1
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
2
|
Murphy N, Newton CC, Song M, Papadimitriou N, Hoffmeister M, Phipps AI, Harrison TA, Newcomb PA, Aglago EK, Berndt SI, Brenner H, Buchanan DD, Cao Y, Chan AT, Chen X, Cheng I, Chang-Claude J, Dimou N, Drew D, Farris AB, French AJ, Gallinger S, Georgeson P, Giannakis M, Giles GG, Gruber SB, Harlid S, Hsu L, Huang WY, Jenkins MA, Laskar RS, Le Marchand L, Limburg P, Lin Y, Mandic M, Nowak JA, Obón-Santacana M, Ogino S, Qu C, Sakoda LC, Schoen RE, Southey MC, Stadler ZK, Steinfelder RS, Sun W, Thibodeau SN, Toland AE, Trinh QM, Tsilidis KK, Ugai T, Van Guelpen B, Wang X, Woods MO, Zaidi SH, Gunter MJ, Peters U, Campbell PT. Body mass index and molecular subtypes of colorectal cancer. J Natl Cancer Inst 2023; 115:165-173. [PMID: 36445035 PMCID: PMC9905970 DOI: 10.1093/jnci/djac215] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Obesity is an established risk factor for colorectal cancer (CRC), but the evidence for the association is inconsistent across molecular subtypes of the disease. METHODS We pooled data on body mass index (BMI), tumor microsatellite instability status, CpG island methylator phenotype status, BRAF and KRAS mutations, and Jass classification types for 11 872 CRC cases and 11 013 controls from 11 observational studies. We used multinomial logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) adjusted for covariables. RESULTS Higher BMI was associated with increased CRC risk (OR per 5 kg/m2 = 1.18, 95% CI = 1.15 to 1.22). The positive association was stronger for men than women but similar across tumor subtypes defined by individual molecular markers. In analyses by Jass type, higher BMI was associated with elevated CRC risk for types 1-4 cases but not for type 5 CRC cases (considered familial-like/Lynch syndrome microsatellite instability-H, CpG island methylator phenotype-low or negative, BRAF-wild type, KRAS-wild type, OR = 1.04, 95% CI = 0.90 to 1.20). This pattern of associations for BMI and Jass types was consistent by sex and design of contributing studies (cohort or case-control). CONCLUSIONS In contrast to previous reports with fewer study participants, we found limited evidence of heterogeneity for the association between BMI and CRC risk according to molecular subtype, suggesting that obesity influences nearly all major pathways involved in colorectal carcinogenesis. The null association observed for the Jass type 5 suggests that BMI is not a risk factor for the development of CRC for individuals with Lynch syndrome.
Collapse
Affiliation(s)
- Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Christina C Newton
- Population Science Department, American Cancer Society (ACS), Atlanta, GA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elom K Aglago
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Alvin J. Siteman Cancer Center, St Louis, MO, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David Drew
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alton B Farris
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Amy J French
- Division of Laboratory Genetics, Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Ruhina S Laskar
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Loic Le Marchand
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI, USA
| | | | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marko Mandic
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johnathan A Nowak
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mereia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Melissa C Southey
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Kostas K Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Xiaoliang Wang
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL, Canada
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
3
|
Harlid S, Van Guelpen B, Qu C, Gylling B, Aglago EK, Amitay EL, Brenner H, Buchanan DD, Campbell PT, Cao Y, Chan AT, Chang‐Claude J, Drew DA, Figueiredo JC, French AJ, Gallinger S, Giannakis M, Giles GG, Gunter MJ, Hoffmeister M, Hsu L, Jenkins MA, Lin Y, Moreno V, Murphy N, Newcomb PA, Newton CC, Nowak JA, Obón‐Santacana M, Ogino S, Potter JD, Song M, Steinfelder RS, Sun W, Thibodeau SN, Toland AE, Ugai T, Um CY, Woods MO, Phipps AI, Harrison T, Peters U. Diabetes mellitus in relation to colorectal tumor molecular subtypes: A pooled analysis of more than 9000 cases. Int J Cancer 2022; 151:348-360. [PMID: 35383926 PMCID: PMC9251811 DOI: 10.1002/ijc.34015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 01/22/2023]
Abstract
Diabetes is an established risk factor for colorectal cancer. However, colorectal cancer is a heterogeneous disease and it is not well understood whether diabetes is more strongly associated with some tumor molecular subtypes than others. A better understanding of the association between diabetes and colorectal cancer according to molecular subtypes could provide important insights into the biology of this association. We used data on lifestyle and clinical characteristics from the Colorectal Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), including 9756 colorectal cancer cases (with tumor marker data) and 9985 controls, to evaluate associations between reported diabetes and risk of colorectal cancer according to molecular subtypes. Tumor markers included BRAF and KRAS mutations, microsatellite instability and CpG island methylator phenotype. In the multinomial logistic regression model, comparing colorectal cancer cases to cancer-free controls, diabetes was positively associated with colorectal cancer regardless of subtype. The highest OR estimate was found for BRAF-mutated colorectal cancer, n = 1086 (ORfully adj : 1.67, 95% confidence intervals [CI]: 1.36-2.05), with an attenuated association observed between diabetes and colorectal cancer without BRAF-mutations, n = 7959 (ORfully adj : 1.33, 95% CI: 1.19-1.48). In the case only analysis, BRAF-mutation was differentially associated with diabetes (Pdifference = .03). For the other markers, associations with diabetes were similar across tumor subtypes. In conclusion, our study confirms the established association between diabetes and colorectal cancer risk, and suggests that it particularly increases the risk of BRAF-mutated tumors.
Collapse
Affiliation(s)
- Sophia Harlid
- Department of Radiation Sciences, Oncology UnitUmeå UniversityUmeåSweden
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology UnitUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| | - Conghui Qu
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Björn Gylling
- Department of Medical Biosciences, Pathology UnitUmeå UniversityUmeåSweden
| | - Elom K. Aglago
- Nutrition and Metabolism SectionInternational Agency for Research on Cancer, World Health OrganizationLyonFrance
| | - Efrat L. Amitay
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Division of Preventive OncologyGerman Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical PathologyThe University of MelbourneParkvilleVictoriaAustralia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer CentreParkvilleVictoriaAustralia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne HospitalParkvilleVictoriaAustralia
| | - Peter T. Campbell
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Yin Cao
- Division of Public Health Sciences, Department of SurgeryWashington University School of MedicineSt LouisMissouriUSA
- Alvin J. Siteman Cancer Center at Barnes‐Jewish Hospital and Washington University School of MedicineSt. LouisMissouriUSA
- Division of Gastroenterology, Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | - Andrew T. Chan
- Division of GastroenterologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public Health, Harvard UniversityBostonMassachusettsUSA
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public Health, Harvard UniversityBostonMassachusettsUSA
| | - Jenny Chang‐Claude
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- University Medical Centre Hamburg‐Eppendorf, University Cancer Centre Hamburg (UCCH)HamburgGermany
| | - David A. Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jane C. Figueiredo
- Department of MedicineSamuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Amy J. French
- Division of Laboratory Genetics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of TorontoTorontoOntarioCanada
| | - Marios Giannakis
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Graham G. Giles
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVictoriaAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneVictoriaAustralia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash UniversityClaytonVictoriaAustralia
| | - Marc J. Gunter
- Nutrition and Metabolism SectionInternational Agency for Research on Cancer, World Health OrganizationLyonFrance
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Li Hsu
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Department of BiostatisticsUniversity of WashingtonSeattleWashingtonUSA
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneVictoriaAustralia
| | - Yi Lin
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L'Hospitalet de LlobregatBarcelonaSpain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP)MadridSpain
- Department of Clinical Sciences, Faculty of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Neil Murphy
- Nutrition and Metabolism SectionInternational Agency for Research on Cancer, World Health OrganizationLyonFrance
| | - Polly A. Newcomb
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- School of Public Health, University of WashingtonSeattleWashingtonUSA
| | | | - Jonathan A. Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Mireia Obón‐Santacana
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L'Hospitalet de LlobregatBarcelonaSpain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Shuji Ogino
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public Health, Harvard UniversityBostonMassachusettsUSA
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Oncologic PathologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - John D. Potter
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- School of Public Health, University of WashingtonSeattleWashingtonUSA
- Research Centre for Hauora and Health, Massey UniversityWellingtonNew Zealand
| | - Mingyang Song
- Division of GastroenterologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of NutritionHarvard T.H. Chan School of Public Health, Harvard UniversityBostonMassachusettsUSA
| | - Robert S. Steinfelder
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Wei Sun
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Stephen N. Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Amanda E. Toland
- Departments of Cancer Biology and Genetics and Internal MedicineComprehensive Cancer Center, The Ohio State UniversityColumbusOhioUSA
| | - Tomotaka Ugai
- Department of EpidemiologyHarvard T.H. Chan School of Public Health, Harvard UniversityBostonMassachusettsUSA
- Department of Oncologic PathologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Caroline Y. Um
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Michael O. Woods
- Memorial University of Newfoundland, Discipline of GeneticsSt. John'sCanada
| | - Amanda I. Phipps
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Tabitha Harrison
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Ulrike Peters
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
4
|
Bowers LW, Glenny EM, Punjala A, Lanman NA, Goldbaum A, Himbert C, Montgomery SA, Yang P, Roper J, Ulrich CM, Dannenberg AJ, Coleman MF, Hursting SD. Weight Loss and/or Sulindac Mitigate Obesity-associated Transcriptome, Microbiome, and Protumor Effects in a Murine Model of Colon Cancer. Cancer Prev Res (Phila) 2022; 15:481-495. [PMID: 35653548 PMCID: PMC9357192 DOI: 10.1158/1940-6207.capr-21-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 02/03/2023]
Abstract
Obesity is associated with an increased risk of colon cancer. Our current study examines whether weight loss and/or treatment with the NSAID sulindac suppresses the protumor effects of obesity in a mouse model of colon cancer. Azoxymethane-treated male FVB/N mice were fed a low-fat diet (LFD) or high-fat diet (HFD) for 15 weeks, then HFD mice were randomized to remain on HFD (obese) or switch to LFD [formerly obese (FOb-LFD)]. Within the control (LFD), obese, and FOb-LFD groups, half the mice started sulindac treatment (140 ppm in the diet). All mice were euthanized 7 weeks later. FOb-LFD mice had intermediate body weight levels, lower than obese but higher than control (P < 0.05). Sulindac did not affect body weight. Obese mice had greater tumor multiplicity and burden than all other groups (P < 0.05). Transcriptomic profiling indicated that weight loss and sulindac each modulate the expression of tumor genes related to invasion and may promote a more antitumor immune landscape. Furthermore, the fecal microbes Coprobacillus, Prevotella, and Akkermansia muciniphila were positively correlated with tumor multiplicity and reduced by sulindac in obese mice. Coprobacillus abundance was also decreased in FOb-LFD mice. In sum, weight loss and sulindac treatment, alone and in combination, reversed the effects of chronic obesity on colon tumor multiplicity and burden. Our findings suggest that an investigation regarding the effects of NSAID treatment on colon cancer risk and/or progression in obese individuals is warranted, particularly for those unable to achieve moderate weight loss. PREVENTION RELEVANCE Obesity is a colon cancer risk and/or progression factor, but the underlying mechanisms are incompletely understood. Herein we demonstrate that obesity enhances murine colon carcinogenesis and expression of numerous tumoral procancer and immunosuppressive pathways. Moreover, we establish that weight loss via LFD and/or the NSAID sulindac mitigate procancer effects of obesity.
