1
|
Lee J, Cho W, Yu JW, Hyun YM. NLRP3 activation induces BBB disruption and neutrophil infiltration via CXCR2 signaling in the mouse brain. J Neuroinflammation 2025; 22:139. [PMID: 40413505 PMCID: PMC12102932 DOI: 10.1186/s12974-025-03468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
NLRP3 is an intracellular sensor molecule that affects neutrophil functionality and infiltration in brain disorders such as experimental autoimmune encephalomyelitis (EAE). However, the detailed molecular mechanisms underlying the role of NLRP3 in these processes remain unknown. We found that NLRP3 is crucial for neutrophil infiltration, whereas dispensable for neutrophil priming. Notably, NLRP3 activation in neutrophils induced blood-brain barrier (BBB) disruption and neutrophil infiltration into the brain via CXCL1/2 secretion and subsequent activation of the CXCL1/2-CXCR2 signaling axis. Moreover, CXCL1 and CXCL2 in the inflamed brain directly reduced Claudin-5 expression, which regulates BBB permeability in brain endothelial cells. Furthermore, neutrophil-specific NLRP3 activation aggravated EAE pathogenesis by promoting CXCR2-mediated infiltration of both neutrophils and CD4+ T cells into the central nervous system at disease onset. Thus, the CXCL1/2-CXCR2 axis plays a role in EAE progression. Therefore, this chemokine axis could be a potential therapeutic target for attenuating neuroinflammatory diseases through modulating of neutrophil and CD4+ T cell infiltration and BBB disruption.
Collapse
MESH Headings
- Animals
- Receptors, Interleukin-8B/metabolism
- Mice
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Blood-Brain Barrier/immunology
- Signal Transduction/physiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Neutrophil Infiltration/physiology
- Mice, Inbred C57BL
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Brain/metabolism
- Brain/pathology
- Neutrophils/metabolism
- Female
- Chemokine CXCL2/metabolism
- Chemokine CXCL1/metabolism
Collapse
Affiliation(s)
- Jaeho Lee
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Cho
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Graduate School of Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Chen X, Sun F, Wang X, Feng X, Aref AR, Tian Y, Ashrafizadeh M, Wu D. Inflammation, microbiota, and pancreatic cancer. Cancer Cell Int 2025; 25:62. [PMID: 39987122 PMCID: PMC11847367 DOI: 10.1186/s12935-025-03673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025] Open
Abstract
Pancreatic cancer (PC) is a malignancy of gastrointestinal tract threatening the life of people around the world. In spite of the advances in the treatment of PC, the overall survival of this disease in advanced stage is less than 12%. Moreover, PC cells have aggressive behaviour in proliferation and metastasis as well as capable of developing therapy resistance. Therefore, highlighting the underlying molecular mechanisms in PC pathogenesis can provide new insights for its treatment. In the present review, inflammation and related pathways as well as role of gut microbiome in the regulation of PC pathogenesis are highlighted. The various kinds of interleukins and chemokines are able to regulate angiogenesis, metastasis, proliferation, inflammation and therapy resistance in PC cells. Furthermore, a number of molecular pathways including NF-κB, TLRs and TGF-β demonstrate dysregulation in PC aggravating inflammation and tumorigenesis. Therapeutic regulation of these pathways can reverse inflammation and progression of PC. Both chronic and acute pancreatitis have been shown to be risk factors in the development of PC, further highlighting the role of inflammation. Finally, the composition of gut microbiota can be a risk factor for PC development through affecting pathways such as NF-κB to mediate inflammation.
Collapse
Affiliation(s)
- XiaoLiang Chen
- Department of General Surgery and Integrated Traditional Chinese and Western Medicine Oncology, Tiantai People'S Hospital of Zhejiang Province(Tiantai Branch of Zhejiang Provincial People'S Hospital), Hangzhou Medical College, Taizhou, Zhejiang, China
| | - Feixia Sun
- Nursing Department, Shandong First Medical University Affiliated Occupational Disease Hospital (Shandong Provincial Occupational Disease Hospital), Jinan, China
| | - Xuqin Wang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, 525200, Guangdong, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Yu Tian
- Research Center, the Huizhou Central People'S Hospital, Guangdong Medical University, Huizhou, Guangdong, China.
- School of Public Health, Benedictine University, No. 5700 College Road, Lisle, IL, 60532, USA.
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China.
| | - Dengfeng Wu
- Department of Emergency, The People'S Hospital of Gaozhou, No. 89 Xiguan Road, Gaozhou, 525200, Guangdong, China.
| |
Collapse
|
3
|
Garcia MJ, Morales MS, Yang TS, Holden J, Bossardet OL, Palmer SA, Jhala M, Priest S, Namburu N, Beatty N, D'Empaire Salomon SE, Vancel J, Wareham LK, Padovani-Claudio DA. Adverse effects of CXCR2 deficiency in mice reared under non-gnotobiotic conditions. Sci Rep 2024; 14:26159. [PMID: 39478033 PMCID: PMC11525579 DOI: 10.1038/s41598-024-75532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
The family of pro-inflammatory and pro-angiogenic chemokines including Interleukin-8 (IL-8, aka CXCL8) and its homologues (CXCL1,2,3,5,6, and 7) exhibit promiscuous binding and activation of several G-protein-coupled receptors (i.e., CXCR2, CXCR1, and the atypical chemokine receptor (ACKR1)). A high proportion of their biological activity is attributed to CXCR2 activation, thus many CXCR2 inhibitors are in clinical trials for several chronic diseases. However, CXCR2 inhibition is often only investigated acutely in these trials or in Cxcr2-/- mice grown in gnotobiotic conditions. Since humans do not live in germ-free environments, our first goal is to highlight novel retinal and systemic observations in Cxcr2-/- mice grown in non-gnotobiotic conditions that suggest potential harmful consequences of long-term CXCR2 deficiency or blockade. Beyond confirmation of circulating blood/immune cell-related phenotypes, we report novel findings in Cxcr2-/- mice including: (1) delayed dye transit to the retinal vasculature, (2) alterations in the density and distribution of retinal vessels, astrocytes and microglia, (3) decreased electroretinogram a- and b-wave amplitudes, (4) reduced visual acuity, and (5) increased polymorphonuclear cell accumulation in vascular lumina abutting venular walls in the retina and in vital non-ocular tissues (lung and liver). Furthermore, PheWAS of CXCR2 CXCR1, and ACKR1 gene variants using data from UK Biobank participants suggest clinical associations with both retinal and vascular disease phenotypes. We conclude that chronic CXCR2 deficiency in mice contributes to functional damage to the retina and that the long-term safety of CXCR1/2 inhibitors designed for chronic use in humans should be explored before clinical adoption to safeguard sight and overall vascular health.
Collapse
Affiliation(s)
- Maximilian J Garcia
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Monica S Morales
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Tzushan S Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph Holden
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Olivia L Bossardet
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Samuel A Palmer
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Marvarakumari Jhala
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Stephen Priest
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Neeraj Namburu
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Nolan Beatty
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Sariah E D'Empaire Salomon
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Jordan Vancel
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA.
- Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
4
|
Chen W, Tan M, Zhang H, Gao T, Ren J, Cheng S, Chen J. Signaling molecules in the microenvironment of hepatocellular carcinoma. Funct Integr Genomics 2024; 24:146. [PMID: 39207523 DOI: 10.1007/s10142-024-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.
Collapse
Affiliation(s)
- Wanjin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Gao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Abdulnour-Nakhoul SM, Kolls JK, Flemington EK, Ungerleider NA, Nakhoul HN, Song K, Nakhoul NL. Alterations in gene expression and microbiome composition upon calcium-sensing receptor deletion in the mouse esophagus. Am J Physiol Gastrointest Liver Physiol 2024; 326:G438-G459. [PMID: 38193195 PMCID: PMC11213479 DOI: 10.1152/ajpgi.00066.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
The calcium-sensing receptor (CaSR), a G protein-coupled receptor, regulates Ca2+ concentration in plasma by regulating parathyroid hormone secretion. In other tissues, it is reported to play roles in cellular differentiation and migration and in secretion and absorption. We reported previously that CaSR can be conditionally deleted in the mouse esophagus. This conditional knockout (KO) (EsoCaSR-/-) model showed a significant reduction in the levels of adherens and tight junction proteins and had a marked buildup of bacteria on the luminal esophageal surface. To further examine the role of CaSR, we used RNA sequencing to determine gene expression profiles in esophageal epithelia of control and EsoCaSR-/-mice RNA Seq data indicated upregulation of gene sets involved in DNA replication and cell cycle in EsoCaSR-/-. This is accompanied by the downregulation of gene sets involved in the innate immune response and protein homeostasis including peptide elongation and protein trafficking. Ingenuity pathway analysis (IPA) demonstrated that these genes are mapped to important biological networks including calcium and Ras homologus A (RhoA) signaling pathways. To further explore the bacterial buildup in EsoCaSR-/- esophageal tissue, 16S sequencing of the mucosal-associated bacterial microbiome was performed. Three bacterial species, g_Rodentibacter, s_Rodentibacter_unclassified, and s_Lactobacillus_hilgardi were significantly increased in EsoCaSR-/-. Furthermore, metagenomic analysis of 16S sequences indicated that pathways related to oxidative phosphorylation and metabolism were downregulated in EsoCaSR-/- tissues. These data demonstrate that CaSR impacts major pathways of cell proliferation, differentiation, cell cycle, and innate immune response in esophageal epithelium. The disruption of these pathways causes inflammation and significant modifications of the microbiome.NEW & NOTEWORTHY Calcium-sensing receptor (CaSR) plays a significant role in maintaining the barrier function of esophageal epithelium. Using RNA sequencing, we show that conditional deletion of CaSR from mouse esophagus causes upregulation of genes involved in DNA replication and cell cycle and downregulation of genes involved in the innate immune response, protein translation, and cellular protein synthesis. Pathway analysis shows disruption of signaling pathways of calcium and actin cytoskeleton. These changes caused inflammation and esophageal dysbiosis.
Collapse
Affiliation(s)
- Solange M Abdulnour-Nakhoul
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Jay K Kolls
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Erik K Flemington
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States
| | - Nathan A Ungerleider
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States
| | - Hani N Nakhoul
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States
| | - Kejing Song
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Nazih L Nakhoul
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
6
|
Denda Y, Matsuo Y, Sugita S, Eguchi Y, Nonoyama K, Murase H, Kato T, Imafuji H, Saito K, Morimoto M, Ogawa R, Takahashi H, Mitsui A, Kimura M, Takiguchi S. The Natural Product Parthenolide Inhibits Both Angiogenesis and Invasiveness and Improves Gemcitabine Resistance by Suppressing Nuclear Factor κB Activation in Pancreatic Cancer Cell Lines. Nutrients 2024; 16:705. [PMID: 38474833 PMCID: PMC10934733 DOI: 10.3390/nu16050705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
We previously established pancreatic cancer (PaCa) cell lines resistant to gemcitabine and found that the activity of nuclear factor κB (NF-κB) was enhanced upon the acquisition of gemcitabine resistance. Parthenolide, the main active ingredient in feverfew, has been reported to exhibit antitumor activity by suppressing the NF-κB signaling pathway in several types of cancers. However, the antitumor effect of parthenolide on gemcitabine-resistant PaCa has not been elucidated. Here, we confirmed that parthenolide significantly inhibits the proliferation of both gemcitabine-resistant and normal PaCa cells at concentrations of 10 µM and higher, and that the NF-κB activity is significantly inhibited, even by 1 µM parthenolide. In Matrigel invasion assays and angiogenesis assays, the invasive and angiogenic potentials were higher in gemcitabine-resistant than normal PaCa cells and were inhibited by a low concentration of parthenolide. Furthermore, Western blotting showed suppressed MRP1 expression in gemcitabine-resistant PaCa treated with a low parthenolide concentration. In a colony formation assay, the addition of 1 µM parthenolide improved the sensitivity of gemcitabine-resistant PaCa cell lines to gemcitabine. These results suggest that parthenolide may be used as a novel therapeutic agent for the treatment of gemcitabine-resistant PaCa.
