1
|
Hurła M, Pikor D, Banaszek-Hurła N, Drelichowska A, Dorszewska J, Kozubski W, Kacprzak E, Paul M. Unraveling the Role of Proteinopathies in Parasitic Infections. Biomedicines 2025; 13:610. [PMID: 40149586 PMCID: PMC11940292 DOI: 10.3390/biomedicines13030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Proteinopathies, characterized by the misfolding, aggregation, and deposition of proteins, are hallmarks of various neurodegenerative and systemic diseases. Increasingly, research has highlighted the role of protein misfolding in parasitic infections, unveiling intricate interactions between host and parasite that exacerbate disease pathology and contribute to chronic outcomes. The life cycles of parasitic protozoa, including Plasmodium, Toxoplasmosis, and Leishmania species, are complicated and involve frequent changes between host and vector environments. Their proteomes are severely stressed during these transitions, which calls for highly specialized protein quality control systems. In order to survive harsh intracellular conditions during infection, these parasites have been demonstrated to display unique adaptations in the unfolded protein response, a crucial pathway controlling endoplasmic reticulum stress. In addition to improving parasite survival, these adaptations affect host cell signaling and metabolism, which may jeopardize cellular homeostasis. By causing oxidative stress, persistent inflammation, and disturbance of cellular proteostasis, host-parasite interactions also contribute to proteinopathy. For instance, Plasmodium falciparum disrupts normal protein homeostasis and encourages the accumulation of misfolded proteins by influencing host redox systems involved in protein folding. In addition to interfering with host chaperone systems, the parasitic secretion of effector proteins exacerbates protein misfolding and aggregate formation. Autophagy, apoptosis regulation, organelle integrity, and other vital cellular processes are all disrupted by these pathological protein aggregates. Long-term misfolding and aggregation can cause irreversible tissue damage, which can worsen the clinical course of illnesses like visceral leishmaniasis, cerebral malaria, and toxoplasmosis. Treating parasite-induced proteinopathies is a potentially fruitful area of therapy. According to recent research, autophagy modulators, proteasome enhancers, and small-molecule chaperones may be repurposed to lessen these effects. Pharmacological agents that target the UPR, for example, have demonstrated the ability to decrease parasite survival while also reestablishing host protein homeostasis. Targeting the proteins secreted by parasites that disrupt host proteostasis may also offer a novel way to stop tissue damage caused by proteinopathies. In conclusion, the intersection of protein misfolding and parasitic infections represents a rapidly advancing field of research. Dissecting the molecular pathways underpinning these processes offers unprecedented opportunities for developing innovative therapies. These insights could not only transform the management of parasitic diseases but also contribute to a broader understanding of proteinopathies in infectious and non-infectious diseases alike.
Collapse
Affiliation(s)
- Mikołaj Hurła
- Department of Tropical and Parasitic Diseases, Central University Hospital, Przybyszewskiego 49, 61-701 Poznan, Poland
| | - Damian Pikor
- Department of Internal Medicine, University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Natalia Banaszek-Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Alicja Drelichowska
- Student Scientific Society of Poznan, University of Medical Sciences, 60-806 Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Elżbieta Kacprzak
- Department of Tropical and Parasitic Diseases, Central University Hospital, Przybyszewskiego 49, 61-701 Poznan, Poland
| | - Małgorzata Paul
- Department of Internal Medicine, University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| |
Collapse
|
2
|
McSwiggen DT, Liu H, Tan R, Agramunt Puig S, Akella LB, Berman R, Bretan M, Chen H, Darzacq X, Ford K, Godbey R, Gonzalez E, Hanuka A, Heckert A, Ho JJ, Johnson SL, Kelso R, Klammer A, Krishnamurthy R, Li J, Lin K, Margolin B, McNamara P, Meyer L, Pierce SE, Sule A, Stashko C, Tang Y, Anderson DJ, Beck HP. A high-throughput platform for single-molecule tracking identifies drug interaction and cellular mechanisms. eLife 2025; 12:RP93183. [PMID: 39786807 PMCID: PMC11717362 DOI: 10.7554/elife.93183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.
Collapse
Affiliation(s)
| | - Helen Liu
- Eikon Therapeutics IncHaywardUnited States
| | | | | | | | | | | | | | - Xavier Darzacq
- Eikon Therapeutics IncHaywardUnited States
- University of California, BerkeleyBerkeleyUnited States
| | | | | | | | - Adi Hanuka
- Eikon Therapeutics IncHaywardUnited States
| | | | | | | | - Reed Kelso
- Eikon Therapeutics IncHaywardUnited States
| | | | | | - Jifu Li
- Eikon Therapeutics IncHaywardUnited States
| | - Kevin Lin
- Eikon Therapeutics IncHaywardUnited States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Tian X, Srinivasan PR, Tajiknia V, Sanchez Sevilla Uruchurtu AF, Seyhan AA, Carneiro BA, De La Cruz A, Pinho-Schwermann M, George A, Zhao S, Strandberg J, Di Cristofano F, Zhang S, Zhou L, Raufi AG, Navaraj A, Zhang Y, Verovkina N, Ghandali M, Ryspayeva D, El-Deiry WS. Targeting apoptotic pathways for cancer therapy. J Clin Invest 2024; 134:e179570. [PMID: 39007268 PMCID: PMC11245162 DOI: 10.1172/jci179570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Apoptosis is a form of programmed cell death that is mediated by intrinsic and extrinsic pathways. Dysregulation of and resistance to cell death are hallmarks of cancer. For over three decades, the development of therapies to promote treatment of cancer by inducing various cell death modalities, including apoptosis, has been a main goal of clinical oncology. Apoptosis pathways also interact with other signaling mechanisms, such as the p53 signaling pathway and the integrated stress response (ISR) pathway. In addition to agents directly targeting the intrinsic and extrinsic pathway components, anticancer drugs that target the p53 and ISR signaling pathways are actively being developed. In this Review, we discuss selected and promising anticancer therapies in various stages of development, including drug targets, mechanisms, and resistance to related treatments, focusing especially on B cell lymphoma 2 (BCL-2) inhibitors, TRAIL analogues, DR5 antibodies, and strategies that target p53, mutant p53, and the ISR.
Collapse
Affiliation(s)
- Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Vida Tajiknia
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Ashley F. Sanchez Sevilla Uruchurtu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Benedito A. Carneiro
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Shuai Zhao
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Jillian Strandberg
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Francesca Di Cristofano
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Arunasalam Navaraj
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Yiqun Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
5
|
Yuan-Ce L, Qi Z, Hong-Yang Z, Yan-Wen W, Yu-Mei S, Bi-Juan Y, Jun-Lin Y. Artesunate, as an Hsp90 inhibitor, inhibits the proliferation of Burkitt's lymphoma cells by inhibiting AKT and ERK. Front Pharmacol 2023; 14:1218467. [PMID: 37719860 PMCID: PMC10501146 DOI: 10.3389/fphar.2023.1218467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Artesunate, a derivative of artemisinin, has anti-malarial effects, and in recent years has also been reported to have anti-tumor activity. However, its anti-tumor mechanisms are not well understood. Methods: In this study, we focused on the targeting of Hsp90 by artesunate to inhibit tumor cell proliferation, which we examined using immunoprecipitation, a proliferation assay, flow cytometry, western blotting, a tumor xenograft animal model, and immunohistochemistry. Furthermore, to examine the tumor-suppressive effects of artesunatein nude mice, we used artesunate-loaded PLGA-PEG nanoparticles. Results: The binding of artesunate to Hsp90 was found to reduce the expression of its client proteins AKT, ERK, p-AKT, p-ERK, and EGFR, thereby blocking the cell cycle at the G0/G1 → S stage in lymphoma cells and inducing apoptosis. In addition, the results of tumor xenograft experiments revealed that artesunate reduced the expression of AKT and ERK proteins in tumor tissues, inhibited tumor proliferation, and reduced tumor size and weight. Furthermore, nanoparticle encapsulation was demonstrated to enhance the anti-cancer activity of artesunate. Discussion: We thus established that artesunate inhibits the proliferation of lymphoma cells by targeting the Hsp90 protein, and we accordingly believe that this compound has potential for development as a novelanti-tumor drug.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Bi-Juan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Yin Jun-Lin
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| |
Collapse
|
6
|
Małek A, Wojnicki M, Borkowska A, Wójcik M, Ziółek G, Lechowski R, Zabielska-Koczywąs K. Gold Nanoparticles Inhibit Extravasation of Canine Osteosarcoma Cells in the Ex Ovo Chicken Embryo Chorioallantoic Membrane Model. Int J Mol Sci 2023; 24:9858. [PMID: 37373007 DOI: 10.3390/ijms24129858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Canine osteosarcoma (OS) is an aggressive bone tumor with high metastatic potential and poor prognosis, mainly due to metastatic disease. Nanomedicine-based agents can be used to improve both primary and metastatic tumor treatment. Recently, gold nanoparticles were shown to inhibit different stages of the metastatic cascade in various human cancers. Here, we assessed the potential inhibitory effect of the glutathione-stabilized gold nanoparticles (Au-GSH NPs) on canine OS cells extravasation, utilizing the ex ovo chick embryo chorioallantoic membrane (CAM) model. The calculation of cells extravasation rates was performed using wide-field fluorescent microscopy. Transmission electron microscopy and Microwave Plasma Atomic Emission Spectroscopy revealed Au-GSH NPs absorption by OS cells. We demonstrated that Au-GSH NPs are non-toxic and significantly inhibit canine OS cells extravasation rates, regardless of their aggressiveness phenotype. The results indicate that Au-GSH NPs can act as a possible anti metastatic agent for OS treatment. Furthermore, the implemented CAM model may be used as a valuable preclinical platform in veterinary medicine, such as testing anti-metastatic agents.
Collapse
Affiliation(s)
- Anna Małek
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Aleksandra Borkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Michał Wójcik
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Gabriela Ziółek
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Roman Lechowski
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Zabielska-Koczywąs
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
7
|
Nishikawa S, Iwakuma T. Drugs Targeting p53 Mutations with FDA Approval and in Clinical Trials. Cancers (Basel) 2023; 15:429. [PMID: 36672377 PMCID: PMC9856662 DOI: 10.3390/cancers15020429] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Mutations in the tumor suppressor p53 (p53) promote cancer progression. This is mainly due to loss of function (LOS) as a tumor suppressor, dominant-negative (DN) activities of missense mutant p53 (mutp53) over wild-type p53 (wtp53), and wtp53-independent oncogenic activities of missense mutp53 by interacting with other tumor suppressors or oncogenes (gain of function: GOF). Since p53 mutations occur in ~50% of human cancers and rarely occur in normal tissues, p53 mutations are cancer-specific and ideal therapeutic targets. Approaches to target p53 mutations include (1) restoration or stabilization of wtp53 conformation from missense mutp53, (2) rescue of p53 nonsense mutations, (3) depletion or degradation of mutp53 proteins, and (4) induction of p53 synthetic lethality or targeting of vulnerabilities imposed by p53 mutations (enhanced YAP/TAZ activities) or deletions (hyperactivated retrotransposons). This review article focuses on clinically available FDA-approved drugs and drugs in clinical trials that target p53 mutations and summarizes their mechanisms of action and activities to suppress cancer progression.