Collapse
Affiliation(s)
- Laura W. Bowers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elaine M. Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arunima Punjala
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nadia A. Lanman
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Audrey Goldbaum
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Caroline Himbert
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation, and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jatin Roper
- Department of Medicine, Duke University, Durham, NC, USA
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Andrew J. Dannenberg
- Department of Medicine (retired), Weill Cornell Medical College, New York, NY, USA
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D. Hursting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| |
Collapse
|
5
|
Jenniskens JCA, Offermans K, Simons CCJM, Samarska I, Fazzi GE, van der Meer JRM, Smits KM, Schouten LJ, Weijenberg MP, Grabsch HI, van den Brandt PA. Energy balance-related factors and risk of colorectal cancer based on KRAS, PIK3CA, and BRAF mutations and MMR status. J Cancer Res Clin Oncol 2022; 148:2723-2742. [PMID: 35546360 PMCID: PMC9470639 DOI: 10.1007/s00432-022-04019-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Introduction KRAS mutations (KRASmut), PIK3CAmut, BRAFmut, and mismatch repair deficiency (dMMR) have been associated with the Warburg-effect. We previously observed differential associations between energy balance-related factors (BMI, clothing-size, physical activity) and colorectal cancer (CRC) subtypes based on the Warburg-effect. We now investigated whether associations between energy balance-related factors and risk of CRC differ between subgroups based on mutation and MMR status. Methods Information on molecular features was available for 2349 incident CRC cases within the Netherlands Cohort Study (NLCS), with complete covariate data available for 1934 cases and 3911 subcohort members. Multivariable-adjusted Cox-regression was used to estimate associations of energy balance-related factors with risk of CRC based on individual molecular features (KRASmut; PIK3CAmut; BRAFmut; dMMR) and combinations thereof (all-wild-type + MMR-proficient (pMMR); any-mutation/dMMR). Results In men, BMI and clothing-size were positively associated with risk of colon, but not rectal cancer, regardless of molecular features subgroups; the strongest associations were observed for PIK3CAmut colon cancer. In women, however, BMI and clothing-size were only associated with risk of KRASmut colon cancer (p-heterogeneityKRASmut versus all-wild-type+pMMR = 0.008). Inverse associations of non-occupational physical activity with risk of colon cancer were strongest for any-mutation/dMMR tumors in men and women, and specifically for PIK3CAmut tumors in women. Occupational physical activity was inversely associated with both combination subgroups of colon cancer in men. Conclusion In men, associations did not vary according to molecular features. In women, a role of KRAS mutations in the etiological pathway between adiposity and colon cancer is suggested, and of PIK3CA mutations between physical activity and colon cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-04019-9.
Collapse
Affiliation(s)
- Josien C A Jenniskens
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Kelly Offermans
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Colinda C J M Simons
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Iryna Samarska
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Gregorio E Fazzi
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Jaleesa R M van der Meer
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Kim M Smits
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Leo J Schouten
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Heike I Grabsch
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands.
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
| | - Piet A van den Brandt
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands.
- Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Lin Y, Kong DX, Zhang YN. Does the Microbiota Composition Influence the Efficacy of Colorectal Cancer Immunotherapy? Front Oncol 2022; 12:852194. [PMID: 35463305 PMCID: PMC9023803 DOI: 10.3389/fonc.2022.852194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common malignancy globally, and many people with CRC suffer the fate of death. Due to the importance of CRC and its negative impact on communities, treatment strategies to control it or increase patient survival are being studied. Traditional therapies, including surgery and chemotherapy, have treated CRC patients. However, with the advancement of science, we are witnessing the emergence of novel therapeutic approaches such as immunotherapy for CRC treatment, which have had relatively satisfactory clinical outcomes. Evidence shows that gastrointestinal (GI) microbiota, including various bacterial species, viruses, and fungi, can affect various biological events, regulate the immune system, and even treat diseases like human malignancies. CRC has recently shown that the gut microorganism pattern can alter both antitumor and pro-tumor responses, as well as cancer immunotherapy. Of course, this is also true of traditional therapies because it has been revealed that gut microbiota can also reduce the side effects of chemotherapy. Therefore, this review summarized the effects of gut microbiota on CRC immunotherapy.
Collapse
Affiliation(s)
- Yan Lin
- Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yan Lin, ; You-Ni Zhang,
| | - De-Xia Kong
- Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People’s Hospital, Taizhou, China
- *Correspondence: Yan Lin, ; You-Ni Zhang,
| |
Collapse
|
7
|
Xu L, Li L, Xu D, Qiu J, Feng Q, Wen T, Lu S, Meng F, Shu X. Hormone replacement therapy in relation to the risk of colorectal cancer in women by BMI: a multicentre study with propensity score matching. Int J Clin Oncol 2022; 27:765-773. [PMID: 35025014 DOI: 10.1007/s10147-021-02110-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epidemiological evidence about hormone replacement therapy and colorectal carcinogenesis by demographic and clinical traits remains unclear. We aimed to assess this postulated association in a large multicentre study and further explore the modification effect by BMI and others. METHODS We retrospectively collected records of women diagnosed with colorectal cancer (CRC) at the age of 50 years and older during 2014-2017 and their HRT dispensing prior to CRC diagnosis in three tertiary hospitals in China. CRC cases were matched with controls at a ratio of 1:3 using nearest neighbour propensity scores matching to better control for the remaining imbalance between groups, which generated a total of 824 cases with 2472 controls. RESULTS Our study confirmed the inversed association between colorectal cancer risk and hormone replacement therapy (OR, 0.62; 95% CI, 0.54-0.75), which was more prominent among women having multiple HRT dispenses (OR, 0.60; 95% CI, 0.52-0.76). Furthermore, significant associations were consistently observed for the short-term (OR, 0.69; 95% CI, 0.57-0.88), middle-term (OR, 0.51; 95% CI, 0.41-0.66), and long-term HRT users (OR, 0.70; 95% CI, 0.43-0.90). Estrogen-related regimen reduced CRC risk more than progestogen-only. We, for the first time, found that the modifying effect of BMI on HRT use and CRC risk was in different ways when BMI was categorized by a medium level of 27. CONCLUSION Our findings mainly suggest that there might be a different mechanism for the reversed association between HRT and colorectal tumorigenesis by BMI level, providing thoughts on clinical treatment of CRC.
Collapse
Affiliation(s)
- Lingkai Xu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Lin Li
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Dongkui Xu
- VIP Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Junlan Qiu
- Department of Oncology and Hematology, the Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Qingting Feng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Tao Wen
- Medical Research Centre, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shun Lu
- Department of Radiation Oncology, Sichuan Cancer Hospital/Institute, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Fang Meng
- Centre of Systems Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, China
| | - Xiaochen Shu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
8
|
Xie W, Huang X, Wei C, Mo X, Ru H, Zhang L, Ge L, Tang W, Liu J. Preoperative Neutrophil-BMI Ratio As a Promising New Marker for Predicting Tumor Outcomes in Colorectal Cancer. Technol Cancer Res Treat 2022; 21:15330338211064077. [PMID: 35225701 PMCID: PMC8891895 DOI: 10.1177/15330338211064077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Inflammation and nutritional status are highly associated with colorectal cancer (CRC) prognosis. This study aimed to evaluate the prognostic value of the preoperative neutrophil-BMI ratio (NBR) in patients with CRC. Methods: A retrospective analysis was performed on 2471 patients with CRC who underwent surgical resection between 2004 and 2019. Patients were divided into two groups based on the cutoff value for NBR. Cox regression and Kaplan-Meier curves were used to evaluate overall survival (OS). Results: High NBR was associated with female sex, low BMI, colon, right-sided CRC, poor differentiation, T3 to 4 stage, M1 to 2 stage, high carcinoembryonic antigen (CEA) level, III-IV stage, microsatellite instability (MSI), and no adjuvant chemotherapy (all P < .05). The high NBR group had a shorter OS than the low NBR group. Female and right sided patients with CRC and with high NBR had a worse prognosis. Univariate Cox regression suggested that NBR was significantly associated with poor prognosis. Multivariate analysis confirmed that age (P = .019,HR:1.012), differentiation (P = .001,HR:1.306), TNM stage (P < .001,HR:2.432), CEA (P = .014,HR:1.001), and NBR (P < .001, HR: 3.309) were independent poor prognostic factors for OS. Subgroup univariate analysis indicated that female patients with high NBR had a worse prognosis. A nomogram composed of TNM stage, CEA, and NBR was developed, and internal validation was based on female patients with CRC. The nomogram provided good discrimination for both the training and validation sets, with area under the curve values of 0.79 and 0.769, respectively. Conclusions: High preoperative levels of NBR are indicators of poor prognosis in patients with CRC.
