very few studies about its role in breast cancer with conflicting results. This study aims to investigate the hypothesis that Syk expression is down-regulated in breast cancer compared with ANCT and the association between its expression and clinicopathological parameters. Materials and methods mRNA was extracted from 48 breast cancer specimens. Relative Syk to ribosomal RNA expression was determined by RT-PCR and Taqman methodology. Mann-Whitney U test was used to examine the association between Syk expression in cancer and ANCT. Spearman's rank correlation test was used to examine the association between Syk expression in tumours and patients' age, tumour size, tumour grade, estrogen and progesterone receptor status, lymph node metastasis, vascular invasion and clinical outcome. Results The median for the relative value of Syk expression was 0.17 and 0.18 (range: 0.12 – 0.56 and 0.0 – 1.77) for tumours and ANCT respectively. There was no significant association between Syk expression in cancers and ANCT (p= 0.598) nor between Syk expression in tumours and patients' age, tumour size, tumour grade, estrogen and progesterone receptor status, lymph node metastasis, vascular invasion or prognosis. Conclusion This study shows that Syk mRNA expression does not seem to vary between breast tumours and ANCT. Furthermore, we observed no significant association between Syk expression and clinicopathological parameters.
Collapse
Affiliation(s)
- AE Elkak
- The Breast Unit, St George's Hospital and Medical School, Blackshaw Road London, SW17 0QT, UK
| | - W AL Sarakbi
- The Breast Unit, St George's Hospital and Medical School, Blackshaw Road London, SW17 0QT, UK
| | - K Mokbel
- The Breast Unit, St George's Hospital and Medical School, Blackshaw Road London, SW17 0QT, UK
| |
Collapse
|