Collapse
Affiliation(s)
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (Y.D.); (S.S.); (Y.E.); (K.N.); (H.M.); (T.K.); (H.I.); (K.S.); (M.M.); (R.O.); (H.T.); (A.M.); (M.K.); (S.T.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lekan AA, Weiner LM. The Role of Chemokines in Orchestrating the Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:559. [PMID: 38339310 PMCID: PMC10854906 DOI: 10.3390/cancers16030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Chemokines are small molecules that function as chemotactic factors which regulate the migration, infiltration, and accumulation of immune cells. Here, we comprehensively assess the structural and functional role of chemokines, examine the effects of chemokines that are present in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME), specifically those produced by cancer cells and stromal components, and evaluate their impact on immune cell trafficking, both in promoting and suppressing anti-tumor responses. We further explore the impact of chemokines on patient outcomes in PDAC and their role in the context of immunotherapy treatments, and review clinical trials that have targeted chemokine receptors and ligands in the treatment of PDAC. Lastly, we highlight potential strategies that can be utilized to harness chemokines in order to increase cytotoxic immune cell infiltration and the anti-tumor effects of immunotherapy.
Collapse
Affiliation(s)
| | - Louis M. Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA;
| |
Collapse
|
8
|
Lizcano-Meneses S, Hernández-Pando R, García-Aguirre I, Bonilla-Delgado J, Alvarado-Castro VM, Cisneros B, Gariglio P, Cortés-Malagón EM. Combined Inhibition of Indolamine-2,3-Dioxygenase 1 and C-X-C Chemokine Receptor Type 2 Exerts Antitumor Effects in a Preclinical Model of Cervical Cancer. Biomedicines 2023; 11:2280. [PMID: 37626777 PMCID: PMC10452145 DOI: 10.3390/biomedicines11082280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cervical cancer is a public health problem diagnosed in advanced stages, and its main risk factor is persistent high-risk human papillomavirus infection. Today, it is necessary to study new treatment strategies, such as immunotherapy, that use different targets of the tumor microenvironment. In this study, the K14E7E2 mouse was used as a cervical cancer model to evaluate the inhibition of indolamine-2,3-dioxygenase 1 (IDO-1) and C-X-C chemokine receptor type 2 (CXCR-2) as potential anti-tumor targets. DL-1MT and SB225002 were administered for 30 days in two regimens (R1 and R2) based on combination and single therapy approaches to inhibit IDO-1 and CXCR-2, respectively. Subsequently, the reproductive tracts were resected and analyzed to determine the tumor areas, and IHCs were performed to assess proliferation, apoptosis, and CD8 cellular infiltration. Our results revealed that combined inhibition of IDO-1 and CXCR-2 significantly reduces the areas of cervical tumors (from 196.0 mm2 to 58.24 mm2 in R1 and 149.6 mm2 to 52.65 mm2 in R2), accompanied by regions of moderate dysplasia, decreased papillae, and reduced inflammation. Furthermore, the proliferation diminished, and apoptosis and intra-tumoral CD8 T cells increased. In conclusion, the combined inhibition of IDO-1 and CXCR-2 is helpful in the antitumor response against preclinical cervical cancer.
Collapse
Affiliation(s)
- Solangy Lizcano-Meneses
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Rogelio Hernández-Pando
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico
| | - Ian García-Aguirre
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Instituto Tecnologico y de Estudios Superiores de Monterrey, Ciudad de México, Mexico City 14380, Mexico
| | - José Bonilla-Delgado
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Instituto Tecnologico y de Estudios Superiores de Monterrey, Toluca 50110, Mexico
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | | | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Enoc Mariano Cortés-Malagón
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| |
Collapse
|
9
|
Dwivedi NV, Datta S, El-Kersh K, Sadikot RT, Ganti AK, Batra SK, Jain M. GPCRs and fibroblast heterogeneity in fibroblast-associated diseases. FASEB J 2023; 37:e23101. [PMID: 37486603 PMCID: PMC10916681 DOI: 10.1096/fj.202301091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse class of signaling receptors. GPCRs regulate many functions in the human body and have earned the title of "most targeted receptors". About one-third of the commercially available drugs for various diseases target the GPCRs. Fibroblasts lay the architectural skeleton of the body, and play a key role in supporting the growth, maintenance, and repair of almost all tissues by responding to the cellular cues via diverse and intricate GPCR signaling pathways. This review discusses the dynamic architecture of the GPCRs and their intertwined signaling in pathological conditions such as idiopathic pulmonary fibrosis, cardiac fibrosis, pancreatic fibrosis, hepatic fibrosis, and cancer as opposed to the GPCR signaling of fibroblasts in physiological conditions. Understanding the dynamics of GPCR signaling in fibroblasts with disease progression can help in the recognition of the complex interplay of different GPCR subtypes in fibroblast-mediated diseases. This review highlights the importance of designing and adaptation of next-generation strategies such as GPCR-omics, focused target identification, polypharmacology, and effective personalized medicine approaches to achieve better therapeutic outcomes for fibrosis and fibrosis associated malignancies.
Collapse
Affiliation(s)
- Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Souvik Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Karim El-Kersh
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ruxana T Sadikot
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska Western Iowa Health Care System
| | - Apar K. Ganti
- VA Nebraska Western Iowa Health Care System
- Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
10
|
Wu YN, Su X, Wang XQ, Liu NN, Xu ZW. The roles of phospholipase C-β related signals in the proliferation, metastasis and angiogenesis of malignant tumors, and the corresponding protective measures. Front Oncol 2023; 13:1231875. [PMID: 37576896 PMCID: PMC10419273 DOI: 10.3389/fonc.2023.1231875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
PLC-β is widely distributed in eukaryotic cells and is the key enzyme in phosphatidylinositol signal transduction pathway. The cellular functions regulated by its four subtypes (PLC-β1, PLC-β2, PLC-β3, PLC-β4) play an important role in maintaining homeostasis of organism. PLC-β and its related signals can promote or inhibit the occurrence and development of cancer by affecting the growth, differentiation and metastasis of cells, while targeted intervention of PLC-β1-PI3K-AKT, PLC-β2/CD133, CXCR2-NHERF1-PLC-β3, Gαq-PLC-β4-PKC-MAPK and so on can provide new strategies for the precise prevention and treatment of malignant tumors. This paper reviews the mechanism of PLC-β in various tumor cells from four aspects: proliferation and differentiation, invasion and metastasis, angiogenesis and protective measures.
Collapse
Affiliation(s)
- Yu-Nuo Wu
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xing Su
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Qin Wang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Na-Na Liu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhou-Wei Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui, China
| |
Collapse
|
11
|
Prajapati DR, Molczyk C, Purohit A, Saxena S, Sturgeon R, Dave BJ, Kumar S, Batra SK, Singh RK. Small molecule antagonist of CXCR2 and CXCR1 inhibits tumor growth, angiogenesis, and metastasis in pancreatic cancer. Cancer Lett 2023; 563:216185. [PMID: 37062329 PMCID: PMC10218365 DOI: 10.1016/j.canlet.2023.216185] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Pancreatic cancer (PC) has a poor prognosis, and current therapeutic strategies are ineffective in advanced diseases. We and others have shown the aberrant expression of CXCR2 and its ligands in PC development and progression. Our objective for this study was to evaluate the therapeutic utility of CXCR2/1 targeting using an small molecule antagonist, SCH-479833, in different PC preclinical murine models (syngeneic or xenogeneic). Our results demonstrate that CXCR2/1 antagonist had both antitumor and anti-metastatic effects in PC. CXCR2/1 antagonist treatment inhibited tumor cell proliferation, migration, angiogenesis, and recruitment of neutrophils, while it increased apoptosis. Treatment with the antagonist enhanced fibrosis, tumor necrosis, and extramedullary hematopoiesis. Together, these findings suggest that selectively targeting CXCR2/1 with small molecule inhibitors is a promising therapeutic approach for inhibiting PC growth, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Dipakkumar R Prajapati
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Caitlin Molczyk
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Abhilasha Purohit
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Sugandha Saxena
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Reegan Sturgeon
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Bhavana J Dave
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5845, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5845, United States
| | - Rakesh K Singh
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States.
| |
Collapse
|
12
|
Koroknai V, Szász I, Balázs M. Gene Expression Changes in Cytokine and Chemokine Receptors in Association with Melanoma Liver Metastasis. Int J Mol Sci 2023; 24:ijms24108901. [PMID: 37240247 DOI: 10.3390/ijms24108901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cytokines and chemokines (chemotactic cytokines) are soluble extracellular proteins that bind to specific receptors and play an integral role in the cell-to-cell signaling network. In addition, they can promote the homing of cancer cells into different organs. We investigated the potential relationship between human hepatic sinusoidal endothelial cells (HHSECs) and several melanoma cell lines for the expression of chemokine and cytokine ligands and receptor expression during the invasion of melanoma cells. In order to identify differences in gene expression related to invasion, we selected invasive and non-invasive subpopulations of cells after co-culturing with HHSECs and identified the gene expression patterns of 88 chemokine/cytokine receptors in all cell lines. Cell lines with stable invasiveness and cell lines with increased invasiveness displayed distinct profiles of receptor genes. Cell lines with increased invasive capacity after culturing with conditioned medium showed a set of receptor genes (CXCR1, IL1RL1, IL1RN, IL3RA, IL8RA, IL11RA, IL15RA, IL17RC, and IL17RD) with significantly different expressions. It is very important to emphasize that we detected significantly higher IL11RA gene expression in primary melanoma tissues with liver metastasis as well, compared to those without metastasis. In addition, we assessed protein expression in endothelial cells before and after co-culturing them with melanoma cell lines by applying chemokine and cytokine proteome arrays. This analysis revealed 15 differentially expressed proteins (including CD31, VCAM-1, ANGPT2, CXCL8, and CCL20) in the hepatic endothelial cells after co-culture with melanoma cells. Our results clearly indicate the interaction between liver endothelial and melanoma cells. Furthermore, we assume that overexpression of the IL11RA gene may play a key role in organ-specific metastasis of primary melanoma cells to the liver.
Collapse
Affiliation(s)
- Viktória Koroknai
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - István Szász
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Margit Balázs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
13
|
Wang ZZ, Li XT, Li QJ, Zhou JX. Targeting CXCL5 in Pancreatic Cancer Cells Inhibits Cancer Xenograft Growth by Reducing Proliferation and Inhibiting EMT Progression. Dig Dis Sci 2023; 68:841-851. [PMID: 35650416 DOI: 10.1007/s10620-022-07529-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 04/18/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is the most lethal malignant tumor, with average survival period of about 10 months. C-X-C ligand 5 (CXCL5), an important chemokine for immune cell accumulation in tumor tissues, has been reported to be involved in a variety of human cancers. However, the exact role of CXCL5 in PC progression has not been well defined. METHODS The expression of CXCL5 in PC was analyzed based on online databases and clinical specimens immunohistochemical staining, and Western blotting of CXCL5 in PC cell lines and patient samples. The correlation between CXCL5 expression and prognosis in PC was explored. The role of CXCL5 in PC was investigated through in vitro and in vivo experiments. RESULTS The expression of CXCL5 was significantly increased in PC tissues compared with that in pancreas tissues, and CXCL5 high expression predicts poor prognosis in PC patients. Further analyses demonstrated that overexpression of CXCL5 in PC cells was positively related to higher proliferation rate, higher migration ability, and higher EMT markers including SNAI2 and TWIST1 of tumor cells in vitro. Consistently, the knockdown of CXCL5 in PC cells harmed the proliferation rate, migration ability, and expression of EMT indexes of tumor cells in vitro. Importantly, knockdown of CXCL5 inhibited the growth of xenograft tumors in vivo. CONCLUSION CXCL5 high expression predicts poor prognosis in PC patients. CXCL5 promotes PC cell growth and EMT process. Inhibition of CXCL5 may be a potential therapeutic approach for PC.
