1
|
Antonopoulou S. Platelet-Activating Factor-Induced Inflammation in Obesity: A Two-Sided Coin of Protection and Risk. Cells 2025; 14:471. [PMID: 40214425 PMCID: PMC11987740 DOI: 10.3390/cells14070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Obesity, marked by excessive fat accumulation, especially abdominal, is a global health concern with significant public impact. While obesity-associated chronic unresolved inflammation contributes to metabolic dysfunctions, acute inflammation supports healthy adipose tissue remodeling and expansion. Platelet-activating factor (PAF), a "primitive" signaling molecule, is among the key mediators involved in the acute phase of inflammation and in various pathophysiological processes. This article explores the role of PAF in fat accumulation and obesity by reviewing experimental data from cell cultures, animals, and humans. It proposes an emerging biochemical mechanism in an attempt to explain its dual role in the healthy and obese adipose tissue, including also data on PAF's potential involvement in epigenetic mechanisms that may be linked to the "obesity memory". Finally, it highlights the potential of natural PAF modulators in promoting functional adipose tissue, thermogenesis, and obesity prevention through a healthy lifestyle, including a Mediterranean diet rich in PAF weak agonists/PAF receptor antagonists and regular exercise, which help maintain controlled PAF levels. Conversely, in cases of obesity-related systemic inflammation with excessive PAF levels, potent PAF inhibitors like ginkgolide B and rupatadine may help mitigate metabolic dysfunctions with PAFR antagonists potentially enhancing their effects synergistically.
Collapse
Affiliation(s)
- Smaragdi Antonopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17671 Athens, Greece
| |
Collapse
|
2
|
Granger DL, Ansong D, Agbenyega T, Liddle MS, Brinton BA, Hale DC, Lopansri BK, Reithinger R, Bisanzio D. Longitudinal associations of plasma amino acid levels with recovery from malarial coma. Malar J 2024; 23:253. [PMID: 39180112 PMCID: PMC11342642 DOI: 10.1186/s12936-024-05077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Disordered amino acid metabolism is observed in cerebral malaria (CM). This study sought to determine whether abnormal amino acid concentrations were associated with level of consciousness in children recovering from coma. Twenty-one amino acids and coma scores were quantified longitudinally and the data were analysed for associations. METHODS In a prospective observational study, 42 children with CM were enrolled. Amino acid levels were measured at entry and at frequent intervals thereafter and consciousness was assessed by Blantyre Coma Scores (BCS). Thirty-six healthy children served as controls for in-country normal amino acid ranges. Logistic regression was employed using a generalized linear mixed-effects model to assess associations between out-of-range amino acid levels and BCS. RESULTS At entry 16/21 amino acid levels were out-of-range. Longitudinal analysis revealed 10/21 out-of-range amino acids were significantly associated with BCS. Elevated phenylalanine levels showed the highest association with low BCS. This finding held when out-of-normal-range data were analysed at each sampling time. CONCLUSION Longitudinal data is provided for associations between abnormal amino acid levels and recovery from CM. Of 10 amino acids significantly associated with BCS, elevated phenylalanine may be a surrogate for impaired clearance of ether lipid mediators of inflammation and may contribute to CM pathogenesis.
Collapse
Affiliation(s)
- Donald L Granger
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah Spencer Fox Eccles School of Medicine, 2761 E. Swasont Way, Holladay, Salt Lake City, UT, 84117, USA.