Collapse
Affiliation(s)
- Weishun Xie
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaoliang Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chunyin Wei
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xianwei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Haiming Ru
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lihua Zhang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lianying Ge
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jungang Liu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
9
|
Renman D, Gylling B, Vidman L, Bodén S, Strigård K, Palmqvist R, Harlid S, Gunnarsson U, van Guelpen B. Density of CD3 + and CD8 + Cells in the Microenvironment of Colorectal Cancer according to Prediagnostic Physical Activity. Cancer Epidemiol Biomarkers Prev 2021; 30:2317-2326. [PMID: 34607838 PMCID: PMC9398178 DOI: 10.1158/1055-9965.epi-21-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/19/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Physical activity is associated not only with a decreased risk of developing colorectal cancer but also with improved survival. One putative mechanism is the infiltration of immune cells in the tumor microenvironment. Experimental findings suggest that physical activity may mobilize immune cells to the tumor. We hypothesized that higher levels of physical activity prior to colorectal cancer diagnosis are associated with higher densities of tumor-infiltrating T-lymphocytes in colorectal cancer patients. METHODS The study setting was a northern Swedish population-based cohort, including 109,792 participants with prospectively collected health- and lifestyle-related data. For 592 participants who later developed colorectal cancer, archival tumor tissue samples were used to assess the density of CD3+ and CD8+ cytotoxic T cells by IHC. Odds ratios for associations between self-reported, prediagnostic recreational physical activity and immune cell infiltration were estimated by ordinal logistic regression. RESULTS Recreational physical activity >3 times per week was associated with a higher density of CD8+ T cells in the tumor front and center compared with participants reporting no recreational physical activity. Odds ratios were 2.77 (95% CI, 1.21-6.35) and 2.85 (95% CI, 1.28-6.33) for the tumor front and center, respectively, after adjustment for sex, age at diagnosis, and tumor stage. The risk estimates were consistent after additional adjustment for several potential confounders. For CD3, no clear associations were found. CONCLUSIONS Physical activity may promote the infiltration of CD8+ immune cells in the tumor microenvironment of colorectal cancer. IMPACT The study provides some evidence on how physical activity may alter the prognosis in colorectal cancer.
Collapse
Affiliation(s)
- David Renman
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden.,Corresponding Author: David Renman, Department of Surgical and Perioperative Sciences, Umeå University, SE-90185 Umeå, Sweden. Phone: 46-61184149; E-mail:
| | - Björn Gylling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Linda Vidman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Stina Bodén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Karin Strigård
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Ulf Gunnarsson
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Sasamoto N, Wang T, Townsend MK, Hecht JL, Eliassen AH, Song M, Terry KL, Tworoger SS, Harris HR. Prospective Analyses of Lifestyle Factors Related to Energy Balance and Ovarian Cancer Risk by Infiltration of Tumor-Associated Macrophages. Cancer Epidemiol Biomarkers Prev 2021; 30:920-926. [PMID: 33653814 PMCID: PMC8102357 DOI: 10.1158/1055-9965.epi-20-1686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Lifestyle factors related to energy balance have been associated with ovarian cancer risk and influence the tumor immune microenvironment, including tumor-associated macrophages (TAM). However, no studies have assessed whether these factors differentially impact ovarian cancer risk by TAM densities. METHODS We conducted a prospective analysis in the Nurses' Health Studies to examine the associations of physical activity, sitting time, and a food-based empirical dietary inflammatory pattern (EDIP) score with invasive epithelial ovarian cancer risk by TAM density assessed by immunohistochemistry. We considered density of CD68 (marker of total TAMs) and CD163 (marker of pro-carcinogenic M2-type TAMs), and their ratios. We used multivariable Cox proportional hazards regression to calculate hazard ratios (HR) and 95% confidence intervals (CI) of exposures with risk of ovarian tumors with high versus low TAMs, including analyses stratified by body mass index. RESULTS Analyses included 312 incident ovarian cancer cases with TAM measurements. Physical activity, sitting time, and EDIP score were not differentially associated with ovarian cancer risk by TAM densities (P heterogeneity > 0.05). Among overweight and obese women, higher EDIP score was associated with increased risk of CD163 low-density tumors (HR comparing extreme tertiles, 1.57; 95% CI, 0.88-2.80; P trend = 0.01), but not CD163 high-density tumors (comparable HR, 1.16; 95% CI, 0.73-1.86; P trend = 0.24), though this difference was not statistically significant (P heterogeneity = 0.22). CONCLUSIONS We did not observe differential associations between lifestyle factors and ovarian cancer risk by TAM densities. IMPACT Future investigations examining the interplay between other ovarian cancer risk factors and the tumor immune microenvironment may help provide insight into ovarian cancer etiology.
Collapse
Affiliation(s)
- Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Tianyi Wang
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mary K Townsend
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kathryn L Terry
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Holly R Harris
- Division of Public Health Sciences, Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department in Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Abu N, Othman N, Ab Razak NS, Bakarurraini NAAR, Nasir SN, Soh JEC, Mazlan L, Azman ZAM, Jamal R. Extracellular Vesicles Derived From Colorectal Cancer Affects CD8 T Cells: An Analysis Based on Body Mass Index. Front Cell Dev Biol 2020; 8:564648. [PMID: 33324632 PMCID: PMC7726136 DOI: 10.3389/fcell.2020.564648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most widely diagnosed cancers worldwide. It has been shown that the body-mass index (BMI) of the patients could influence the tumor microenvironment, treatment response, and overall survival rates. Nevertheless, the mechanism on how BMI affects the tumorigenesis process, particularly the tumor microenvironment is still elusive. Herein, we postulate that extracellular vesicles (EVs) from CRC patients and non-CRC volunteers with different BMI could affect immune cells differently, in CD8 T cells particularly. We isolated the EVs from the archived serum of CRC patients with high and low BMI, as well as healthy controls with similar BMI status. The EVs were further characterized via electron microscopy, western blot and dynamic light scattering. Then, functional analysis was performed on CD8 T cells including apoptosis, cell proliferation, gene expression profiling and cytokine release upon co-incubation with the different EVs. Our results suggest that CRC-derived EVs were able to regulate the CD8 T cells. In some assays, low BMI EVs were functionally different than high BMI EVs. This study highlights the possible difference in the regulatory mechanism of cancer patients-derived EVs, especially on CD8 T cells.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute, UKM Medical Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norahayu Othman
- UKM Medical Molecular Biology Institute, UKM Medical Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur' Syahada Ab Razak
- UKM Medical Molecular Biology Institute, UKM Medical Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Siti Nurmi Nasir
- UKM Medical Molecular Biology Institute, UKM Medical Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Joanne Ern Chi Soh
- UKM Medical Molecular Biology Institute, UKM Medical Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Luqman Mazlan
- Department of Surgery, UKM Medical Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zairul Azwan Mohd Azman
- Department of Surgery, UKM Medical Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, UKM Medical Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Grumish EL, Armstrong AR, Voigt RM, Forsyth CB, Bishehsari F. Alcohol-Induced Immune Dysregulation in the Colon Is Diurnally Variable. Visc Med 2020; 36:212-219. [PMID: 32775352 DOI: 10.1159/000507124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction Alcohol increases the risk of colon cancer. Colonic inflammation mediates the effects of alcohol on colon carcinogenesis. Circadian rhythm disruption enhances the alcohol's effect on colonic inflammation and cancer. Objective Here, we investigate the diurnal variation of lymphocyte infiltration in the colonic mucosa in response to alcohol. Methods Sixty C57BL6/J mice were fed a chow diet, and gavaged with alcohol at a specific time once per day for 3 consecutive days. Immunohistochemistry and immunofluorescence staining were used to quantify total, effector, and regulatory T cells in the colon. Student's t test, one-way ANOVA, and two-way ANOVA were used to determine significance. Results Following the alcohol binge, the composition of immune T cell subsets in the mouse colon was time-dependent. Alcohol did not alter the total number of CD3+ T cells. However, upon alcohol treatment, T-bet+ T helper 1 (Th1) cells appeared to dominate the T cell population following a reduction in Foxp3+ regulatory T cell (Treg) numbers. Depletion of Tregs was time-dependent, and their numbers were dramatically reduced when alcohol was administered during the rest phase. A reduction in Tregs significantly increased the Th1/Treg ratio, resulting in a more proinflammatory milieu. Conclusions Alcohol enhanced the proinflammatory profile in the colon mucosa, as demonstrated by a higher T-bet+/Foxp3+ ratio, especially during the rest phase. These findings may partly account for the interaction of circadian rhythm disruption with alcohol in colon inflammation and cancer.
Collapse
Affiliation(s)
- Eve Lauren Grumish
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Andrew R Armstrong
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Robin M Voigt
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Christopher B Forsyth
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Faraz Bishehsari
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
13
|
Carr PR, Amitay EL, Jansen L, Alwers E, Roth W, Herpel E, Kloor M, Schneider M, Bläker H, Chang-Claude J, Brenner H, Hoffmeister M. Association of BMI and major molecular pathological markers of colorectal cancer in men and women. Am J Clin Nutr 2020; 111:562-569. [PMID: 31897467 DOI: 10.1093/ajcn/nqz315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Observational studies have consistently shown that a high BMI is associated with increased risk of colorectal cancer (CRC). However, the underlying mechanisms linking obesity to CRC remain unclear. OBJECTIVES To investigate the associations of BMI and CRC by major molecular pathological subtypes of CRC. METHODS This analysis included 2407 cases and 2454 controls from a large German population-based case-control study. Information on recent weight and height as well as other demographic and lifestyle data were obtained by standardized interviews. Multinomial logistic regression was used to estimate ORs and 95% CIs for the associations between BMI and risk of CRC by major molecular pathological features: microsatellite instability (MSI), CpG island methylator phenotype (CIMP), B-Raf proto-oncogene serine/threonine kinase (BRAF) mutation, and Kirsten rat sarcoma viral oncogene homolog gene (KRAS) mutation. RESULTS Among women, a higher BMI was differentially and more strongly associated with risk of MSI CRC (OR per 5 kg/m2: 1.69; 95% CI: 1.34, 2.12; Pheterogeneity ≤ 0.001), CIMP-high CRC (OR per 5 kg/m2: 1.57; 95% CI: 1.30, 1.89; Pheterogeneity ≤ 0.001), BRAF-mutated CRC (OR per 5 kg/m2: 1.56; 95% CI: 1.22, 1.99; Pheterogeneity = 0.04), and KRAS-wildtype CRC (OR per 5 kg/m2: 1.35; 95% CI: 1.17, 1.54; Pheterogeneity = 0.01), compared with the risk of CRC in subjects with the molecular feature counterpart. In men, no meaningful differences in CRC risk were observed for the investigated molecular feature pairs. For the association of BMI with MSI CRC, we observed effect modification by sex (Pinteraction = 0.04). Also, in women, the risk of CRC with the serrated pathway features was more strongly increased with higher BMI than risk of CRC with the traditional pathway features (OR per 5 kg/m2: 1.73; 95% CI: 1.28, 2.34; Pheterogeneity = 0.01). CONCLUSIONS In women, the relation between BMI and MSI-high CRC seems to be stronger than that between BMI and microsatellite-stable CRC. However, a validation in an independent cohort is needed. This observational study was registered at the German Clinical Trials Register (http://www.drks.de; study ID: DRKS00011793), an approved primary register in the WHO network.