Collapse
Affiliation(s)
- Zheng-Zheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xiao-Ting Li
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Qing-Jun Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jin-Xue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
14
|
Wu T, Yang W, Sun A, Wei Z, Lin Q. The Role of CXC Chemokines in Cancer Progression. Cancers (Basel) 2022; 15:cancers15010167. [PMID: 36612163 PMCID: PMC9818145 DOI: 10.3390/cancers15010167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
CXC chemokines are small chemotactic and secreted cytokines. Studies have shown that CXC chemokines are dysregulated in multiple types of cancer and are closely correlated with tumor progression. The CXC chemokine family has a dual function in tumor development, either tumor-promoting or tumor-suppressive depending on the context of cellular signaling. Recent evidence highlights the pro-tumorigenic properties of CXC chemokines in most human cancers. CXC chemokines were found to play pivotal roles in promoting angiogenesis, stimulating inflammatory responses, and facilitating tumor metastases. Enhanced expression of CXC chemokines is always signatured with inferior survival and prognosis. The levels of CXC chemokines in cancer patients are in dynamic change according to the tumor contexts (e.g., chemotherapy resistance and tumor recurrence after surgery). Thus, CXC chemokines have great potential to be used as diagnostic and prognostic biomarkers and therapeutic targets. Currently, the molecular mechanisms underlying the effect of CXC chemokines on tumor inflammation and metastasis remain unclear and application of antagonists and neutralizing antibodies of CXC chemokines signaling for cancer therapy is still not fully established. This article will review the roles of CXC chemokines in promoting tumorigenesis and progression and address the future research directions of CXC chemokines for cancer treatment.
Collapse
|
15
|
Israr M, DeVoti JA, Papayannakos CJ, Bonagura VR. Role of chemokines in HPV-induced cancers. Semin Cancer Biol 2022; 87:170-183. [PMID: 36402301 DOI: 10.1016/j.semcancer.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - James A DeVoti
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Christopher J Papayannakos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R Bonagura
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
16
|
Liu N, Bauer M, Press AT. The immunological function of CXCR2 in the liver during sepsis. J Inflamm (Lond) 2022; 19:23. [DOI: 10.1186/s12950-022-00321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Abstract
Background
The chemokine receptor CXCR2 and its ligands, especially CXCL8, are crucial mediators for the progression of liver inflammation and liver failure in sepsis. Neutrophils have the highest CXCR2 expression in mice and humans, and their activation via CXCL8 facilitates their migration to the inflamed liver for the clearance of the pathogens and, in turn, the inflammation.
Main body
In sepsis, the inflammatory insult causes extensive neutrophil migration to the liver that overwhelms the immune response. To compensate for the strong receptor activation, CXCR2 desensitizes, incapacitating the immune cells to efficiently clear pathogens, causing further life-threatening liver damage and uncontrolled pathogen spread.
Conclusion
CXCR2 function during infection strongly depends on the expressing cell type. It signals pro- and anti-inflammatory effects that may prompt novel cell-type-specific CXCR2-directed therapeutics.
Collapse
|
17
|
Ren Z, Chen Y, Shi L, Shao F, Sun Y, Ge J, Zhang J, Zang Y. Sox9/CXCL5 axis facilitates tumour cell growth and invasion in hepatocellular carcinoma. FEBS J 2022; 289:3535-3549. [PMID: 35038357 DOI: 10.1111/febs.16357] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/20/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
Abstract
High rates of metastasis and postsurgical recurrence contribute to the higher mortality of hepatocellular carcinoma (HCC), partly due to cancer stem cell (CSC)-dependent tumorigenesis and metastasis. Sex-determining region Y-box 9 (Sox9) has been previously characterized as a candidate CSC marker of HCC. Here, we observed that the increase of Sox9 significantly promoted HCC cell growth and invasion in cell cultures, whereas knockdown of Sox9 showed the opposite effects, suggesting that Sox9 may regulate the proliferation and invasion of hepatoma cells in an autocrine manner. RNA sequencing, together with functional assays and clinical analyses, identified CXCL5 as a key mediator downstream of Sox9 in HCC cells. Mechanistic studies revealed that Sox9 induced CXCL5 expression by directly binding to a promoter region. Using gain- and loss-of-function approaches, we demonstrated that the intrinsic effective role of Sox9 in hepatoma cell growth and invasion depended on CXCL5, and that blockade of CXCL5/CXCR2 signalling abolished Sox9-triggered HCC cell proliferation and migration. Furthermore, the Sox9/CXCL5 axis activated PI3K-AKT and ERK1/2 signalling which are implicated in regulating HCC cell proliferation and invasion. Finally, the Sox9/CXCL5 axis contributed to the infiltration of neutrophils and macrophages in both tumour and peritumoral tissues from the orthotopic xenograft model. In summary, our data identify the Sox9/CXCL5 axis as an endogenous factor in controlling HCC cell growth and invasion, thereby raising the possibility of pharmacologic intervention with CXCL5/CXCR2 pathway inhibitors in therapy for HCC patients with higher Sox9 expression.
Collapse
Affiliation(s)
- Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, China
| | - Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, China
| | - Lei Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, China
| | - Fang Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, China
| | - Yanyan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, China
| | - Jia Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, China
| |
Collapse
|
18
|
Xue W, Yu SY, Kuss MA, Kong Y, Shi W, Chung S, Kim SY, Duan B. 3D bioprinted white adipose model for in vitro study of cancer-associated cachexia induced adipose tissue remodeling. Biofabrication 2022; 14. [PMID: 35504266 DOI: 10.1088/1758-5090/ac6c4b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/03/2022] [Indexed: 11/11/2022]
Abstract
Cancer-associated cachexia (CAC) is a complex metabolic and behavioral syndrome with multiple manifestations that involve systemic inflammation, weight loss, and adipose lipolysis. It impacts the quality of life of patients and is the direct cause of death in 20-30% of cancer patients. The severity of fat loss and adipose tissue remodeling negatively correlate with patients' survival outcomes. To address the mechanism of fat loss and design potential approaches to prevent the process, it will be essential to understand CAC pathophysiology through white adipose tissue models. In the present study, an engineered human white adipose tissue (eWAT) model based on three-dimensional (3D) bioprinting was developed and treated with pancreatic cancer cell-conditioned medium (CM) to mimic the status of CAC in vitro. We found that the CM treatment significantly increased the lipolysis and accumulation of the extracellular matrix (ECM). The 3D eWATs were further vascularized to study the influence of vascularization on lipolysis and CAC progression, which was largely unknown. Results demonstrated that CM treatment improved the angiogenesis of vascularized eWATs (veWATs), and veWATs demonstrated decreased glycerol release but increased Ucp1 expression, compared to eWATs. Many unique inflammatory cytokines (IL-8, CXCL-1, GM-CSF, etc) from the CM were detected and supposed to contribute to eWAT lipolysis, Ucp1 up-regulation, and ECM development. In response to CM treatment, eWATs also secreted inflammatory adipokines related to the metastatic ability of cancer, muscle atrophy, and vascularization (NGAL, CD54, IGFBP-2, etc). Our work demonstrated that the eWAT is a robust model for studying cachectic fat loss and the accompanying remodeling of adipose tissue. It is therefore a useful tool for future research exploring CAC physiologies and developing potential therapies.
Collapse
Affiliation(s)
- Wen Xue
- University of Nebraska Medical Center, DRCII, Omaha, 68198-7400, UNITED STATES
| | - Seok-Yeong Yu
- Regenerative Medicine, University of Nebraska Medical Center, DRCII R6035, Omaha, Nebraska, 68198-7400, UNITED STATES
| | - Mitchell A Kuss
- Regenerative Medicine, University of Nebraska Medical Center, DRCII, Omaha, Nebraska, 68106, UNITED STATES
| | - Yunfan Kong
- University of Nebraska Medical Center, DRCII, Omaha, 68198-7400, UNITED STATES
| | - Wen Shi
- University of Nebraska Medical Center, DRCII, Omaha, Nebraska, 68106, UNITED STATES
| | - Soonkyu Chung
- University of Massachusetts Amherst, UMA, Amherst, Massachusetts, 01003, UNITED STATES
| | - So-Youn Kim
- Regenerative Medicine, University of Nebraska Medical Center, DRCII R6035, Omaha, Nebraska, 68198-7400, UNITED STATES
| | - Bin Duan
- Regenerative Medicine, University of Nebraska Medical Center, DRCII R6035, Omaha, Nebraska, 68198-7400, UNITED STATES
| |
Collapse
|
19
|
Sun HY, Min ZC, Gao L, Zhang ZY, Pang TL, Gao YJ, Pan H, Ou-Yang J. Association between IL8RB C1208T mutation and risk of cancer: A pooled analysis based on 5299 cases and 6899 controls. Medicine (Baltimore) 2022; 101:e28986. [PMID: 35212311 PMCID: PMC8878631 DOI: 10.1097/md.0000000000028986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/11/2022] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The CXC chemokines are unique cytokines that play a vital role in the progression of many cancers. Association between chemokine (C-X-C motif) receptor 2 (IL8RB) C1208T mutation and cancer risk remains incomprehensive. METHODS We therefore utilized odds ratios and in silico analysis to explore the relationship of IL8RB polymorphism on risk to cancer. Furthermore, we adopted gene set enrichment analysis to investigate the IL8RB expression in prostate adenocarcinoma. RESULTS A total of 14 case-control studies combined with 5299 cases and 6899 controls were included in our analysis. We revealed that individuals carrying TT genotype had an 14% increased cancer risk compared with those with TC + colon cancer (CC) genotype (odds ratio [OR] = 1.14, 95% CI = 1.05-1.25, P = .003, I2 = 35.6). Stratification analysis by race showed that East Asians with TT + TC genotype may have a 25% decreased cancer risk compared with control. Stratification analysis by cancer type revealed that individuals with TT genotype were associated with elevated risk of urinary cancer than control. The expression of IL8RB was attenuated in prostate adenocarcinoma. CONCLUSIONS IL8RB C1208T may be correlated with the risk of cancer, especially prostate adenocarcinoma.
Collapse
Affiliation(s)
- He-Yun Sun
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhi-Chao Min
- Department of Urology, The First People's Hospital of Hangzhou Lin’an District, 548 Yijin Road, Lin’an, China
| | - Lei Gao
- Department of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Zi-Yi Zhang
- Department of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Ting-Le Pang
- Department of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Ying-Jun Gao
- Department of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Hong Pan
- Department of Operation theatre, Changzhou No.2 People's Hospital, Changzhou, China
| | - Jun Ou-Yang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
20
|
Han ZJ, Li YB, Yang LX, Cheng HJ, Liu X, Chen H. Roles of the CXCL8-CXCR1/2 Axis in the Tumor Microenvironment and Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010137. [PMID: 35011369 PMCID: PMC8746913 DOI: 10.3390/molecules27010137] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
In humans, Interleukin-8 (IL-8 or CXCL8) is a granulocytic chemokine with multiple roles within the tumor microenvironment (TME), such as recruiting immunosuppressive cells to the tumor, increasing tumor angiogenesis, and promoting epithelial-to-mesenchymal transition (EMT). All of these effects of CXCL8 on individual cell types can result in cascading alterations to the TME. The changes in the TME components such as the cancer-associated fibroblasts (CAFs), the immune cells, the extracellular matrix, the blood vessels, or the lymphatic vessels further influence tumor progression and therapeutic resistance. Emerging roles of the microbiome in tumorigenesis or tumor progression revealed the intricate interactions between inflammatory response, dysbiosis, metabolites, CXCL8, immune cells, and the TME. Studies have shown that CXCL8 directly contributes to TME remodeling, cancer plasticity, and the development of resistance to both chemotherapy and immunotherapy. Further, clinical data demonstrate that CXCL8 could be an easily measurable prognostic biomarker in patients receiving immune checkpoint inhibitors. The blockade of the CXCL8-CXCR1/2 axis alone or in combination with other immunotherapy will be a promising strategy to improve antitumor efficacy. Herein, we review recent advances focusing on identifying the mechanisms between TME components and the CXCL8-CXCR1/2 axis for novel immunotherapy strategies.