- George H. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Daniel Ansong
- Department of Pediatrics, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Tsiri Agbenyega
- Department of Pediatrics, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | | | - Benjamin A Brinton
- Department of Psychiatry, North Shore University Hospital, Glen Oaks, NY, USA
| | - Devon C Hale
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah Spencer Fox Eccles School of Medicine, 2761 E. Swasont Way, Holladay, Salt Lake City, UT, 84117, USA
| | | | | | - Donal Bisanzio
- Research Triangle Institute International, Washington, DC, USA
| |
Collapse
|
3
|
Granger DL, Ansong D, Agbenyega T, Liddle MS, Brinton BA, Hale DC, Lopansri BK, Reithinger R, Bisanzio D. Longitudinal associations of plasma amino acid levels with recovery from malarial coma. RESEARCH SQUARE 2024:rs.3.rs-4421190. [PMID: 38826416 PMCID: PMC11142354 DOI: 10.21203/rs.3.rs-4421190/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Disordered amino acid metabolism is observed in cerebral malaria (CM). We sought to determine whether abnormal amino acid concentrations were associated with level of consciousness in children recovering from coma. We quantified 21 amino acids and coma scores longitudinally and analyzed data for associations. Methods In a prospective observational study, we enrolled 42 children with CM. We measured amino acid levels at entry and at frequent intervals thereafter and assessed consciousness by Blantyre Coma Scores (BCS). Thirty-six healthy children served as controls for in-country normal amino acid ranges. We employed logistic regression using a generalized linear mixed-effects model to assess associations between out-of-range amino acid levels and BCS. Results At entry 16/21 amino acid levels were out-of-range. Longitudinal analysis revealed 10/21 out-of-range amino acids were significantly associated with BCS. Elevated phenylalanine levels showed the highest association with low BCS. This finding held when out-of-normal-range data were analyzed at each sampling time. Discussion We provide longitudinal data for associations between abnormal amino acid levels and recovery from CM. Of 10 amino acids significantly associated with BCS, we propose that elevated phenylalanine may be a surrogate for impaired clearance of ether lipid mediators of inflammation contributing to CM pathogenesis.
Collapse
Affiliation(s)
- Donald L. Granger
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT USA
- George H. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT USA
| | - Daniel Ansong
- Department of Pediatrics, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Tsiri Agbenyega
- Department of Pediatrics, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | | | - Benjamin A. Brinton
- Department of Psychiatry, North Shore University Hospital, Glen Oaks, NY USA
| | - Devon C. Hale
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT USA
| | | | - Richard Reithinger
- International Development Group, Research Triangle Institute International, Washington, DC USA
| | - Donal Bisanzio
- International Development Group, Research Triangle Institute International, Washington, DC USA
| |
Collapse
|
4
|
Sun L, Sun B, Chen L, Ge Q, Chen K. Identification of genes associated with the silk gland size using multi-omics in silkworm (Bombyx mori). INSECT MOLECULAR BIOLOGY 2024; 33:1-16. [PMID: 37676698 DOI: 10.1111/imb.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Silk gland size in silkworms (Bombyx mori) affects silk output. However, the molecular mechanisms by which genes regulate silk gland size remain unclear. In this study, silk glands from three pure silkworm strains (A798, A306 and XH) with different silk gland weight phenotypes were compared using transcriptomics and proteomics to identify differentially expressed genes (DEGs) and proteins (DEPs). When comparing A798 to A306 and A798 to XH, 830 and 469 DEGs were up-regulated, respectively. These genes were related to the gene ontology terms, metabolic process, transport activity and biosynthesis process. In addition, 372 and 302 up-regulated differentially expressed proteins were detected in A798 to A306 and A798 to XH, respectively, related to the gene ontology terms, ribosome and protein export, ribosome and polypeptide biosynthesis processes. Moreover, combined transcriptomics, proteomics and weighted correlation network analyses showed that five genes (BGIBMGA002524, BGIBMGA002629, BGIBMGA005659, BGIBMGA005711 and BGIBMGA010889) were significantly associated with the silk gland weight. Reverse Transcription-quantitative real-time Polymerase Chain Reaction (RT-qPCR) and Enzyme linked immunosorbent assay (ELISA) were used to verify the mRNA and protein expression of five genes in the silk glands and tissues of 18 silkworm strains. The results showed that four genes have higher expression levels in heavier silk glands. These genes are associated with glycogen metabolism, fatty acid synthesis and branched chain amino acid metabolism, thus potentially promoting growth and silk protein synthesis. These findings provide valuable insights into the molecular mechanisms underlying the relationship between silk gland weight and silk yield in silkworms.