Collapse
Affiliation(s)
- Prudence R Carr
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Schneider
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, Charité University Medicine, Berlin, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.,Genetic Tumor Epidemiology Group, University Medical Center Hamburg-Eppendorf, University Cancer Center Hamburg, Hamburg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
14
|
Carr PR, Alwers E, Bienert S, Weberpals J, Kloor M, Brenner H, Hoffmeister M. Lifestyle factors and risk of sporadic colorectal cancer by microsatellite instability status: a systematic review and meta-analyses. Ann Oncol 2019; 29:825-834. [PMID: 29438474 DOI: 10.1093/annonc/mdy059] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction The association of lifestyle factors with molecular pathological subtypes of colorectal cancer (CRC), such as microsatellite instability (MSI), could provide further knowledge about the colorectal carcinogenic process. The aim of this review was to evaluate possible associations between lifestyle factors and risk of sporadic CRC by MSI status. Methods PubMed and Web of Science were searched for studies investigating the association between alcohol, body mass index, dietary fiber, hormone replacement therapy (HRT), non-steroidal anti-inflammatory drugs, physical activity, red meat, smoking, or statin use, with MSI-high (MSI-H) and microsatellite stable (MSS) CRC. Meta-analyses were carried out to calculate summary relative risks (sRR). Results Overall, 31 studies reporting on the association between lifestyle factors and CRC according to MSI status were included in this review. Ever smoking was associated with MSI-H (sRR = 1.62; 95% CI: 1.40-1.88) and MSS/MSI-low CRC (sRR = 1.10; 95% CI: 1.01-1.20), but the association was significantly stronger for MSI-H CRC. The use of HRT was associated with a 20% decrease (sRR = 0.80; 95% CI: 0.73-0.89) in the risk of MSS CRC, but was not associated with MSI-H CRC. An increase in body mass index per 5 kg/m2 was equally associated with MSS and MSI-H CRC (sRR = 1.22, in both cases), but was statistically significant for MSS CRC only (95% CI: 1.11-1.34 and 0.94-1.58, respectively). Limited evidence for associations between other lifestyle factors and CRC by MSI status exists. Conclusions Lifestyle factors, such as HRT and smoking are differentially associated with the risk of MSI-H and MSS CRC. Further research on associations of lifestyle factors and CRC subtypes is necessary to provide a better understanding of the CRC disease pathway.
Collapse
Affiliation(s)
- P R Carr
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - E Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Bienert
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Weberpals
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - H Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Kim YJ, Lee CM, Kim S, Jang JW, Lee SY, Lee SH. Risk of Parkinson’s disease after colectomy: longitudinal follow-up study using a national sample cohort. J Neurol 2019; 267:513-521. [DOI: 10.1007/s00415-019-09617-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 11/02/2019] [Indexed: 12/20/2022]
|
16
|
Bishehsari F, Engen PA, Voigt RM, Swanson G, Shaikh M, Wilber S, Naqib A, Green SJ, Shetuni B, Forsyth CB, Saadalla A, Osman A, Hamaker BR, Keshavarzian A, Khazaie K. Abnormal Eating Patterns Cause Circadian Disruption and Promote Alcohol-Associated Colon Carcinogenesis. Cell Mol Gastroenterol Hepatol 2019; 9:219-237. [PMID: 31689559 PMCID: PMC6957855 DOI: 10.1016/j.jcmgh.2019.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Alcohol intake with circadian rhythm disruption (CRD) increases colon cancer risk. We hypothesized that eating during or around physiologic rest time, a common habit in modern society, causes CRD and investigated the mechanisms by which it promotes alcohol-associated colon carcinogenesis. METHODS The effect of feeding time on CRD was assessed using B6 mice expressing a fusion protein of PERIOD2 and LUCIFERASE (PER2::LUC) were used to model colon polyposis and to assess the effects of feeding schedules, alcohol consumption, and prebiotic treatment on microbiota composition, short-chain fatty acid levels, colon inflammation, and cancer risk. The relationship between butyrate signaling and a proinflammatory profile was assessed by inactivating the butyrate receptor GPR109A. RESULTS Eating at rest (wrong-time eating [WTE]) shifted the phase of the colon rhythm in PER2::LUC mice. In TS4Cre × APClox468 mice, a combination of WTE and alcohol exposure (WTE + alcohol) decreased the levels of short-chain fatty acid-producing bacteria and of butyrate, reduced colonic densities of regulatory T cells, induced a proinflammatory profile characterized by hyperpermeability and an increased mucosal T-helper cell 17/regulatory T cell ratio, and promoted colorectal cancer. Prebiotic treatment improved the mucosal inflammatory profile and attenuated inflammation and cancer. WTE + alcohol-induced polyposis was associated with increased signal transducer and activator of transcription 3 expression. Decreased butyrate signaling activated the epithelial signal transducer and activator of transcription 3 in vitro. The relationship between butyrate signaling and a proinflammatory profile was confirmed in human colorectal cancers using The Cancer Genome Atlas. CONCLUSIONS Abnormal timing of food intake caused CRD and interacts with alcohol consumption to promote colon carcinogenesis by inducing a protumorigenic inflammatory profile driven by changes in the colon microbiota and butyrate signaling. Accession number of repository for microbiota sequence data: raw FASTQ data were deposited in the NCBI Sequence Read Archive under project PRJNA523141.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois.
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Garth Swanson
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Sherry Wilber
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Ankur Naqib
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois; Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois
| | - Stefan J Green
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois; Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Brandon Shetuni
- Northwestern Medicine, Central DuPage Hospital, Winfield, Illinois
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | | | - Abu Osman
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois; Department of Physiology, Rush University Medical Center, Chicago, Illinois; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
17
|
Berntsson J, Eberhard J, Nodin B, Leandersson K, Larsson AH, Jirström K. Pre-diagnostic anthropometry, sex, and risk of colorectal cancer according to tumor immune cell composition. Oncoimmunology 2019; 8:e1664275. [PMID: 31741761 PMCID: PMC6844316 DOI: 10.1080/2162402x.2019.1664275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is a well-established risk factor for colorectal cancer (CRC), but the association with the tumor microenvironment has been sparsely described. Herein, we examined the relationship between pre-diagnostic anthropometry and CRC risk according to tumor immune cell composition, with particular reference to potential sex differences. The density of different immune cell subsets was assessed by immunohistochemistry in tissue microarrays with tumors from 584 incident CRC cases in a prospective, population-based cohort (n = 28098). Multivariable Cox regression models, adjusted for age, smoking, alcohol intake, and educational level, were applied to calculate risk of immune marker-defined CRC in relation to quartiles of pre-diagnostic height, weight, body mass index (BMI), waist and hip circumferences, waist-hip ratio (WHR), and body fat percentage (BFP). Obesity was all over significantly associated with risk of CRC with low density of FoxP3+ T cells and low programmed cell-death protein 1 (PD-L1) expression on tumor cells, but with high density of CD8+ T cells and CD20+ B cells. In women, obesity was significantly associated with risk of PD-L1 high tumors (p= 0.009 for weight, p= 0.039 for BMI). Contrastingly, in men, obesity defined by all anthropometric factors was significantly associated with PD-L1 low tumors (p= 0.005 for weight, p = 0.002 for BMI, p<0.001 for waist, p= 0.011 for hip, p<0.001 for WHR, and p= 0.004 for BFP). In summary, obesity appears to influence the immune landscape of CRC, possibly in a sex-dependent manner. Thus, anthropometry and sex may be important factors to take into account when assessing the prognostic or predictive value of relevant complementary immune biomarkers.
Collapse
Affiliation(s)
- Jonna Berntsson
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Jakob Eberhard
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna H Larsson
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Omura Y, Toiyama Y, Okugawa Y, Yamamoto A, Yin C, Kusunoki K, Kusunoki Y, Shigemori T, Ide S, Kitajima T, Fujikawa H, Yasuda H, Hiro J, Yoshiyama S, Ohi M, Kusunoki M. Crohn's-Like Lymphoid Reaction is Associated with Oncological Prognosis and Nutritional Status in Patients with Pathological Stage II/III Gastric Cancer. Ann Surg Oncol 2019; 27:259-267. [PMID: 31414294 DOI: 10.1245/s10434-019-07709-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Peritumoral lymphoid aggregates, termed Crohn's-like lymphoid reaction (CLR), are markers of an antitumor immune response, which is an important predictor of patient outcome. In this study, we investigated the prognostic utility of CLR and its relationship with nutritional status in patients with gastric cancer (GC). METHODS The study included 170 patients who underwent curative surgery for pathological stage (pStage) II/III GC. The maximum diameters of peritumoral and normal mucosal CLR aggregates were measured, and the median peritumoral diameter (0.57 mm) was used to stratify patients into two groups (large-CLR and small-CLR). The relationships between CLR size and preoperative nutritional status (body mass index, body composition status, Onodera's prognostic nutritional index), tumor-infiltrating CD8+ T-lymphocyte count, and survival were evaluated. RESULTS Peritumoral CLR aggregates were significantly larger than aggregates in the normal mucosa. Clinicopathological variables were not significantly different between the two patient groups; however, the large-CLR group had better cancer-specific survival (p = 0.018) and recurrence-free survival (p = 0.03) than the small-CLR group. Multivariate analysis revealed that CLR size was an independent prognostic factor for cancer-specific survival [hazard ratio (HR) 2.13, 95% confidence interval (CI) 1.3-3.56, p = 0.002] and recurrence-free survival (HR 1.96, 95% CI 1.22-3.19, p = 0.005). Nutritional status markers were significantly poorer for the small-CLR group than the large-CLR group. CD8+ T-cell tumor infiltration was positively correlated with CLR size but not with patient survival. CONCLUSIONS CLR size correlated with patient nutritional status and prognosis and may be helpful in identifying high-risk populations of pStage II/III GC patients.