Collapse
Affiliation(s)
- Zhi-Jian Han
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
- Correspondence: (Z.-J.H.); (H.C.); Tel.: +86-186-9310-9388 (Z.-J.H.); +86-150-0946-7790 (H.C.)
| | - Yang-Bing Li
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Lu-Xi Yang
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Hui-Juan Cheng
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Xin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
| | - Hao Chen
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
- Correspondence: (Z.-J.H.); (H.C.); Tel.: +86-186-9310-9388 (Z.-J.H.); +86-150-0946-7790 (H.C.)
| |
Collapse
|
21
|
Huang J, Chen Z, Ding C, Lin S, Wan D, Ren K. Prognostic Biomarkers and Immunotherapeutic Targets Among CXC Chemokines in Pancreatic Adenocarcinoma. Front Oncol 2021; 11:711402. [PMID: 34497764 PMCID: PMC8419473 DOI: 10.3389/fonc.2021.711402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Background Pancreatic cancer is one of the principal causes of tumor-related death worldwide. CXC chemokines, a subfamily of functional chemotactic peptides, affect the initiation of tumor cells and clinical outcomes in several human malignant tumors. However, the specific biological functions and clinical significance of CXC chemokines in pancreatic cancer have not been clarified. Methods Bioinformatics analysis tools and databases, including ONCOMINE, GEPIA2, the Human Protein Atlas, DAVID, GeneMANIA, cBioPortal, STRING, DGidb, MethSurv, TRRUST, SurvExpress, SurvivalMeth, and TIMER, were utilized to clarify the clinical significance and biological functions of CXC chemokine in pancreatic cancer. Results Except for CXCL11/12, the transcriptional levels of other CXC chemokines in PAAD tissues were significantly elevated, and the expression level of CXCL16 was the highest among these CXC chemokines. Our findings also suggested that all of the CXC chemokines were linked to tumor-immune dysfunction involving the abundance of immune cell infiltration, and the Cox proportional hazard model confirmed that dendritic and CXCL3/5/7/8/11/17 were significantly associated with the clinical outcome of PAAD patients. Furthermore, increasing expressions of CXCL5/9/10/11/17 were related to unfavorable overall survival (OS), and only CXCL17 was a prognostic factor for disease-free survival (DFS) in PAAD patients. The expression pattern and prognostic power of CXC chemokines were further validated in the independent GSE62452 dataset. For the prognostic value of single CpG of DNA methylation of CXC chemokines in patients with PAAD, we identified 3 CpGs of CXCL1, 2 CpGs of CXCL2, 2 CpGs of CXCL3, 3 CpGs of CXCL4, 10 CpGs of CXCL5, 1 CpG of CXCL6, 1 CpG of CXCL7, 3 CpGs of CXCL12, 3 CpGs of CXCL14, and 5 CpGs of CXCL17 that were significantly associated with prognosis in PAAD patients. Moreover, the prognostic value of CXC chemokine signature in PAAD was explored and tested in two independent cohort, and results indicated that the patients in the low-risk group had a better OS compared with the high-risk group. Survival analysis of the DNA methylation of CXC chemokine signature demonstrated that PAAD patients in the high-risk group had longer survival times. Conclusions These findings reveal the novel insights into CXC chemokine expression and their biological functions in the pancreatic cancers, which might serve as accurate prognostic biomarkers and suitable immunotherapeutic targets for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Jiacheng Huang
- Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhitao Chen
- Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenchen Ding
- Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Shengzhang Lin
- Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Dalong Wan
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kuiwu Ren
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Fuyang People's Hospital, Fuyang, China
| |
Collapse
|
22
|
Mishra A, Suman KH, Nair N, Majeed J, Tripathi V. An updated review on the role of the CXCL8-CXCR1/2 axis in the progression and metastasis of breast cancer. Mol Biol Rep 2021; 48:6551-6561. [PMID: 34426905 DOI: 10.1007/s11033-021-06648-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022]
Abstract
Chronic inflammation is a major factor in tumor growth and progression. Cancer cells secrete C-X-C chemokine ligand 8 (CXCL8) along with its receptor C-X-C chemokine receptor 1 (CXCR1) and chemokine receptor 2 (CXCR2). It plays a significant role in the activation and trafficking of inflammatory mediators, tumor proliferation and interferes in breast cancer development by controlling cell adhesion, proliferation, migration, and metastasis. This axis also plays a significant role in driving different cancers and melanomas, including breast cancer progression, by controlling stem cell masses. Few small-molecule CXCR1/2 inhibitors and CXCL8 releasing inhibitors have been identified in the past two decades that bind these receptors in their inactive forms and blocks their signaling as well as the biological activities associated with inflammation. Inhibitors of certain inflammatory molecules are projected to be more efficient in different inflammatory diseases. Preclinical trials indicate that patients may be benefitted from combined treatment with targeted drugs, chemotherapies, and immunotherapies. Thus, targeting the CXCL8-CXCR1/2 signaling axis in breast cancer could be a promising approach for its therapeutics. This review examines the roles of the CXCL8-CXCR1/2 signaling axis and how it is implicated in the tumor microenvironment in breast cancer. In addition, we also discuss the potential role of the CXCL8-CXCR1/2 axis in targeted therapeutics for breast cancer.
Collapse
Affiliation(s)
- Amaresh Mishra
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Kamrul Hassan Suman
- Department of Environment & Aquatic Biology, ABEx Bio-research Center, Azampur, Dhaka, 1230, Bangladesh
| | - Nisha Nair
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Govt of NCT of Delhi, New Delhi, 110017, India
| | - Jaseela Majeed
- School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Govt of NCT of Delhi, New Delhi, 110017, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
23
|
Kandikattu HK, Venkateshaiah SU, Mishra A. Chronic Pancreatitis and the Development of Pancreatic Cancer. Endocr Metab Immune Disord Drug Targets 2021; 20:1182-1210. [PMID: 32324526 DOI: 10.2174/1871530320666200423095700] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Pancreatitis is a fibro-inflammatory disorder of the pancreas that can occur acutely or chronically as a result of the activation of digestive enzymes that damage pancreatic cells, which promotes inflammation. Chronic pancreatitis with persistent fibro-inflammation of the pancreas progresses to pancreatic cancer, which is the fourth leading cause of cancer deaths across the globe. Pancreatic cancer involves cross-talk of inflammatory, proliferative, migratory, and fibrotic mechanisms. In this review, we discuss the role of cytokines in the inflammatory cell storm in pancreatitis and pancreatic cancer and their role in the activation of SDF1α/CXCR4, SOCS3, inflammasome, and NF-κB signaling. The aberrant immune reactions contribute to pathological damage of acinar and ductal cells, and the activation of pancreatic stellate cells to a myofibroblast-like phenotype. We summarize several aspects involved in the promotion of pancreatic cancer by inflammation and include a number of regulatory molecules that inhibit that process.
Collapse
Affiliation(s)
- Hemanth K Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sathisha U Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
24
|
Strong MJ, Rocco S, Taichman R, Clines GA, Szerlip NJ. Dura promotes metastatic potential in prostate cancer through the CXCR2 pathway. J Neurooncol 2021; 153:33-42. [PMID: 33835371 DOI: 10.1007/s11060-021-03752-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Spinal metastases are common in cancer. This preferential migration/growth in the spine is not fully understood. Dura has been shown to affect the surrounding microenvironment and promote cancer growth. Here, we investigate the role of dural cytokines in promoting the metastatic potential of prostate cancer (PCa) and the involvement of the CXCR2 signaling pathway. METHODS The role of dural conditioned media (DCM) in proliferation, migration and invasion of five PCa cell lines with various hormone sensitivities was assessed in the presence or absence of the CXCR2 inhibitor, SB225002. CXCR2 surface protein was examined by FACS. Cytokine levels were measured using a mouse cytokine array. RESULTS We observed high levels of cytokines produced by dura and within the vertebral body bone marrow, namely CXCL1 and CXCL2, that act on the CXCR2 receptor. All prostate cell lines treated with DCM demonstrated significant increase in growth, migration and invasion regardless of androgen sensitivity, except PC3, which did not significantly increase in invasiveness. When treated with SB225002, the growth response to DCM by cells expressing the highest levels of CXCR2 as measured by FACS (LNCaP and 22Rv1) was blunted. The increase in migration was significantly decreased in all lines in the presence of SB225002. Interestingly, the invasion increase seen with DCM was unchanged when these cells were treated with the CXCR2 inhibitor, except PC3 did demonstrate a significant decrease in invasion. CONCLUSION DCM enhances the metastatic potential of PCa with increased proliferation, migration and invasion. This phenomenon is partly mediated through the CXCR2 pathway.
Collapse
Affiliation(s)
- Michael J Strong
- Department of Neurosurgery, University of Michigan, 3552 Taubman Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Sabrina Rocco
- Department of Neurosurgery, University of Michigan, 3552 Taubman Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Russell Taichman
- School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A Clines
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Veterans Affairs Medical Center, Ann Arbor, MI, USA
| | - Nicholas J Szerlip
- Department of Neurosurgery, University of Michigan, 3552 Taubman Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.
- Veterans Affairs Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Omi K, Matsuo Y, Ueda G, Aoyama Y, Kato T, Hayashi Y, Imafuji H, Saito K, Tsuboi K, Morimoto M, Ogawa R, Takahashi H, Takiguchi S. Escin inhibits angiogenesis by suppressing interleukin‑8 and vascular endothelial growth factor production by blocking nuclear factor‑κB activation in pancreatic cancer cell lines. Oncol Rep 2021; 45:55. [PMID: 33760162 PMCID: PMC7962110 DOI: 10.3892/or.2021.8006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PaCa) is one of the most aggressive types of cancer. Thus, the development of new and more effective therapies is urgently required. Escin, a pentacyclic triterpenoid from the horse chestnut, has been reported to exhibit antitumor potential by reducing cell proliferation and blocking the nuclear factor‑κB (NF‑κB) signaling pathway in several types of cancer. Our previous study reported that NF‑κB enhanced the secretion of interleukin (IL)‑8 and vascular endothelial growth factor (VEGF), thereby inducing angiogenesis in PaCa cell lines. In the present study, it was examined whether escin inhibited angiogenesis by blocking NF‑κB activation in PaCa. It was initially confirmed that escin, at concentrations >10 µM, significantly inhibited the proliferation of several PaCa cell lines. Next, using immunocytochemical staining, it was found that escin inhibited the nuclear translocation of NF‑κB. Furthermore, ELISA confirmed that NF‑κB activity in the escin‑treated PaCa cells was significantly inhibited and reverse transcription‑quantitative PCR showed that the mRNA expression levels of tumor necrosis factor‑α‑induced IL‑8 and VEGF were significantly suppressed following escin treatment in the PaCa cell lines. ELISA also showed that escin decreased the secretion of IL‑8 and VEGF from the PaCa cells. Furthermore, tube formation in immortalized human endothelial cells was inhibited following incubation with the supernatants from escin‑treated PaCa cells. These results indicated that escin inhibited angiogenesis by reducing the secretion of IL‑8 and VEGF by blocking NF‑κB activity in PaCa. In conclusion, escin could be used as a novel molecular therapy for PaCa.