Collapse
Affiliation(s)
- Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Papin M, Bouchet AM, Chantôme A, Vandier C. Ether-lipids and cellular signaling: A differential role of alkyl- and alkenyl-ether-lipids? Biochimie 2023; 215:50-59. [PMID: 37678745 DOI: 10.1016/j.biochi.2023.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Ether-lipids (EL) are specific lipids bearing a characteristic sn-1 ether bond. Depending on the ether or vinyl-ether nature of this bond, they are present as alkyl- or alkenyl-EL, respectively. Among EL, alkenyl-EL, also referred as plasmalogens in the literature, attract most of the scientific interest as they are the predominant EL species in eukaryotic cells, thus less is known about alkyl-EL. EL have been implicated in various signaling pathways and alterations in their quantity are frequently observed in pathologies such as neurodegenerative and cardiovascular diseases or cancer. However, it remains unknown whether both alkyl- and alkenyl-EL play the same roles in these processes. This review summarizes the roles and mechanisms of action of EL in cellular signaling and tries to discriminate between alkyl- and alkenyl-EL. We also focus on the involvement of EL-mediated alterations of cellular signaling in diseases and discuss the potential interest for EL in therapy.
Collapse
Affiliation(s)
- Marion Papin
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000, Tours, France.
| | | | - Aurélie Chantôme
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000, Tours, France
| | - Christophe Vandier
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000, Tours, France; Lifesome Therapeutics, López de Hoyos 42, 28006, Madrid, Spain
| |
Collapse
|
6
|
Emmons H, Wallace C, Fordahl S. Interleukin-6 and tumor necrosis factor-α attenuate dopamine release in mice fed a high-fat diet, but not medium or low-fat diets. Nutr Neurosci 2023; 26:864-874. [PMID: 35900193 PMCID: PMC9883593 DOI: 10.1080/1028415x.2022.2103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic low-grade inflammation is associated with a state of diet-induced obesity that impacts systemic tissues and can cross the blood-brain barrier to act directly on the brain. The extent to which pro-inflammatory cytokines released in these conditions affect dopamine presynaptic neurotransmission has not been previously investigated. The purpose of this study was to examine how dopamine terminals are affected by pro-inflammatory cytokines, and to determine if dietary fat consumption potentiates cytokine effects on dopamine release and reuptake rate in the nucleus accumbens (NAc). Male and female C57BL/6J mice were fed high, medium, or low-fat diets (60%, 30%, or 10% total kcals from fat, respectively) for six weeks. Fast scan cyclic voltammetry (FSCV) was used to measure dopamine release and reuptake rate in the NAc core from ex vivo coronal brain slices. Electrically evoked dopamine release and the maximal rate of dopamine reuptake (Vmax) were significantly lower in mice fed the 30% and 60% high-fat diets compared to the 10% low-fat group (p < 0.05). IL-6 5 or 10 nM or TNFα 30 or 300 nM was added to artificial cerebrospinal fluid (aCSF) bathed over brain slices during FSCV. No effect on dopamine release or Vmax was observed with lower concentrations. However, 10 nM IL-6 and 300 nM TNFα significantly reduced dopamine release in the 60% fat group (p < 0.05). No effect of added cytokine was observed on Vmax. Overall, these data provide evidence that dietary fat increases neural responsiveness to cytokines, which may help inform comorbidities between diet-induced obesity and depression or other mood disorders.