Collapse
Affiliation(s)
- Shigeto Nishikawa
- Department of Pediatrics, Division of Hematology & Oncology, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| | - Tomoo Iwakuma
- Department of Pediatrics, Division of Hematology & Oncology, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Lang JE, Forero-Torres A, Yee D, Yau C, Wolf D, Park J, Parker BA, Chien AJ, Wallace AM, Murthy R, Albain KS, Ellis ED, Beckwith H, Haley BB, Elias AD, Boughey JC, Yung RL, Isaacs C, Clark AS, Han HS, Nanda R, Khan QJ, Edmiston KK, Stringer-Reasor E, Price E, Joe B, Liu MC, Brown-Swigart L, Petricoin EF, Wulfkuhle JD, Buxton M, Clennell JL, Sanil A, Berry S, Asare SM, Wilson A, Hirst GL, Singhrao R, Asare AL, Matthews JB, Melisko M, Perlmutter J, Rugo HS, Symmans WF, van 't Veer LJ, Hylton NM, DeMichele AM, Berry DA, Esserman LJ. Safety and efficacy of HSP90 inhibitor ganetespib for neoadjuvant treatment of stage II/III breast cancer. NPJ Breast Cancer 2022; 8:128. [PMID: 36456573 PMCID: PMC9715670 DOI: 10.1038/s41523-022-00493-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
HSP90 inhibitors destabilize oncoproteins associated with cell cycle, angiogenesis, RAS-MAPK activity, histone modification, kinases and growth factors. We evaluated the HSP90-inhibitor ganetespib in combination with standard chemotherapy in patients with high-risk early-stage breast cancer. I-SPY2 is a multicenter, phase II adaptively randomized neoadjuvant (NAC) clinical trial enrolling patients with stage II-III breast cancer with tumors 2.5 cm or larger on the basis of hormone receptors (HR), HER2 and Mammaprint status. Multiple novel investigational agents plus standard chemotherapy are evaluated in parallel for the primary endpoint of pathologic complete response (pCR). Patients with HER2-negative breast cancer were eligible for randomization to ganetespib from October 2014 to October 2015. Of 233 women included in the final analysis, 140 were randomized to the standard NAC control; 93 were randomized to receive 150 mg/m2 ganetespib every 3 weeks with weekly paclitaxel over 12 weeks, followed by AC. Arms were balanced for hormone receptor status (51-52% HR-positive). Ganetespib did not graduate in any of the biomarker signatures studied before reaching maximum enrollment. Final estimated pCR rates were 26% vs. 18% HER2-negative, 38% vs. 22% HR-negative/HER2-negative, and 15% vs. 14% HR-positive/HER2-negative for ganetespib vs control, respectively. The predicted probability of success in phase 3 testing was 47% HER2-negative, 72% HR-negative/HER2-negative, and 19% HR-positive/HER2-negative. Ganetespib added to standard therapy is unlikely to yield substantially higher pCR rates in HER2-negative breast cancer compared to standard NAC, and neither HSP90 pathway nor replicative stress expression markers predicted response. HSP90 inhibitors remain of limited clinical interest in breast cancer, potentially in other clinical settings such as HER2-positive disease or in combination with anti-PD1 neoadjuvant chemotherapy in triple negative breast cancer.Trial registration: www.clinicaltrials.gov/ct2/show/NCT01042379.
Collapse
Affiliation(s)
- Julie E Lang
- University of Southern California, Los Angeles, USA.
| | | | | | - Christina Yau
- University of California San Francisco, San Francisco, USA
| | - Denise Wolf
- University of California San Francisco, San Francisco, USA
| | - John Park
- University of California San Francisco, San Francisco, USA
| | | | - A Jo Chien
- University of California San Francisco, San Francisco, USA
| | - Anne M Wallace
- University of California San Francisco, San Francisco, USA
| | - Rashmi Murthy
- University of Texas MD Anderson Cancer Center, Houston, USA
| | - Kathy S Albain
- Loyola University Chicago Stritch School of Medicine, Maywood, USA
| | | | | | | | | | | | | | | | - Amy S Clark
- University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | - Elissa Price
- University of California San Francisco, San Francisco, USA
| | - Bonnie Joe
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | | | | | | | - Smita M Asare
- Quantum Leap Healthcare Collaborative, San Francisco, USA
| | - Amy Wilson
- Quantum Leap Healthcare Collaborative, San Francisco, USA
| | | | - Ruby Singhrao
- University of California San Francisco, San Francisco, USA
| | - Adam L Asare
- Quantum Leap Healthcare Collaborative, San Francisco, USA
| | | | | | | | - Hope S Rugo
- University of California San Francisco, San Francisco, USA
| | | | | | - Nola M Hylton
- University of California San Francisco, San Francisco, USA
| | | | | | | |
Collapse
|
9
|
Basset CA, Rappa F, Barone R, Florena AM, Porcasi R, Conway de Macario E, Macario AJL, Leone A. The Chaperone System in Salivary Glands: Hsp90 Prospects for Differential Diagnosis and Treatment of Malignant Tumors. Int J Mol Sci 2022; 23:ijms23169317. [PMID: 36012578 PMCID: PMC9409185 DOI: 10.3390/ijms23169317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Salivary gland tumors represent a serious medical problem and new tools for differential diagnosis and patient monitoring are needed. Here, we present data and discuss the potential of molecular chaperones as biomarkers and therapeutic targets, focusing on Hsp10 and Hsp90. The salivary glands are key physiological elements but, unfortunately, the information and the means available for the management of their pathologies, including cancer, are scarce. Progress in the study of carcinogenesis has occurred on various fronts lately, one of which has been the identification of the chaperone system (CS) as a physiological system with presence in all cells and tissues (including the salivary glands) that plays a role in tumor-cell biology. The chief components of the CS are the molecular chaperones, some of which belong to families of evolutionarily related molecules named heat shock protein (Hsp). We are quantifying and mapping these molecular chaperones in salivary glands to determine their possible role in the carcinogenetic mechanisms in these glands and to assess their potential as diagnostic biomarkers and therapeutic targets. Here, we report recent findings on Hsp10 and Hsp90 and show that the quantitative and topographic patterns of tissue Hsp90 are distinctive of malignant tumors and differentiate benign from malignant lesions. The Hsp90 results show a correlation between quantity of chaperone and tumor progression, which in turn calls for negative chaperonotherapy, namely, elimination/inhibition of the chaperone to stop the tumor. We found that in vitro, the Hsp90 inhibitor Ganetespib is cytotoxic for the salivary gland UM-HACC-2A cell line. The drug, by interfering with the pro-survival NF-κB pathway, hampers cellular proliferation and migration, and favors apoptosis, and can, therefore, be considered a suitable candidate for future experimentation to develop a treatment for salivary gland tumors.
Collapse
Affiliation(s)
- Charbel A. Basset
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, 90133 Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, 90133 Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, 90133 Palermo, Italy
| | - Ada Maria Florena
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy
| | - Rossana Porcasi
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, 90133 Palermo, Italy
- Correspondence:
| |
Collapse
|
10
|
Synoradzki KJ, Bartnik E, Czarnecka AM, Fiedorowicz M, Firlej W, Brodziak A, Stasinska A, Rutkowski P, Grieb P. TP53 in Biology and Treatment of Osteosarcoma. Cancers (Basel) 2021; 13:4284. [PMID: 34503094 PMCID: PMC8428337 DOI: 10.3390/cancers13174284] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The TP53 gene is mutated in 50% of human tumors. Oncogenic functions of mutant TP53 maintain tumor cell proliferation and tumor growth also in osteosarcomas. We collected data on TP53 mutations in patients to indicate which are more common and describe their role in in vitro and animal models. We also describe animal models with TP53 dysfunction, which provide a good platform for testing the potential therapeutic approaches. Finally, we have indicated a whole range of pharmacological compounds that modulate the action of p53, stabilize its mutated versions or lead to its degradation, cause silencing or, on the contrary, induce the expression of its functional version in genetic therapy. Although many of the described therapies are at the preclinical testing stage, they offer hope for a change in the approach to osteosarcoma treatment based on TP53 targeting in the future.
Collapse
Affiliation(s)
- Kamil Jozef Synoradzki
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Wiktoria Firlej
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Brodziak
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Stasinska
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Piotr Rutkowski
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| |
Collapse
|
11
|
Abstract
INTRODUCTION Heat shock proteins (HSPs) constitute a large family of proteins involved in protein folding and maturation. HSP expression is induced by heat shock or other stressors including cellular damage and hypoxia. The major groups, which are classified based on their molecular weight, include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSP (HSP110 and glucose-regulated protein 170). HSPs play a significant role in cellular proliferation, differentiation, survival, apoptosis, and carcinogenesis. The human HSP90 family consists of five members and has a strong association with cancer. OBJECTIVES The primary objective is to review the important functions of heat shock protein 90 in cancer, especially as an anti-cancer drug target. RESULTS The HSP90 proteins not only play important roles in cancer development, progression, and metastasis, but also have potential clinical use as biomarkers for cancer diagnosis or assessing disease progression, and as therapeutic targets for cancer therapy. In this chapter, we discuss the roles of HSP90 in cancer biology and pharmacology, focusing on HSP90 as an anti-cancer drug target. An understanding of the functions and molecular mechanisms of HSP90 is critical for enhancing the accuracy of cancer diagnosis as well as for developing more effective and less toxic chemotherapeutic agents. CONCLUSION We have provided an overview of the complex relationship between cancer and HSP90. HSP90 proteins play an important role in tumorigenesis and may be used as potential clinical biomarkers for the diagnosis and predicting prognostic outcome of patients with cancer. HSP90 proteins may be used as therapeutic targets for cancer therapy, prompting discovery and development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Anthony Aswad
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, United States
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, United States.
| |
Collapse
|
12
|
Lallier M, Marchandet L, Moukengue B, Charrier C, Baud’huin M, Verrecchia F, Ory B, Lamoureux F. Molecular Chaperones in Osteosarcoma: Diagnosis and Therapeutic Issues. Cells 2021; 10:cells10040754. [PMID: 33808130 PMCID: PMC8067202 DOI: 10.3390/cells10040754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most common form of primary bone tumor affecting mainly children and young adults. Despite therapeutic progress, the 5-year survival rate is 70%, but it drops drastically to 30% for poor responders to therapies or for patients with metastases. Identifying new therapeutic targets is thus essential. Heat Shock Proteins (HSPs) are the main effectors of Heat Shock Response (HSR), the expression of which is induced by stressors. HSPs are a large family of proteins involved in the folding and maturation of other proteins in order to maintain proteostasis. HSP overexpression is observed in many cancers, including breast, prostate, colorectal, lung, and ovarian, as well as OS. In this article we reviewed the significant role played by HSPs in molecular mechanisms leading to OS development and progression. HSPs are directly involved in OS cell proliferation, apoptosis inhibition, migration, and drug resistance. We focused on HSP27, HSP60, HSP70 and HSP90 and summarized their potential clinical uses in OS as either biomarkers for diagnosis or therapeutic targets. Finally, based on different types of cancer, we consider the advantage of targeting heat shock factor 1 (HSF1), the major transcriptional regulator of HSPs in OS.
