1
|
Khan MAAK, Peel L, Sedgwick AJ, Sun Y, Vivian JP, Corbett AJ, Dolcetti R, Mantamadiotis T, Barrow AD. Reduced HLA-I Transcript Levels and Increased Abundance of a CD56 dim NK Cell Signature Are Associated with Improved Survival in Lower-Grade Gliomas. Cancers (Basel) 2025; 17:1570. [PMID: 40361496 PMCID: PMC12071263 DOI: 10.3390/cancers17091570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Human leukocyte antigen class I (HLA-I) plays a pivotal role in shaping anti-tumour immunity by influencing the functionality of T cells and natural killer (NK) cells within the tumour microenvironment. METHODS Here, we explored the transcriptional landscape of HLA-I molecules across various solid cancer transcriptomes from The Cancer Genome Atlas (TCGA) database and assessed the impact of HLA-I expression on the clinical significance of tumour-infiltrating CD56dim and CD56bright NK cells. RESULTS Our analysis revealed that high HLA-I expression correlated with reduced patient survival in the TCGA lower-grade glioma (LGG) cohort, with this association varying by histopathological subtype. We then estimated the relative abundance of 23 immune and stromal cell signatures in LGG transcriptomes using a cellular deconvolution approach, which revealed that LGG patients with low HLA-I expression and high CD56dim NK cell abundance had better survival outcomes compared to those with high HLA-I expression and low CD56dim NK cell abundance. Furthermore, HLA-I expression was positively correlated with various inhibitory NK cell receptors and negatively correlated with activating NK cell receptors, particularly those within the killer cell lectin-like receptor (KLR) gene family. High co-expression of HLA-E and NKG2A predicted poor survival outcomes in LGG patients, whereas low HLA-E and high NKG2C/E abundance predicted more favourable outcomes, suggesting a potential modulatory role of HLA-I on the tumour-infiltrating cytotoxic CD56dim NK cell subset. CONCLUSIONS Overall, our study unveils a potential role for deregulated HLA-I expression in modulating the clinical impact of glioma-infiltrating CD56dim NK cells. These findings lay the foundation for future in-depth experimental studies to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Md Abdullah Al Kamran Khan
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lorenza Peel
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Alexander J. Sedgwick
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yuhan Sun
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Julian P. Vivian
- St. Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Catholic University, Melbourne, VIC 3065, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Riccardo Dolcetti
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Theo Mantamadiotis
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Alexander D. Barrow
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
2
|
Fisher JG, Bartlett LG, Kashyap T, Walker CJ, Khakoo SI, Blunt MD. Modulation of anti-tumour immunity by XPO1 inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002310. [PMID: 40291981 PMCID: PMC12022495 DOI: 10.37349/etat.2025.1002310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Exportin-1 (XPO1) is a nuclear export protein that, when overexpressed, can facilitate cancer cell proliferation and survival and is frequently overexpressed or mutated in cancer patients. As such, selective inhibitors of XPO1 (XPO1i) function have been developed to inhibit cancer cell proliferation and induce apoptosis. This review outlines the evidence for the immunomodulatory properties of XPO1 inhibition and discusses the potential for combining and sequencing XPO1i with immunotherapy to improve the treatment of patients with cancer. Selinexor is a first-in-class XPO1i that is FDA-approved for the treatment of patients with relapsed and refractory (RR) multiple myeloma and RR diffuse large B cell lymphoma. In addition to the cancer cell intrinsic pro-apoptotic activity, increasing evidence suggests that XPO1 inhibition has immunomodulatory properties. In this review, we describe how XPO1i can lead to a skewing of macrophage polarisation, inhibition of neutrophil extracellular traps, modulation of immune checkpoint expression, blockade of myeloid-derived suppressor cells (MDSCs) and sensitisation of cancer cells to T cell and NK (natural killer) cell immunosurveillance. As such, there is an opportunity for selinexor to enhance immunotherapy efficacy and thus a need for clinical trials assessing selinexor in combination with immunotherapies such as immune checkpoint inhibitors, direct targeting monoclonal antibodies, chimeric antigen receptor (CAR)-T cells and cereblon E3 ligase modulators (CELMoDs).
Collapse
Affiliation(s)
- Jack G. Fisher
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | - Laura G. Bartlett
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | | | | | - Salim I. Khakoo
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | - Matthew D. Blunt
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| |
Collapse
|
3
|
van Santvoort M, Lapuente-Santana Ó, Zopoglou M, Zackl C, Finotello F, van der Hoorn P, Eduati F. Mathematically mapping the network of cells in the tumor microenvironment. CELL REPORTS METHODS 2025; 5:100985. [PMID: 39954673 PMCID: PMC11955271 DOI: 10.1016/j.crmeth.2025.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/04/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Cell-cell interaction (CCI) networks are key to understanding disease progression and treatment response. However, existing methods for inferring these networks often aggregate data across patients or focus on cell-type level interactions, providing a generalized overview but overlooking patient heterogeneity and local network structures. To address this, we introduce "random cell-cell interaction generator" (RaCInG), a model based on random graphs to derive personalized networks leveraging prior knowledge on ligand-receptor interactions and bulk RNA sequencing data. We applied RaCInG to 8,683 cancer patients to extract 643 network features related to the tumor microenvironment and unveiled associations with immune response and subtypes, enabling prediction and explanation of immunotherapy responses. RaCInG demonstrated robustness and showed consistencies with state-of-the-art methods. Our findings highlight RaCInG's potential to elucidate patient-specific network dynamics, offering insights into cancer biology and treatment responses. RaCInG is poised to advance our understanding of complex CCI s in cancer and other biomedical domains.
Collapse
Affiliation(s)
- Mike van Santvoort
- Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands
| | - Óscar Lapuente-Santana
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands; Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Maria Zopoglou
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Constantin Zackl
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Francesca Finotello
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Pim van der Hoorn
- Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands.
| | - Federica Eduati
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands.
| |
Collapse
|
4
|
Lee SH, Pankaj A, Rickelt S, Ting D, Ferrone C, Patil DT, Yilmaz O, Berger D, Deshpande V, Yilmaz O. β2-microglobulin expression is associated with aggressive histology, activated tumor immune milieu, and outcome in colon carcinoma. Am J Clin Pathol 2024; 162:500-508. [PMID: 38869306 DOI: 10.1093/ajcp/aqae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024] Open
Abstract
OBJECTIVES We sought to assess the expression of human leukocyte antigen (HLA) proteins and β2-microglobulin (B2M) in tumor cells and the relationship with immune microenvironment and outcome in colorectal cancer (CRC). METHODS A total of 953 CRC cases were evaluated by immunohistochemistry for HLA class I, HLA class II, and B2M. The expression level of these biomarkers was correlated with clinicopathologic information, BRAF V600E and mismatch repair (MMR) proteins, and the quantitated expression levels of immune cells (CD8 and CD163) and immune regulatory proteins (FoxP3, programmed cell death 1 ligand 1 [PD-L1], and LAG3). RESULTS We found that B2M-low tumors were statistically correlated with aggressive histologic features, including higher stage, higher grade, extramural venous invasion, perineural invasion, and distant metastasis. Expression of B2M was positively correlated (R2 = 0.3) and significantly associated with MMR-deficient tumors (P < .001); B2M-low tumors were also associated with an "immune cold"' microenvironment, including a reduced number of immune cells (CD8 and CD163), reduced expression of immune regulatory proteins by immune cells (PD-L1, FoxP3, and LAG3), and reduced tumor cell expression of PD-L1. These B2M-low tumors correlated with lower disease-specific survival (P = .018), a finding that maintained significance only for the proficient MMR cohort (P = .037). CONCLUSIONS Our findings suggest that B2M expression may support predictive models for both outcome and checkpoint inhibitor therapy treatment response for colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Soo Hyun Lee
- Department of Pathology, Boston Medical Center, Boston, MA, US
| | - Amaya Pankaj
- Department of Pathology, Massachusetts General Hospital, Boston, MA, US
| | - Steffen Rickelt
- Department of Medicine, Massachusetts Institute of Technology, Cambridge, MA, US
| | - David Ting
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, US
- Department of Medicine, Harvard Medical School, Boston, US
| | - Cristina Ferrone
- Department of Surgery, Massachusetts General Hospital, Boston, MA, US
| | - Deepa T Patil
- Department of Medicine, Harvard Medical School, Boston, US
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, US
| | - Omer Yilmaz
- Department of Pathology, Massachusetts General Hospital, Boston, MA, US
- Department of Medicine, Harvard Medical School, Boston, US
| | - David Berger
- Division of General Surgery, Massachusetts General Hospital, Boston, MA, US
| | - Vikram Deshpande
- Department of Medicine, Harvard Medical School, Boston, US
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, US
| | - Osman Yilmaz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, US
- Pathology, Harvard Medical School, Boston, US
| |
Collapse
|
5
|
Kong WS, Li JJ, Deng YQ, Ju HQ, Xu RH. Immunomodulatory molecules in colorectal cancer liver metastasis. Cancer Lett 2024; 598:217113. [PMID: 39009068 DOI: 10.1016/j.canlet.2024.217113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most common cancer and the second leading cause of cancer-related deaths. According to clinical diagnosis and treatment, liver metastasis occurs in approximately 50 % of CRC patients, indicating a poor prognosis. The unique immune tolerance of the liver fosters an immunosuppressive tumor microenvironment (TME). In the context of tumors, numerous membrane and secreted proteins have been linked to tumor immune evasion as immunomodulatory molecules, but much remains unknown about how these proteins contribute to immune evasion in colorectal cancer liver metastasis (CRLM). This article reviews recently discovered membrane and secreted proteins with roles as both immunostimulatory and immunosuppressive molecules within the TME that influence immune evasion in CRC primary and metastatic lesions, particularly their mechanisms in promoting CRLM. This article also addresses screening strategies for identifying proteins involved in immune evasion in CRLM and provides insights into potential protein targets for treating CRLM.