Collapse
Affiliation(s)
- Yusuke Omura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Akira Yamamoto
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Chengzeng Yin
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kurando Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yukina Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tsunehiko Shigemori
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shozo Ide
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takahito Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroyuki Fujikawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiromi Yasuda
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Junichiro Hiro
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shigeyuki Yoshiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
19
|
Keum N, Liu L, Hamada T, Qian ZR, Nowak JA, Cao Y, da Silva A, Kosumi K, Song M, Nevo D, Wang M, Chan AT, Meyerhardt JA, Fuchs CS, Wu K, Ogino S, Nishihara R, Zhang X. Calcium intake and colon cancer risk subtypes by tumor molecular characteristics. Cancer Causes Control 2019; 30:637-649. [PMID: 30963391 DOI: 10.1007/s10552-019-01165-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/28/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND A preventive potential of high calcium intake against colorectal cancer has been indicated for distal colon cancer, which is inversely associated with high-level CpG island methylator phenotype (CIMP), high-level microsatellite instability (MSI), and BRAF and PIK3CA mutations. In addition, BRAF mutation is strongly inversely correlated with KRAS mutation. We hypothesized that the association between calcium intake and colon cancer risk might vary by these molecular features. METHODS We prospectively followed 88,506 women from the Nurses' Health Study and 47,733 men from the Health Professionals Follow-up Study for up to 30 years. Duplication-method Cox proportional cause-specific hazards regression was used to estimate multivariable hazard ratios (HRs), and 95% confidence intervals (95% CIs) for the associations between calcium intake and the risk of colon cancer subtypes. By Bonferroni correction, the α-level was adjusted to 0.01. RESULTS Based on 853 colon cancer cases, the inverse association between dietary calcium intake and colon cancer risk differed by CIMP status (pheterogeneity = 0.01). Per each 300 mg/day increase in intake, multivariable HRs were 0.84 (95% CI 0.76-0.94) for CIMP-negative/low and 1.12 (95% CI 0.93-1.34) for CIMP-high. Similar differential associations were suggested for MSI subtypes (pheterogeneity = 0.02), with the corresponding HR being 0.86 (95% CI 0.77-0.95) for non-MSI-high and 1.10 (95% CI 0.92-1.32) for MSI-high. No differential associations were observed by BRAF, KRAS, or PIK3CA mutations. CONCLUSION The inverse association between dietary calcium intake and colon cancer risk may be specific to CIMP-negative/low and possibly non-MSI-high subtypes.
Collapse
Affiliation(s)
- NaNa Keum
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Building 2, 3rd Floor, 665 Huntington Avenue, Boston, MA, 02115, USA. .,Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea.
| | - Li Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Building 2, 3rd Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Zhi Rong Qian
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Annacarolina da Silva
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Building 2, 3rd Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Nevo
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molin Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, New Haven, CT, USA.,Smilow Cancer Hospital, New Haven, CT, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Building 2, 3rd Floor, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Shuji Ogino
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Building 2, 3rd Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Reiko Nishihara
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Building 2, 3rd Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Hamada T, Nowak JA, Milner DA, Song M, Ogino S. Integration of microbiology, molecular pathology, and epidemiology: a new paradigm to explore the pathogenesis of microbiome-driven neoplasms. J Pathol 2019; 247:615-628. [PMID: 30632609 PMCID: PMC6509405 DOI: 10.1002/path.5236] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/24/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023]
Abstract
Molecular pathological epidemiology (MPE) is an integrative transdisciplinary field that addresses heterogeneous effects of exogenous and endogenous factors (collectively termed 'exposures'), including microorganisms, on disease occurrence and consequences, utilising molecular pathological signatures of the disease. In parallel with the paradigm of precision medicine, findings from MPE research can provide aetiological insights into tailored strategies of disease prevention and treatment. Due to the availability of molecular pathological tests on tumours, the MPE approach has been utilised predominantly in research on cancers including breast, lung, prostate, and colorectal carcinomas. Mounting evidence indicates that the microbiome (inclusive of viruses, bacteria, fungi, and parasites) plays an important role in a variety of human diseases including neoplasms. An alteration of the microbiome may be not only a cause of neoplasia but also an informative biomarker that indicates or mediates the association of an epidemiological exposure with health conditions and outcomes. To adequately educate and train investigators in this emerging area, we herein propose the integration of microbiology into the MPE model (termed 'microbiology-MPE'), which could improve our understanding of the complex interactions of environment, tumour cells, the immune system, and microbes in the tumour microenvironment during the carcinogenic process. Using this approach, we can examine how lifestyle factors, dietary patterns, medications, environmental exposures, and germline genetics influence cancer development and progression through impacting the microbial communities in the human body. Further integration of other disciplines (e.g. pharmacology, immunology, nutrition) into microbiology-MPE would expand this developing research frontier. With the advent of high-throughput next-generation sequencing technologies, researchers now have increasing access to large-scale metagenomics as well as other omics data (e.g. genomics, epigenomics, proteomics, and metabolomics) in population-based research. The integrative field of microbiology-MPE will open new opportunities for personalised medicine and public health. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jonathan A Nowak
- Department of Pathology Program in MPE Molecular Pathological Epidemiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois, USA
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology Program in MPE Molecular Pathological Epidemiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Greathouse KL, White JR, Padgett RN, Perrotta BG, Jenkins GD, Chia N, Chen J. Gut microbiome meta-analysis reveals dysbiosis is independent of body mass index in predicting risk of obesity-associated CRC. BMJ Open Gastroenterol 2019; 6:e000247. [PMID: 30899534 PMCID: PMC6398873 DOI: 10.1136/bmjgast-2018-000247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Objective Obesity is a risk factor for colorectal cancer (CRC), accounting for more than 14% of CRC incidence. Microbial dysbiosis and chronic inflammation are common characteristics in both obesity and CRC. Human and murine studies, together, demonstrate the significant impact of the microbiome in governing energy metabolism and CRC development; yet, little is understood about the contribution of the microbiome to development of obesity-associated CRC as compared to individuals who are not obese. Design In this study, we conducted a meta-analysis using five publicly available stool and tissue-based 16S rRNA and whole genome sequencing (WGS) data sets of CRC microbiome studies. High-resolution analysis was employed for 16S rRNA data, which allowed us to achieve species-level information to compare with WGS. Results Characterisation of the confounders between studies, 16S rRNA variable region and sequencing method did not reveal any significant effect on alpha diversity in CRC prediction. Both 16S rRNA and WGS were equally variable in their ability to predict CRC. Results from diversity analysis confirmed lower diversity in obese individuals without CRC; however, no universal differences were found in diversity between obese and non-obese individuals with CRC. When examining taxonomic differences, the probability of being classified as CRC did not change significantly in obese individuals for all taxa tested. However, random forest classification was able to distinguish CRC and non-CRC stool when body mass index was added to the model. Conclusion Overall, microbial dysbiosis was not a significant factor in explaining the higher risk of colon cancer among individuals with obesity.
Collapse
Affiliation(s)
- K Leigh Greathouse
- Nutrition Sciences Division, Robbins College of Health and Human Science, Baylor University, Waco, Texas, USA.,Department of Biology, Baylor University, Waco, Texas, USA
| | | | - R Noah Padgett
- Department of Educational Psychology, Baylor University, Waco, Texas, USA
| | | | - Gregory D Jenkins
- Department of Surgery, Mayo Clinic, Rochester, New York, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, New York, USA
| | - Nicholas Chia
- Department of Surgery, Mayo Clinic, Rochester, New York, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, New York, USA.,Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, New York, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, New York, USA
| |
Collapse
|
22
|
Singh R, Dumlupinar G, Andersson-Engels S, Melgar S. Emerging applications of upconverting nanoparticles in intestinal infection and colorectal cancer. Int J Nanomedicine 2019; 14:1027-1038. [PMID: 30799920 PMCID: PMC6369841 DOI: 10.2147/ijn.s188887] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer is the abnormal growth of cells in colon or rectum. Recent findings have acknowledged the role of bacterial infection and chronic inflammation in colorectal cancer initiation and progression. In order to detect and treat precancerous lesions, new tools are required, which may help to prevent or identify colorectal cancer at an early stage. To date, several different screening tests are available, including endoscopy, stool-based blood tests, and radiology-based tests. However, these analyses either lack sensitivity or are of an invasive nature. The use of fluorescently labeled probes can increase the detection sensitivity. However, autofluorescence, photobleaching, and photodamage are commonly encountered problems with fluorescence imaging. Upconverting nanoparticles (UCNPs) are recently developed lanthanide-doped nanocrystals that can be used as light-triggered luminescent probes and in drug delivery systems. In this review, we comprehensively summarize the recent developments and address future prospects of UCNP-based applications for diagnostics and therapeutic approaches associated with intestinal infection and colorectal cancer.
Collapse
Affiliation(s)
- Raminder Singh
- APC Microbiome Ireland, University College Cork, Cork, Ireland,
- School of Medicine, University College Cork, Cork, Ireland
| | - Gokhan Dumlupinar
- Irish Photonics Integration Centre, Tyndall National Institute, Cork, Ireland
- Department of Physics, University College Cork, Cork, Ireland
| | - Stefan Andersson-Engels
- Irish Photonics Integration Centre, Tyndall National Institute, Cork, Ireland
- Department of Physics, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland,
| |
Collapse
|
23
|
Myte R, Gylling B, Häggström J, Häggström C, Zingmark C, Löfgren Burström A, Palmqvist R, Van Guelpen B. Metabolic factors and the risk of colorectal cancer by KRAS and BRAF mutation status. Int J Cancer 2019; 145:327-337. [PMID: 30613980 DOI: 10.1002/ijc.32104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
Factors related to energy metabolism and the metabolic syndrome, such as higher body mass index (BMI), blood glucose, or blood lipids, and blood pressure, are associated with an increased risk of colorectal cancer (CRC). However, CRC is a heterogeneous disease, developing through distinct pathways with differences in molecular characteristics and prognosis, and possibly also in risk factors. For subtypes defined by KRAS and BRAF mutation status, BMI is the only metabolic factor previously studied, with inconsistent findings. We investigated whether associations between BMI, blood glucose, blood lipids, and blood pressure and CRC risk differed by tumor KRAS and BRAF mutation status in 117,687 participants from two population-based cohorts within the Northern Sweden Health and Disease Study (NSHDS). Hazard ratios (HRs) for overall CRC and CRC subtypes by metabolic factors were estimated with Cox proportional hazards regression, using multiple imputation to handle missing exposure and tumor data. During a median follow-up of 15.6 years, we acquired 1,250 prospective CRC cases, of which 766 cases had complete baseline and molecular tumor data. Consistent with previous evidence, higher BMI, total cholesterol, triglyceride levels, and blood pressure were associated with an increased risk of overall CRC (HRs per 1 standard deviation increase: 1.07 to 1.12). These associations were similar regardless of CRC subtype by KRAS and BRAF mutation status (all pheterogeneity > 0.05). The same was true for subtypes based on microsatellite instability status. Poor metabolic health may therefore be a universal mechanism for colorectal cancer, acting across multiple developmental pathways.