Collapse
Affiliation(s)
- Kan Omi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Goro Ueda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoshinaga Aoyama
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Tomokatsu Kato
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yuichi Hayashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroyuki Imafuji
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kenta Saito
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Ken Tsuboi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Mamoru Morimoto
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
26
|
Purohit A, Saxena S, Varney M, Prajapati DR, Kozel JA, Lazenby A, Singh RK. Host Cxcr2-Dependent Regulation of Pancreatic Cancer Growth, Angiogenesis, and Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:759-771. [PMID: 33453178 PMCID: PMC8027924 DOI: 10.1016/j.ajpath.2021.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) manifests aggressive tumor growth and early metastasis. Crucial steps in tumor growth and metastasis are survival, angiogenesis, invasion, and immunosuppression. Our prior research showed that chemokine CXC- receptor-2 (CXCR2) is expressed on endothelial cells, innate immune cells, and fibroblasts, and regulates angiogenesis and immune responses. Here, we examined whether tumor angiogenesis, growth, and metastasis of CXCR2 ligands expressing PDAC cells are regulated in vivo by a host CXCR2-dependent mechanism. C57BL6 Cxcr2-/- mice were generated following crosses between Cxcr2-/+ female and Cxcr2-/- male. Cxcr2 ligands expressing Kirsten rat sarcoma (KRAS-PDAC) cells were orthotopically implanted in the pancreas of wild-type or Cxcr2-/- C57BL6 mice. No significant difference in PDAC tumor growth was observed. Host Cxcr2 loss led to an inhibition in microvessel density in PDAC tumors. Interestingly, an enhanced spontaneous and experimental liver metastasis was observed in Cxcr2-/- mice compared with wild-type mice. Increased metastasis in Cxcr2-/- mice was associated with an increase in extramedullary hematopoiesis and expansion of neutrophils and immature myeloid precursor cells in the spleen of tumor-bearing mice. These data suggest a dynamic role of host CXCR2 axis in regulating tumor immune suppression, tumor growth, and metastasis.
Collapse
Affiliation(s)
- Abhilasha Purohit
- Department of Pathology and Microbiology, Nebraska Medical Center, Omaha, Nebraska
| | - Sugandha Saxena
- Department of Pathology and Microbiology, Nebraska Medical Center, Omaha, Nebraska
| | - Michelle Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Jessica A Kozel
- Department of Pathology and Microbiology, Nebraska Medical Center, Omaha, Nebraska
| | - Audrey Lazenby
- Department of Pathology and Microbiology, Nebraska Medical Center, Omaha, Nebraska
| | - Rakesh K Singh
- Department of Pathology and Microbiology, Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
27
|
Gencer S, Evans BR, van der Vorst EP, Döring Y, Weber C. Inflammatory Chemokines in Atherosclerosis. Cells 2021; 10:cells10020226. [PMID: 33503867 PMCID: PMC7911854 DOI: 10.3390/cells10020226] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a long-term, chronic inflammatory disease of the vessel wall leading to the formation of occlusive or rupture-prone lesions in large arteries. Complications of atherosclerosis can become severe and lead to cardiovascular diseases (CVD) with lethal consequences. During the last three decades, chemokines and their receptors earned great attention in the research of atherosclerosis as they play a key role in development and progression of atherosclerotic lesions. They orchestrate activation, recruitment, and infiltration of immune cells and subsequent phenotypic changes, e.g., increased uptake of oxidized low-density lipoprotein (oxLDL) by macrophages, promoting the development of foam cells, a key feature developing plaques. In addition, chemokines and their receptors maintain homing of adaptive immune cells but also drive pro-atherosclerotic leukocyte responses. Recently, specific targeting, e.g., by applying cell specific knock out models have shed new light on their functions in chronic vascular inflammation. This article reviews recent findings on the role of immunomodulatory chemokines in the development of atherosclerosis and their potential for targeting.
Collapse
Affiliation(s)
- Selin Gencer
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.G.); (E.P.C.v.d.V.); (Y.D.)
| | - Bryce R. Evans
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (B.R.E.)
| | - Emiel P.C. van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.G.); (E.P.C.v.d.V.); (Y.D.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.G.); (E.P.C.v.d.V.); (Y.D.)
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (B.R.E.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.G.); (E.P.C.v.d.V.); (Y.D.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
- Correspondence:
| |
Collapse
|
28
|
Boyles JS, Beidler CB, Strifler BA, Girard DS, Druzina Z, Durbin JD, Swearingen ML, Lee LN, Kikly K, Chintharlapalli S, Witcher DR. Discovery and characterization of a neutralizing pan-ELR+CXC chemokine monoclonal antibody. MAbs 2020; 12:1831880. [PMID: 33183151 PMCID: PMC7671035 DOI: 10.1080/19420862.2020.1831880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CXCR1 and CXCR2 signaling play a critical role in neutrophil migration, angiogenesis, and tumorigenesis and are therefore an attractive signaling axis to target in a variety of indications. In human, a total of seven chemokines signal through these receptors and comprise the ELR+CXC chemokine family, so named because of the conserved ELRCXC N-terminal motif. To fully antagonize CXCR1 and CXCR2 signaling, an effective therapeutic should block either both receptors or all seven ligands, yet neither approach has been fully realized clinically. In this work, we describe the generation and characterization of LY3041658, a humanized monoclonal antibody that binds and neutralizes all seven human and cynomolgus monkey ELR+CXC chemokines and three of five mouse and rat ELR+CXC chemokines with high affinity. LY3041658 is able to block ELR+CXC chemokine-induced Ca2+ mobilization, CXCR2 internalization, and chemotaxis in vitro as well as neutrophil mobilization in vivo without affecting other neutrophil functions. In addition to the in vitro and in vivo activity, we characterized the epitope and structural basis for binding in detail through alanine scanning, crystallography, and mutagenesis. Together, these data provide a robust preclinical characterization of LY3041658 for which the efficacy and safety is being evaluated in human clinical trials for neutrophilic skin diseases.
Collapse
Affiliation(s)
- Jeffrey S Boyles
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | - Catherine B Beidler
- Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company , San Diego, CA, USA
| | - Beth A Strifler
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | - Daniel S Girard
- Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company , San Diego, CA, USA
| | - Zhanna Druzina
- Discovery Chemistry Research Technologies, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | - Jim D Durbin
- Discovery Chemistry Research Technologies, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | - Michelle L Swearingen
- Oncology Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | - Linda N Lee
- Oncology Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | - Kristine Kikly
- Immunology Discovery, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | | | - Derrick R Witcher
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| |
Collapse
|
29
|
Pączek S, Łukaszewicz-Zając M, Mroczko B. Chemokines-What Is Their Role in Colorectal Cancer? Cancer Control 2020; 27:1073274820903384. [PMID: 32103675 PMCID: PMC7066593 DOI: 10.1177/1073274820903384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death. It
is the second most frequently diagnosed malignancy in Europe and third
worldwide. Colorectal malignancies diagnosed at an early stage offer a promising
survival rate. However, advanced tumors often present distant metastases even
after the complete resection of a primary tumor. Therefore, novel biomarkers of
CRC are sorely needed in the diagnosis and prognosis of this common malignancy.
A family of chemokines are composed of small, secreted proteins. They are best
known for their ability to stimulate the migration of several cell types. Some
investigations have indicated that chemokines are involved in cancer
development, including CRC. This article presents current knowledge regarding
chemokines and their specific receptors in CRC progression. Moreover, the prime
aim of this review is to summarize the potential role of these proteins as
biomarkers in the diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, Medical University of Bialystok, Poland
| | | | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Poland.,Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| |
Collapse
|
30
|
Pausch TM, Aue E, Wirsik NM, Freire Valls A, Shen Y, Radhakrishnan P, Hackert T, Schneider M, Schmidt T. Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes. Sci Rep 2020; 10:5420. [PMID: 32214219 PMCID: PMC7096431 DOI: 10.1038/s41598-020-62416-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
The characteristic desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) is a key contributor to its lethality. This stromal microenvironment is populated by cancer-associated fibroblasts (CAFs) that interact with cancer cells to drive progression and chemo-resistance. Research has focused on CAFs in the primary tumour but not in metastases, calling into question the role of analogous metastasis-associated fibroblasts (MAFs). We infer a role of MAFs in murine hepatic metastases following untargeted treatment with the anti-angiogenic drug sunitinib in vivo. Treated metastases were smaller and had fewer stromal cells, but were able to maintain angiogenesis and metastasis formation in the liver. Furthermore, sunitinib was ineffective at reducing MAFs alongside other stromal cells. We speculate that cancer cells interact with MAFs to maintain angiogenesis and tumour progression. Thus, we tested interactions between metastatic pancreatic cancer cells and fibroblasts using in vitro co-culture systems. Co-cultures enhanced fibroblast proliferation and induced angiogenesis. We identify carcinoma-educated fibroblasts as the source of angiogenesis via secretions of CXCL8 (aka IL-8) and CCL2 (aka MCP-1). Overall, we demonstrate that metastasis-associated fibroblasts have potential as a therapeutic target and highlight the CXCL8 and CCL2 axes for further investigation.
Collapse
Affiliation(s)
- Thomas M Pausch
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Elisa Aue
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Naita M Wirsik
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Aida Freire Valls
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ying Shen
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
31
|
Chen X, Xu C, Hong S, Xia X, Cao Y, McDermott J, Mu Y, Han JDJ. Immune Cell Types and Secreted Factors Contributing to Inflammation-to-Cancer Transition and Immune Therapy Response. Cell Rep 2020; 26:1965-1977.e4. [PMID: 30759403 DOI: 10.1016/j.celrep.2019.01.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/17/2018] [Accepted: 01/22/2019] [Indexed: 12/23/2022] Open
Abstract
Although chronic inflammation increases many cancers' risk, how inflammation facilitates cancer development is still not well studied. Recognizing whether and when inflamed tissues transition to cancerous tissues is of utmost importance. To unbiasedly infer molecular events, immune cell types, and secreted factors contributing to the inflammation-to-cancer (I2C) transition, we develop a computational package called "SwitchDetector" based on liver, gastric, and colon cancer I2C data. Using it, we identify angiogenesis associated with a common critical transition stage for multiple I2C events. Furthermore, we infer infiltrated immune cell type composition and their secreted or suppressed extracellular proteins to predict expression of important transition stage genes. This identifies extracellular proteins that may serve as early-detection biomarkers for pre-cancer and early-cancer stages. They alone or together with I2C hallmark angiogenesis genes are significantly related to cancer prognosis and can predict immune therapy response. The SwitchDetector and I2C database are publicly available at www.inflammation2cancer.org.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chi Xu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengjun Hong
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Xia
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqiang Cao
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joseph McDermott
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yonglin Mu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
Wu H, Zhang X, Han D, Cao J, Tian J. Tumour-associated macrophages mediate the invasion and metastasis of bladder cancer cells through CXCL8. PeerJ 2020; 8:e8721. [PMID: 32201645 PMCID: PMC7073239 DOI: 10.7717/peerj.8721] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Tumour-associated macrophages (TAMs) are associated with both the progression and poor prognosis of a variety of solid tumours. This study aimed to investigate and clarify the tumour-promoting role of CXCL8 secreted by TAMs in the urothelial carcinoma microenvironment of the bladder. Immunohistochemistry (n = 55) was used to detect Chemokine (C-X-C motif) ligand 8 (CXCL8), CD163 (a TAM marker), Matrixmetalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF), and E-cadherin in cancerous and adjacent tissues of bladder cancer patients. TAMs-like PBM (peripheral blood mononuclear)-derived macrophages were developed using in vitro experiments. T24, 5637, and UM-UC-3 were treated with conditioned medium (CM) for the experimental intervention group, without CM for the blank control group, and with CM and an anti-CXCL8 neutralizing antibody for the experimental control group, respectively. The immunohistochemical study showed that the expression of CXCL8 was significantly upregulated as the number of infiltrating TAMs increased in the tumour tissues. A high expression of CXCL8 significantly correlated with an increase in the expression of MMP-9 and VEGF and a decrease in expression of E-cadherin in the microenvironment. This revealed that TAM-derived CXCL8 is highly associated with bladder cancer migration, invasion, and angiogenesis. The concentration of CXCL8 was significantly higher in CM collected from TAM-like PBM-derived macrophages than that from THP-1 cells. In subsequent in vitro experiments, we found that CM derived from TAM-like PBM-derived macrophages can also increase the migration rate, invasiveness, and pro-angiogenic properties of tumour cells. Additionally, the effect of CXCL8 was significantly diminished by the addition of an anti-CXCL8 neutralizing antibody to CM. The infiltration of TAMs in the tumour microenvironment leads to the elevation of CXCL8, which in turn promotes the secretion of MMP-9, VEGF, and E-cadherin by bladder cancer cells. This alters the migration, invasion, and pro-angiogenic capacity of bladder cancer cells and accelerates cancer progression.