Collapse
Affiliation(s)
- Wei-Shuai Kong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Jia-Jun Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yu-Qing Deng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Huai-Qiang Ju
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Hwang JK, Marston DJ, Wrapp D, Li D, Tuyishime M, Brackenridge S, Rhodes B, Quastel M, Kapingidza AB, Gater J, Harner A, Wang Y, Rountree W, Ferrari G, Borrow P, McMichael AJ, Gillespie GM, Haynes BF, Azoitei ML. A high affinity monoclonal antibody against HLA-E-VL9 enhances natural killer cell anti-tumor killing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602401. [PMID: 39026709 PMCID: PMC11257447 DOI: 10.1101/2024.07.08.602401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Natural killer (NK) cells kill target cells following triggering via germline-encoded receptors interacting with target cell-expressed ligands (direct killing), or via antibody-dependent cellular cytotoxicity (ADCC) mediated by FcγRIIIa. NK cytotoxicity is modulated by signaling through activating or inhibitory receptors. A major checkpoint is mediated by the NK inhibitory receptor NKG2A/CD94 and its target cell ligand, HLA-E, which is complexed with HLA signal sequence-derived peptides termed VL9 (HLA-E-VL9). We have previously reported the isolation of a murine HLA-E-VL9-specific IgM antibody 3H4 and the generation of a higher affinity IgG version (3H4v3). Here we have used phage display library selection to generate a high affinity version of 3H4v3, called 3H4v31, with an ∼700 fold increase in binding affinity. We show using an HLA-E-VL9+ K562 tumor model that, in vitro, the addition of 3H4v31 to target cells increased direct killing of targets by CD16-negative NK cell line NK-92 and also mediated ADCC by NK-92 cells transfected with CD16. Moreover, ADCC by primary NK cells was also enhanced in vitro by 3H4v31. 3H4v31 was also able to bind and enhance target cell lysis of endogenously expressed HLA-E-VL9 on human cervical cancer and human pancreatic cancer cell lines. In vivo, 3H4v31 slowed the growth rate of HLA-E-VL9+ K562 tumors implanted into NOD/SCID/IL2rγ null mice compared to isotype control when injected with NK-92 cells intratumorally. Together, these data demonstrate that mAb 3H4v31 can enhance NK cell killing of HLA-E-VL9-expressing tumor cells in vitro by both direct killing activity and by ADCC. Moreover, mAb 3H4v31 can enhance NK cell control of tumor growth in vivo. We thus identify HLA-E-VL9 monoclonal antibodies as a promising novel anti-tumor immunotherapy. One Sentence Summary A high affinity monoclonal antibody against HLA-E-VL9 enhances natural killer cell anti-tumor killing by checkpoint inhibition and antibody dependent cellular cytotoxicity.
Collapse
|
7
|
Huang F, Wang Y, Shao Y, Zhang R, Li M, Liu L, Zhao Q. M2 Macrophage Classification of Colorectal Cancer Reveals Intrinsic Connections with Metabolism Reprogramming and Clinical Characteristics. Pharmgenomics Pers Med 2024; 17:383-399. [PMID: 39011168 PMCID: PMC11249104 DOI: 10.2147/pgpm.s458798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Immune cell interactions and metabolic changes are crucial in determining the tumor microenvironment and affecting various clinical outcomes. However, the clinical significance of metabolism evolution of immune cell evolution in colorectal cancer (CRC) remains unexplored. Methods Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing data were acquired from TCGA and GEO datasets. For the analysis of macrophage differentiation trajectories, we employed the R packages Seurat and Monocle. Consensus clustering was further applied to identify the molecular classification. Immunohistochemical results from AOM and AOM/DSS models were used to validate macrophage expression. Subsequently, GSEA, ESTIMATE scores, prognosis, clinical characteristics, mutational burden, immune cell infiltration, and the variance in gene expression among different clusters were compared. We constructed a prognostic model and nomograms based on metabolic gene signatures identified through the MEGENA framework. Results We found two heterogeneous groups of M2 macrophages with various clinical outcomes through the evolutionary process. The prognosis of Cluster 2 was poorer. Further investigation showed that Cluster 2 constituted a metabolically active group while Cluster 1 was comparatively metabolically inert. Metabolic variations in M2 macrophages during tumor development are related to tumor prognosis. Additionally, Cluster 2 showed the most pronounced genomic instability and had highly elevated metabolic pathways, notably those associated with the ECM. We identified eight metabolic genes (PRELP, NOTCH3, CNOT6, ASRGL1, SRSF1, PSMD4, RPL31, and CNOT7) to build a predictive model validated in CRC datasets. Then, a nomogram based on the M2 risk score improved predictive performance. Furthermore, our study demonstrated that immune checkpoint inhibitor therapy may benefit patients with low-risk. Discussion Our research reveals underlying relationships between metabolic phenotypes and immunological profiles and suggests a unique M2 classification technique for CRC. The identified gene signatures may be key factors linking immunity and tumor metabolism, warranting further investigations.
Collapse
Affiliation(s)
- Fengxing Huang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Youwei Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Yu Shao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Runan Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Mengting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| |
Collapse
|
8
|
Rodriguez-Garcia GJ, Graves DK, Mirza MB, Idrees K, Kim YJ, Korrer MJ, Rathmell JC. Cancer Cell Small Molecule Secretome Induces the Immune Checkpoint NKG2A and Dysfunction of Human CD8+ T Cells. Immunohorizons 2024; 8:464-477. [PMID: 38922288 PMCID: PMC11220743 DOI: 10.4049/immunohorizons.2400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
PD-1 blockade has been approved for head and neck squamous cell carcinoma (HNSCC) patients. However, many HNSCC patients do not respond to this treatment, and other tumor microenvironmental factors may promote resistance to PD-1 blockade. We previously identified increased expression of the inhibitory receptor NKG2A on CD8+ T cells in HNSCC tumors compared with T cells in matching PBMC samples. Mechanisms that promote NKG2A expression and the role of NKG2A on human T cells in the tumor microenvironment, however, are uncertain. In this study, we show that tumor-conditioned media (TCM) of HNSCC cancer cell lines or ascites fluid from colorectal carcinoma patients is sufficient to induce the expression of NKG2A and other inhibitory receptors on activated CD8+ T cells isolated from PBMCs of healthy donors. Boiling or small molecular mass cutoff filtering did not eliminate the effect of TCM, suggesting that a small molecule promotes NKG2A. T cell activation in TCM decreased the basal and maximal mitochondrial respiration to metabolically restrain CD8+ T cells. Functionally, T cell activation in TCM reduced CD8+ T cell cytotoxicity as shown by lower production of cytokines, granzyme B, and perforin. Furthermore, TCM prevented CD8+ T cells from killing cancer cells in response to an anti-CD19/anti-CD3 bispecific T cell engager. Thus, a small secreted molecule from HNSCC cells can induce NKG2A expression and promote T cell dysfunction. Our findings may lead to targets for novel cancer therapies or biomarkers for NKG2A blockade response and provide a model to study T cell dysfunction and impaired metabolism.
Collapse
Affiliation(s)
| | - Diana K. Graves
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Muhammad B. Mirza
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Kamran Idrees
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Young J. Kim
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
- Regeneron Pharmaceutical, Tarrytown, NY
| | - Michael J. Korrer
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
9
|
Yang K, Lu R, Mei J, Cao K, Zeng T, Hua Y, Huang X, Li W, Yin Y. The war between the immune system and the tumor - using immune biomarkers as tracers. Biomark Res 2024; 12:51. [PMID: 38816871 PMCID: PMC11137916 DOI: 10.1186/s40364-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Nowadays, immunotherapy is one of the most promising anti-tumor therapeutic strategy. Specifically, immune-related targets can be used to predict the efficacy and side effects of immunotherapy and monitor the tumor immune response. In the past few decades, increasing numbers of novel immune biomarkers have been found to participate in certain links of the tumor immunity to contribute to the formation of immunosuppression and have entered clinical trials. Here, we systematically reviewed the oncogenesis and progression of cancer in the view of anti-tumor immunity, particularly in terms of tumor antigen expression (related to tumor immunogenicity) and tumor innate immunity to complement the cancer-immune cycle. From the perspective of integrated management of chronic cancer, we also appraised emerging factors affecting tumor immunity (including metabolic, microbial, and exercise-related markers). We finally summarized the clinical studies and applications based on immune biomarkers. Overall, immune biomarkers participate in promoting the development of more precise and individualized immunotherapy by predicting, monitoring, and regulating tumor immune response. Therefore, targeting immune biomarkers may lead to the development of innovative clinical applications.
Collapse
Affiliation(s)
- Kai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Rongrong Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Kai Cao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yijia Hua
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| |
Collapse
|
10
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
11
|
Cao K, Wang X, Wang H, Xu C, Ma A, Zhang Y, Zheng M, Xu Y, Tang L. Phenotypic and functional exhaustion of circulating CD3 + CD56 + NKT-like cells in colorectal cancer patients. FASEB J 2024; 38:e23525. [PMID: 38430373 DOI: 10.1096/fj.202301743r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
CD3+ CD56+ NKT-like cells are crucial to antitumor immune surveillance and defense. However, research on circulating NKT-like cells in colorectal cancer (CRC) patients is limited. This investigation selected 113 patients diagnosed with primary CRC for preoperative peripheral blood collection. The blood from 106 healthy donors at the physical examination center was acquired as a healthy control (HC). The distribution of lymphocyte subsets, immunophenotype, and functional characteristics of NKT-like cells was comprehensively evaluated. Compared to HC, primary CRC patients had considerably fewer peripheral NKT-like cells in frequency and absolute quantity, and the fraction of NKT-like cells was further reduced in patients with vascular invasion compared to those without. The NKT-like cells in CRC patients had a reduced fraction of the activating receptor CD16, up-regulated expression of inhibitory receptors LAG-3 and NKG2A, impaired production of TNF-α and IFN-γ, as well as degranulation capacity. Moreover, the increased frequency of NKG2A+ NKT-like cells and the decreased expression of activation-related molecules were significantly correlated with tumor progression. In detail, NKG2A+ NKT-like cells indicated increased PD-1 and Tim-3 and reduced TNF-α than NKG2A- subgroup. Blocking NKG2A in vitro restored cytokine secretion capacity in NKT-like cells from CRC patients. Altogether, this research revealed that circulating NKT-like cells in CRC patients exhibited suppressive phenotype and functional impairment, which was more pronounced in NKG2A+ NKT-like cells. These findings suggest that NKG2A blockade may restore anti-tumor effector function in NKT-like cells, which provides a potential target for immunotherapy in CRC patients.