Collapse
Affiliation(s)
- Robin Myte
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Björn Gylling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Jenny Häggström
- Department of Statistics, Umeå School of Business and Economics, Umeå University, Umeå, Sweden
| | - Christel Häggström
- Department of Biobank Research, Umeå University, Umeå, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Ogino S, Nowak JA, Hamada T, Milner DA, Nishihara R. Insights into Pathogenic Interactions Among Environment, Host, and Tumor at the Crossroads of Molecular Pathology and Epidemiology. ANNUAL REVIEW OF PATHOLOGY 2019; 14:83-103. [PMID: 30125150 PMCID: PMC6345592 DOI: 10.1146/annurev-pathmechdis-012418-012818] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence indicates that diet, nutrition, lifestyle, the environment, the microbiome, and other exogenous factors have pathogenic roles and also influence the genome, epigenome, transcriptome, proteome, and metabolome of tumor and nonneoplastic cells, including immune cells. With the need for big-data research, pathology must transform to integrate data science fields, including epidemiology, biostatistics, and bioinformatics. The research framework of molecular pathological epidemiology (MPE) demonstrates the strengths of such an interdisciplinary integration, having been used to study breast, lung, prostate, and colorectal cancers. The MPE research paradigm not only can provide novel insights into interactions among environment, tumor, and host but also opens new research frontiers. New developments-such as computational digital pathology, systems biology, artificial intelligence, and in vivo pathology technologies-will further transform pathology and MPE. Although it is necessary to address the rarity of transdisciplinary education and training programs, MPE provides an exemplary model of integrative scientific approaches and contributes to advancements in precision medicine, therapy, and prevention.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215, USA;
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215, USA;
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois 60603, USA;
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
25
|
Wang K, Chen X, Gerke TA, Bird VY, Ghayee HK, Prosperi M. BMI trajectories and risk of overall and grade-specific prostate cancer: An observational cohort study among men seen for prostatic conditions. Cancer Med 2018; 7:5272-5280. [PMID: 30207080 PMCID: PMC6198207 DOI: 10.1002/cam4.1747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/26/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022] Open
Abstract
Background Dynamic longitudinal patterns in body mass index (BMI) have been suggested to better predict health outcomes than static measures. Effects of BMI trajectories on prostate cancer (PCa) risk have not been thoroughly explored. Methods Cohort data were derived from electronic medical records of patients who were admitted to a tertiary‐care hospital in the Southeastern USA during 1994‐2016. Patients with a history of urologic clinic visit because of any prostatic condition and with repeatedly measured BMI (n = 4857) were included. BMI trajectories prior to PCa diagnosis were assessed using the developmental trajectory analysis method. Cox proportional hazards regression modeling was used to estimate adjusted hazard ratio (aHR) with 95% confidence intervals (CIs) for overall and grade‐specific PCa. Results The median age (interquartile range, IQR) of the participants at baseline was 63 (54, 72) years. Over a median follow‐up (IQR) of 8.0 (2.0, 13.0) years, 714 (14.7%, 714/4857) were diagnosed with PCa. Men with growing BMI trajectory progressing from normal weight to overweight/obese had a 76% increased PCa risk (aHR = 1.76; 95% CI: 1.25, 2.48), and men being obese and experiencing progressive weight gain had 3.72‐fold increased PCa risk (aHR = 3.72; 95% CI: 1.60, 8.66), compared to men with persistently normal BMI. The associations were more pronounced for PCa with Gleason score ≥7. No significant association of decreasing BMI trajectory progressing from obese to normal BMI was found with PCa risk. Conclusions Progressively body weight gain during middle‐to‐late adulthood was associated with increased PCa risk for both normal weight and overweight men. Further studies are warranted to confirm this finding.
Collapse
Affiliation(s)
- Kai Wang
- Department of Epidemiology, University of Florida, Gainesville, Florida
| | - Xinguang Chen
- Department of Epidemiology, University of Florida, Gainesville, Florida
| | - Travis A Gerke
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Victoria Y Bird
- Department of Urology, University of Florida, Gainesville, Florida
| | - Hans K Ghayee
- Department of Internal Medicine, Division of Endocrinology, University of Florida and the Malcom Randall VA Medical Center, Gainesville, Florida
| | - Mattia Prosperi
- Department of Epidemiology, University of Florida, Gainesville, Florida
| |
Collapse
|
26
|
WANG W, DONG Z, ZHANG X, LI W, LI P, CHEN X. Dietary and the Risk of Sporadic Colorectal Cancer in China: A Case-control Study. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:1327-1335. [PMID: 30320007 PMCID: PMC6174056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND High-fat diets have been considered a risk factor for sporadic colorectal cancer (CRC) in Western countries. However, data for this phenomenon are lacking in China. The purpose of this study was to comprehensively evaluate the association between diet and the risk for sporadic CRC in Shandong Province, China. METHODS In this case-control study, 317 patients with sporadic CRC and 317 controls were collected in Shandong Province, China. All the samples were collected on the basis of rigorous screening criteria. The data were analyzed using a χ2 test, univariate or multivariate conditional logistic regression, and stratified analysis. RESULTS Multivariate logistic regression showed that the following are risk factors for sporadic CRC (all P<0.05): consumption of pork, fried food or barbecued meat; high Body Mass Index (BMI); alcohol abuse; psychosis; and the presence of a factory causing pollution near the home. Moreover, univariate analysis revealed the following qualities were also positively associated with CRC (all P<0.05): intake of animal oil, consuming brawn and kipper, smoking, exhibiting frequent anger, and poor sleep quality. Eating fresh fruit was inversely correlated with the incidence of CRC (P=0.012). Further stratified analysis demonstrated that BMI and the consumption of fried food, barbecued meat, or garlic were correlated with colon cancer. However, alcohol abuse and psychosis were related to an increased risk for rectal cancer. CONCLUSION Dietary factors are related to sporadic CRC in Shandong Province. Future interventions should focus on reducing the related risk factors while advocating for practice of the protective factors.
Collapse
Affiliation(s)
- Wenfei WANG
- Humanistic Medicine Research Center, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Zhaogang DONG
- Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Xin ZHANG
- Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Wei LI
- Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Peilong LI
- Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Xiaoyang CHEN
- Humanistic Medicine Research Center, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China,Corresponding Author:
| |
Collapse
|
27
|
Bernstein AP, Fram EB, Sankin A, Kovac E, Srivastava A, DiVito J, Stern JM. A comparison of perinephric fat surface area and Mayo Adhesive Probability score in predicting malignancy in T1 renal masses. Urol Oncol 2018; 36:499.e17-499.e22. [PMID: 30166240 DOI: 10.1016/j.urolonc.2018.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Recent studies have proposed that nearby fat deposits may have metabolic influence on kidney cancer pathobiology. Both fat quantity and quality may play unique roles in this complex relationship. As such, we investigated whether perinephric fat surface area (PFA), a quantitative measure of fat, or Mayo Adhesive Probability (MAP) score, a qualitative measure, were predictive of malignant pathology or Fuhrman grade in small renal masses. METHODS A total of 317 patients undergoing minimally invasive partial nephrectomy between 2010 and 2016 for renal masses were retrospectively reviewed. Preoperative abdominal CT and MRI scans were measured for PFA and MAP scores. Multiple binary logistic regression models were created to identify predictive factors of malignant disease and Fuhrman grade. RESULTS A total of 253 patients had malignant masses, while 64 had benign masses. A total of 189 of the malignant masses were T1a, while 64 were designated T1b. A total of 221 patients with malignant masses had reported Fuhrman grades. Of these 211 patients, 143 (64.7%) had low-grade and 78 (35.3%) had high-grade disease. Mean PFA was 18.0 ± 13.3 cm2, while mean MAP score was 2.6 ± 1.2. Binary logistic regression analysis yielded three variables in the best-fit model for predictors of malignant pathology: MAP score (OR = 1.374, 95% CI: 1.007-1.873, P = 0.045), male sex (OR = 2.058, 95% CI: 1.004-4.218, P = 0.049), and BMI (OR = 1.064, 95% CI: 0.998-1.135, P = 0.059). Neither MAP nor PFA was predictive of Fuhrman grade. CONCLUSIONS MAP score, a measure of perinephric fat quality, but not PFA, a qualitative measure of fat quantity, was predictive of malignant pathology, raising the question whether fat quality rather than quantity may be involved in the pathophysiology of RCC in a large and diverse patient population. Understanding the increasing burden of obesity, further studies are needed to elaborate on these findings and to discern the exact relationship between perinephric fat deposits and renal tumorigenesis.