Collapse
Affiliation(s)
- Hao Wu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Urology Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, Gansu, P.R. China
| | - Xiangxiang Zhang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Urology Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, Gansu, P.R. China
| | - Dali Han
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Urology Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, Gansu, P.R. China
| | - Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Urology Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, Gansu, P.R. China
| | - Junqiang Tian
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Urology Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, Gansu, P.R. China
| |
Collapse
|
33
|
Usman S, Khawer M, Rafique S, Naz Z, Saleem K. The current status of anti-GPCR drugs against different cancers. J Pharm Anal 2020; 10:517-521. [PMID: 33425448 PMCID: PMC7775845 DOI: 10.1016/j.jpha.2020.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
G protein coupled receptors (GPCRs) have emerged as the most potential target for a number of drug discovery programs ranging from control of blood pressure, diabetes, cure for genetic diseases to treatment of cancer. A panel of different ligands including hormones, peptides, ions and small molecules is responsible for activation of these receptors. Molecular genetics has identified key GPCRs, whose mutations or altered expressions are linked with tumorgenicity. In this review, we discussed recent advances regarding the involvement of GPCRs in the development of cancers and approaches to manipulating the mechanism behind GPCRs involved tumor growth and metastasis to treat different types of human cancer. This review provides an insight into the current scenario of GPCR-targeted therapy, progress to date and the challenges in the development of anticancer drugs.
Collapse
Affiliation(s)
- Sana Usman
- Centre for Applied Molecular Biology, 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Maria Khawer
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zara Naz
- Centre for Applied Molecular Biology, 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Komal Saleem
- Centre for Applied Molecular Biology, 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
34
|
Qin Y, Mao W, Pan L, Sun Y, Fan F, Zhao Y, Cui Y, Wei X, Kohama K, Li F, Gao Y. Inhibitory effect of recombinant human CXCL8(3-72)K11R/G31P on atherosclerotic plaques in a mouse model of atherosclerosis. Immunopharmacol Immunotoxicol 2019; 41:446-454. [PMID: 31124391 DOI: 10.1080/08923973.2019.1616753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Context: Atherosclerosis is a chronic inflammatory disease in which the plaques were built up inside of the artery. Interleukin-8 (IL-8, CXCL8) is an inflammatory factor, known to play an important role in the development of atherosclerosis. G31P is an antagonist of the IL-8 receptor, which plays roles in vascular smooth muscle cell (VSMC) proliferation and migration. Objective: This study is to investigate the therapeutic effect of G31P on atherosclerosis through a mouse model. Materials and methods: A mouse model of atherosclerosis was generated through feeding the ApoE-/- mice with high fat diet for 12 weeks. G31P was injected subcutaneously into the mice. The levels of keratinocyte chemoattractant (KC), CXCR2, TNF-α, and IFN-γ were analyzed through ELISA. The expressions of MMP-2, MMP-9, PCNA, and Mef2a in aortic tissues were detected through RT-qPCR. In A7r5 cells, the levels of p-ERK, ROCK1, and ROCK2 were analyzed by western blot. Intracellular calcium levels were measured through Fluo-3 AM assay. Results and disccussion: G31P suppressed the abnormal lipid profile and decreased the levels of KC, MMP-2, MMP-9, PCNA, and Mef2a in a mouse model of atherosclerosis. In addition, G31P also inhibited the expressions of p-ERK, ROCK1, ROCK2, and decreased the calcium concentrations in A7r5 cells. Conclusions: These findings indicate the potential therapeutic effects of G31P in suppressing the development of atherosclerosis by antagonizing the IL-8 receptor. G31P inhibits the proliferation and migration of VSMCs through regulating the Rho-kinase, ERK, and calcium-dependent pathways.
Collapse
Affiliation(s)
- Yuanhua Qin
- a Department of Biochemistry and Molecular Biology , Dalian Medical University , Dalian , China.,b Department of Parasitology , Dalian Medical University , Dalian , China
| | - Weifeng Mao
- c Department of Biotechnology, College of Basic Medical Sciences , Dalian Medical University , Dalian , China
| | - Lingmin Pan
- a Department of Biochemistry and Molecular Biology , Dalian Medical University , Dalian , China
| | - Yunliang Sun
- a Department of Biochemistry and Molecular Biology , Dalian Medical University , Dalian , China
| | - Fushun Fan
- a Department of Biochemistry and Molecular Biology , Dalian Medical University , Dalian , China
| | - Ying Zhao
- d Liaoning Provincial Core Lab of Medical Molecular Biology , Dalian Medical University , Dalian , China
| | - Ying Cui
- d Liaoning Provincial Core Lab of Medical Molecular Biology , Dalian Medical University , Dalian , China
| | - Xiaoqing Wei
- d Liaoning Provincial Core Lab of Medical Molecular Biology , Dalian Medical University , Dalian , China
| | - Kazuhiro Kohama
- e Research Institute of Pharmaceutical Sciences , Musashino University , Nishitokyo , Japan
| | - Fang Li
- f Department of Immunology , Dalian Medical University , Dalian , China
| | - Ying Gao
- a Department of Biochemistry and Molecular Biology , Dalian Medical University , Dalian , China.,d Liaoning Provincial Core Lab of Medical Molecular Biology , Dalian Medical University , Dalian , China
| |
Collapse
|
35
|
Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, Li H, Zhang SR, Xu JZ, Qi ZH, Ni QX, Yu XJ, Liu L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis 2019; 22:15-36. [PMID: 30168025 DOI: 10.1007/s10456-018-9645-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. Although the standard of care in pancreatic cancer has improved, prognoses for patients remain poor with a 5-year survival rate of < 5%. Angiogenesis, namely, the formation of new blood vessels from pre-existing vessels, is an important event in tumor growth and hematogenous metastasis. It is a dynamic and complex process involving multiple mechanisms and is regulated by various molecules. Inhibition of angiogenesis has been an established therapeutic strategy for many solid tumors. However, clinical outcomes are far from satisfying for pancreatic cancer patients receiving anti-angiogenic therapies. In this review, we summarize the current status of angiogenesis in pancreatic cancer research and explore the reasons for the poor efficacy of anti-angiogenic therapies, aiming to identify some potential therapeutic targets that may enhance the effectiveness of anti-angiogenic treatments.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chun-Tao Wu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wen-Quan Wang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He-Li Gao
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hao Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shi-Rong Zhang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin-Zhi Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zi-Hao Qi
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quan-Xing Ni
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Liang Liu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
36
|
Sano M, Ijichi H, Takahashi R, Miyabayashi K, Fujiwara H, Yamada T, Kato H, Nakatsuka T, Tanaka Y, Tateishi K, Morishita Y, Moses HL, Isayama H, Koike K. Blocking CXCLs-CXCR2 axis in tumor-stromal interactions contributes to survival in a mouse model of pancreatic ductal adenocarcinoma through reduced cell invasion/migration and a shift of immune-inflammatory microenvironment. Oncogenesis 2019; 8:8. [PMID: 30659170 PMCID: PMC6338726 DOI: 10.1038/s41389-018-0117-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by dense stromal reaction (desmoplasia). We have previously reported that mice with conditional KrasG12D mutation and knockout of TGF-β receptor type II (Tgfbr2), PKF mice, develop PDAC with desmoplasia modulated by CXC chemokines that are produced by PDAC cells through tumor-stromal interaction. In this study, we further discovered that PDAC and cancer-associated fibroblast (CAF) accelerated each other's invasion and migration through the CXC chemokines-receptor (CXCLs-CXCR2) axis. Heterozygous knockout of Cxcr2 in PKF mice (PKF2h mice) prolonged survival and inhibited both tumor angiogenesis and PDAC microinvasion. Infiltration of neutrophils, myeloid-derived suppressor cells (MDSCs), and arginase-1+ M2-like tumor-associated macrophages (TAMs) significantly decreased in the tumors of PKF2h mice, whereas inducible nitric oxide synthase (iNOS)+ M1-like TAMs and apoptotic tumor cells markedly increased, which indicated that blockade of the CXCLs-CXCR2 axis resulted in a shift of immune-inflammatory microenvironment. These results suggest that blocking of the CXCLs-CXCR2 axis in tumor-stromal interactions could be a therapeutic approach against PDAC progression.
Collapse
Affiliation(s)
- Makoto Sano
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Department of Clinical Nutrition Therapy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Ryota Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Miyabayashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomoharu Yamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroyuki Kato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasuo Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Harold L Moses
- Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, 691 Preston Building, Nashville, TN, 37232, USA
| | - Hiroyuki Isayama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Gastroenterology, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
37
|
Chen W, Zhang J, Fan HN, Zhu JS. Function and therapeutic advances of chemokine and its receptor in nonalcoholic fatty liver disease. Therap Adv Gastroenterol 2018; 11:1756284818815184. [PMID: 30574191 PMCID: PMC6295708 DOI: 10.1177/1756284818815184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/24/2018] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of hepatic pathology, ranging from simple accumulation of fat in its most benign form, steatohepatitis, to cirrhosis in its most advanced form. The prevalence of NAFLD is 20-30% in adults, and 10-20% of patients with NAFLD progress to nonalcoholic steatohepatitis (NASH) which is predicted to be the leading cause of liver transplantation over the next 10 years. Therefore, it is essential to explore effective diagnostic and treatment strategies for NAFLD patients. Chemokines are a family of small and highly conserved proteins (molecular weight ranging from 8 to 12 kDa) involved in regulating the migration and activities of hepatocytes, Kupffer cells (KCs), hepatic stellate cells (HSCs), endothelial cells and circulating immune cells. Accumulating data show that chemokine and its receptor act vital roles in the pathogenesis of NAFLD. Herein, we summarize the involvement of the chemokine and its receptor in the pathogenesis of NAFLD and explore the novel pharmacotherapeutic avenues for patients with NAFLD.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | | |
Collapse
|
38
|
Lee NH, Nikfarjam M, He H. Functions of the CXC ligand family in the pancreatic tumor microenvironment. Pancreatology 2018; 18:705-716. [PMID: 30078614 DOI: 10.1016/j.pan.2018.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/06/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Therapeutic resistance is the major contributor to the poor prognosis of and low survival from pancreatic cancer (PC). Cancer progression is a complex process reliant on interactions between the tumor and the tumor microenvironment (TME). Members of the CXCL family of chemokines are present in the pancreatic TME and seem to play a vital role in regulating PC progression. As pancreatic tumors interact with the TME and with PC stem cells (CSCs), determining the roles of specific members of the CXCL family is vital to the development of improved therapies. This review highlights the roles of selected CXCLs in the interactions between pancreatic tumor and its stroma, and in CSC phenotypes, which can be used to identify potential treatment targets.