Collapse
Affiliation(s)
- Kangli Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaowei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui Wang
- Centre of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Cairui Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Along Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuntao Zhang
- The First Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ling Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
12
|
Mac Donald A, Guipouy D, Lemieux W, Harvey M, Bordeleau LJ, Guay D, Roméro H, Li Y, Dion R, Béland K, Haddad E. KLRC1 knockout overcomes HLA-E-mediated inhibition and improves NK cell antitumor activity against solid tumors. Front Immunol 2023; 14:1231916. [PMID: 37675109 PMCID: PMC10478211 DOI: 10.3389/fimmu.2023.1231916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Natural Killer (NK) cells hold the potential to shift cell therapy from a complex autologous option to a universal off-the-shelf one. Although NK cells have demonstrated efficacy and safety in the treatment of leukemia, the limited efficacy of NK cell-based immunotherapies against solid tumors still represents a major hurdle. In the immunosuppressive tumor microenvironment (TME), inhibitory interactions between cancer and immune cells impair antitumoral immunity. KLRC1 gene encodes the NK cell inhibitory receptor NKG2A, which is a potent NK cell immune checkpoint. NKG2A specifically binds HLA-E, a non-classical HLA class I molecule frequently overexpressed in tumors, leading to the transmission of inhibitory signals that strongly impair NK cell function. Methods To restore NK cell cytotoxicity against HLA-E+ tumors, we have targeted the NKG2A/HLA-E immune checkpoint by using a CRISPR-mediated KLRC1 gene editing. Results KLRC1 knockout resulted in a reduction of 81% of NKG2A+ cell frequency in ex vivo expanded human NK cells post-cell sorting. In vitro, the overexpression of HLA-E by tumor cells significantly inhibited wild-type (WT) NK cell cytotoxicity with p-values ranging from 0.0071 to 0.0473 depending on tumor cell lines. In contrast, KLRC1 KO NK cells exhibited significantly higher cytotoxicity when compared to WT NK cells against four different HLA-E+ solid tumor cell lines, with p-values ranging from<0.0001 to 0.0154. Interestingly, a proportion of 43.5% to 60.2% of NKG2A- NK cells within the edited NK cell population was sufficient to reverse at its maximum the HLA-E-mediated inhibition of NK cell cytotoxicity. The expression of the activating receptor NKG2C was increased in KLRC1 KO NK cells and contributed to the improved NK cell cytotoxicity against HLA-E+ tumors. In vivo, the adoptive transfer of human KLRC1 KO NK cells significantly delayed tumor progression and increased survival in a xenogeneic mouse model of HLA-E+ metastatic breast cancer, as compared to WT NK cells (p = 0.0015). Conclusions Our results demonstrate that KLRC1 knockout is an effective strategy to improve NK cell antitumor activity against HLA-E+ tumors and could be applied in the development of NK cell therapy for solid tumors.
Collapse
Affiliation(s)
- Alice Mac Donald
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
| | - Delphine Guipouy
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
| | - William Lemieux
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
| | | | | | | | - Hugo Roméro
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Yuanyi Li
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Renaud Dion
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Kathie Béland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Elie Haddad
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
13
|
Chen X, Zhou S, Wang Y, Zheng L, Guan S, Wang D, Wang L, Guan X. Nanopore Single-molecule Analysis of Biomarkers: Providing Possible Clues to Disease Diagnosis. Trends Analyt Chem 2023; 162:117060. [PMID: 38106545 PMCID: PMC10722900 DOI: 10.1016/j.trac.2023.117060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic Covid-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.
Collapse
Affiliation(s)
- Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Ling Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sarah Guan
- Hinsdale Central High School, Hinsdale, IL 60521, USA
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
14
|
NKG2A Immune Checkpoint in Vδ2 T Cells: Emerging Application in Cancer Immunotherapy. Cancers (Basel) 2023; 15:cancers15041264. [PMID: 36831606 PMCID: PMC9954046 DOI: 10.3390/cancers15041264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Immune regulation has revolutionized cancer treatment with the introduction of T-cell-targeted immune checkpoint inhibitors (ICIs). This successful immunotherapy has led to a more complete view of cancer that now considers not only the cancer cells to be targeted and destroyed but also the immune environment of the cancer cells. Current challenges associated with the enhancement of ICI effects are increasing the fraction of responding patients through personalized combinations of multiple ICIs and overcoming acquired resistance. This requires a complete overview of the anti-tumor immune response, which depends on a complex interplay between innate and adaptive immune cells with the tumor microenvironment. The NKG2A was revealed to be a key immune checkpoint for both Natural Killer (NK) cells and T cells. Monalizumab, a humanized anti-NKG2A antibody, enhances NK cell activity against various tumor cells and rescues CD8 αβ T cell function in combination with PD-1/PD-L1 blockade. In this review, we discuss the potential for targeting NKG2A expressed on tumor-sensing human γδ T cells, mostly on the specific Vδ2 T cell subset, in order to emphasize its importance and potential in the development of new ICI-based therapeutic approaches.
Collapse
|
15
|
A straightforward method to quantify circulating mRNAs as biomarkers of colorectal cancer. Sci Rep 2023; 13:2739. [PMID: 36792801 PMCID: PMC9932139 DOI: 10.1038/s41598-023-29948-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Optimizing the biomarker combination to be analyzed in liquid biopsies should improve personalized medicine. We developed a method to purify circulating cell-free mRNAs from plasma samples and to quantify them by RT-qPCR. We selected three candidate colorectal cancer biomarkers (B2M, TIMP-1, and CLU). Their mRNA levels were significantly higher in plasma of patients with metastatic colorectal cancer patients (mCRC) (n = 107) than in healthy individuals (HI) (n = 53). To increase the discriminating performance of our method, we analyzed the sum of the three mRNA levels (BTC index). The area under the ROC curve (AUC) to estimate the BTC index capacity to discriminate between mCRC and HI plasma was 0.903. We also determined the optimal BTC index cut-off to distinguish between plasma samples, with 82% of sensitivity and 93% of specificity. By using mRNA as a novel liquid biopsy analytical parameter, our method has the potential to facilitate rapid screening of CRCm.
Collapse
|
16
|
Deng X, Terunuma H. Harnessing NK Cells to Control Metastasis. Vaccines (Basel) 2022; 10:vaccines10122018. [PMID: 36560427 PMCID: PMC9781233 DOI: 10.3390/vaccines10122018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, tumor immunotherapy has produced remarkable results in tumor treatment. Nevertheless, its effects are severely limited in patients with low or absent pre-existing T cell immunity. Accordingly, metastasis remains the major cause of tumor-associated death. On the other hand, natural killer (NK) cells have the unique ability to recognize and rapidly act against tumor cells and surveil tumor cell dissemination. The role of NK cells in metastasis prevention is undisputable as an increase in the number of these cells mostly leads to a favorable prognosis. Hence, it is reasonable to consider that successful metastasis involves evasion of NK-cell-mediated immunosurveillance. Therefore, harnessing NK cells to control metastasis is promising. Circulating tumor cells (CTCs) are the seeds for distant metastasis, and the number of CTCs detected in the blood of patients with tumor is associated with a worse prognosis, whereas NK cells can eliminate highly motile CTCs especially in the blood. Here, we review the role of NK cells during metastasis, particularly the specific interactions of NK cells with CTCs, which may provide essential clues on how to harness the power of NK cells against tumor metastasis. As a result, a new way to prevent or treat metastatic tumor may be developed.
Collapse
Affiliation(s)
- Xuewen Deng
- Biotherapy Institute of Japan Inc., 2-4-8 Edagawa, Koto-ku, Tokyo 135-0051, Japan
- Correspondence: ; Tel.: +81-3-5632-6080; Fax: +81-3-5632-6083
| | - Hiroshi Terunuma
- Biotherapy Institute of Japan Inc., 2-4-8 Edagawa, Koto-ku, Tokyo 135-0051, Japan
- N2 Clinic Yotsuya, 5F 2-6 Samon-cho, Shinjuku-ku, Tokyo 160-0017, Japan
| |
Collapse
|
17
|
Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells 2022; 11:cells11223572. [PMID: 36429001 PMCID: PMC9688761 DOI: 10.3390/cells11223572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.
Collapse
|
18
|
β 2 -Microglobulin Participates in the Development of Vestibular Schwannoma by Regulating Nuclear Factor-κB. Otol Neurotol 2022; 43:e1049-e1055. [PMID: 36006779 DOI: 10.1097/mao.0000000000003647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Vestibular schwannoma (VS), the most common intercranial schwannoma, originates from the sheath of the vestibular nerve. The growth rate of VS varies greatly, with the tumor enlarging gradually, which can compress the peripheral nerve tissue and reveal corresponding symptoms. This study was aimed to elucidate the growth mechanism of VS by analyzing cellular changes at protein, messenger ribonucleic acid (mRNA), and other molecular levels. METHODS We determined mRNA and protein levels of β 2 -microglobulin (β 2 -M) and nuclear factor κB (NF-κB) in tumors of different sizes using the real-time polymerase chain reaction and Western blotting, respectively. The relationship between these factors was verified in VS primary cells cultured in vitro, and the potential role of β 2 -M and NF-κB in VS growth was elucidated. RESULTS In the secretions of freshly isolated tumor tissue cultured for 72 h, the concentration of β 2 -M was positively correlated with the tumor diameter. Furthermore, tumors with larger diameter showed higher expressions of β 2 -M and NF-κB at protein and mRNA level. β 2 -M treatment resulted in elevated protein expression of NF-κB and also its phosphorylated form in vitro. CONCLUSION β 2 -M may participate in VS growth by regulating NF-κB and act as a key regulatory molecule in VS tumor growth.
Collapse
|
19
|
Ravindranath MH, El Hilali F, Amato-Menker CJ, El Hilali H, Selvan SR, Filippone EJ. Role of HLA-I Structural Variants and the Polyreactive Antibodies They Generate in Immune Homeostasis. Antibodies (Basel) 2022; 11:antib11030058. [PMID: 36134954 PMCID: PMC9495617 DOI: 10.3390/antib11030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Cell-surface HLA-I molecules consisting of β2-microglobulin (β2m) associated heavy chains (HCs), referred to as Face-1, primarily present peptides to CD8+ T-cells. HCs consist of three α-domains, with selected amino acid sequences shared by all alleles of all six isoforms. The cell-surface HLA undergoes changes upon activation by pathological conditions with the expression of β2m-free HCs (Face-2) resulting in exposure of β2m-masked sequences shared by almost all alleles and the generation of HLA-polyreactive antibodies (Abs) against them. Face-2 may homodimerize or heterodimerize with the same (Face-3) or different alleles (Face-4) preventing exposure of shared epitopes. Non-allo immunized males naturally carry HLA-polyreactive Abs. The therapeutic intravenous immunoglobulin (IVIg) purified from plasma of thousands of donors contains HLA-polyreactive Abs, admixed with non-HLA Abs. Purified HLA-polyreactive monoclonal Abs (TFL-006/007) generated in mice after immunizing with Face-2 are documented to be immunoregulatory by suppressing or activating different human lymphocytes, much better than IVIg. Our objectives are (a) to elucidate the complexity of the HLA-I structural variants, and their Abs that bind to both shared and uncommon epitopes on different variants, and (b) to examine the roles of those Abs against HLA-variants in maintaining immune homeostasis. These may enable the development of personalized therapeutic strategies for various pathological conditions.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Emeritus Research Scientist, Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
- Correspondence:
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibn Zohr University, Agadir 80000, Morocco
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Hajar El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibn Zohr University, Agadir 80000, Morocco
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA
| |
Collapse
|
20
|
Defining the Immune Checkpoint Landscape in Human Colorectal Cancer Highlights the Relevance of the TIGIT/CD155 Axis for Optimizing Immunotherapy. Cancers (Basel) 2022; 14:cancers14174261. [PMID: 36077799 PMCID: PMC9454990 DOI: 10.3390/cancers14174261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
While immune checkpoint (IC) therapies, particularly those targeting the PD-1/PD-L1 axis, have revolutionized the treatment of melanoma and several other cancers, their effect remains very limited in colorectal cancer (CRC). To define a comprehensive landscape of ICs in the human CRC tumor microenvironment (TME), we evaluated, using multiparametric flow cytometry, their ex vivo expression via tumor-infiltrating lymphocytes (TILs) (n = 40 CRCs) as well as that of their respective ligands on tumor and myeloid cells (n = 29). Supervised flow cytometry analyses showed that (i) most CD3+ TILs expressed PD-1 and TIGIT and, to a lesser extent, Tim-3, Lag3 and NKG2A, and (ii) EpCAM+ tumor cells and CD11b+ myeloid cells differed in their IC ligand expression profile, with a strikingly high expression of CD155 by tumor cells. An in situ analysis of IC and their ligands using immunohistochemistry on paraffin sections of CRC confirmed the overexpression of TIGIT and its ligand, CD155, in the TME. Most interestingly, an unsupervised clustering analysis of IC co-expression on CD4+ and CD8+ TILs identified two tumor subgroups, named IChigh and IClow. Altogether, our findings highlight the TIGIT/CD155 axis as a potential target that could be used in combination IC therapy in CRC.