Collapse
Affiliation(s)
| | - Ethan B Fram
- Albert Einstein College of Medicine, Bronx, NY; Montefiore Medical Center, Medical Arts Pavilion, Bronx, NY
| | - Alexander Sankin
- Albert Einstein College of Medicine, Bronx, NY; Montefiore Medical Center, Medical Arts Pavilion, Bronx, NY
| | - Evan Kovac
- Albert Einstein College of Medicine, Bronx, NY; Montefiore Medical Center, Medical Arts Pavilion, Bronx, NY
| | - Abhishek Srivastava
- Albert Einstein College of Medicine, Bronx, NY; Montefiore Medical Center, Medical Arts Pavilion, Bronx, NY
| | - Joseph DiVito
- Albert Einstein College of Medicine, Bronx, NY; Montefiore Medical Center, Medical Arts Pavilion, Bronx, NY
| | - Joshua M Stern
- Albert Einstein College of Medicine, Bronx, NY; Montefiore Medical Center, Medical Arts Pavilion, Bronx, NY.
| |
Collapse
|
28
|
Abar L, Vieira AR, Aune D, Sobiecki JG, Vingeliene S, Polemiti E, Stevens C, Greenwood DC, Chan DSM, Schlesinger S, Norat T. Height and body fatness and colorectal cancer risk: an update of the WCRF-AICR systematic review of published prospective studies. Eur J Nutr 2018; 57:1701-1720. [PMID: 29080978 PMCID: PMC6060816 DOI: 10.1007/s00394-017-1557-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE There is no published dose-response meta-analysis on the association between height and colorectal cancer risk (CRC) by sex and anatomical sub-site. We conducted a meta-analysis of prospective studies on the association between height and CRC risk with subgroup analysis and updated evidence on the association between body fatness and CRC risk. METHODS PubMed and several other databases were searched up to November 2016. A random effects model was used to calculate dose-response summary relative risks (RR's). RESULTS 47 studies were included in the meta-analyses including 50,936 cases among 7,393,510 participants. The findings support the existing evidence regarding a positive association of height, general and abdominal body fatness and CRC risk. The summary RR were 1.04 [95% (CI)1.02-1.05, I² = 91%] per 5 cm increase in height, 1.02 [95% (CI)1.01-1.02, I² = 0%] per 5 kg increase in weight, 1.06 [95% (CI)1.04-1.07, I² = 83%] per 5 kg/m2 increase in BMI, 1.02 [95% (CI)1.02-1.03, I² = 4%] per 10 cm increase in waist circumference, 1.03 [95% (CI)1.01-1.05, I² = 16%] per 0.1 unit increase in waist to hip ratio. The significant association for height and CRC risk was similar in men and women. The significant association for BMI and CRC risk was stronger in men than in women. CONCLUSION The positive association between height and risk of CRC suggests that life factors during childhood and early adulthood might play a role in CRC aetiology. Higher general and abdominal body fatness during adulthood are risk factors of CRC and these associations are stronger in men than in women.
Collapse
Affiliation(s)
- Leila Abar
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK.
| | - Ana Rita Vieira
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK
| | - Jakub G Sobiecki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK
| | - Snieguole Vingeliene
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK
| | - Elli Polemiti
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK
| | - Christophe Stevens
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK
| | - Darren C Greenwood
- Biostatistics Unit, Centre for Epidemiology and Biostatistics, University of Leeds, Leeds, UK
| | - Doris S M Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK
| | - Sabrina Schlesinger
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK
| | - Teresa Norat
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK
| |
Collapse
|
29
|
Açıkgöz A, Çımrın D, Ergör G. Meme, prostat, kolorektal ve akciğer kanserlerinde çevresel risk faktörleri ve risk düzeylerinin belirlenmesi: olgu-kontrol çalışması. CUKUROVA MEDICAL JOURNAL 2018. [DOI: 10.17826/cumj.345233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
30
|
Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA, Giovannucci EL, Nishihara R, Giannakis M, Garrett WS, Song M. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 2018; 67:1168-1180. [PMID: 29437869 PMCID: PMC5943183 DOI: 10.1136/gutjnl-2017-315537] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Immunotherapy strategies targeting immune checkpoints such as the CTLA4 and CD274 (programmed cell death 1 ligand 1, PD-L1)/PDCD1 (programmed cell death 1, PD-1) T-cell coreceptor pathways are revolutionising oncology. The approval of pembrolizumab use for solid tumours with high-level microsatellite instability or mismatch repair deficiency by the US Food and Drug Administration highlights promise of precision immuno-oncology. However, despite evidence indicating influences of exogenous and endogenous factors such as diet, nutrients, alcohol, smoking, obesity, lifestyle, environmental exposures and microbiome on tumour-immune interactions, integrative analyses of those factors and immunity lag behind. Immune cell analyses in the tumour microenvironment have not adequately been integrated into large-scale studies. Addressing this gap, the transdisciplinary field of molecular pathological epidemiology (MPE) offers research frameworks to integrate tumour immunology into population health sciences, and link the exposures and germline genetics (eg, HLA genotypes) to tumour and immune characteristics. Multilevel research using bioinformatics, in vivo pathology and omics (genomics, epigenomics, transcriptomics, proteomics and metabolomics) technologies is possible with use of tissue, peripheral blood circulating cells, cell-free plasma, stool, sputum, urine and other body fluids. This immunology-MPE model can synergise with experimental immunology, microbiology and systems biology. GI neoplasms represent exemplary diseases for the immunology-MPE model, given rich microbiota and immune tissues of intestines, and the well-established carcinogenic role of intestinal inflammation. Proof-of-principle studies on colorectal cancer provided insights into immunomodulating effects of aspirin, vitamin D, inflammatory diets and omega-3 polyunsaturated fatty acids. The integrated immunology-MPE model can contribute to better understanding of environment-tumour-immune interactions, and effective immunoprevention and immunotherapy strategies for precision medicine.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Flaherty DC, Jalas JR, Sim MS, Stojadinovic A, Protic M, Lee DJ, Bilchik AJ. The Negative Impact of Body Mass Index on the Tumor Microenvironment in Colon Cancer: Results of a Prospective Trial. Ann Surg Oncol 2018. [DOI: 10.1245/s10434-018-6405-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Song H, Lim DY, Jung JI, Cho HJ, Park SY, Kwon GT, Kang YH, Lee KW, Choi MS, Park JHY. Dietary oleuropein inhibits tumor angiogenesis and lymphangiogenesis in the B16F10 melanoma allograft model: a mechanism for the suppression of high-fat diet-induced solid tumor growth and lymph node metastasis. Oncotarget 2018; 8:32027-32042. [PMID: 28410190 PMCID: PMC5458266 DOI: 10.18632/oncotarget.16757] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Previously, we reported that high-fat-diet (HFD)-induced obesity stimulates melanoma progression in the B16F10 allograft model. In this study, we examined whether oleuropein (OL), the most abundant phenolic compound in olives, inhibits HFD-induced melanoma progression. Four-week-old male C57BL/6N mice were fed a HFD-diet with or without OL. After 16 weeks of feeding, B16F10-luc cells were subcutaneously injected and the primary tumor was resected 3 weeks later. OL suppressed HFD-induced solid tumor growth. In the tumor tissues, OL reduced HFD-induced expression of angiogenesis (CD31, VE-cadherin, VEGF-A, and VEGFR2), lymphangiogenesis (LYVE-1, VEGF-C, VEGF-D, and VEGFR3), and hypoxia (HIF-1α and GLUT-1) markers as well as HFD-induced increases in lipid vacuoles and M2 macrophages (MΦs). All animals were euthanized 2.5 weeks after tumor resection. OL suppressed HFD-induced increases in lymph node (LN) metastasis; expression of VEGF-A, VEGF-C, and VEGF-D in the LN; and M2-MΦs and the size of adipocytes in adipose tissues surrounding LNs. Co-culture results revealed that the crosstalk between B16F10s, M2-MΦs, and differentiated 3T3-L1 cells under hypoxic conditions increased the secretion of VEGF-A and -D, which stimulated tube formation and migration of endothelial cells (HUVECs) and lymphatic endothelial cells (LEC), respectively. Additionally, OL directly inhibited the differentiation of 3T3-L1 preadipocytes and tube formation by HUVECs and LECs. The overall results indicated that dietary OL inhibits lipid and M2-MΦ accumulation in HFD-fed mice, which contributes to decreases in VEGF secretion, thereby leading to inhibition of angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Hyerim Song
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Jae In Jung
- Division of Bio-Imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, Republic of Korea
| | - Han Jin Cho
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea.,WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - So Young Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Gyoo Taik Kwon
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.,Berry and Biofood Research Institute, Jeonbuk 56417, Republic of Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.,Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jung Han Yoon Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.,Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
33
|
Development of a new risk nomogram of perioperative major adverse cardiac events for Chinese patients undergoing colorectal carcinoma surgery. Int J Colorectal Dis 2017; 32:1157-1164. [PMID: 28526942 DOI: 10.1007/s00384-017-2812-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study is to create a new risk nomogram to predict perioperative major adverse cardiac events in patients undergoing colorectal carcinoma surgery. METHODS A total of 1899 patients who underwent colorectal carcinoma surgery at a tertiary teaching hospital in China between 2007 and 2012 were recruited. Logistic regression analysis was used to define risk factors for major adverse cardiac events. A nomogram-predicting model was built based on the logistic regression model and discrimination was tested by receiver operating characteristic curves. RESULTS Fifty-six (2.9%) among 1899 included patients developed at least one cardiac event. Eight risk factors were found in the multivariate logistic regression model, which included age ≥60 years, smoking, a history of chronic kidney disease, coronary artery disease, congestive heart failure, hypertension, preoperative albumin levels ≤35 g/L, blood transfusion ≥500 mL, and intraoperative blood pressure variability. P = 0.708 in the Hosmer-Lemeshow test indicated acceptable calibration power. Based on this multivariate model, we built a risk nomogram model for these cardiac events with an area under the curve (95% confidence interval) of 0.923 (0.889, 0.957), which demonstrated good discrimination of this model. When the probability cutoff was 1.9% (total score of 83), the nomogram model had the best sensitivity and specificity in predicting cardiac events. CONCLUSIONS A new nomogram model for predicting perioperative major adverse cardiac events in patients who had colorectal carcinoma surgery was established in this study. When the total score is >83, patients undergoing colorectal carcinoma surgery should be considered at high risk of perioperative major adverse cardiac events.