Collapse
Affiliation(s)
- Nien-Hung Lee
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.
| |
Collapse
|
39
|
Nikshoar MS, Khosravi S, Jahangiri M, Zandi A, Miripour ZS, Bonakdar S, Abdolahad M. Distinguishment of populated metastatic cancer cells from primary ones based on their invasion to endothelial barrier by biosensor arrays fabricated on nanoroughened poly(methyl methacrylate). Biosens Bioelectron 2018; 118:51-57. [DOI: 10.1016/j.bios.2018.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023]
|
40
|
Kawaguchi K, Miyake K, Zhao M, Kiyuna T, Igarashi K, Miyake M, Higuchi T, Oshiro H, Bouvet M, Unno M, Hoffman RM. Tumor targeting Salmonella typhimurium A1-R in combination with gemcitabine (GEM) regresses partially GEM-resistant pancreatic cancer patient-derived orthotopic xenograft (PDOX) nude mouse models. Cell Cycle 2018; 17:2019-2026. [PMID: 29963961 DOI: 10.1080/15384101.2018.1480223] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gemcitabine (GEM) is first-line therapy for pancreatic cancer but has limited efficacy in most cases. Nanoparticle-albumin bound (nab)-paclitaxel is becoming first-line therapy for pancreatic cancer, but also has limited efficacy for pancreatic cancer. Our goal was to improve the treatment outcome in patient-like models of pancreatic cancer. We previously established patient-derived orthotopic xenografts (PDOX) pancreatic cancers from two patients. The pancreatic tumor was implanted orthotopically in the pancreatic tail of nude mice to establish the PDOX models. Five weeks after implantation, 50 PDOX mouse models were randomized into five groups of 10 mice for each pancreatic cancer PDOX: untreated control; GEM (100 mg/kg, i.p., once a week for 2 weeks); GEM + nab-PTX (GEM: 100 mg/kg, i.p., once a week for 2 weeks, nab-PTX: 10 mg/kg, i.v., twice a week for 2 weeks); S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., once a week for 2 weeks); GEM + S. typhimurium A1-R (GEM: 100 mg/kg, i.p., once a week for 2 weeks, S. typhimurium A1-R; 5 × 107 CFU/100 μl, i.v., once a week for 2 weeks). GEM + nab-PTX was significantly more effective than GEM alone in one PDOX model (p = 0.0004), but there was no significant difference in the other PDOX model. The combination of GEM + S. typhimurium A1-R regressed both PDOX models. These results show S. typhimurium A1-R can overcome the ineffectiveness or partial effectiveness of GEM in patient-like models of pancreatic cancer and demonstrate clinical potential for this combination.
Collapse
Affiliation(s)
- Kei Kawaguchi
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA.,c Department of Surgery, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | - Kentaro Miyake
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Ming Zhao
- a AntiCancer, Inc ., San Diego , CA , USA
| | - Tasuku Kiyuna
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Kentaro Igarashi
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Masuyo Miyake
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Takashi Higuchi
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Hiromichi Oshiro
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Michael Bouvet
- b Department of Surgery , University of California , San Diego , CA , USA
| | - Michiaki Unno
- c Department of Surgery, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | - Robert M Hoffman
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| |
Collapse
|
41
|
Kumar A, Cherukumilli M, Mahmoudpour SH, Brand K, Bandapalli OR. ShRNA-mediated knock-down of CXCL8 inhibits tumor growth in colorectal liver metastasis. Biochem Biophys Res Commun 2018; 500:731-737. [DOI: 10.1016/j.bbrc.2018.04.144] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 11/15/2022]
|
42
|
Shi WP, Ju D, Li H, Yuan L, Cui J, Luo D, Chen ZN, Bian H. CD147 Promotes CXCL1 Expression and Modulates Liver Fibrogenesis. Int J Mol Sci 2018; 19:ijms19041145. [PMID: 29642635 PMCID: PMC5979418 DOI: 10.3390/ijms19041145] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/18/2018] [Accepted: 04/03/2018] [Indexed: 12/30/2022] Open
Abstract
Activated hepatic stellate cells (HSCs) release pro-inflammatory and pro-fibrogenic factors. CXC chemokine-ligand-1 (CXCL1) is expressed on HSCs. We previously found that the CD147 is overexpressed in activated HSCs. In this study, we showed an important role of CD147 in promoting liver fibrosis by activating HSCs and upregulating expression of chemokines. Specifically, we found that CD147 specific deletion in HSCs mice alleviated CCl4-induced liver fibrosis and inhibited HSCs activation. Overexpression of CD147 upregulated the secretion of CXCL1. Meanwhile, CXCL1 promoted HSCs activation through autocrine. Treating with PI3K/AKT inhibitor could effectively suppress CD147-induced CXCL1 expression. Taken together, these findings suggest that CD147 regulates CXCL1 release in HSCs by PI3K/AKT signaling. Inhibition of CD147 attenuates CCl4-induced liver fibrosis and inflammation. Therefore, administration of targeting CD147 could be a promising therapeutic strategy in liver fibrosis.
Collapse
Affiliation(s)
- Wen-Pu Shi
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Di Ju
- Department of Physiology, Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Hao Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin Yuan
- Clinical Laboratory, No. 457 Hospital of PLA, Wuhan 430000, China.
| | - Jian Cui
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Dan Luo
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
43
|
Wiley SZ, Sriram K, Liang W, Chang SE, French R, McCann T, Sicklick J, Nishihara H, Lowy AM, Insel PA. GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells. FASEB J 2018; 32:1170-1183. [PMID: 29092903 PMCID: PMC5892729 DOI: 10.1096/fj.201700834r] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Abstract
The microenvironment of pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense fibrotic stroma (desmoplasia) generated by pancreatic cancer-associated fibroblasts (CAFs) derived from pancreatic stellate cells (PSCs) and pancreatic fibroblasts (PFs). Using an unbiased GPCRomic array approach, we identified 82 G-protein-coupled receptors (GPCRs) commonly expressed by CAFs derived from 5 primary PDAC tumors. Compared with PSCs and PFs, CAFs have increased expression of GPR68 (a proton-sensing GPCR), with the results confirmed by immunoblotting, The Cancer Genome Atlas data, and immunohistochemistry of PDAC tumors. Co-culture of PSCs with PDAC cells, or incubation with TNF-α, induced GPR68 expression. GPR68 activation (by decreasing the extracellular pH) enhanced IL-6 expression via a cAMP/PKA/cAMP response element binding protein signaling pathway. Knockdown of GPR68 by short interfering RNA diminished low pH-induced production of IL-6 and enhancement of PDAC cell proliferation by CAF conditioned media. CAFs from other gastrointestinal cancers also express GPR68. PDAC cells thus induce expression by CAFs of GPR68, which senses the acidic microenvironment, thereby increasing production of fibrotic markers and IL-6 and promoting PDAC cell proliferation. CAF-expressed GPR68 is a mediator of low-pH-promoted regulation of the tumor microenvironments, in particular to PDAC cell-CAF interaction and may be a novel therapeutic target for pancreatic and perhaps other types of cancers.-Wiley, S. Z., Sriram, K., Liang, W., Chang, S. E., French, R., McCann, T., Sicklick, J., Nishihara, H., Lowy, A. M., Insel, P. A. GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells.
Collapse
Affiliation(s)
- Shu Z. Wiley
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Wenjing Liang
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, China
| | - Sarah E. Chang
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Randall French
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Thalia McCann
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Jason Sicklick
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, California, USA
| | - Hiroshi Nishihara
- Division of Clinical Cancer Genomics, Hokkaido Cancer Center, Shiroishi-ku, Sapporo, Japan
| | - Andrew M. Lowy
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, California, USA
| | - Paul A. Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
- Department of Medicine, University of California, San Diego, La Jolla, USA
| |
Collapse
|
44
|
Lwin TM, Murakami T, Miyake K, Yazaki PJ, Shivley JE, Hoffman RM, Bouvet M. Tumor-Specific Labeling of Pancreatic Cancer Using a Humanized Anti-CEA Antibody Conjugated to a Near-Infrared Fluorophore. Ann Surg Oncol 2018; 25:1079-1085. [PMID: 29372363 DOI: 10.1245/s10434-018-6344-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND/PURPOSE Development of a humanized fluorophore-conjugated antibody that can improve contrast for fluorescence-guided oncologic surgeries. METHODS BxPC-3-GFP pancreatic cancer cells were injected into flanks of nude mice. Fragments of subcutaneous tumors were grafted onto the pancreatic tail of recipient mice to create orthotopic xenograft models of pancreatic cancer. After tumors developed for 4 weeks, a humanized anti-carcinoembryonic antigen antibody conjugated to an 800 nm near-infrared fluorescent dye (hM5A-IR800) was injected intravenously. Mice were imaged at 6, 12, 24, 48, and 72 h after injection. RESULTS Fluorescence imaging showed that hM5A-IR800 specifically localized to BxPC-3 human pancreatic cancer cells. The fluorescent probe localized to cell surfaces in vitro and specifically co-localized with green fluorescent protein-labeled tumors in an orthotopic pancreatic xenograft model in vivo. Serial imaging at specific time points showed peak signal intensity of the orthotopic pancreatic tumor at 48 h; this time point corresponded with a maximal tumor-to-background ratio (TBR) of 16.6 at 48 h. DISCUSSION hM5A-IR800 was successfully able to specifically label orthotopic pancreatic tumors in situ. The longer wavelength allowed deeper tissue penetration, particularly in tumor areas covered by normal pancreatic parenchyma. The probe had expected kinetics for an antibody-fluorophore conjugate, with the peak signal intensity reached at 48 h. A clear tumor signal was observed with a TBR > 5 at all time points, with high contrast (TBR of 16.6) at 48 h. CONCLUSION hM5A-IR800 demonstrated excellent tumor localization and a very bright signal. It is a promising agent for future clinical fluorescence-guided surgery applications.
Collapse
Affiliation(s)
- Thinzar M Lwin
- Department of Surgery, University of California San Diego, San Diego, CA, USA
| | - Takashi Murakami
- Department of Surgery, University of California San Diego, San Diego, CA, USA.,AntiCancer, Inc., San Diego, CA, USA.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kentaro Miyake
- Department of Surgery, University of California San Diego, San Diego, CA, USA.,AntiCancer, Inc., San Diego, CA, USA.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Paul J Yazaki
- City of Hope National Medical Center, Duarte, CA, USA
| | | | - Robert M Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA, USA.,AntiCancer, Inc., San Diego, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA. .,Moores Cancer Center, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
45
|
Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Miyake K, Kiyuna T, Miyake M, Chemielwski B, Nelson SD, Russell TA, Dry SM, Li Y, Singh AS, Eckardt MA, Unno M, Eilber FC, Hoffman RM. Intra-tumor L-methionine level highly correlates with tumor size in both pancreatic cancer and melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse models. Oncotarget 2018. [PMID: 29541401 PMCID: PMC5834286 DOI: 10.18632/oncotarget.24264] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
An excessive requirement for methionine (MET) for growth, termed MET dependence, appears to be a general metabolic defect in cancer. We have previously shown that cancer-cell growth can be selectively arrested by MET restriction such as with recombinant methioninase (rMETase). In the present study, we utilized patient-derived orthotopic xenograft (PDOX) nude mouse models with pancreatic cancer or melanoma to determine the relationship between intra-tumor MET level and tumor size. After the tumors grew to 100 mm3, the PDOX nude mice were divided into two groups: untreated control and treated with rMETase (100 units, i.p., 14 consecutive days). On day 14 from initiation of treatment, intra-tumor MET levels were measured and found to highly correlate with tumor volume, both in the pancreatic cancer PDOX (p<0.0001, R2=0.89016) and melanoma PDOX (p<0.0001, R2=0.88114). Tumors with low concentration of MET were smaller. The present results demonstrates that patient tumors are highly dependent on MET for growth and that rMETase effectively lowers tumor MET.