Collapse
|
21
|
Haanen JBAG, Peters S. Minus Times Minus Equals Plus. J Clin Oncol 2022; 40:3453-3455. [PMID: 35981269 DOI: 10.1200/jco.22.01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- John B A G Haanen
- Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Solange Peters
- Chair Medical Oncology, Oncology Department-CHUV, Lausanne, Switzerland
| |
Collapse
|
22
|
Wang X, Xiong H, Ning Z. Implications of NKG2A in immunity and immune-mediated diseases. Front Immunol 2022; 13:960852. [PMID: 36032104 PMCID: PMC9399941 DOI: 10.3389/fimmu.2022.960852] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
In recent studies, NKG2A is revealed to be a key immune checkpoint for both natural killer (NK) cells and CD8+ T cells. It form heterodimer receptors with CD94, and targets the peptide-presenting human leukocyte antigen-E (HLA-E) molecules. Upon crosslinking, NKG2A/CD94 delivers inhibitory signals for NK cells and CD8+ T cells, while blocking NKG2A can effectively unleash functions of these cytotoxic lymphocytes. The interaction between NKG2A and HLA-E contributes to tumor immune escape, and NKG2A-mediated mechanisms are currently being exploited to develop potential antitumor therapeutic strategies. In addition, growing evidence shows that NKG2A also plays important roles in other immune-related diseases including viral infections, autoimmune diseases, inflammatory diseases, parasite infections and transplant rejection. Therefore, the current work focuses on describing the effect of NKG2A on immune regulation and exploring its potential role in immune-mediated disorders.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| |
Collapse
|
23
|
Morinaga T, Iwatsuki M, Yamashita K, Matsumoto C, Harada K, Kurashige J, Iwagami S, Baba Y, Yoshida N, Komohara Y, Baba H. Evaluation of HLA-E Expression Combined with Natural Killer Cell Status as a Prognostic Factor for Advanced Gastric Cancer. Ann Surg Oncol 2022; 29:4951-4960. [PMID: 35412205 DOI: 10.1245/s10434-022-11665-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The NKG2A/HLA-E pathway functions as an immune checkpoint with potential for inhibition using therapeutic antibodies. Through this pathway, immune cells lose activity, which allows cancers to progress. We aimed to determine whether HLA-E expression combined with NK cell status serves as a prognostic biomarker for gastric cancer (GC). METHODS We enrolled patients (n = 232) with advanced GC who underwent curative gastrectomy. Immunohistochemical analyses of global HLA-E expression, and the expression of CD56 and CD3 to identify NK cells were performed. Survival analysis was performed to evaluate the significance of HLA-E expression and NK status. RESULTS Patients with HLA-E-positive was 104 (41.3%) and had significantly worse prognosis of relapse-free survival (RFS) compared with those with HLA-E-negative. Moreover, patients with NK Low status had worse prognoses for RFS compared with those with NK High status. Statistical analysis of RFS demonstrated that HLA-E expression was a significant independent factor for poor prognosis (HR 1.57, 95% CI 1.04-2.36, P = 0.031). Furthermore, HLA-E-positive patients with low NK low status experienced the shortest RFS, particularly those in the upper GC group. CONCLUSIONS HLA-E served as a prognostic factor after curative resection of GC, and HLA-E expression combined with NK status served as a sensitive prognostic biomarker for advanced GC.
Collapse
Affiliation(s)
- Takeshi Morinaga
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kohei Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Chihiro Matsumoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuto Harada
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
24
|
Della Chiesa M, Setti C, Giordano C, Obino V, Greppi M, Pesce S, Marcenaro E, Rutigliani M, Provinciali N, Paleari L, DeCensi A, Sivori S, Carlomagno S. NK Cell-Based Immunotherapy in Colorectal Cancer. Vaccines (Basel) 2022; 10:1033. [PMID: 35891197 PMCID: PMC9323201 DOI: 10.3390/vaccines10071033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Human Natural Killer (NK) cells are all round players in immunity thanks to their powerful and immediate response against transformed cells and the ability to modulate the subsequent adaptive immune response. The potential of immunotherapies based on NK cell involvement has been initially revealed in the hematological setting but has inspired the design of different immune tools to also be applied against solid tumors, including colorectal cancer (CRC). Indeed, despite cancer prevention screening plans, surgery, and chemotherapy strategies, CRC is one of the most widespread cancers and with the highest mortality rate. Therefore, further efficient and complementary immune-based therapies are in urgent need. In this review, we gathered the most recent advances in NK cell-based immunotherapies aimed at fighting CRC, in particular, the use of monoclonal antibodies targeting tumor-associated antigens (TAAs), immune checkpoint blockade, and adoptive NK cell therapy, including NK cells modified with chimeric antigen receptor (CAR-NK).
Collapse
Affiliation(s)
- Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Giordano
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | | | | | - Laura Paleari
- A.Li.Sa., Liguria Region Health Authority, 16121 Genoa, Italy;
| | - Andrea DeCensi
- Medical Oncology, Galliera Hospital, 16128 Genoa, Italy; (N.P.); (A.D.)
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Simona Carlomagno
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| |
Collapse
|
25
|
Mylod E, Lysaght J, Conroy MJ. Natural killer cell therapy: A new frontier for obesity-associated cancer. Cancer Lett 2022; 535:215620. [PMID: 35283210 DOI: 10.1016/j.canlet.2022.215620] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 02/09/2023]
Abstract
Natural killer (NK) cell infiltration of solid tumours is associated with better outcomes, placing augmentation of NK cell abundance in tumours as an attractive immunotherapeutic approach. The unique ability of NK cells to target cancer cells without antigen specificity increases their versatility and applicability as an immunotherapeutic tool. However, successful utilisation of NK cell-based therapies in solid tumours is still at an early stage. Obesity has become a global health epidemic, and the prevalence of obesity-associated cancers has significantly increased. Obesity-associated malignancies provide a unique challenge for the successful application of cell-based immunotherapies including NK cell-based therapies because significant numbers of NK and T cells are recruited to the visceral adipose tissue at the expense of successful tumour infiltration and eradication. As such, immunotherapy efficacy has been disappointing for obesity-associated malignancies such as oesophageal and gastric adenocarcinoma. Therefore, immunotherapies for obesity-associated cancers warrant our further attention. Indeed, it is becoming ever more obvious that more innovative approaches are needed to re-invigorate anti-tumour immunity and overcome immune exclusion in such tumours. In this review, we briefly summarise the dysfunctionality of NK cells in obesity-associated cancer. We outline the NK cell-based immunotherapeutic approaches which hold promise as effective treatments in this disease space, including CAR-NK cells. Furthermore, we suggest future avenues which possess the potential to transform immunotherapy and specifically NK cell therapy efficacy for obesity-associated cancer.
Collapse
Affiliation(s)
- Eimear Mylod
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, 8, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, 8, Ireland
| | - Melissa J Conroy
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, 8, Ireland; Cancer Immunology Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, 2, Ireland.
| |
Collapse
|
26
|
Ducoin K, Oger R, Bilonda Mutala L, Deleine C, Jouand N, Desfrançois J, Podevin J, Duchalais E, Cruard J, Benlalam H, Labarrière N, Bossard C, Jarry A, Gervois-Segain N. Targeting NKG2A to boost anti-tumor CD8 T-cell responses in human colorectal cancer. Oncoimmunology 2022; 11:2046931. [PMID: 35295095 PMCID: PMC8920231 DOI: 10.1080/2162402x.2022.2046931] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recently, the inhibitory CD94/NKG2A receptor has joined the group of immune checkpoints (ICs) and its expression has been documented in NK cells and CD8+ T lymphocytes in several cancers and some infectious diseases. In colorectal cancer (CRC), we previously reported that NKG2A+ tumor-infiltrating lymphocytes (TILs) are predominantly CD8+ αβ T cells and that CD94 overexpression and/or its ligand HLA-E were associated with a poor prognosis. This study aimed to thoroughly characterize the NKG2A+ CD8+ TIL subpopulation and document the impact of NKG2A on anti-tumor responses in CRC. Our findings highlight new features of this subpopulation: (i) enrichment in colorectal tumors compared to paired normal colonic mucosa, (ii) their character as tissue-resident T cells and their majority terminal exhaustion status, (iii) co-expression of other ICs delineating two subgroups differing mainly in the level of NKG2A expression and the presence of PD-1, (iv) high functional avidity despite reduced proliferative capacity and finally (v) inhibition of anti-tumor reactivity that is overcome by blocking NKG2A. From a clinical point of view, these results open a promising alternative for immunotherapies based on NKG2A blockade in CRC, which could be performed alone or in combination with other IC inhibitors, adoptive cell transfer or therapeutic vaccination.
Collapse
Affiliation(s)
- Kathleen Ducoin
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Romain Oger
- LabEx IGO, Université de Nantes, Nantes, France
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France
| | - Linda Bilonda Mutala
- LabEx IGO, Université de Nantes, Nantes, France
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France
- Institut Roche, Boulogne-Billancourt, France
| | - Cécile Deleine
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Nicolas Jouand
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France
| | - Juliette Desfrançois
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France
| | - Juliette Podevin
- CHU Nantes, Department of Digestive Surgery and IMAD, Nantes, France
| | - Emilie Duchalais
- CHU Nantes, Department of Digestive Surgery and IMAD, Nantes, France
| | - Jonathan Cruard
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France
| | - Houssem Benlalam
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Nathalie Labarrière
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Céline Bossard
- LabEx IGO, Université de Nantes, Nantes, France
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France
- CHU Nantes, Department of Digestive Surgery and IMAD, Nantes, France
| | - Anne Jarry
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Nadine Gervois-Segain
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| |
Collapse
|
27
|
Hair J, Robinson MJ, Wilkinson RW, Dovedi SJ. Deep phenotyping of surface stimulatory and inhibitory co-receptors on cancer-resident T and NK cells reveals cell subsets within the tumor-reactive CTL population that are uniquely defined by NKG2A expression. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:95-106. [PMID: 35058180 DOI: 10.1016/j.slasd.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of Immuno-Oncology (IO) is evolving to utilise novel antibody backbones that can co-target multiple cell-surface stimulatory and inhibitory co-receptors (SICR). This approach necessitates a better understanding of SICR co-expression at the single-cell level on IO-relevant tumor-infiltrating leukocyte (TIL) cell types such as T and natural killer (NK) cells. Using high-dimensional flow cytometry we established a comprehensive SICR profile for tumor-resident T and NK cells across a range of human solid tumors where there is a clear need for improved immunotherapeutic intervention. Leveraging the power of our large flow panel, we performed deep-phenotyping of the critical CD8+CD39+ Cytotoxic T Lymphocyte (CTL) population that is enriched for tumor-reactive cytotoxic cells, revealing subsets that are differentiated by their SICR profile, including three that are uniquely defined by NKG2A expression. This study establishes a comprehensive SICR phenotype for human TIL T and NK cells, providing insights to guide the design and application of the next generation of IO molecules.