Collapse
|
34
|
Kleist B, Bagdonas M, Oommen P, Schoenhardt I, Levermann J, Poetsch M. The association between clinical outcome and CD8 + lymphocytic infiltration in advanced stages of colorectal cancer differs by latent virus infection in tumour tissue. Histopathology 2017; 72:201-215. [PMID: 28746988 DOI: 10.1111/his.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Abstract
AIMS In the near future, an immunoscore based on the quantification of lymphocytic populations can be expected as a fundamental supplement of colorectal cancer (CRC) classification. This study explored whether latent viral infection has an influence on prognostically relevant host immunity in CRC. METHODS AND RESULTS CD8+ lymphocytic infiltration in three tumour compartments of 121 CRC was compared with clinical data and occurrence of latent infection with herpes simplex virus (HSV1, HSV2), cytomegalovirus (CMV), human papillomavirus (HPV16 and HPV18) in the tumour tissue, which was determined by polymerase chain reaction (PCR). Intraepithelial CD8+ lymphocytic infiltration (IECD8+ ) showed a trend towards correlation with clinical stage (P = 0.073), significant differences between CRC with and without metastases (P = 0.001) and a significant correlation with overall survival (OS, P = 0.001). Each of these three clinical parameters showed a significant link to IECD8+ in the virus DNA-negative (P-values: 0.001-0.036), but no significant differences in the virus DNA-positive subgroup, which is consistent with a moderating effect of virus DNA on these associations. A significant correlation of CD8+ infiltration in the invasive margin (IMCD8+ ) with OS (P = 0.016) was also moderated by virus DNA. CONCLUSION Our data suggest a possible influence of latent viral infection on the association between clinical outcome and CD8+ lymphocytic infiltration in CRC tissue. After confirmation of these results by large cohort studies, a potential interaction between microbial pathogens and host immunity in CRC and its impact on prognostic immunoscores and/or new therapeutic strategies should be investigated further.
Collapse
Affiliation(s)
- Britta Kleist
- Department of Pathology, Southern Hospital Trust, Kristiansand, Norway
| | - Marius Bagdonas
- Department of Pathology, Southern Hospital Trust, Kristiansand, Norway
| | - Prakash Oommen
- Department of Pathology, Southern Hospital Trust, Kristiansand, Norway
| | - Irina Schoenhardt
- Department of Pathology, Southern Hospital Trust, Kristiansand, Norway
| | - Janina Levermann
- Institute of Legal Medicine, University Hospital Essen, Essen, Germany
| | - Micaela Poetsch
- Institute of Legal Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
35
|
Hanyuda A, Cao Y, Hamada T, Nowak JA, Qian ZR, Masugi Y, da Silva A, Liu L, Kosumi K, Soong TR, Jhun I, Wu K, Zhang X, Song M, Meyerhardt JA, Chan AT, Fuchs CS, Giovannucci EL, Ogino S, Nishihara R. Body mass index and risk of colorectal carcinoma subtypes classified by tumor differentiation status. Eur J Epidemiol 2017; 32:393-407. [PMID: 28510098 DOI: 10.1007/s10654-017-0254-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/06/2017] [Indexed: 12/19/2022]
Abstract
Previous studies suggest that abnormal energy balance status may dysregulate intestinal epithelial homeostasis and promote colorectal carcinogenesis, yet little is known about how host energy balance and obesity influence enterocyte differentiation during carcinogenesis. We hypothesized that the association between high body mass index (BMI) and colorectal carcinoma incidence might differ according to tumor histopathologic differentiation status. Using databases of the Nurses' Health Study and Health Professionals Follow-up Study, and duplication-method Cox proportional hazards models, we prospectively examined an association between BMI and the incidence of colorectal carcinoma subtypes classified by differentiation features. 120,813 participants were followed for 26 or 32 years and 1528 rectal and colon cancer cases with available tumor pathological data were documented. The association between BMI and colorectal cancer risk significantly differed depending on the presence or absence of poorly-differentiated foci (Pheterogeneity = 0.006). Higher BMI was associated with a higher risk of colorectal carcinoma without poorly-differentiated foci (≥30.0 vs. 18.5-22.4 kg/m2: multivariable-adjusted hazard ratio, 1.87; 95% confidence interval, 1.49-2.34; Ptrend < 0.001), but not with risk of carcinoma with poorly-differentiated foci (Ptrend = 0.56). This differential association appeared to be consistent in strata of tumor microsatellite instability or FASN expression status, although the statistical power was limited. The association between BMI and colorectal carcinoma risk did not significantly differ by overall tumor differentiation, mucinous differentiation, or signet ring cell component (Pheterogeneity > 0.03, with the adjusted α of 0.01). High BMI was associated with risk of colorectal cancer subtype containing no poorly-differentiated focus. Our findings suggest that carcinogenic influence of excess energy balance might be stronger for tumors that retain better intestinal differentiation throughout the tumor areas.
Collapse
Affiliation(s)
- Akiko Hanyuda
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yin Cao
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yohei Masugi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Annacarolina da Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Li Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Keisuke Kosumi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Thing Rinda Soong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Iny Jhun
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles S Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA. .,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Reiko Nishihara
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
36
|
Hamada T, Keum N, Nishihara R, Ogino S. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. J Gastroenterol 2017; 52:265-275. [PMID: 27738762 PMCID: PMC5325774 DOI: 10.1007/s00535-016-1272-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Molecular pathological epidemiology (MPE) is an integrative field that utilizes molecular pathology to incorporate interpersonal heterogeneity of a disease process into epidemiology. In each individual, the development and progression of a disease are determined by a unique combination of exogenous and endogenous factors, resulting in different molecular and pathological subtypes of the disease. Based on "the unique disease principle," the primary aim of MPE is to uncover an interactive relationship between a specific environmental exposure and disease subtypes in determining disease incidence and mortality. This MPE approach can provide etiologic and pathogenic insights, potentially contributing to precision medicine for personalized prevention and treatment. Although breast, prostate, lung, and colorectal cancers have been among the most commonly studied diseases, the MPE approach can be used to study any disease. In addition to molecular features, host immune status and microbiome profile likely affect a disease process, and thus serve as informative biomarkers. As such, further integration of several disciplines into MPE has been achieved (e.g., pharmaco-MPE, immuno-MPE, and microbial MPE), to provide novel insights into underlying etiologic mechanisms. With the advent of high-throughput sequencing technologies, available genomic and epigenomic data have expanded dramatically. The MPE approach can also provide a specific risk estimate for each disease subgroup, thereby enhancing the impact of genome-wide association studies on public health. In this article, we present recent progress of MPE, and discuss the importance of accounting for the disease heterogeneity in the era of big-data health science and precision medicine.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Room SM1036, Boston, MA, 02215, USA
| | - NaNa Keum
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Room SM1036, Boston, MA, 02215, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Room SM1036, Boston, MA, 02215, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Ave., Room SM1036, Boston, MA, 02215, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Cao X, Zhao G, Yu T, An Q, Yang H, Xiao G. Preoperative Prognostic Nutritional Index Correlates with Severe Complications and Poor Survival in Patients with Colorectal Cancer Undergoing Curative Laparoscopic Surgery: A Retrospective Study in a Single Chinese Institution. Nutr Cancer 2017; 69:454-463. [PMID: 28287320 DOI: 10.1080/01635581.2017.1285038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xianglong Cao
- Department of General Surgery, Beijing Hospital, Beijing, China
| | - Gang Zhao
- Department of General Surgery, Beijing Hospital, Beijing, China
| | - Tao Yu
- Department of General Surgery, Beijing Hospital, Beijing, China
| | - Qi An
- Department of General Surgery, Beijing Hospital, Beijing, China
| | - Hua Yang
- Department of General Surgery, Beijing Hospital, Beijing, China
| | - Gang Xiao
- Department of General Surgery, Beijing Hospital, Beijing, China
| |
Collapse
|
38
|
Campbell PT, Rebbeck TR, Nishihara R, Beck AH, Begg CB, Bogdanov AA, Cao Y, Coleman HG, Freeman GJ, Heng YJ, Huttenhower C, Irizarry RA, Kip NS, Michor F, Nevo D, Peters U, Phipps AI, Poole EM, Qian ZR, Quackenbush J, Robins H, Rogan PK, Slattery ML, Smith-Warner SA, Song M, VanderWeele TJ, Xia D, Zabor EC, Zhang X, Wang M, Ogino S. Proceedings of the third international molecular pathological epidemiology (MPE) meeting. Cancer Causes Control 2017; 28:167-176. [PMID: 28097472 PMCID: PMC5303153 DOI: 10.1007/s10552-016-0845-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023]
Abstract
Molecular pathological epidemiology (MPE) is a transdisciplinary and relatively new scientific discipline that integrates theory, methods, and resources from epidemiology, pathology, biostatistics, bioinformatics, and computational biology. The underlying objective of MPE research is to better understand the etiology and progression of complex and heterogeneous human diseases with the goal of informing prevention and treatment efforts in population health and clinical medicine. Although MPE research has been commonly applied to investigating breast, lung, and colorectal cancers, its methodology can be used to study most diseases. Recent successes in MPE studies include: (1) the development of new statistical methods to address etiologic heterogeneity; (2) the enhancement of causal inference; (3) the identification of previously unknown exposure-subtype disease associations; and (4) better understanding of the role of lifestyle/behavioral factors on modifying prognosis according to disease subtype. Central challenges to MPE include the relative lack of transdisciplinary experts, educational programs, and forums to discuss issues related to the advancement of the field. To address these challenges, highlight recent successes in the field, and identify new opportunities, a series of MPE meetings have been held at the Dana-Farber Cancer Institute in Boston, MA. Herein, we share the proceedings of the Third International MPE Meeting, held in May 2016 and attended by 150 scientists from 17 countries. Special topics included integration of MPE with immunology and health disparity research. This meeting series will continue to provide an impetus to foster further transdisciplinary integration of divergent scientific fields.
Collapse
Affiliation(s)
- Peter T Campbell
- Epidemiology Research Program, American Cancer Society, 250 Williams Street NW, Atlanta, GA, 30303, USA.
| | - Timothy R Rebbeck
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew H Beck
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Colin B Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexei A Bogdanov
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yin Cao
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Helen G Coleman
- Epidemiology and Health Services Research Group, Centre for Public Health, Queens University Belfast, Belfast, Northern Ireland
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yujing J Heng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA, USA
| | - Rafael A Irizarry
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - N Sertac Kip
- Laboratory Medicine and Pathology, Geisinger Health System, Danville, PA, USA
| | - Franziska Michor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel Nevo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Elizabeth M Poole
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Harlan Robins
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter K Rogan
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | - Stephanie A Smith-Warner
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyler J VanderWeele
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel Xia
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Emily C Zabor
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Ave, Room SM1036, Boston, MA, 02215, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
39
|
Bioactive Nutrients and Nutrigenomics in Age-Related Diseases. Molecules 2017; 22:molecules22010105. [PMID: 28075340 PMCID: PMC6155887 DOI: 10.3390/molecules22010105] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023] Open
Abstract
The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the "omics" technologies (transcriptomics, proteomics and metabolomics) are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.
Collapse
|