Collapse
Affiliation(s)
- Morgane Lallier
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Louise Marchandet
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Brice Moukengue
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Celine Charrier
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Marc Baud’huin
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
- CHU Nantes, 44035 Nantes, France
| | - Franck Verrecchia
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Benjamin Ory
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - François Lamoureux
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
- Correspondence:
| |
Collapse
|
13
|
Chu S, Skidmore ZL, Kunisaki J, Walker JR, Griffith M, Griffith OL, Bryan JN. Unraveling the chaotic genomic landscape of primary and metastatic canine appendicular osteosarcoma with current sequencing technologies and bioinformatic approaches. PLoS One 2021; 16:e0246443. [PMID: 33556121 PMCID: PMC7870011 DOI: 10.1371/journal.pone.0246443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/19/2021] [Indexed: 12/03/2022] Open
Abstract
Osteosarcoma is a rare disease in children but is one of the most common cancers in adult large breed dogs. The mutational landscape of both the primary and pulmonary metastatic tumor in two dogs with appendicular osteosarcoma (OSA) was comprehensively evaluated using an automated whole genome sequencing, exome and RNA-seq pipeline that was adapted for this study for use in dogs. Chromosomal lesions were the most common type of mutation. The mutational landscape varied substantially between dogs but the lesions within the same patient were similar. Copy number neutral loss of heterozygosity in mutant TP53 was the most significant driver mutation and involved a large region in the middle of chromosome 5. Canine and human OSA is characterized by loss of cell cycle checkpoint integrity and DNA damage response pathways. Mutational profiling of individual patients with canine OSA would be recommended prior to targeted therapy, given the heterogeneity seen in our study and previous studies.
Collapse
Affiliation(s)
- Shirley Chu
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States of America
- * E-mail:
| | - Zachary L. Skidmore
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
| | - Jason Kunisaki
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
| | - Jason R. Walker
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
- Department of Medicine, Washington University, St. Louis, MO, United States of America
| | - Obi L. Griffith
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
- Department of Medicine, Washington University, St. Louis, MO, United States of America
| | - Jeffrey N. Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
14
|
Zheng D, Liu W, Xie W, Huang G, Jiang Q, Yang Y, Huang J, Xing Z, Yuan M, Wei M, Li Y, Yin J, Shen J, Shi Z. AHA1 upregulates IDH1 and metabolic activity to promote growth and metastasis and predicts prognosis in osteosarcoma. Signal Transduct Target Ther 2021; 6:25. [PMID: 33468990 PMCID: PMC7815748 DOI: 10.1038/s41392-020-00387-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. Although activator of HSP90 ATPase activity 1 (AHA1) is reported to be a potential oncogene, its role in osteosarcoma progression remains largely unclear. Since metabolism reprogramming is involved in tumorigenesis and cancer metastasis, the relationship between AHA1 and cancer metabolism is unknown. In this study, we found that AHA1 is significantly overexpressed in osteosarcoma and related to the prognosis of osteosarcoma patients. AHA1 promotes the growth and metastasis of osteosarcoma both in vitro and in vivo. Mechanistically, AHA1 upregulates the metabolic activity to meet cellular bioenergetic needs in osteosarcoma. Notably, we identified that isocitrate dehydrogenase 1 (IDH1) is a novel client protein of Hsp90-AHA1. Furthermore, the IDH1 protein level was positively correlated with AHA1 in osteosarcoma. And IDH1 overexpression could partially reverse the effect of AHA1 knockdown on cell growth and migration of osteosarcoma. Moreover, high IDH1 level was also associated with poor prognosis of osteosarcoma patients. This study demonstrates that AHA1 positively regulates IDH1 and metabolic activity to promote osteosarcoma growth and metastasis, which provides novel prognostic biomarkers and promising therapeutic targets for osteosarcoma patients.
Collapse
Grants
- Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
- the Science and Technology Program of Guangzhou, 201707010007; the Fundamental Research Funds for the Central Universities, 19ykzd10
- National Natural Science Foundation of China (National Science Foundation of China)
- Guangdong Province Special Fund for Science and Technology Development, 2017A050501015; the Science and Technology Program of Guangzhou, 201704030008; Cultivation of Major Projects, Sun Yat-sen University, 80000-18823701; Cultivation of International Scientific Research Cooperation Platform, Sun Yat-sen University, 80000-18827202; “3×3” Project, the First Affiliated Hospital of Sun Yat-sen University, Y70215.
- the National Key Research and Development Program of China, 2017YFA0505104; the Science and Technology Program of Guangdong, 2019A050510023.
Collapse
Affiliation(s)
- Diwei Zheng
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Weihai Liu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Wenlin Xie
- Department of Pathology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518017, China
| | - Guanyu Huang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Qiwei Jiang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jiarong Huang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zihao Xing
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Mengling Yuan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Mengning Wei
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yao Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, 510080, China.
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, 510080, China.
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
15
|
Heat Shock Proteins as the Druggable Targets in Leishmaniasis: Promises and Perils. Infect Immun 2021; 89:IAI.00559-20. [PMID: 33139381 DOI: 10.1128/iai.00559-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmania, the causative agent of leishmaniasis, is an intracellular pathogen that thrives in the insect gut and mammalian macrophages to complete its life cycle. Apart from temperature difference (26 to 37°C), it encounters several harsh conditions, including oxidative stress, inflammatory reactions, and low pH. Heat shock proteins (HSPs) play essential roles in cell survival by strategically reprogramming cellular processes and signaling pathways. HSPs assist cells in multiple functions, including differentiation, adaptation, virulence, and persistence in the host cell. Due to cyclical epidemiological patterns, limited chemotherapeutic options, drug resistance, and the absence of a vaccine, control of leishmaniasis remains a far-fetched dream. The essential roles of HSPs in parasitic differentiation and virulence and increased expression in drug-resistant strains highlight their importance in combating the disease. In this review, we highlighted the diverse physiological importance of HSPs present in Leishmania, emphasizing their significance in disease pathogenesis. Subsequently, we assessed the potential of HSPs as a chemotherapeutic target and underlined the challenges associated with it. Furthermore, we have summarized a few ongoing drug discovery initiatives that need to be explored further to develop clinically successful chemotherapeutic agents in the future.
Collapse
|
16
|
Liu Y, Liao S, Bennett S, Tang H, Song D, Wood D, Zhan X, Xu J. STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif 2020; 54:e12974. [PMID: 33382511 PMCID: PMC7848963 DOI: 10.1111/cpr.12974] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of seven STAT family members involved with the regulation of cellular growth, differentiation and survival. STAT proteins are conserved among eukaryotes and are important for biological functions of embryogenesis, immunity, haematopoiesis and cell migration. STAT3 is widely expressed and located in the cytoplasm in an inactive form. STAT3 is rapidly and transiently activated by tyrosine phosphorylation by a range of signalling pathways, including cytokines from the IL‐6 family and growth factors, such as EGF and PDGF. STAT3 activation and subsequent dimer formation initiates nuclear translocation of STAT3 for the regulation of target gene transcription. Four STAT3 isoforms have been identified, which have distinct biological functions. STAT3 is considered a proto‐oncogene and constitutive activation of STAT3 is implicated in the development of various cancers, including multiple myeloma, leukaemia and lymphomas. In this review, we focus on recent progress on STAT3 and osteosarcoma (OS). Notably, STAT3 is overexpressed and associated with the poor prognosis of OS. Constitutive activation of STAT3 in OS appears to upregulate the expression of target oncogenes, leading to OS cell transformation, proliferation, tumour formation, invasion, metastasis, immune evasion and drug resistance. Taken together, STAT3 is a target for cancer therapy, and STAT3 inhibitors represent potential therapeutic candidates for the treatment of OS.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spine and Osteopathic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Liao
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Haijun Tang
- Department of Orthopedic, Guangxi hospital for nationalities, Nanning, Guangxi, China
| | - Dezhi Song
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - David Wood
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xinli Zhan
- Department of Spine and Osteopathic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
17
|
Li W, Li Y, Tian W, Han X, Zhao J, Xin Z, Hu H, Li J, Hang K, Xu R. 2-methylbenzoyl berbamine, a multi-targeted inhibitor, suppresses the growth of human osteosarcoma through disabling NF-κB, ERK and AKT signaling networks. Aging (Albany NY) 2020; 12:15037-15049. [PMID: 32713851 PMCID: PMC7425514 DOI: 10.18632/aging.103565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
Osteosarcoma is the most common malignant bone tumor in children and young adults, and it has a survival rate of only 60% with current cytotoxic chemotherapy combined with aggressive surgery. The aim of this study was to evaluate the therapeutic efficacy of the berbamine derivative 2-methylbenzoyl berbamine (BBD24) for osteosarcoma in vitro and in vivo. We used human osteosarcoma cell lines, primary osteosarcoma cells and mouse models to evaluate the inhibitory effects of BBD24 on osteosarcoma and to determine the molecular mechanism. Our results showed that BBD24 inhibited the growth of the human osteosarcoma cell lines HOS and MG63 in a time- and dose-dependent manner. BBD24 also exhibited significant inhibitory effects on primary osteosarcoma cells. In contrast, BBD24 did not affect normal blood cells under the same conditions. Treatment with BBD24 induced apoptosis, necrosis and autophagy in osteosarcoma cells. Western blot analysis revealed that BBD24 activated the caspase-dependent pathway and downregulated the NF-kB, AKT, and ERK pathways. Finally, BBD24 treatment induced a significant inhibitory effect on the growth of osteosarcoma in nude mice. Our findings indicate that BBD24 is a multitarget inhibitor and may represent a new type of anticancer agent for osteosarcoma treatment.