Collapse
Affiliation(s)
- James Hair
- Early Oncology R&D, AstraZeneca, Granta Park, Cambridge, UK.
| | | | | | - Simon J Dovedi
- Early Oncology R&D, AstraZeneca, Granta Park, Cambridge, UK
| |
Collapse
|
28
|
Ravindranath MH, Ravindranath NM, Selvan SR, Filippone EJ, Amato-Menker CJ, El Hilali F. Four Faces of Cell-Surface HLA Class-I: Their Antigenic and Immunogenic Divergence Generating Novel Targets for Vaccines. Vaccines (Basel) 2022; 10:vaccines10020339. [PMID: 35214796 PMCID: PMC8878457 DOI: 10.3390/vaccines10020339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Leukocyte cell-surface HLA-I molecules, involved in antigen presentation of peptides to CD8+ T-cells, consist of a heavy chain (HC) non-covalently linked to β2-microglobulin (β2m) (Face-1). The HC amino acid composition varies across all six isoforms of HLA-I, while that of β2m remains the same. Each HLA-allele differs in one or more amino acid sequences on the HC α1 and α2 helices, while several sequences among the three helices are conserved. HCs without β2m (Face-2) are also observed on human cells activated by malignancy, viral transformation, and cytokine or chemokine-mediated inflammation. In the absence of β2m, the monomeric Face-2 exposes immunogenic cryptic sequences on these cells as confirmed by HLA-I monoclonal antibodies (LA45, L31, TFL-006, and TFL-007). Furthermore, such exposure enables dimerization between two Face-2 molecules by SH-linkage, salt linkage, H-bonding, and van der Waal forces. In HLA-B27, the linkage between two heavy chains with cysteines at position of 67 of the amino acid residues was documented. Similarly, several alleles of HLA-A, B, C, E, F and G express cysteine at 67, 101, and 164, and additionally, HLA-G expresses cysteine at position 42. Thus, the monomeric HC (Face-2) can dimerize with another HC of its own allele, as homodimers (Face-3), or with a different HC-allele, as heterodimers (Face-4). The presence of Face-4 is well documented in HLA-F. The post-translational HLA-variants devoid of β2m may expose several cryptic linear and non-linear conformationally altered sequences to generate novel epitopes. The objective of this review, while unequivocally confirming the post-translational variants of HLA-I, is to highlight the scientific and clinical importance of the four faces of HLA and to prompt further research to elucidate their functions and their interaction with non-HLA molecules during inflammation, infection, malignancy and transplantation. Indeed, these HLA faces may constitute novel targets for passive and active specific immunotherapy and vaccines.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Emeritus Research Scientist at Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
- Correspondence:
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Fatiha El Hilali
- The Faculty of Medicine and Pharmacy of Laayoune, Ibn Zohr University, Agadir 70000, Morocco;
| |
Collapse
|
29
|
Cazzetta V, Bruni E, Terzoli S, Carenza C, Franzese S, Piazza R, Marzano P, Donadon M, Torzilli G, Cimino M, Simonelli M, Bello L, Villa A, Tan L, Ravens S, Prinz I, Supino D, Colombo FS, Lugli E, Marcenaro E, Vivier E, Della Bella S, Mikulak J, Mavilio D. NKG2A expression identifies a subset of human Vδ2 T cells exerting the highest antitumor effector functions. Cell Rep 2021; 37:109871. [PMID: 34686325 DOI: 10.1016/j.celrep.2021.109871] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/13/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023] Open
Abstract
Human Vδ2 cells are innate-like γδ T effectors performing potent immune surveillance against tumors. The constitutive expression of NKG2A identifies a subset of Vδ2 T cells licensed with an intrinsic hyper-responsiveness against cancer. Indeed, the transcriptomic profiles of NKG2A+ and NKG2A- cells characterize two distinct "intralineages" of Vδ2 T lymphocytes that appear early during development, keep their phenotypes, and show self-renewal capabilities in adult life. The hyper-responsiveness of NKG2A+ Vδ2 T cells is counterbalanced by the inhibitory signaling delivered by human leukocyte antigen E (HLA-E) expressed on malignant cells as a tumor-escape mechanism. However, either masking or knocking out NKG2A restores the capacity of Vδ2 T cells to exert the highest effector functions even against HLA-E+ tumors. This is highly relevant in the clinic, as the different degrees of engagement of the NKG2A-HLA-E checkpoint in hepatocellular carcinoma, glioblastoma, and non-small cell lung cancer directly impact patients' overall survival. These findings open avenues for developing combined cellular and immunologic anticancer therapies.
Collapse
Affiliation(s)
- Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Bruni
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Claudia Carenza
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Franzese
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Paolo Marzano
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Matteo Donadon
- Department of Biomedical Science, Humanitas University, 20090 Pieve Emanuele, Milan, Italy; Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Science, Humanitas University, 20090 Pieve Emanuele, Milan, Italy; Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Matteo Cimino
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Matteo Simonelli
- Department of Biomedical Science, Humanitas University, 20090 Pieve Emanuele, Milan, Italy; Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Lorenzo Bello
- U.O. Neurochirurgia Oncologica, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Anna Villa
- Division of Regenerative, Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, UOS Milan, National Research Council, Rozzano, Milan, Italy
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Domenico Supino
- Department of Biomedical Science of Clinical and Experimental Immunology, Humanitas University, 20090 Pieve Emanuele, Milan, Italy
| | - Federico S Colombo
- Humanitas Flow Cytometry Core, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Enrico Lugli
- Humanitas Flow Cytometry Core, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Eric Vivier
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France; Research Laboratories, Innate Pharma, Marseille, France; Service d'Immunologie, Hôpital de la Timone, APHM, Marseille-Immunopôle, Marseille, France
| | - Silvia Della Bella
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
30
|
Vaurs J, Douchin G, Echasserieau K, Oger R, Jouand N, Fortun A, Hesnard L, Croyal M, Pecorari F, Gervois N, Bernardeau K. A novel and efficient approach to high-throughput production of HLA-E/peptide monomer for T-cell epitope screening. Sci Rep 2021; 11:17234. [PMID: 34446788 PMCID: PMC8390762 DOI: 10.1038/s41598-021-96560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Over the past two decades, there has been a great interest in the study of HLA-E-restricted αβ T cells during bacterial and viral infections, including recently SARS-CoV-2 infection. Phenotyping of these specific HLA-E-restricted T cells requires new tools such as tetramers for rapid cell staining or sorting, as well as for the identification of new peptides capable to bind to the HLA-E pocket. To this aim, we have developed an optimal photosensitive peptide to generate stable HLA-E/pUV complexes allowing high-throughput production of new HLA-E/peptide complexes by peptide exchange. We characterized the UV exchange by ELISA and improved the peptide exchange readout using size exclusion chromatography. This novel approach for complex quantification is indeed very important to perform tetramerization of MHC/peptide complexes with the high quality required for detection of specific T cells. Our approach allows the rapid screening of peptides capable of binding to the non-classical human HLA-E allele, paving the way for the development of new therapeutic approaches based on the detection of HLA-E-restricted T cells.
Collapse
Affiliation(s)
- Juliette Vaurs
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Gaël Douchin
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Klara Echasserieau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Romain Oger
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France
| | - Nicolas Jouand
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
| | - Agnès Fortun
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, 44000, Nantes, France
| | - Leslie Hesnard
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Mikaël Croyal
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Frédéric Pecorari
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Nadine Gervois
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France.
| | - Karine Bernardeau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France.
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
| |
Collapse
|
31
|
Hazini A, Fisher K, Seymour L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer 2021; 9:e002899. [PMID: 34353849 PMCID: PMC8344275 DOI: 10.1136/jitc-2021-002899] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
It is now well accepted that many tumors undergo a process of clonal selection which means that tumor antigens arising at various stages of tumor progression are likely to be represented in just a subset of tumor cells. This process is thought to be driven by constant immunosurveillance which applies selective pressure by eliminating tumor cells expressing antigens that are recognized by T cells. It is becoming increasingly clear that the same selective pressure may also select for tumor cells that evade immune detection by acquiring deficiencies in their human leucocyte antigen (HLA) presentation pathways, allowing important tumor antigens to persist within cells undetected by the immune system. Deficiencies in antigen presentation pathway can arise by a variety of mechanisms, including genetic and epigenetic changes, and functional antigen presentation is a hard phenomenon to assess using our standard analytical techniques. Nevertheless, it is likely to have profound clinical significance and could well define whether an individual patient will respond to a particular type of therapy or not. In this review we consider the mechanisms by which HLA function may be lost in clinical disease, we assess the implications for current immunotherapy approaches using checkpoint inhibitors and examine the prognostic impact of HLA loss demonstrated in clinical trials so far. Finally, we propose strategies that might be explored for possible patient stratification.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Len Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
32
|
Denis Musquer M, Jouand N, Pere M, Lamer JE, Bézieau S, Matysiak T, Faroux R, Caroli Bosc FX, Rousselet MC, Leclair F, Mosnier JF, Toquet C, Gervois N, Bossard C. High-Density of FcγRIIIA + (CD16 +) Tumor-Associated Neutrophils in Metastases Improves the Therapeutic Response of Cetuximab in Metastatic Colorectal Cancer Patients, Independently of the HLA-E/CD94-NKG2A Axis. Front Oncol 2021; 11:684478. [PMID: 34211852 PMCID: PMC8239306 DOI: 10.3389/fonc.2021.684478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) in the anti-tumor effect of cetuximab in metastatic colorectal cancer (mCRC) is only based on the impact of FcγRIIIA (CD16) polymorphisms as predictive of therapeutic response. However, nature, density and therapeutic impact of FcγRIIIA+ (CD16) effector cells in tumor remain poorly documented. Moreover, the inhibition of cetuximab-mediated ADCC induced by NK cells by the engagement of the new inhibitory CD94-NKG2A immune checkpoint has only been demonstrated in vitro. This multicentric study aimed to determine, on paired primary and metastatic tissue samples from a cohort of mCRC patients treated with cetuximab: 1) the nature and density of FcγRIIIA+ (CD16) immune cells, 2) the expression profile of HLA-E/β2m by tumor cells as well as the density of CD94+ immune cells and 3) their impact on both objective response to cetuximab and survival. We demonstrated that FcγRIIIA+ (CD16) intraepithelial immune cells mainly correspond to tumor-associated neutrophils (TAN), and their high density in metastases was significantly associated with a better response to cetuximab, independently of the expression of the CD94/NKG2A inhibitory immune checkpoint. However, HLA-E/β2m, preferentially overexpressed in metastases compared with primary tumors and associated with CD94+ tumor infiltrating lymphocytes (TILs), was associated with a poor overall survival. Altogether, these results strongly support the use of bispecific antibodies directed against both EGFR and FcγRIIIA (CD16) in mCRC patients, to boost cetuximab-mediated ADCC in RAS wild-type mCRC patients. The preferential overexpression of HLA-E/β2m in metastases, associated with CD94+ TILs and responsible for a poor prognosis, provides convincing arguments to inhibit this new immune checkpoint with monalizumab, a humanized anti-NKG2A antibody, in combination with anti- FcγRIIIA/EGFR bispecific antibodies as a promising therapeutic perspective in RAS wild-type mCRC patients.