Collapse
Affiliation(s)
- Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA.,Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | | | - Kentaro Igarashi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Masuyo Miyake
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Bartosz Chemielwski
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Tara A Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Arun S Singh
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Mark A Eckardt
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| |
Collapse
|
46
|
Marottoli FM, Katsumata Y, Koster KP, Thomas R, Fardo DW, Tai LM. Peripheral Inflammation, Apolipoprotein E4, and Amyloid-β Interact to Induce Cognitive and Cerebrovascular Dysfunction. ASN Neuro 2017; 9:1759091417719201. [PMID: 28707482 PMCID: PMC5521356 DOI: 10.1177/1759091417719201] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebrovascular dysfunction is rapidly reemerging as a major process of Alzheimer’s disease (AD). It is, therefore, crucial to delineate the roles of AD risk factors in cerebrovascular dysfunction. While apolipoprotein E4 (APOE4), Amyloid-β (Aβ), and peripheral inflammation independently induce cerebrovascular damage, their collective effects remain to be elucidated. The goal of this study was to determine the interactive effect of APOE4, Aβ, and chronic repeated peripheral inflammation on cerebrovascular and cognitive dysfunction in vivo. EFAD mice are a well-characterized mouse model that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce human Aβ42 via expression of 5 Familial Alzheimer’s disease (5xFAD) mutations. Here, we utilized EFAD carriers [5xFAD+/−/APOE+/+ (EFAD+)] and noncarriers [5xFAD−/−/APOE+/+ (EFAD−)] to compare the effects of peripheral inflammation in the presence or absence of human Aβ overproduction. Low-level, chronic repeated peripheral inflammation was induced in EFAD mice via systemic administration of lipopolysaccharide (LPS; 0.5 mg/kg/wk i.p.) from 4 to 6 months of age. In E4FAD+ mice, peripheral inflammation caused cognitive deficits and lowered post-synaptic protein levels. Importantly, cerebrovascular deficits were observed in LPS-challenged E4FAD+ mice, including cerebrovascular leakiness, lower vessel coverage, and cerebral amyloid angiopathy-like Aβ deposition. Thus, APOE4, Aβ, and peripheral inflammation interact to induce cerebrovascular damage and cognitive deficits.
Collapse
Affiliation(s)
- Felecia M Marottoli
- 1 Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL, USA
| | - Yuriko Katsumata
- 2 Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Kevin P Koster
- 1 Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL, USA
| | - Riya Thomas
- 1 Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL, USA
| | - David W Fardo
- 2 Department of Biostatistics, University of Kentucky, Lexington, KY, USA.,3 Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Leon M Tai
- 1 Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL, USA
| |
Collapse
|
47
|
Matsumoto K, Nakai Y, Hoshino M, Yamazaki K, Takioto Y, Takadera S, Nakagawa T, Nishimura R, Kusakabe M. Comprehensive DNA microarray expression profiles of tumors in tenascin-C-knockout mice. Biosci Biotechnol Biochem 2017; 81:1926-1936. [PMID: 28874093 DOI: 10.1080/09168451.2017.1362975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tenascin-C (TNC), an extracellular matrix glycoprotein, plays a pivotal role in tumor growth. However, the mechanism whereby TNC affects tumor biology remains unclear. To investigate the exact role of TNC in primary tumor growth, a mouse mammary tumor cell line, GLMT1, was first developed. Subsequently, global gene expression in GLMT1-derived tumors was compared between wild-type (WT) and TNC-knockout (TNKO) mice. Tumors in WT mice were significantly larger than those in TNKO mice. DNA microarray analysis revealed 447 up and 667 downregulated in the tumors inoculated into TNKO mice as compared to tumors in WT mice. Validation by quantitative gene expression analysis showed that Tnc, Cxcl1, Cxcl2, and Cxcr2 were significantly upregulated in WT mice. We hypothesize that TNC stimulates the CXCL1/2-CXCR2 pathway involved in cancer cell proliferation.
Collapse
Affiliation(s)
- Kaori Matsumoto
- a Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| | - Yuji Nakai
- b Institute for Food Sciences , Hirosaki University , Aomori , Japan
| | - Masaru Hoshino
- c Advanced Technology Research Laboratory, Research Center for Food Safety, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| | - Koki Yamazaki
- c Advanced Technology Research Laboratory, Research Center for Food Safety, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| | - Yoshiaki Takioto
- c Advanced Technology Research Laboratory, Research Center for Food Safety, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| | - Satoru Takadera
- c Advanced Technology Research Laboratory, Research Center for Food Safety, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| | - Takayuki Nakagawa
- a Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| | - Ryohei Nishimura
- a Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| | - Moriaki Kusakabe
- c Advanced Technology Research Laboratory, Research Center for Food Safety, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
48
|
Maeda S, Kuboki S, Nojima H, Shimizu H, Yoshitomi H, Furukawa K, Miyazaki M, Ohtsuka M. Duffy antigen receptor for chemokines (DARC) expressing in cancer cells inhibits tumor progression by suppressing CXCR2 signaling in human pancreatic ductal adenocarcinoma. Cytokine 2017; 95:12-21. [PMID: 28214673 DOI: 10.1016/j.cyto.2017.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. Chemokines play important roles in the progression of many malignancies; however, the role of chemokine receptor expression in clinical cases of PDAC is unclear. Moreover, little is known about DARC, a decoy receptor of CXC chemokines, in the regulation of tumor progression. METHODS Functions of chemokine receptors were evaluated using surgical specimens collected from PDAC patients, and PDAC cell lines. RESULTS CXCR2 expression had no impacts on predicting prognosis, but low DARC expression in cancer cells was an independent risk factor for poor prognosis. In PDAC with low DARC expression, tumor sizes were larger and vascular invasion was increased. High CXCR2 expression was a significant predictor for poor prognosis, only in PDAC patients with low DARC expression. CXCR2 signaling induced STAT3 activation in PDAC, resulting in promoting cell cycle progression, inhibiting apoptosis, inducing angiogenesis, and enhancing invasiveness. DARC inhibited STAT3 activation by down-regulating CXCR2 signaling. These effects were confirmed by EMSA in vitro. DARC knockdown significantly increased cell proliferation in CFPAC-1 cells with high DARC expression, by activating STAT3. In contrast, CXCR2 knockdown inhibited the proliferative effects of IL-8 in MIA PaCa-2 cells with low DARC expression. Moreover, the inhibitory effect of CXCR2 antagonist on PDAC cell proliferation was more powerful in MIA PaCa-2 cells than CFPAC-1 cells. CONCLUSIONS DARC expressing in cancer cells inhibits PDAC progression by suppressing STAT3 activation through the inhibition of CXCR2 signaling. Therefore, DARC is a novel prognostic predictor and a potential therapeutic target for PDAC.
Collapse
MESH Headings
- Aged
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Progression
- Duffy Blood-Group System/metabolism
- Female
- Humans
- Interleukin-8/pharmacology
- Male
- Middle Aged
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/metabolism
- Receptors, Interleukin-8A/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Shintaro Maeda
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan.
| | - Hiroyuki Nojima
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Hiroaki Shimizu
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| |
Collapse
|
49
|
Zhang H, Yue J, Jiang Z, Zhou R, Xie R, Xu Y, Wu S. CAF-secreted CXCL1 conferred radioresistance by regulating DNA damage response in a ROS-dependent manner in esophageal squamous cell carcinoma. Cell Death Dis 2017; 8:e2790. [PMID: 28518141 PMCID: PMC5520705 DOI: 10.1038/cddis.2017.180] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
Five-year survival rate of esophageal squamous cell carcinoma (ESCC) patients treated with radiotherapy is <20%. Our study aimed to investigate whether cancer-associated fibroblasts (CAFs), one major component of tumor microenvironment, were involved in tumor radioresistance in ESCC. By use of human chemokine/cytokine array, human chemokine CXCL1 was found to be highly expressed in CAFs compared with that in matched normal fibroblasts. Inhibition of CXCL1 expression in CAFs significantly reversed CAF-conferred radioresistance in vitro and in vivo. CAF-secreted CXCL1 inhibited the expression of reactive oxygen species (ROS)-scavenging enzyme superoxide dismutase 1, leading to increased ROS accumulation following radiation, by which DNA damage repair was enhanced and the radioresistance was mediated. CAF-secreted CXCL1 mediated the radioresistance also by activation of Mek/Erk pathway. The cross talk of CAFs and ESCC cells induced CXCL1 expression in an autocrine/paracrine signaling loop, which further enhanced tumor radioresistance. Together, our study highlighted CAF-secreted CXCL1 as an attractive target to reverse tumor radioresistance and can be used as an independent prognostic factor of ESCC patients treated with chemoradiotherapy.
Collapse
Affiliation(s)
- Hongfang Zhang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Jing Yue
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Zhenzhen Jiang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Rongjing Zhou
- Department of Pathology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Ruifei Xie
- Department of Bio-informatics, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Yiping Xu
- Department of Pathology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Shixiu Wu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| |
Collapse
|
50
|
CXCR2 is involved in pulmonary intravascular macrophage accumulation and angiogenesis in a rat model of hepatopulmonary syndrome. Clin Sci (Lond) 2016; 131:159-168. [DOI: 10.1042/cs20160593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022]
Abstract
Hepatopulmonary syndrome (HPS) is a lung complication in various liver diseases, with high incidence, poor prognosis and no effective non-surgical treatments in patients with hepatocirrhosis. Therefore, assessing HPS pathogenesis to explore proper therapy strategies is clinically relevant. In the present study, male Sprague–Dawley rats underwent sham operation or common bile duct ligation (CBDL). Two weeks post-surgery, the following groups were set up for 2 weeks of treatment: sham + normal saline, CBDL + CXCR2 antagonist SB225002, CBDL + tumour necrosis factor α (TNF-α) antagonist PTX and CBDL + normal saline groups. Liver and lung tissues were collected after mean arterial pressure (MAP) and portal venous pressure (PVP) measurements. Haematoxylin and eosin (H&E) staining (lung) and Masson staining (liver) were performed for pathological analyses. Finally, pulmonary tissue RNA and total protein were assessed for target effectors. The mRNA and protein levels of CXCR2 were significantly increased in the pulmonary tissue of CBDL rats. What's more, CXCR2 inhibition by SB225002 reduced the expression of CD68 and von Willebrand factor (vWf) in CBDL rats. Importantly, CXCR2 inhibition suppressed the activation of Akt and extracellular signal-regulated kinase (ERK) in CBDL rats. Antagonization of TNF-α with PTX down-regulated the expression of CXCR2. During HPS pathogenesis in rats, CXCR2 might be involved in the accumulation of pulmonary intravascular macrophages and angiogenesis, possibly by activating Akt and ERK, with additional regulation by TNF-α that enhanced pulmonary angiogenesis by directly acting on the pulmonary tissue. Finally, the present study may provide novel targets for the treatment of HPS.
Collapse
|