Collapse
Affiliation(s)
- Weixu Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Yan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Wenjia Tian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Xiuguo Han
- Department of Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Jie Zhao
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Zengfeng Xin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Hejia Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Jun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Kai Hang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Rongzhen Xu
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.,Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
18
|
Liu Q, Wang Z, Zhou X, Tang M, Tan W, Sun T, Wang Y, Deng Y. miR-485-5p/HSP90 axis blocks Akt1 phosphorylation to suppress osteosarcoma cell proliferation and migration via PI3K/AKT pathway. J Physiol Biochem 2020; 76:279-290. [PMID: 32100243 DOI: 10.1007/s13105-020-00730-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma (OS) is closely related to the dysregulation of various intracellular signaling pathways, especially the PI3K/Akt signaling pathway. Reportedly, HSP90 was responsible for phospho-Akt stabilization, and both AKT1 and HSP90 were upregulated within osteosarcoma. Herein, we demonstrated that AKT1 and HSP90 mRNA and protein expression were upregulated within osteosarcoma tissues and cells; AKT1 knockdown significantly inhibited OS cell viability. HSP90 knockdown suppressed the phosphorylation of AKT1, decreased ki-67 and Vimentin protein levels, enhanced p21 and E-cadherin protein levels, and inhibited OS cell proliferation and migration; AKT1 overexpression exerted opposing effects and significantly attenuated the effects of HSP90 knockdown. miR-485-5p targeted AKT1 and HSP90 3'-UTR to inhibit AKT1 and HSP90 expression. miR-485-5p overexpression dramatically reduced AKT1, HSP90, and ki-67 proteins, increased E-cadherin protein levels, and inhibited OS cell proliferation and migration. In conclusion, HSP90 knockdown blocked the phosphorylation of AKT1 suppressing the proliferation and migration capacity of OS cells via the PI3K/AKT pathway; miR-485-5p binds to HSP90 and AKT1 in their 3'-UTR to inhibit HSP90 and AKT1 expression, therefore exerting a tumor suppressor function within osteosarcoma.
Collapse
Affiliation(s)
- Qing Liu
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, Hunan, People's Republic of China.,Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhenting Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, Hunan, People's Republic of China.,Department of urology Surgery, Haikou People's Hospital/Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 410011, Hainan, China
| | - Xiaohua Zhou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Mingying Tang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, Hunan, People's Republic of China.,Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tianshi Sun
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yifang Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Targeting Refractory Sarcomas and Malignant Peripheral Nerve Sheath Tumors in a Phase I/II Study of Sirolimus in Combination with Ganetespib (SARC023). Sarcoma 2020; 2020:5784876. [PMID: 32089640 PMCID: PMC7013290 DOI: 10.1155/2020/5784876] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/09/2019] [Indexed: 12/03/2022] Open
Abstract
Purpose Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas. Combining Hsp90 inhibitors to enhance endoplasmic reticulum stress with mTOR inhibition results in dramatic MPNST shrinkage in a genetically engineered MPNST mouse model. Ganetespib is an injectable potent small molecule inhibitor of Hsp90. Sirolimus is an oral mTOR inhibitor. We sought to determine the safety, tolerability, and recommended dose of ganetespib and sirolimus in patients with refractory sarcomas and assess clinical benefits in patients with unresectable/refractory MPNSTs. Patients and Methods. In this multi-institutional, open-label, phase 1/2 study of ganetespib and sirolimus, patients ≥16 years with histologically confirmed refractory sarcoma (phase 1) or MPNST (phase 2) were eligible. A conventional 3 + 3 dose escalation design was used for phase 1. Pharmacokinetic and pharmacodynamic measures were evaluated. Primary objectives of phase 2 were to determine the clinical benefit rate (CBR) of this combination in MPNSTs. Patient-reported outcomes assessed pain. Results Twenty patients were enrolled (10 per phase). Toxicities were manageable; most frequent non-DLTs were diarrhea, elevated liver transaminases, and fatigue. The recommended dose of ganetespib was 200 mg/m2 intravenously on days 1, 8, and 15 with sirolimus 4 mg orally once daily with day 1 loading dose of 12 mg. In phase 1, one patient with leiomyosarcoma achieved a sustained partial response. In phase 2, no responses were observed. The median number of cycles treated was 2 (1–4). Patients did not meet the criteria for clinical benefit as defined per protocol. Pain ratings decreased or were stable. Conclusion Despite promising preclinical rationale and tolerability of the combination therapy, no responses were observed, and the study did not meet parameters for further evaluation in MPNSTs. This trial was registered with (NCT02008877).
Collapse
|
20
|
Cletzer E, Klahn S, Dervisis N, LeRoith T. Identification of the JAK-STAT pathway in canine splenic hemangiosarcoma, thyroid carcinoma, mast cell tumor, and anal sac adenocarcinoma. Vet Immunol Immunopathol 2019; 220:109996. [PMID: 31958674 DOI: 10.1016/j.vetimm.2019.109996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Dysregulation of the Janus Kinase (JAK) - Signal Transducer and Activator of Transcription (STAT) cellular signaling pathway has been associated with the development and progression of multiple human cancers. STAT3 has been reported to be present and constitutively active in a number of veterinary cancers, and few studies have reported mutations or activation of JAK1 or JAK2. Archived tissue samples from 54 client-owned dogs with histologically-diagnosed HSA, MCT, TC, or AGASACA were evaluated by immunohistochemical scoring of JAK1, JAK2, STAT3, and the phosphorylated counterparts pJAK1, pJAK2, and pSTAT3. IHC scoring was retrospectively analyzed with retrospectively-collected clinical parameters, including patient characteristics, metastasis, and survival. JAK1, pJAK1, JAK2, pJAK2, STAT3, and pSTAT3 were present in all tumor types evaluated. Significant correlations between JAK 1/2 or STAT3 and activated or downstream components were identified in all tumor types. Clinically, pSTAT3 was correlated with development of metastasis in dogs with MCT, while increased JAK1 expression or activation may impact survival in dogs with MCT or HSA. These findings provide a foundation to further investigate the JAK-STAT pathway in canine malignancies for additional therapeutic options.
Collapse
Affiliation(s)
- Erin Cletzer
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Dr, Blacksburg, VA, 24061, USA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Dr, Blacksburg, VA, 24061, USA.
| | - Nikolaos Dervisis
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Dr, Blacksburg, VA, 24061, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Dr, Blacksburg, VA, 24061, USA
| |
Collapse
|
21
|
Sánchez-Céspedes R, Accornero P, Miretti S, Martignani E, Gattino F, Maniscalco L, Gola C, Iussich S, Martano M, Morello E, Buracco P, Aresu L, Maria RD. In vitro and in vivo effects of toceranib phosphate on canine osteosarcoma cell lines and xenograft orthotopic models. Vet Comp Oncol 2019; 18:117-127. [PMID: 31816142 DOI: 10.1111/vco.12562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 02/01/2023]
Abstract
Canine osteosarcoma (OSA) is the most common primary malignant bone tumour in dogs, and it has a high metastatic rate and poor prognosis. Toceranib phosphate (TOC; Palladia, Zoetis) is a veterinary tyrosine kinase inhibitor that selectively inhibits VEGFR-2, PDGFRs and c-Kit, but its efficacy is not yet fully understood in the treatment of canine OSA. Here, we evaluated the functional effects of TOC on six OSA cell lines by transwell, wound healing and colony formation assays. Subsequently, two cell lines (Wall and Penny) were selected and were inoculated in mice by intrafemoral injection to develop an orthotopic xenograft model of canine OSA. For each cell line, 30 mice were xenografted; half of them were used as controls, and the other half were treated with TOC at 40 mg/kg body weight for 20 days. TOC inhibited cell growth of all cell lines, but reduced invasion and migration was only observed in Penny and Wall cell lines. In mice engrafted with Penny cells and subjected to TOC treatment, decreased tumour growth was observed, and PDGFRs and c-Kit mRNA were downregulated. Immunohistochemical analyses demonstrated a significant reduction of Ki67 staining in treated mice when compared to controls. The results obtained here demonstrate that TOC is able to slightly inhibit cell growth in vitro, while its effect is evident only in a Penny cell xenograft model, in which TOC significantly reduced tumour size and the Ki67 index without modifying apoptosis markers.
Collapse
Affiliation(s)
- Raquel Sánchez-Céspedes
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Córdoba, Spain
| | - Paolo Accornero
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Silvia Miretti
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Eugenio Martignani
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Francesca Gattino
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Lorella Maniscalco
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Cecilia Gola
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Selina Iussich
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Marina Martano
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Emanuela Morello
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Paolo Buracco
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Luca Aresu
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Raffaella De Maria
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| |
Collapse
|
22
|
Yang J, Li Y, He M, Qiao J, Sang Y, Cheang LH, Gomes FC, Hu Y, Li Z, Liu N, Zhang H, Zha Z. HSP90 regulates osteosarcoma cell apoptosis by targeting the p53/TCF‐1‐mediated transcriptional network. J Cell Physiol 2019; 235:3894-3904. [PMID: 31595984 DOI: 10.1002/jcp.29283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jie Yang
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Yu‐Hang Li
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Ming‐Tang He
- Department of Orthopedics Longgang Orthopedics Hospital of Shenzhen Shenzhen Guangdong China
| | - Ju‐Feng Qiao
- Department of Orthopedic Surgery Chashan Hospital of Dongguan Dongguan Guangdong China
| | - Yuan Sang
- Department of Orthopedic Surgery, The Third Affiliated Hospital Sun Yat‐sen University Guangzhou Guangdong China
| | - Lek Hang Cheang
- Department of Orthotraumaology Centro Hospitalar Conde S. Januario Macau China
| | - Fernando Cardoso Gomes
- Department of Physical Medicine and Rehabilitation Centro Hospitalar Conde S. Januario Macau China
| | - Yang Hu
- School of Preclinical Medicine Jinan University Guangzhou Guangdong China
| | - Zhen‐Yan Li
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Ning Liu
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Huan‐Tian Zhang
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Zhen‐Gang Zha
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| |
Collapse
|
23
|
Wong MY, DiChiara AS, Suen PH, Chen K, Doan ND, Shoulders MD. Adapting Secretory Proteostasis and Function Through the Unfolded Protein Response. Curr Top Microbiol Immunol 2018; 414:1-25. [PMID: 28929194 DOI: 10.1007/82_2017_56] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cells address challenges to protein folding in the secretory pathway by engaging endoplasmic reticulum (ER)-localized protective mechanisms that are collectively termed the unfolded protein response (UPR). By the action of the transmembrane signal transducers IRE1, PERK, and ATF6, the UPR induces networks of genes whose products alleviate the burden of protein misfolding. The UPR also plays instructive roles in cell differentiation and development, aids in the response to pathogens, and coordinates the output of professional secretory cells. These functions add to and move beyond the UPR's classical role in addressing proteotoxic stress. Thus, the UPR is not just a reaction to protein misfolding, but also a fundamental driving force in physiology and pathology. Recent efforts have yielded a suite of chemical genetic methods and small molecule modulators that now provide researchers with both stress-dependent and -independent control of UPR activity. Such tools provide new opportunities to perturb the UPR and thereby study mechanisms for maintaining proteostasis in the secretory pathway. Numerous observations now hint at the therapeutic potential of UPR modulation for diseases related to the misfolding and aggregation of ER client proteins. Growing evidence also indicates the promise of targeting ER proteostasis nodes downstream of the UPR. Here, we review selected advances in these areas, providing a resource to inform ongoing studies of secretory proteostasis and function as they relate to the UPR.