Collapse
Affiliation(s)
| | - Nicolas Jouand
- Université de Nantes, Inserm, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft Oncology", Nantes, France
| | - Morgane Pere
- Biostatistics Plateform, University Hospital of Nantes, Nantes, France
| | | | - Stéphane Bézieau
- Department of Genetic, University Hospital of Nantes, Nantes, France
| | - Tamara Matysiak
- Department of Gastroenterology, University Hospital of Nantes, Nantes, France
| | - Roger Faroux
- Department of Gastroenterology, Hospital of La Roche sur Yon, La Roche sur Yon, France
| | | | | | - François Leclair
- Department of Pathology, Hospital of La Roche sur Yon, La Roche sur Yon, France
| | | | - Claire Toquet
- Department of Pathology, University Hospital of Nantes, Nantes, France
| | - Nadine Gervois
- Université de Nantes, Inserm, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft Oncology", Nantes, France
| | - Céline Bossard
- Department of Pathology, University Hospital of Nantes, Nantes, France.,Université de Nantes, Inserm, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft Oncology", Nantes, France
| |
Collapse
|
33
|
Tang F, Zhao YH, Zhang Q, Wei W, Tian SF, Li C, Yao J, Wang ZF, Li ZQ. Impact of beta-2 microglobulin expression on the survival of glioma patients via modulating the tumor immune microenvironment. CNS Neurosci Ther 2021; 27:951-962. [PMID: 33960680 PMCID: PMC8265948 DOI: 10.1111/cns.13649] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022] Open
Abstract
Aims High immune cell infiltration in gliomas establishes an immunosuppressive tumor microenvironment, which in turn promotes resistance to immunotherapy. Hence, it is important to identify novel targets associated with high immune cell infiltration in gliomas. Our previous study showed that serum levels of beta‐2 microglobulin (B2M) in lower‐grade glioma patients were lower than those in glioblastoma patients. In the present study, we focused on exploring the roles of B2M in glioma immune infiltration. Methods A large cohort of patients with gliomas from the TCGA, CGGA, and Gravendeel databases was included to explore differential expression patterns and potential roles of B2M in gliomas. A total of 103 glioma tissue samples were collected to determine the distributions of B2M protein levels by immunofluorescent assays. Kaplan‐Meier survival analysis and meta‐analysis were used for survival analysis. GO(Gene‐ontology) enrichment analysis, co‐expression analysis, KEGG(Kyoto Encyclopedia of Genes and Genomes) pathway analysis, and immune infiltration analysis were performed to explore roles and related mechanisms of B2M in glioma. Results We found that both B2M mRNA and protein levels were abnormally upregulated in glioma samples compared with those from normal brain tissue. B2M expression was correlated with tumor grade and was downregulated in IDH1 mutant samples. Furthermore, B2M was a moderately sensitive indicator for predicting the mesenchymal molecular subtype of gliomas. Interestingly, glioma patients with lower B2M expression had remarkably longer survival times than those with higher B2M expression. Moreover, meta‐analysis showed that B2M was an independent predictive marker in glioma patients. The results of GO enrichment analysis revealed that B2M contributed to immune cell infiltration in glioma patients. In addition, results of KEGG pathway analysis and co‐expression analysis suggested that B2M may mediate glioma immune infiltration via chemokines. Conclusions We conclude that B2M levels are critical for the survival times of glioma patients, at least in part due to mediating high immune infiltration.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu-Hang Zhao
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qing Zhang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Su-Fang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Zhi-Qiang Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
34
|
Spinosa P, Musial-Siwek M, Presler M, Betts A, Rosentrater E, Villali J, Wille L, Zhao Y, McCaughtry T, Subramanian K, Liu H. Quantitative modeling predicts competitive advantages of a next generation anti-NKG2A monoclonal antibody over monalizumab for the treatment of cancer. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:220-229. [PMID: 33501768 PMCID: PMC7965834 DOI: 10.1002/psp4.12592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022]
Abstract
A semimechanistic pharmacokinetic (PK)/receptor occupancy (RO) model was constructed to differentiate a next generation anti-NKG2A monoclonal antibody (KSQ mAb) from monalizumab, an immune checkpoint inhibitor in multiple clinical trials for the treatment of solid tumors. A three-compartment model incorporating drug PK, biodistribution, and NKG2A receptor interactions was parameterized using monalizumab PK, in vitro affinity measurements for both monalizumab and KSQ mAb, and receptor burden estimates from the literature. Following calibration against monalizumab PK data in patients with rheumatoid arthritis, the model successfully predicted the published PK and RO observed in gynecological tumors and in patients with squamous cell carcinoma of the head and neck. Simulations predicted that the KSQ mAb requires a 10-fold lower dose than monalizumab to achieve a similar RO over a 3-week period following q3w intravenous (i.v.) infusion dosing. A global sensitivity analysis of the model indicated that the drug-target binding affinity greatly affects the tumor RO and that an optimal affinity is needed to balance RO with enhanced drug clearance due to target mediated drug disposition. The model predicted that the KSQ mAb can be dosed over a less frequent regimen or at lower dose levels than the current monalizumab clinical dosing regimen of 10 mg/kg q2w. Either dosing strategy represents a competitive advantage over the current therapy. The results of this study demonstrate a key role for mechanistic modeling in identifying optimal drug parameters to inform and accelerate progression of mAb to clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lucia Wille
- Applied BioMath, Concord, Massachusetts, USA
| | - Yang Zhao
- KSQ Therapeutics, Cambridge, Massachusetts, USA
| | | | | | - Hanlan Liu
- KSQ Therapeutics, Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Zhu X, Li S, Xu B, Luo H. Cancer evolution: A means by which tumors evade treatment. Biomed Pharmacother 2020; 133:111016. [PMID: 33246226 DOI: 10.1016/j.biopha.2020.111016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Although various methods have been tried to study and treat cancer, the cancer remains a major challenge for human medicine today. One important reason for this is the presence of cancer evolution. Cancer evolution is a process in which tumor cells adapt to the external environment, which can suppress the human immune system's ability to recognize and attack tumors, and also reduce the reproducibility of cancer research. Among them, heterogeneity of the tumor provides intrinsic motivation for this process. Recently, with the development of related technologies such as liquid biopsy, more and more knowledge about cancer evolution has been gained and interest in this topic has also increased. Therefore, starting from the causes of tumorigenesis, this paper introduces several tumorigenesis processes and pathways, as well as treatment options for different targets.
Collapse
Affiliation(s)
- Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
| | - Shi Li
- Guangdong Key Laboratory of Urogenital Tumor Systems and Synthetic Biology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, China; Shenzhen Key Laboratory of Genitourinary Tumor, Translational Medicine Institute of Shenzhen, The Second People's Hospital of Shenzhen, Shenzhen, China; College of Bioengineering, Chongqing University, Chongqing, China
| | - Bairui Xu
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, China
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, China.
| |
Collapse
|
36
|
Abd Hamid M, Peng Y, Dong T. Human cancer germline antigen-specific cytotoxic T cell-what can we learn from patient. Cell Mol Immunol 2020; 17:684-692. [PMID: 32451453 PMCID: PMC7331575 DOI: 10.1038/s41423-020-0468-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
In this review, we will highlight the importance of cancer germline antigen-specific cytotoxic CD8+ T lymphocytes (CTL) and the factors affecting antitumor CTL responses. In light of cancer immunotherapy, we will emphasis the need to further understand the features, characteristics, and actions of modulatory receptors of human cancer germline-specific CTLs, in order to determine the optimal conditions for antitumor CTL responses.
Collapse
Affiliation(s)
- Megat Abd Hamid
- Nufield Department of Medicine, Chinese Academy of Medical Science Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Yanchun Peng
- Nufield Department of Medicine, Chinese Academy of Medical Science Oxford Institute (COI), University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tao Dong
- Nufield Department of Medicine, Chinese Academy of Medical Science Oxford Institute (COI), University of Oxford, Oxford, UK.
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
37
|
Zhang C, Liu Y. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy. Front Immunol 2020; 11:1295. [PMID: 32714324 PMCID: PMC7344328 DOI: 10.3389/fimmu.2020.01295] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Checkpoint blockade therapy, for example using antibodies against CTLA-4 and PD-1/PD-L1, relieves T cells from the suppression by inhibitory checkpoints in the tumor microenvironment; thereby achieving good outcomes in the treatment of different cancer types. Like T cells, natural killer (NK) cell inhibitory receptors function as checkpoints for NK cell activation. Upon interaction with their cognate ligands on infected cells, tumor cells, dendritic cells and regulatory T cells, signals from these receptors severely affect NK cells' activation and effector functions, resulting in NK cell exhaustion. Checkpoint inhibition with antagonistic antibodies (Abs) can rescue NK cell exhaustion and arouse their robust anti-tumor capacity. Most notably, the response to anti-PD-1 therapy can be enhanced by the increased frequency and activation of NK cells, thereby increasing the overall survival of patients with multiple types of cancer. In addition, rescue of NK cell activity could enhance adaptive T cells' anti-tumor activity. Some antagonistic Abs (e.g., anti-TIGIT and anti-NKG2A monoclonal Abs) have extraordinary potential in cancer therapy, as evidenced by their induction of potent anti-tumor immunity through recovering both NK and T cell function. In this review, we summarize the dysfunction of NK cells in the tumor microenvironment and the key NK cell checkpoint receptors or molecules that control NK cell function. We particularly focus on recent advances in the most promising strategies through blockade of NK cell checkpoints or their combination with other approaches to more effectively reject tumors.
Collapse
Affiliation(s)
- Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxia Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
38
|
Hodgins JJ, Khan ST, Park MM, Auer RC, Ardolino M. Killers 2.0: NK cell therapies at the forefront of cancer control. J Clin Invest 2020; 129:3499-3510. [PMID: 31478911 DOI: 10.1172/jci129338] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes involved in the surveillance and elimination of cancer. As we have learned more and more about the mechanisms NK cells employ to recognize and eliminate tumor cells, and how, in turn, cancer evades NK cell responses, we have gained a clear appreciation that NK cells can be harnessed in cancer immunotherapy. Here, we review the evidence for NK cells' critical role in combating transformed and malignant cells, and how cancer immunotherapies potentiate NK cell responses for therapeutic purposes. We highlight cutting-edge immunotherapeutic strategies in preclinical and clinical development such as adoptive NK cell transfer, chimeric antigen receptor-expressing NK cells (CAR-NKs), bispecific and trispecific killer cell engagers (BiKEs and TriKEs), checkpoint blockade, and oncolytic virotherapy. Further, we describe the challenges that NK cells face (e.g., postsurgical dysfunction) that must be overcome by these therapeutic modalities to achieve cancer clearance.
Collapse
Affiliation(s)
- Jonathan J Hodgins
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, and
| | - Sarwat T Khan
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maria M Park
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, and
| | - Rebecca C Auer
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Michele Ardolino
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, and
| |
Collapse
|
39
|
Roh J, Jung J, Lee Y, Kim SW, Pak HK, Lee AN, Lee J, Cho J, Cho H, Yoon DH, Park RW, Huh J, Oh HB, Park CS. Risk Stratification Using Multivariable Fractional Polynomials in Diffuse Large B-Cell Lymphoma. Front Oncol 2020; 10:329. [PMID: 32219067 PMCID: PMC7078241 DOI: 10.3389/fonc.2020.00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
The risk stratification of diffuse large B-cell lymphoma (DLBCL) is crucial. The International Prognostic Index, the most commonly used and the traditional risk stratification system, is composed of fixed and artificially dichotomized attributes. We aimed to develop a novel prognostic model that allows the incorporation of up-to-date attributes comprehensively without information loss. We analyzed 204 patients with primary DLBCL who were uniformly treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) from 2007 to 2012 at Asan Medical Center. Using the multivariable fractional polynomial (MFP) method and bootstrap resampling, we selected the variables of significance and the best fitted functional form in fractional polynomials. Age, serum β2-microglobulin, serum lactate dehydrogenase, and BCL2 expression were selected as significant variables in predicting overall survival (OS), while age was excluded in predicting 2-years event-free survival. The prognostic score calculated by the MFP model effectively classifies patients into four risk groups with 5-years OS of 89.91% (low risk), 81.21% (low-intermediate risk), 66.40% (high-intermediate risk), and 37.89% (high risk). We suggest a new prognostic model that is simple and flexible. By using the MFP method, we can incorporate various clinicopathologic factors into a risk stratification system without arbitrary dichotomization.
Collapse
Affiliation(s)
- Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, South Korea
| | - Jiwon Jung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Medical Center, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yourim Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea
| | - So-Woon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo-Kyung Pak
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Medical Center, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - A-Neum Lee
- Asan Medical Center, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, South Korea.,Convergence Medicine Research Center, Asan Medical Center, Seoul, South Korea
| | - Junho Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Medical Center, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jaehyeong Cho
- Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Hyungwoo Cho
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Rae Woong Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Heung-Bum Oh
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Medical Center, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
40
|
Eugène J, Jouand N, Ducoin K, Dansette D, Oger R, Deleine C, Leveque E, Meurette G, Podevin J, Matysiak T, Bennouna J, Bezieau S, Volteau C, Thomas WEA, Chetritt J, Kerdraon O, Fourquier P, Thibaudeau E, Dumont F, Mosnier JF, Toquet C, Jarry A, Gervois N, Bossard C. The inhibitory receptor CD94/NKG2A on CD8 + tumor-infiltrating lymphocytes in colorectal cancer: a promising new druggable immune checkpoint in the context of HLAE/β2m overexpression. Mod Pathol 2020; 33:468-482. [PMID: 31409873 DOI: 10.1038/s41379-019-0322-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/28/2023]
Abstract
We previously demonstrated that HLA-E/β2m overexpression by tumor cells in colorectal cancers is associated with an unfavorable prognosis. However, the expression of its specific receptor CD94/NKG2 by intraepithelial tumor-infiltrating lymphocytes, their exact phenotype and function, as well as the relation with the molecular status of colorectal cancer and prognosis remain unknown. Based on a retrospective cohort of 234 colorectal cancer patients, we assessed the expression of HLA-E, β2m, CD94, CD8, and NKp46 by immunohistochemistry on tissue microarray. The expression profile of HLA-E/β2m on tumor cells and the density of tumor-infiltrating lymphocytes were correlated to the clinicopathological and molecular features (Microsatellite status, BRAF and RAS mutations). Then, from the primary tumors of 27 prospective colorectal cancers, we characterized by multiparameter flow cytometry the nature (T and/or NK cells) and the co-expression of the inhibitory NKG2A or activating NKG2C chain of ex vivo isolated CD94+ tumor-infiltrating lymphocytes. Their biological function was determined using an in vitro redirected cytolytic activity assay. Our results showed that HLA-E/β2m was preferentially overexpressed in microsatellite instable tumors compared with microsatellite stable ones (45% vs. 19%, respectively, p = 0.0001), irrespective of the RAS or BRAF mutational status. However, HLA-E/β2m+ colorectal cancers were significantly enriched in CD94+ intraepithelial tumor-infiltrating lymphocytes in microsatellite instable as well as in microsatellite stable tumors. Those CD94+ tumor-infiltrating lymphocytes mostly corresponded to CD8+ αβ T cells, and to a lesser extent to NK cells, and mainly co-expressed a functional inhibitory NKG2A chain. Finally, a high number of CD94+ intraepithelial tumor-infiltrating lymphocytes in close contact with tumor cells was independently associated with a worse overall survival. In conclusion, these findings strongly suggest that HLA-E/β2m-CD94/NKG2A represents a new druggable inhibitory immune checkpoint, preferentially expressed in microsatellite instable tumors, but also in a subgroup of microsatellite stable tumors, leading to a new opportunity in colorectal cancer immunotherapies.
Collapse
Affiliation(s)
- Juliette Eugène
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Nicolas Jouand
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Kathleen Ducoin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Delphine Dansette
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Romain Oger
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Cécile Deleine
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Edouard Leveque
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Guillaume Meurette
- Institut des Maladies de l'Appareil Digestif, Oncologie Digestive, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
- Université de Nantes, Faculté de Médecine, Nantes, France
| | - Juliette Podevin
- Institut des Maladies de l'Appareil Digestif, Oncologie Digestive, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Tamara Matysiak
- Institut des Maladies de l'Appareil Digestif, Oncologie Digestive, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
- Université de Nantes, Faculté de Médecine, Nantes, France
| | - Jaafar Bennouna
- Institut des Maladies de l'Appareil Digestif, Oncologie Digestive, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
- Université de Nantes, Faculté de Médecine, Nantes, France
| | - Stéphane Bezieau
- Université de Nantes, Faculté de Médecine, Nantes, France
- Service de Génétique Médicale, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | | | | | | | - Olivier Kerdraon
- Département de Biologie des Cancers, Institut de Cancérologie de l'Ouest, Nantes, France
| | - Pierre Fourquier
- Service de Chirurgie Viscérale et Digestive, Hôpital privé du Confluent, Nantes, France
| | - Emilie Thibaudeau
- Service d'Oncologie Chirurgicale, Institut de Cancérologie de l'Ouest, Nantes, France
| | - Frédéric Dumont
- Service d'Oncologie Chirurgicale, Institut de Cancérologie de l'Ouest, Nantes, France
| | - Jean-François Mosnier
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
- Université de Nantes, Faculté de Médecine, Nantes, France
| | - Claire Toquet
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
- Université de Nantes, Faculté de Médecine, Nantes, France
| | - Anne Jarry
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Nadine Gervois
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Céline Bossard
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
- Université de Nantes, Faculté de Médecine, Nantes, France.
| |
Collapse
|
41
|
Khan M, Arooj S, Wang H. NK Cell-Based Immune Checkpoint Inhibition. Front Immunol 2020; 11:167. [PMID: 32117298 PMCID: PMC7031489 DOI: 10.3389/fimmu.2020.00167] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy, with an increasing number of therapeutic dimensions, is becoming an important mode of treatment for cancer patients. The inhibition of immune checkpoints, which are the source of immune escape for various cancers, is one such immunotherapeutic dimension. It has mainly been aimed at T cells in the past, but NK cells are a newly emerging target. Simultaneously, the number of checkpoints identified has been increasing in recent times. In addition to the classical NK cell receptors KIRs, LIRs, and NKG2A, several other immune checkpoints have also been shown to cause dysfunction of NK cells in various cancers and chronic infections. These checkpoints include the revolutionized CTLA-4, PD-1, and recently identified B7-H3, as well as LAG-3, TIGIT & CD96, TIM-3, and the most recently acknowledged checkpoint-members of the Siglecs family (Siglec-7/9), CD200 and CD47. An interesting dimension of immune checkpoints is their candidacy for dual-checkpoint inhibition, resulting in therapeutic synergism. Furthermore, the combination of immune checkpoint inhibition with other NK cell cytotoxicity restoration strategies could also strengthen its efficacy as an antitumor therapy. Here, we have undertaken a comprehensive review of the literature to date regarding NK cell-based immune checkpoints.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
42
|
Tsamadou C, Fürst D, Wang T, He N, Lee SJ, Spellman SR, Fleischhauer K, Hsu KC, Paczesny S, Verneris MR, Schrezenmeier H, Mytilineos J. Donor HLA-E Status Associates with Disease-Free Survival and Transplant-Related Mortality after Non In Vivo T Cell-Depleted HSCT for Acute Leukemia. Biol Blood Marrow Transplant 2019; 25:2357-2365. [PMID: 31425756 PMCID: PMC7050288 DOI: 10.1016/j.bbmt.2019.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 01/22/2023]
Abstract
Previous studies have suggested that HLA-E may have a significant role in the outcome of matched unrelated hematopoietic stem cell transplantation (HSCT), especially for patients with acute leukemia. We used Center for International Blood and Marrow Transplant Research data and samples of 1840 adult patients with acute leukemia and their 10/10 HLA-matched unrelated donors to investigate the impact of HLA-E matching status as well as of donor/recipient (D/R) HLA-E genotype on post-HSCT outcome. Both patients and donors were HLA-E genotyped by next-generation sequencing. All patients received their first transplant in complete remission between 2000 and 2015. Median follow-up time was 90 months. Overall survival, disease-free survival (DFS), transplant-related mortality (TRM), and relapse incidence were primary endpoints with statistical significance set at .01. D/R HLA-E genotype analysis revealed a significant association of donor HLA-E*01:03/01:03 genotype with DFS (hazard ratio [HR] = 1.35, P = .0006) and TRM (HR = 1.41, P = .0058) in patients who received T cell replete (ie, without in vivo T cell depletion) transplants (n = 1297). As for D/R HLA-E matching, we did not identify any significant effect on any of the clinical outcome endpoints. In conclusion, this is the largest study to date reporting an improvement of DFS and TRM after matched unrelated HSCT by avoidance of HLA-E*01:03 homozygous donors in patients transplanted with T cell replete grafts for acute leukemia.