Collapse
Affiliation(s)
- Madeline Y Wong
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Andrew S DiChiara
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Patreece H Suen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Ngoc-Duc Doan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA.
| |
Collapse
|
24
|
London CA, Acquaviva J, Smith DL, Sequeira M, Ogawa LS, Gardner HL, Bernabe LF, Bear MD, Bechtel SA, Proia DA. Consecutive Day HSP90 Inhibitor Administration Improves Efficacy in Murine Models of KIT-Driven Malignancies and Canine Mast Cell Tumors. Clin Cancer Res 2018; 24:6396-6407. [PMID: 30171047 DOI: 10.1158/1078-0432.ccr-18-0703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE STA-1474, prodrug of the heat shock protein 90 inhibitor (HSP90i) ganetespib, previously demonstrated activity in canine preclinical models of cancer; interestingly, prolonged infusions were associated with improved biologic activity. The purpose of this study was to identify the ideal treatment schedule for HSP90i in preclinical models of KIT-driven malignancies and in dogs with spontaneous mast cell tumors (MCT), where KIT is a known driver. EXPERIMENTAL DESIGN In vitro and murine xenograft experiments and clinical studies in dogs with MCTs were used to define the effects of HSP90i-dosing regimen on client protein downregulation and antitumor activity. RESULTS Continuous HSP90 inhibition led to durable destabilization of client proteins in vitro; however, transient exposure required >10× drug for comparable effects. In vivo, KIT was rapidly degraded following a single dose of HSP90i but returned to baseline levels within a day. HSP90 levels increased and stabilized 16 hours after HSP90i and were not elevated following a subsequent near-term exposure, providing a functional pool of chaperone to stabilize proteins and a means for greater therapeutic activity upon HSP90i reexposure. HSP90i administered on days 1 and 2 (D1/D2) demonstrated increased biologic activity compared with D1 treatment in KIT or EGFR-driven murine tumor models. In a trial of dogs with MCT, D1/D2 dosing of HSP90i was associated with sustained KIT downregulation, 50% objective response rate and 100% clinical benefit rate compared with D1 and D1/D4 schedules. CONCLUSIONS These data provide further evidence that prolonged HSP90i exposure improves biologic activity through sustained downregulation of client proteins.
Collapse
Affiliation(s)
- Cheryl A London
- Departments of Veterinary Biosciences and Clinical Sciences, The Ohio State University, Columbus, Ohio. .,Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts
| | | | | | | | | | - Heather L Gardner
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Louis Feo Bernabe
- Departments of Veterinary Biosciences and Clinical Sciences, The Ohio State University, Columbus, Ohio
| | - Misty D Bear
- Departments of Veterinary Biosciences and Clinical Sciences, The Ohio State University, Columbus, Ohio
| | - Sandra A Bechtel
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | | |
Collapse
|
25
|
Pang KL, Chin KY. The Biological Activities of Oleocanthal from a Molecular Perspective. Nutrients 2018; 10:E570. [PMID: 29734791 PMCID: PMC5986450 DOI: 10.3390/nu10050570] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia.
| | - Kok-Yong Chin
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Malaysia.
| |
Collapse
|
26
|
Gebhard C, Miller I, Hummel K, Neschi née Ondrovics M, Schlosser S, Walter I. Comparative proteome analysis of monolayer and spheroid culture of canine osteosarcoma cells. J Proteomics 2018; 177:124-136. [DOI: 10.1016/j.jprot.2018.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
|
27
|
Abstract
Cell-to-cell transmission of misfolded proteins propagates proteotoxic stress in multicellular organisms when transmitted polypeptides serve as a seeding template to cause protein misfolding in recipient cells, but how misfolded proteins are released from cells to initiate this process is unclear. Misfolding-associated protein secretion (MAPS) is an unconventional protein-disposing mechanism that specifically exports misfolded cytosolic proteins including various neurodegenerative disease-causing proteins. Here we establish the HSC70 co-chaperone DNAJC5 as an essential mediator of MAPS. USP19, a previously uncovered MAPS regulator binds HSC70 and acts upstream of HSC70 and DNAJC5. We further show that as a membrane-associated protein localized preferentially to late endosomes and lysosomes, DNAJC5 can chaperone MAPS client proteins to the cell exterior. Intriguingly, upon secretion, misfolded proteins can be taken up through endocytosis and eventually degraded in the lysosome. Collectively, these findings suggest a transcellular protein quality control regulatory pathway in which a deubiquitinase-chaperone axis forms a “triaging hub”, transferring aberrant polypeptides from stressed cells to healthy ones for disposal.
Collapse
|
28
|
Jaiswal RK, Kumar P, Sharma A, Mishra DK, Yadava PK. Proteomic identification of proteins differentially expressed following overexpression of hTERT (human telomerase reverse transcriptase) in cancer cells. PLoS One 2017; 12:e0181027. [PMID: 28704482 PMCID: PMC5509255 DOI: 10.1371/journal.pone.0181027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/25/2017] [Indexed: 12/26/2022] Open
Abstract
Reverse transcriptase activity of telomerase adds telomeric repeat sequences at extreme ends of the newly replicated chromosome in actively dividing cells. Telomerase expression is not detected in terminally differentiated cells but is noticeable in 90% of the cancer cells. hTERT (human telomerase reverse transcriptase) expression seems to promote invasiveness of cancer cells. We here present proteomic profiles of cells overexpressing or knocked down for hTERT. This study also attempts to find out the potential interacting partners of hTERT in cancer cell lines. Two-dimensional gel electrophoresis (2-DE) of two different cell lines U2OS (a naturally hTERT negative cell line) and HeLa revealed differential expression of proteins in hTERT over-expressing cells. In U2OS cell line 28 spots were picked among which 23 spots represented upregulated and 5 represented down regulated proteins. In HeLa cells 21 were upregulated and 2 were down regulated out of 23 selected spots under otherwise identical experimental conditions. Some heat shock proteins viz. Hsp60 and Hsp70 and GAPDH, which is a housekeeping gene, were found similarly upregulated in both the cell lines. The upregulation of these proteins were further confirmed at RNA and protein level by real-time PCR and western blotting respectively.
Collapse
Affiliation(s)
- Rishi Kumar Jaiswal
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pramod Kumar
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amod Sharma
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Kumar Mishra
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
29
|
Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol Sci 2016; 38:226-256. [PMID: 28012700 DOI: 10.1016/j.tips.2016.11.009] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (HSPs) constitute a large family of proteins involved in protein folding and maturation whose expression is induced by heat shock or other stressors. The major groups are classified based on their molecular weights and include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. HSPs play a significant role in cellular proliferation, differentiation, and carcinogenesis. In this article we comprehensively review the roles of major HSPs in cancer biology and pharmacology. HSPs are thought to play significant roles in the molecular mechanisms leading to cancer development and metastasis. HSPs may also have potential clinical uses as biomarkers for cancer diagnosis, for assessing disease progression, or as therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA.
| | - Zechary Rios
- University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
30
|
Graner AN, Hellwinkel JE, Lencioni AM, Madsen HJ, Harland TA, Marchando P, Nguyen GJ, Wang M, Russell LM, Bemis LT, Anchordoquy TJ, Graner MW. HSP90 inhibitors in the context of heat shock and the unfolded protein response: effects on a primary canine pulmonary adenocarcinoma cell line. Int J Hyperthermia 2016; 33:303-317. [PMID: 27829290 DOI: 10.1080/02656736.2016.1256503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Agents targeting HSP90 and GRP94 are seldom tested in stressed contexts such as heat shock (HS) or the unfolded protein response (UPR). Tumor stress often activates HSPs and the UPR as pro-survival mechanisms. This begs the question of stress effects on chemotherapeutic efficacy, particularly with drugs targeting chaperones such as HSP90 or GRP94. We tested the utility of several HSP90 inhibitors, including PU-H71 (targeting GRP94), on a primary canine lung cancer line under HS/UPR stress compared to control conditions. METHODS We cultured canine bronchoalveolar adenocarcinoma cells that showed high endogenous HSP90 and GRP94 expression; these levels substantially increased upon HS or UPR induction. We treated cells with HSP90 inhibitors 17-DMAG, 17-AAG or PU-H71 under standard conditions, HS or UPR. Cell viability/survival was assayed. Antibody arrays measured intracellular signalling and apoptosis profiles. RESULTS HS and UPR had varying effects on cells treated with different HSP90 inhibitors; in particular, HS and UPR promoted resistance to inhibitors in short-term assays, but combinations of UPR stress and PU-H571 showed potent cytotoxic activity in longer-term assays. Array data indicated altered signalling pathways, with apoptotic and pro-survival implications. UPR induction + dual targeting of HSP90 and GRP94 swayed the balance toward apoptosis. CONCLUSION Cellular stresses, endemic to tumors, or interventionally inducible, can deflect or enhance chemo-efficacy, particularly with chaperone-targeting drugs. Stress is likely not held accountable when testing new pharmacologics or assessing currently-used drugs. A better understanding of stress impacts on drug activities should be critical in improving therapeutic targeting and in discerning mechanisms of drug resistance.
Collapse
Affiliation(s)
- Arin N Graner
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Justin E Hellwinkel
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,b School of Medicine , University of Colorado School of Medicine , Aurora , CO , USA
| | - Alex M Lencioni
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,c University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Helen J Madsen
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,b School of Medicine , University of Colorado School of Medicine , Aurora , CO , USA
| | - Tessa A Harland
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,b School of Medicine , University of Colorado School of Medicine , Aurora , CO , USA
| | - Paul Marchando
- d Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , CO , USA
| | - Ger J Nguyen
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Mary Wang
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Laura M Russell
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Lynne T Bemis
- e Department of Biomedical Sciences , University of Minnesota , Duluth , MN , USA
| | - Thomas J Anchordoquy
- f Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Denver , Aurora , CO , USA
| | - Michael W Graner
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| |
Collapse
|
31
|
Massimini M, Palmieri C, De Maria R, Romanucci M, Malatesta D, De Martinis M, Maniscalco L, Ciccarelli A, Ginaldi L, Buracco P, Bongiovanni L, Della Salda L. 17-AAG and Apoptosis, Autophagy, and Mitophagy in Canine Osteosarcoma Cell Lines. Vet Pathol 2016; 54:405-412. [PMID: 28438108 DOI: 10.1177/0300985816681409] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Canine osteosarcoma is highly resistant to current chemotherapy; thus, clarifying the mechanisms of tumor cell resistance to treatments is an urgent need. We tested the geldanamycin derivative 17-AAG (17-allylamino-17-demethoxygeldanamycin) prototype of Hsp90 (heat shock protein 90) inhibitors in 2 canine osteosarcoma cell lines, D22 and D17, derived from primary and metastatic tumors, respectively. With the aim to understand the interplay between cell death, autophagy, and mitophagy, in light of the dual effect of autophagy in regulating cancer cell viability and death, D22 and D17 cells were treated with different concentrations of 17-AAG (0.5 μM, 1 μM) for 24 and 48 hours. 17-AAG-induced apoptosis, necrosis, autophagy, and mitophagy were assessed by transmission electron microscopy, flow cytometry, and immunofluorescence. A simultaneous increase in apoptosis, autophagy, and mitophagy was observed only in the D22 cell line, while D17 cells showed low levels of apoptotic cell death. These results reveal differential cell response to drug-induced stress depending on tumor cell type. Therefore, pharmacological treatments based on proapoptotic chemotherapy in association with autophagy regulators would benefit from a predictive in vitro screening of the target cell type.
Collapse
Affiliation(s)
- M Massimini
- 1 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - C Palmieri
- 2 School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
| | - R De Maria
- 3 Department of Veterinary Medicine, Animal Pathology, University of Turin, Grugliasco, Italy
| | - M Romanucci
- 1 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - D Malatesta
- 1 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - M De Martinis
- 4 Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - L Maniscalco
- 3 Department of Veterinary Medicine, Animal Pathology, University of Turin, Grugliasco, Italy
| | - A Ciccarelli
- 5 Faculty of Communication Sciences, University of Teramo, Teramo, Italy
| | - L Ginaldi
- 4 Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Buracco
- 3 Department of Veterinary Medicine, Animal Pathology, University of Turin, Grugliasco, Italy
| | - L Bongiovanni
- 1 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - L Della Salda
- 1 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
32
|
Clemente-Vicario F, Alvarez CE, Rowell JL, Roy S, London CA, Kisseberth WC, Lorch G. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines. PLoS One 2015; 10:e0142007. [PMID: 26560147 PMCID: PMC4641597 DOI: 10.1371/journal.pone.0142007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022] Open
Abstract
Background It has been an open question how similar human and canine lung cancers are. This has major implications in availability of human treatments for dogs and in establishing translational models to test new therapies in pet dogs. The prognosis for canine advanced lung cancer is poor and new treatments are needed. Heat shock protein 90 (HSP90) is an ATPase-dependent molecular chaperone ubiquitously expressed in eukaryotic cells. HSP90 is essential for posttranslational conformational maturation and stability of client proteins including protein kinases and transcription factors, many of which are important for the proliferation and survival of cancer cells. We investigated the activity of STA-1474, a HSP90 inhibitor, in two canine lung cancer cell lines, BACA and CLAC. Results Comparative genomic hybridization analysis of both cell lines revealed genetic relevance to human non-small cell lung cancer. STA-1474 inhibited growth and induced apoptosis of both cell lines in a dose- and time-dependent manner. The ICs50 after 72 h treatment with STA-1474 were 0.08 and 0.11 μM for BACA and CLAC, respectively. When grown as spheroids, the IC50 of STA-1474 for BACA cells was approximately two-fold higher than when grown as a monolayer (0.348 μM vs. 0.168 μM), whereas CLAC spheroids were relatively drug resistant. Treatment of tumor-stromal fibroblasts with STA-1474 resulted in a dose-dependent decrease in their relative cell viability with a low IC50 of 0.28 μM. Conclusions Here we first established that lung adenocarcinoma in people and dogs are genetically and biochemically similar. STA1474 demonstrated biological activity in both canine lung cancer cell lines and tumor-stromal fibroblasts. As significant decreases in relative cell viability can be achieved with nanomolar concentrations of STA-1474, investigation into the clinical efficacy of this drug in canine lung cancer patients is warranted.
Collapse
Affiliation(s)
- Francisco Clemente-Vicario
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Carlos E. Alvarez
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jennie L. Rowell
- College of Nursing, The Ohio State University, Columbus, Ohio, United States of America
| | - Satavisha Roy
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Cheryl A. London
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - William C. Kisseberth
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Gwendolen Lorch
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Spontaneous cancers in client-owned dogs closely recapitulate their human counterparts with respect to clinical presentation, histological features, molecular profiles, and response and resistance to therapy, as well as the evolution of drug-resistant metastases. In several instances the incorporation of dogs with cancer into the preclinical development path of cancer therapeutics has influenced outcome by helping to establish pharmacokinetic/pharmacodynamics relationships, dose/regimen, expected clinical toxicities, and ultimately the potential for biologic activity. As our understanding regarding the molecular drivers of canine cancers has improved, unique opportunities have emerged to leverage this spontaneous model to better guide cancer drug development so that therapies likely to fail are eliminated earlier and therapies with true potential are optimized prior to human studies. Both pets and people benefit from this approach, as it provides dogs with access to cutting-edge cancer treatments and helps to insure that people are given treatments more likely to succeed.
Collapse
Affiliation(s)
| | | | - Cheryl A London
- Department of Veterinary Clinical Sciences and.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
34
|
Fenger JM, London CA, Kisseberth WC. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J 2015; 55:69-85. [PMID: 24936031 DOI: 10.1093/ilar/ilu009] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteosarcoma (OSA) is the most common form of malignant bone cancer in children and dogs, although the disease occurs in dogs approximately 10 times more frequently than in people. Multidrug chemotherapy and aggressive surgical techniques have improved survival; however, new therapies for OSA are critical, as little improvement in survival times has been achieved in either dogs or people over the past 15 years, even with significant efforts directed at the incorporation of novel therapeutic approaches. Both clinical and molecular evidence suggests that human and canine OSA share many key features, including tumor location, presence of microscopic metastatic disease at diagnosis, development of chemotherapy-resistant metastases, and altered expression/activation of several proteins (e.g. Met, ezrin, phosphatase and tensin homolog, signal transducer and activator of transcription 3), and p53 mutations, among others. Additionally, canine and pediatric OSA exhibit overlapping transcriptional profiles and shared DNA copy number aberrations, supporting the notion that these diseases are similar at the molecular level. This review will discuss the similarities between pediatric and canine OSA with regard to histology, biologic behavior, and molecular genetic alterations that indicate canine OSA is a relevant, spontaneous, large animal model of the pediatric disease and outline how the study of naturally occurring OSA in dogs will offer additional insights into the biology and future treatment of this disease in both children and dogs.
Collapse
|
35
|
Bocchini CE, Kasembeli MM, Roh SH, Tweardy DJ. Contribution of chaperones to STAT pathway signaling. JAKSTAT 2014; 3:e970459. [PMID: 26413421 DOI: 10.4161/21623988.2014.970459] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/21/2014] [Accepted: 09/25/2014] [Indexed: 12/27/2022] Open
Abstract
Aberrant STAT signaling is associated with the development and progression of many cancers and immune related diseases. Recent findings demonstrate that proteostasis modulators under clinical investigation for cancer therapy have a significant impact on STAT signaling, which may be critical for mediating their anti-cancer effects. Chaperones are critical for protein folding, stability and function and, thus, play an essential role in the maintenance of proteostasis. In this review we discuss the role of chaperones in STAT and tyrosine kinase (TK) protein folding, modulation of STAT and TK activity, and degradation of TKs. We highlight the important role of chaperones in STAT signaling, and how this knowledge has provided a framework for the development of new therapeutic avenues of targeting STAT signaling related pathologies.
Collapse
Affiliation(s)
- Claire E Bocchini
- Section of Infectious Disease; Department of Pediatrics; Baylor College of Medicine ; Houston, TX USA
| | - Moses M Kasembeli
- Section of Infectious Disease; Department of Medicine; Baylor College of Medicine ; Houston, TX USA
| | - Soung-Hun Roh
- Department of Biochemistry & Molecular Biology; Baylor College of Medicine ; Houston, TX USA
| | - David J Tweardy
- Section of Infectious Disease; Department of Medicine; Baylor College of Medicine ; Houston, TX USA ; Department of Biochemistry & Molecular Biology; Baylor College of Medicine ; Houston, TX USA ; Department of Molecular & Cellular Biology; Baylor College of Medicine ; Houston, TX USA
| |
Collapse
|
36
|
Smith DA, Carland CR, Guo Y, Bernstein SI. Getting folded: chaperone proteins in muscle development, maintenance and disease. Anat Rec (Hoboken) 2014; 297:1637-1649. [PMID: 25125177 PMCID: PMC4135391 DOI: 10.1002/ar.22980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 09/26/2024]
Abstract
Chaperone proteins are critical for protein folding and stability, and hence are necessary for normal cellular organization and function. Recent studies have begun to interrogate the role of this specialized class of proteins in muscle biology. During development, chaperone-mediated folding of client proteins enables their integration into nascent functional sarcomeres. In addition to assisting with muscle differentiation, chaperones play a key role in the maintenance of muscle tissues. Furthermore, disruption of the chaperone network can result in neuromuscular disease. In this review, we discuss how chaperones are involved in myofibrillogenesis, sarcomere maintenance, and muscle disorders. We also consider the possibilities of therapeutically targeting chaperones to treat muscle disease.