Collapse
Affiliation(s)
- Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research and Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Naya He
- Center for International Blood and Marrow Transplant Research and Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research and Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota; National Marrow Donor Program, Minneapolis, Minnesota
| | | | | | - Sophie Paczesny
- Department of Pediatrics-Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael R Verneris
- Department of Pediatrics, Hematology/Oncology/BMT, University of Colorado, Denver, Colorado
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.
| |
Collapse
|
43
|
The Gastrointestinal Tumor Microenvironment: An Updated Biological and Clinical Perspective. JOURNAL OF ONCOLOGY 2019; 2019:6240505. [PMID: 31885581 PMCID: PMC6893275 DOI: 10.1155/2019/6240505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Gastrointestinal cancers are still responsible for high numbers of cancer-related deaths despite advances in therapy. Tumor-associated cells play a key role in tumor biology, by supporting or halting tumor development through the production of extracellular matrix, growth factors, cytokines, and extracellular vesicles. Here, we review the roles of these tumor-associated cells in the initiation, angiogenesis, immune modulation, and resistance to therapy of gastrointestinal cancers. We also discuss novel diagnostic and therapeutic strategies directed at tumor-associated cells and their potential benefits for the survival of these patients.
Collapse
|
44
|
Kanevskiy L, Erokhina S, Kobyzeva P, Streltsova M, Sapozhnikov A, Kovalenko E. Dimorphism of HLA-E and its Disease Association. Int J Mol Sci 2019; 20:ijms20215496. [PMID: 31690066 PMCID: PMC6862560 DOI: 10.3390/ijms20215496] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
HLA-E is a nonclassical member of the major histocompatibility complex class I gene locus. HLA-E protein shares a high level of homology with MHC Ia classical proteins: it has similar tertiary structure, associates with β2-microglobulin, and is able to present peptides to cytotoxic lymphocytes. The main function of HLA-E under normal conditions is to present peptides derived from the leader sequences of classical HLA class I proteins, thus serving for monitoring of expression of these molecules performed by cytotoxic lymphocytes. However, opposite to multiallelic classical MHC I genes, HLA-E in fact has only two alleles—HLA-E*01:01 and HLA-E*01:03—which differ by one nonsynonymous amino acid substitution at position 107, resulting in an arginine in HLA-E*01:01 (HLA-ER) and glycine in HLA-E*01:03 (HLA-EG). In contrast to HLA-ER,HLA-EG has higher affinity to peptide, higher surface expression, and higher thermal stability of the corresponding protein, and it is more ancient than HLA-ER, though both alleles are presented in human populations in nearly equal frequencies. In the current review, we aimed to uncover the reason of the expansion of the younger allele, HLA-ER, by analysis of associations of both HLA-E alleles with a number of diseases, including viral and bacterial infections, cancer, and autoimmune disorders.
Collapse
Affiliation(s)
- Leonid Kanevskiy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Sofya Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Polina Kobyzeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Maria Streltsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Alexander Sapozhnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Elena Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| |
Collapse
|
45
|
Cariani E, Missale G. Immune landscape of hepatocellular carcinoma microenvironment: Implications for prognosis and therapeutic applications. Liver Int 2019; 39:1608-1621. [PMID: 31314948 DOI: 10.1111/liv.14192] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
The development of immunotherapy for solid tumours has boosted interest in the contexture of tumour immune microenvironment (TIME). Several lines of evidence indicate that the interplay between tumour cells and TIME components is a key factor for the evolution of hepatocellular carcinoma (HCC) and for the likelihood of response to immunotherapeutics. The availability of high-resolution methods will be instrumental for a better definition of the complexity and diversity of TIME with the aim of predicting disease outcome, treatment response and possibly new therapeutic targets. Here, we review current knowledge about the immunological mechanisms involved in shaping the clinical course of HCC. Effector cells, regulatory cells and soluble mediators are discussed for their role defining TIME and as targets for immune modulation, together with possible immune signatures for optimization of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Elisabetta Cariani
- Toxicology and Advanced Diagnostics, Ospedale S. Agostino-Estense, Modena, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
46
|
Abd Hamid M, Wang RZ, Yao X, Fan P, Li X, Chang XM, Feng Y, Jones S, Maldonado-Perez D, Waugh C, Verrill C, Simmons A, Cerundolo V, McMichael A, Conlon C, Wang X, Peng Y, Dong T. Enriched HLA-E and CD94/NKG2A Interaction Limits Antitumor CD8 + Tumor-Infiltrating T Lymphocyte Responses. Cancer Immunol Res 2019; 7:1293-1306. [PMID: 31213473 DOI: 10.1158/2326-6066.cir-18-0885] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/06/2019] [Accepted: 06/13/2019] [Indexed: 11/16/2022]
Abstract
Immunotherapy treatments with anti-PD-1 boost recovery in less than 30% of treated cancer patients, indicating the complexity of the tumor microenvironment. Expression of HLA-E is linked to poor clinical outcomes in mice and human patients. However, the contributions to immune evasion of HLA-E, a ligand for the inhibitory CD94/NKG2A receptor, when expressed on tumors, compared with adjacent tissue and peripheral blood mononuclear cells, remains unclear. In this study, we report that epithelial-derived cancer cells, tumor macrophages, and CD141+ conventional dendritic cells (cDC) contributed to HLA-E enrichment in carcinomas. Different cancer types showed a similar pattern of enrichment. Enrichment correlated to NKG2A upregulation on CD8+ tumor-infiltrating T lymphocytes (TIL) but not on CD4+ TILs. CD94/NKG2A is exclusively expressed on PD-1high TILs while lacking intratumoral CD103 expression. We also found that the presence of CD94/NKG2A on human tumor-specific T cells impairs IL2 receptor-dependent proliferation, which affects IFNγ-mediated responses and antitumor cytotoxicity. These functionalities recover following antibody-mediated blockade in vitro and ex vivo Our results suggest that enriched HLA-E:CD94/NKG2A inhibitory interaction can impair survival of PD-1high TILs in the tumor microenvironment.
Collapse
Affiliation(s)
- Megat Abd Hamid
- CAMS-Oxford International Centre for Translational Immunology, CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ruo-Zheng Wang
- Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Tumor Immunology and Radiation Therapy, Third Affiliated Hospital, Xinjiang Tumor Hospital, Urumqi, China.
- Third Affiliated Hospital, Xinjiang Tumor Hospital, Urumqi, China
| | - Xuan Yao
- CAMS-Oxford International Centre for Translational Immunology, CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peiwen Fan
- Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Tumor Immunology and Radiation Therapy, Third Affiliated Hospital, Xinjiang Tumor Hospital, Urumqi, China
- Third Affiliated Hospital, Xinjiang Tumor Hospital, Urumqi, China
| | - Xi Li
- CAMS-Oxford International Centre for Translational Immunology, CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xue-Mei Chang
- Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Tumor Immunology and Radiation Therapy, Third Affiliated Hospital, Xinjiang Tumor Hospital, Urumqi, China
- Third Affiliated Hospital, Xinjiang Tumor Hospital, Urumqi, China
| | - Yaning Feng
- Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Tumor Immunology and Radiation Therapy, Third Affiliated Hospital, Xinjiang Tumor Hospital, Urumqi, China
- Third Affiliated Hospital, Xinjiang Tumor Hospital, Urumqi, China
| | - Stephanie Jones
- Oxford Radcliffe Biobank, Department of Cellular Pathology, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - David Maldonado-Perez
- Oxford Radcliffe Biobank, Department of Cellular Pathology, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Craig Waugh
- Flow Cytometry Facility, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Clare Verrill
- Oxford Radcliffe Biobank, Department of Cellular Pathology, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- CAMS-Oxford International Centre for Translational Immunology, CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- CAMS-Oxford International Centre for Translational Immunology, CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew McMichael
- CAMS-Oxford International Centre for Translational Immunology, CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Christopher Conlon
- CAMS-Oxford International Centre for Translational Immunology, CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xiyan Wang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Third Affiliated Hospital, Xinjiang Tumor Hospital, Urumqi, China
| | - Yanchun Peng
- CAMS-Oxford International Centre for Translational Immunology, CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tao Dong
- CAMS-Oxford International Centre for Translational Immunology, CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Tumor Immunology and Radiation Therapy, Third Affiliated Hospital, Xinjiang Tumor Hospital, Urumqi, China
| |
Collapse
|
47
|
Creelan BC, Antonia SJ. The NKG2A immune checkpoint - a new direction in cancer immunotherapy. Nat Rev Clin Oncol 2019; 16:277-278. [PMID: 30824813 DOI: 10.1038/s41571-019-0182-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Benjamin C Creelan
- Thoracic Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| | - Scott J Antonia
- Thoracic Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,DCI Center for Cancer Immunology, Duke Cancer Institute, Durham, NC, USA
| |
Collapse
|
48
|
Toni Ho GG, Heinen F, Stieglitz F, Blasczyk R, Bade-Döding C. Dynamic Interaction between Immune Escape Mechanism and HLA-Ib Regulation. Immunogenetics 2019. [DOI: 10.5772/intechopen.80731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
|
50
|
Würfel FM, Winterhalter C, Trenkwalder P, Wirtz RM, Würfel W. European Patent in Immunoncology: From Immunological Principles of Implantation to Cancer Treatment. Int J Mol Sci 2019; 20:ijms20081830. [PMID: 31013867 PMCID: PMC6514949 DOI: 10.3390/ijms20081830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
The granted European patent EP 2 561 890 describes a procedure for an immunological treatment of cancer. It is based on the principles of the HLA-supported communication of implantation and pregnancy. These principles ensure that the embryo is not rejected by the mother. In pregnancy, the placenta, more specifically the trophoblast, creates an “interface” between the embryo/fetus and the maternal immune system. Trophoblasts do not express the “original” HLA identification of the embryo/fetus (HLA-A to -DQ), but instead show the non-classical HLA groups E, F, and G. During interaction with specific receptors of NK cells (e.g., killer-immunoglobulin-like receptors (KIR)) and lymphocytes (lymphocyte-immunoglobulin-like receptors (LIL-R)), the non-classical HLA groups inhibit these immunocompetent cells outside pregnancy. However, tumors are known to be able to express these non-classical HLA groups and thus make use of an immuno-communication as in pregnancies. If this occurs, the prognosis usually worsens. This patent describes, in a first step, the profiling of the non-classical HLA groups in primary tumor tissue as well as metastases and recurrent tumors. The second step comprises tailored antibody therapies, which is the subject of this patent. In this review, we analyze the underlying mechanisms and describe the currently known differences between HLA-supported communication of implantation and that of tumors.
Collapse
Affiliation(s)
- Franziska M Würfel
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | | | | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | |
Collapse
|