Collapse
Affiliation(s)
- Daniel A. Smith
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Carmen R. Carland
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Yiming Guo
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Sanford I. Bernstein
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| |
Collapse
|
37
|
Shen H, Zhu H, Song M, Tian Y, Huang Y, Zheng H, Cao R, Lin J, Bi Z, Zhong W. A selenosemicarbazone complex with copper efficiently down-regulates the 90-kDa heat shock protein HSP90AA1 and its client proteins in cancer cells. BMC Cancer 2014; 14:629. [PMID: 25167922 PMCID: PMC4168210 DOI: 10.1186/1471-2407-14-629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/20/2014] [Indexed: 01/09/2023] Open
Abstract
Background The 90-kDa heat shock protein HSP90AA1 is critical for the stability of several proteins that are important for tumor progression and thus, is a promising target for cancer therapy. Selenosemicarbazone metal complexes have been shown to possess anticancer activity through an unknown molecular mechanism. Methods The MTT assay, fluorescence-activated cell sorting, and fluorescent microscopy were used to analyze the mechanism of the anti-cancer activity of the selenosemicarbazone metal complexes. Additionally, RNA-seq was applied to identify transcriptional gene changes, and in turn, the signaling pathways involved in the process of 2-24a/Cu-induced cell death. Last, the expression of HSP90AA1, HSPA1A, PIM1, and AKT proteins in 2-24a/Cu-treated cells were investigated by western blot analysis. Results A novel selenosemicarbazone copper complex (2-24a/Cu) efficiently induced G2/M arrest and was cytotoxic in cancer cells. 2-24a/Cu significantly induced oxidative stress in cancer cells. Interestingly, although RNA-seq revealed that the transcription of HSP90AA1 was increased in 2-24a/Cu-treated cells, western blotting showed that the expression of HSP90AA1 protein was significantly decreased in these cells. Furthermore, down-regulation of HSP90AA1 led to the degradation of its client proteins (PIM1 and AKT1), which are also cancer therapy targets. Conclusion Our results showed that 2-24a/Cu efficiently generates oxidative stress and down-regulates HSP90AA1 and its client proteins (PIM1, AKT1) in U2os and HeLa cells. These results demonstrate the potential application of this novel copper complex in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhenggang Bi
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | | |
Collapse
|
38
|
Taddei M, Ferrini S, Giannotti L, Corsi M, Manetti F, Giannini G, Vesci L, Milazzo FM, Alloatti D, Guglielmi MB, Castorina M, Cervoni ML, Barbarino M, Foderà R, Carollo V, Pisano C, Armaroli S, Cabri W. Synthesis and Evaluation of New Hsp90 Inhibitors Based on a 1,4,5-Trisubstituted 1,2,3-Triazole Scaffold. J Med Chem 2014; 57:2258-74. [DOI: 10.1021/jm401536b] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Maurizio Taddei
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università degli Studi di Siena, Via A. Moro
2, I-53100 Siena, Italy
| | - Serena Ferrini
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università degli Studi di Siena, Via A. Moro
2, I-53100 Siena, Italy
| | - Luca Giannotti
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università degli Studi di Siena, Via A. Moro
2, I-53100 Siena, Italy
| | - Massimo Corsi
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università degli Studi di Siena, Via A. Moro
2, I-53100 Siena, Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università degli Studi di Siena, Via A. Moro
2, I-53100 Siena, Italy
| | - Giuseppe Giannini
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, I-00040, Pomezia, Roma, Italy
| | - Loredana Vesci
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, I-00040, Pomezia, Roma, Italy
| | - Ferdinando M. Milazzo
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, I-00040, Pomezia, Roma, Italy
| | - Domenico Alloatti
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, I-00040, Pomezia, Roma, Italy
| | - Mario B. Guglielmi
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, I-00040, Pomezia, Roma, Italy
| | - Massimo Castorina
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, I-00040, Pomezia, Roma, Italy
| | - Maria L. Cervoni
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, I-00040, Pomezia, Roma, Italy
| | - Marcella Barbarino
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, I-00040, Pomezia, Roma, Italy
| | - Rosanna Foderà
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, I-00040, Pomezia, Roma, Italy
| | - Valeria Carollo
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, I-00040, Pomezia, Roma, Italy
| | - Claudio Pisano
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, I-00040, Pomezia, Roma, Italy
| | - Silvia Armaroli
- Sigma-Tau Research Switzerland S.A., Via Motta, 2a, CH-6850 Mendrisio-Stazione, Switzerland
| | - Walter Cabri
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, I-00040, Pomezia, Roma, Italy
| |
Collapse
|
39
|
Lin CH, Ji T, Chen CF, Hoang BH. Wnt signaling in osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:33-45. [PMID: 24924167 DOI: 10.1007/978-3-319-04843-7_2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy diagnosed in children and adolescents with a high propensity for local invasion and distant metastasis. Despite current multidisciplinary treatments, there has not been a drastic change in overall prognosis within the last two decades. With current treatments, 60-70 % of patients with localized disease survive. Given a propensity of Wnt signaling to control multiple cellular processes, including proliferation, cell fate determination, and differentiation, it is a critical pathway in OS disease progression. At the same time, this pathway is extremely complex with vast arrays of cross-talk. Even though decades of research have linked the role of Wnt to tumorigenesis, there are still outstanding areas that remain poorly understood and even controversial. The canonical Wnt pathway functions to regulate the levels of the transcriptional co-activator β-catenin, which ultimately controls key developmental gene expressions. Given the central role of this mediator, inhibition of Wnt/β-catenin signaling has been investigated as a potential strategy for cancer control. In OS, several secreted protein families modulate the Wnt/β-catenin signaling, including secreted Frizzled-related proteins (sFRPs), Wnt inhibitory protein (WIF), Dickkopf proteins (DKK-1,2,3), sclerostin, and small molecules. This chapter focuses on our current understanding of Wnt/β-catenin signaling in OS, based on recent in vitro and in vivo data. Wnt activates noncanonical signaling pathways as well that are independent of β-catenin which will be discussed. In addition, stem cells and their association with Wnt/β-catenin are important factors to consider. Ultimately, the multiple canonical and noncanonical Wnt/β-catenin agonists and antagonists need to be further explored for potential targeted therapies.
Collapse
Affiliation(s)
- Carol H Lin
- The Hyundai Cancer Institute, CHOC Children's Hospital, Orange, CA, USA
| | | | | | | |
Collapse
|
40
|
Contributions of co-chaperones and post-translational modifications towards Hsp90 drug sensitivity. Future Med Chem 2013; 5:1059-71. [PMID: 23734688 DOI: 10.4155/fmc.13.88] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hsp90 is a molecular chaperone and important driver of stabilization and activation of several oncogenic proteins that are involved in the malignant transformation of tumor cells. Therefore, it is not surprising that Hsp90 has been reported to be a promising target for the treatment of several neoplasias, such as non-small-cell lung cancer and HER2-positive breast cancer. Hsp90 chaperone function depends on its ability to bind and hydrolyze ATP and Hsp90 inhibitors have been shown to compete with nucleotides for binding to Hsp90. Multiple factors, such as co-chaperones and post-translational modification, are involved in regulating Hsp90 ATPase activity. Here, the impact of post-translational modifications and co-chaperones on the efficacy of Hsp90 inhibitors are reviewed.
Collapse
|
41
|
Ambati SR, Lopes EC, Kosugi K, Mony U, Zehir A, Shah SK, Taldone T, Moreira AL, Meyers PA, Chiosis G, Moore MAS. Pre-clinical efficacy of PU-H71, a novel HSP90 inhibitor, alone and in combination with bortezomib in Ewing sarcoma. Mol Oncol 2013; 8:323-36. [PMID: 24388362 DOI: 10.1016/j.molonc.2013.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022] Open
Abstract
Ewing sarcoma is characterized by multiple deregulated pathways that mediate cell survival and proliferation. Heat shock protein 90 (HSP90) is a critical component of the multi-chaperone complexes that regulate the disposition and activity of a large number of proteins involved in cell-signaling systems. We tested the efficacy of PU-H71, a novel HSP90 inhibitor in Ewing sarcoma cell lines, primary samples, benign mesenchymal stromal cells and hematopoietic stem cells. We performed cell cycle analysis, clonogenic assay, immunoblot analysis and reverse phase protein array in Ewing cell lines and in vivo experiments in NSG and nude mice using the A673 cell line. We noted a significant therapeutic window in the activity of PU-H71 against Ewing cell lines and benign cells. PU-H71 treatment resulted in G2/M phase arrest. Exposure to PU-H71 resulted in depletion of critical proteins including AKT, pERK, RAF-1, c-MYC, c-KIT, IGF1R, hTERT and EWS-FLI1 in Ewing cell lines. Our results indicated that Ewing sarcoma tumor growth and the metastatic burden were significantly reduced in the mice injected with PU-H71 compared to the control mice. We also investigated the effects of bortezomib, a proteasome inhibitor, alone and in combination with PU-H71 in Ewing sarcoma. Combination index (CI)-Fa plots and normalized isobolograms indicated synergism between PU-H71 and bortezomib. Ewing sarcoma xenografts were significantly inhibited when mice were treated with the combination compared to vehicle or either drug alone. This provides a strong rationale for clinical evaluation of PU-H71 alone and in combination with bortezomib in Ewing sarcoma.
Collapse
Affiliation(s)
- Srikanth R Ambati
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
| | - Eloisi Caldas Lopes
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kohji Kosugi
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ullas Mony
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ahmet Zehir
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Smit K Shah
- Department of Molecular Pharmacology & Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Tony Taldone
- Department of Molecular Pharmacology & Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Andre L Moreira
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Paul A Meyers
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Gabriela Chiosis
- Department of Molecular Pharmacology & Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Malcolm A S Moore
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
42
|
Selvarajah GT, Bonestroo FAS, Kirpensteijn J, Kik MJL, van der Zee R, van Eden W, Timmermans-Sprang EPM, Slob A, Mol JA. Heat shock protein expression analysis in canine osteosarcoma reveals HSP60 as a potentially relevant therapeutic target. Cell Stress Chaperones 2013; 18:607-22. [PMID: 23463150 PMCID: PMC3745254 DOI: 10.1007/s12192-013-0414-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/15/2013] [Accepted: 02/17/2013] [Indexed: 12/11/2022] Open
Abstract
Heat shock proteins (HSP) are highly conserved across eukaryotic and prokaryotic species. These proteins play a role in response to cellular stressors, protecting cells from damage and facilitating recovery. In tumor cells, HSPs can have cytoprotective effects and interfere with apoptotic cascades. This study was performed to assess the prognostic and predictive values of the gene expression of HSP family members in canine osteosarcoma (OS) and their potential for targeted therapy. Gene expressions for HSP were assessed using quantitative PCR (qPCR) on 58 snap-frozen primary canine OS tumors and related to clinic-pathological parameters. A significant increased expression of HSP60 was found in relation to shorter overall survival and an osteoblastic phenotype. Therefore, the function of HSP60 was investigated in more detail. Immunohistochemical analysis revealed heterogeneous staining for HSP60 in tumors. The highest immunoreactivity was found in tumors of short surviving dogs. Next HSP expression was shown in a variety of canine and human OS cell lines by qPCR and Western blot. In two highly metastatic cell lines HSP60 expression was silenced using siRNA resulting in decreased cell proliferation and induction of apoptosis in both cell lines. It is concluded that overexpression of HSP60 is associated with a poor prognosis of OS and should be evaluated as a new target for therapy.
Collapse
Affiliation(s)
- Gayathri T. Selvarajah
- />Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
- />Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Floor A. S. Bonestroo
- />Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Jolle Kirpensteijn
- />Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Marja J. L. Kik
- />Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Ruurd van der Zee
- />Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Willem van Eden
- />Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Elpetra P. M. Timmermans-Sprang
- />Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Adri Slob
- />Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Jan A. Mol
- />Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
43
|
|
44
|
Abstract
Heat shock protein 90 (Hsp90) plays a critical role in the maintenance of multiple oncogenic pathways and is a required protein for folding and stability of many oncoproteins that are related to the growth, proliferation, and survival of many kinds of cancers. Ganetespib (STA-9090) is a potent, synthetic, small molecule inhibitor of Hsp90, and its binding to Hsp90 is known to result in the degradation of its client proteins and subsequent death of cancer cells. This article provides a review of ganetespib as one of the leading Hsp90 inhibitors, which is under investigation in a broad range of clinical stages for the treatment of cancer.
Collapse
Affiliation(s)
- Hyun Kyung Choi
- Faculty of Convergence Science, Jungwon University, Goesan 367-805, Korea
| | | |
Collapse
|
45
|
Cannon CM, Pozniak J, Scott MC, Ito D, Gorden BH, Graef AJ, Modiano JF. Canine osteosarcoma cells exhibit resistance to aurora kinase inhibitors. Vet Comp Oncol 2013; 13:48-59. [PMID: 23410058 DOI: 10.1111/vco.12018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/15/2022]
Abstract
We evaluated the effect of Aurora kinase inhibitors AZD1152 and VX680 on canine osteosarcoma cells. Cytotoxicity was seen in all four cell lines; however, half-maximal inhibitory concentrations were significantly higher than in human leukaemia and canine lymphoma cells. AZD1152 reduced Aurora kinase B phosphorylation, indicating resistance was not because of failure of target recognition. Efflux mediated by ABCB1 and ABCG2 transporters is one known mechanism of resistance against these drugs and verapamil enhanced AZD1152-induced apoptosis; however, these transporters were only expressed by a small percentage of cells in each line and the effects of verapamil were modest, suggesting other mechanisms contribute to resistance. Our results indicate that canine osteosarcoma cells are resistant to Aurora kinase inhibitors and suggest that these compounds are unlikely to be useful as single agents for this disease. Further investigation of these resistance mechanisms and the potential utility of Aurora kinase inhibitors in multi-agent protocols is warranted.
Collapse
Affiliation(s)
- C M Cannon
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Wu X, Marmarelis ME, Hodi FS. Activity of the heat shock protein 90 inhibitor ganetespib in melanoma. PLoS One 2013; 8:e56134. [PMID: 23418523 PMCID: PMC3572008 DOI: 10.1371/journal.pone.0056134] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/05/2013] [Indexed: 01/09/2023] Open
Abstract
Heat shock protein 90 (HSP90) is involved in the regulation of diverse biological processes such as cell signaling, proliferation and survival, and has been recently recognized as a potential target for cancer therapy. Ganetespib is a potent ATP competitive inhibitor of HSP90. Ganetespib downregulated the expression of multiple signal transducing molecules including EGFR, IGF-1R, c-Met, Akt, B-RAF and C-RAF, resulting in pronounced decrease in phosphorylation of Akt and Erk1/2 in a panel of five cutaneous melanoma cell lines including those harboring B-RAF and N-RAS mutations. Ganetespib exhibited potent antiproliferative activity on all five of these cell lines, with IC50 values between 37.5 and 84 nM. Importantly, Ganetespib is active on B-RAF mutated melanoma cells that have acquired resistance to B-RAF inhibition. Ganetespib induced apoptosis and cell cycle arrest at G1 and/or G2/M phase. Ganetespib induced cell cycle arrest was accompanied by altered expression of cyclin-dependent kinase inhibitor (CDKI) p21(Cip1) and p27(Kip1), cyclins B1, D1 and E, and/or cyclin-dependent kinases 1, 2 and 4. HSP90 is functionally important for melanoma cells and HSP90 inhibitors such as ganetespib could potentially be effective therapeutics for melanoma with various genetic mutations and acquired resistance to B-RAF inhibition.
Collapse
Affiliation(s)
- Xinqi Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Melanoma Disease Center, Dana-Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts, United States of America
| | | | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Melanoma Disease Center, Dana-Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts, United States of America
| |
Collapse
|
47
|
Hsp90: still a viable target in prostate cancer. Biochim Biophys Acta Rev Cancer 2012; 1835:211-8. [PMID: 23287571 DOI: 10.1016/j.bbcan.2012.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 11/21/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that regulates the maturation, activation and stability of critical signaling proteins that drive the development and progression of prostate cancer, including the androgen receptor. Despite robust preclinical data demonstrating anti-tumor activity of first-generation Hsp90 inhibitors in prostate cancer, poor clinical responses initially cast doubt over the clinical utility of this class of agent. Recent advances in compound design and development, use of novel preclinical models and further biological insights into Hsp90 structure and function have now stimulated a resurgence in enthusiasm for these drugs as a therapeutic option. This review highlights how the development of new-generation Hsp90 inhibitors with improved physical and pharmacological properties is unfolding, and discusses the potential contexts for their use either as single agents or in combination, for men with metastatic prostate cancer.
Collapse
|
48
|
Angstadt AY, Thayanithy V, Subramanian S, Modiano JF, Breen M. A genome-wide approach to comparative oncology: high-resolution oligonucleotide aCGH of canine and human osteosarcoma pinpoints shared microaberrations. Cancer Genet 2012; 205:572-87. [PMID: 23137772 DOI: 10.1016/j.cancergen.2012.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/31/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022]
Abstract
Molecular cytogenetic evaluation of human osteosarcoma (OS) has revealed the characteristically high degree of genomic reorganization that is the hallmark of this cancer. The extent of genomic disorder in OS has hindered identification of the genomic aberrations driving disease progression. With pathophysiological similarities to its human counterpart, canine OS represents an ideal model for comparison of conserved regions of genomic instability that may be disease-associated rather than genomic passengers. This study used high-resolution oligonucleotide array comparative genomic hybridization and a variety of informatics tools to aid in the identification of disease-associated genome-wide DNA copy number aberrations in canine and human OS. Our findings support and build upon the high level of cytogenetic complexity, through the identification of shared regions of microaberration (<500 kb) and functional analysis of possible orthologous OS-associated genes to pinpoint the cellular processes most commonly affected by aberration in human and canine OS. Aberrant regions contained previously reported genes such as CDC5L, MYC, RUNX2, and CDKN2A/CDKN2B, while expanding the gene of interest list to include ADAM15, CTC1, MEN1, CDK7, and others. Such regions of instability may thus have functional significance in the etiology of OS, the most common primary bone tumor in both species.
Collapse
Affiliation(s)
- Andrea Y Angstadt
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | |
Collapse
|
49
|
Shimamura T, Perera SA, Foley KP, Sang J, Rodig SJ, Inoue T, Chen L, Li D, Carretero J, Li YC, Sinha P, Carey CD, Borgman CL, Jimenez JP, Meyerson M, Ying W, Barsoum J, Wong KK, Shapiro GI. Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res 2012; 18:4973-85. [PMID: 22806877 DOI: 10.1158/1078-0432.ccr-11-2967] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE We describe the anticancer activity of ganetespib, a novel non-geldanamycin heat shock protein 90 (HSP90) inhibitor, in non-small cell lung cancer (NSCLC) models. EXPERIMENTAL DESIGN The activity of ganetespib was compared with that of the geldanamycin 17-AAG in biochemical assays, cell lines, and xenografts, and evaluated in an ERBB2 YVMA-driven mouse lung adenocarcinoma model. RESULTS Ganetespib blocked the ability of HSP90 to bind to biotinylated geldanamycin and disrupted the association of HSP90 with its cochaperone, p23, more potently than 17-AAG. In genomically defined NSCLC cell lines, ganetespib caused depletion of receptor tyrosine kinases, extinguishing of downstream signaling, inhibition of proliferation and induction of apoptosis with IC(50) values ranging 2 to 30 nmol/L, substantially lower than those required for 17-AAG (20-3,500 nmol/L). Ganetespib was also approximately 20-fold more potent in isogenic Ba/F3 pro-B cells rendered IL-3 independent by expression of EGFR and ERBB2 mutants. In mice bearing NCI-H1975 (EGFR L858R/T790M) xenografts, ganetespib was rapidly eliminated from plasma and normal tissues but was maintained in tumor with t(1/2) 58.3 hours, supporting once-weekly dosing experiments, in which ganetespib produced greater tumor growth inhibition than 17-AAG. However, after a single dose, reexpression of mutant EGFR occurred by 72 hours, correlating with reversal of antiproliferative and proapoptotic effects. Consecutive day dosing resulted in xenograft regressions, accompanied by more sustained pharmacodynamic effects. Ganetespib also showed activity against mouse lung adenocarcinomas driven by oncogenic ERBB2 YVMA. CONCLUSIONS Ganetespib has greater potency than 17-AAG and potential efficacy against several NSCLC subsets, including those harboring EGFR or ERBB2 mutation.
Collapse
Affiliation(s)
- Takeshi Shimamura
- Department of Molecular Pharmacology and Therapeutics, Oncology Institute, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Immunohistochemical investigation of cell cycle and apoptosis regulators (survivin, β-catenin, p53, caspase 3) in canine appendicular osteosarcoma. BMC Vet Res 2012; 8:78. [PMID: 22686277 PMCID: PMC3514374 DOI: 10.1186/1746-6148-8-78] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 05/22/2012] [Indexed: 02/07/2023] Open
Abstract
Background Osteosarcoma (OSA) represents the most common canine primary bone tumour. Despite several pathways have been investigated so far, few molecules have been identified as prognostic tools or potential therapeutic targets, and there is still the need to find out molecular pathways with specific influence over OSA progression to facilitate earlier prognosis and treatment. Aims of the present study were to evaluate the immunohistochemical pattern and levels of expression of a panel of molecules (survivin, β-catenin, caspase 3 -inactive and active forms- and p53) involved in cell cycle and apoptosis regulation in canine OSA samples, known to be of interest in the study also of human OSA, and to detect specific relations among them and with histological tumour grade, disease free interval (DFI) and overall survival (OS). Results Nuclear β-catenin immunostaining was detected in normal osteoblasts adjacent to the tumour, and in 47% of the cases. Cytoplasmic and/or membranous immunostaining were also observed. Nuclear survivin and p53 positive cells were found in all cases. Moderate/high cytoplasmic β-catenin expression (≥10% positive cells) was significantly associated with the development of metastasis (P = 0.014); moderate/high nuclear p53 expression (≥10% positive cells) was significantly associated with moderate/high histological grade (P = 0.017) and shorter OS (P = 0.049). Moderate/high nuclear survivin expression (≥15% positive cells) showed a tendency toward a longer OS (P = 0,088). Conclusions The present results confirmed p53 as negative prognostic marker, while suggested survivin as a potential positive prognostic indicator, rather than indicative of a poor prognosis. The detection of nuclear β-catenin immunostaining in normal osteoblasts and the absent/low expression in most of the OSAs, suggested that this pathway could not play a major role in oncogenic transformation of canine osteoblasts. Further studies are needed to confirm these hypotheses.
Collapse
|