Collapse
Affiliation(s)
- H.A. Emmons
- UNC Greensboro, Department of Nutrition, Greensboro NC
| | - C.W. Wallace
- UNC Greensboro, Department of Nutrition, Greensboro NC
- Wake Forest School of Medicine, Physiology and Pharmacology, Winston-Salem NC
| | - S.C. Fordahl
- UNC Greensboro, Department of Nutrition, Greensboro NC
| |
Collapse
|
7
|
Lackner K, Sailer S, van Klinken JB, Wever E, Pras-Raves ML, Dane AD, Honsho M, Abe Y, Keller MA, Golderer G, Werner-Felmayer G, Fujiki Y, Vaz FM, Werner ER, Watschinger K. Alterations in ether lipid metabolism and the consequences for the mouse lipidome. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159285. [PMID: 36690320 DOI: 10.1016/j.bbalip.2023.159285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/18/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Alkylglycerol monooxygenase (AGMO) and plasmanylethanolamine desaturase (PEDS1) are enzymes involved in ether lipid metabolism. While AGMO degrades plasmanyl lipids by oxidative cleavage of the ether bond, PEDS1 exclusively synthesizes a specific subclass of ether lipids, the plasmalogens, by introducing a vinyl ether double bond into plasmanylethanolamine phospholipids. Ether lipids are characterized by an ether linkage at the sn-1 position of the glycerol backbone and they are found in membranes of different cell types. Decreased plasmalogen levels have been associated with neurological diseases like Alzheimer's disease. Agmo-deficient mice do not present an obvious phenotype under unchallenged conditions. In contrast, Peds1 knockout mice display a growth phenotype. To investigate the molecular consequences of Agmo and Peds1 deficiency on the mouse lipidome, five tissues from each mouse model were isolated and subjected to high resolution mass spectrometry allowing the characterization of up to 2013 lipid species from 42 lipid subclasses. Agmo knockout mice moderately accumulated plasmanyl and plasmenyl lipid species. Peds1-deficient mice manifested striking changes characterized by a strong reduction of plasmenyl lipids and a concomitant massive accumulation of plasmanyl lipids resulting in increased total ether lipid levels in the analyzed tissues except for the class of phosphatidylethanolamines where total levels remained remarkably constant also in Peds1 knockout mice. The rate-limiting enzyme in ether lipid metabolism, FAR1, was not upregulated in Peds1-deficient mice, indicating that the selective loss of plasmalogens is not sufficient to activate the feedback mechanism observed in total ether lipid deficiency.
Collapse
Affiliation(s)
- Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria.
| | - Jan-Bert van Klinken
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Department of Human Genetics, Leiden University Medical Center (LUMC), Einthovenweg 20, Leiden, 2333, ZC, the Netherlands.
| | - Eric Wever
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.
| | - Mia L Pras-Raves
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.
| | - Adrie D Dane
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.
| | - Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria.
| | - Georg Golderer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Gabriele Werner-Felmayer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Yukio Fujiki
- Institute of Rheological Functions of Food, Kyushu University Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Graduate School of Science, University of Hyogo, Hyogo, Japan.
| | - Frédéric M Vaz
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam 1105, AZ, The Netherlands.
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| |
Collapse
|
8
|
Medina J, Borreggine R, Teav T, Gao L, Ji S, Carrard J, Jones C, Blomberg N, Jech M, Atkins A, Martins C, Schmidt-Trucksass A, Giera M, Cazenave-Gassiot A, Gallart-Ayala H, Ivanisevic J. Omic-Scale High-Throughput Quantitative LC-MS/MS Approach for Circulatory Lipid Phenotyping in Clinical Research. Anal Chem 2023; 95:3168-3179. [PMID: 36716250 DOI: 10.1021/acs.analchem.2c02598] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipid analysis at the molecular species level represents a valuable opportunity for clinical applications due to the essential roles that lipids play in metabolic health. However, a comprehensive and high-throughput lipid profiling remains challenging given the lipid structural complexity and exceptional diversity. Herein, we present an 'omic-scale targeted LC-MS/MS approach for the straightforward and high-throughput quantification of a broad panel of complex lipid species across 26 lipid (sub)classes. The workflow involves an automated single-step extraction with 2-propanol, followed by lipid analysis using hydrophilic interaction liquid chromatography in a dual-column setup coupled to tandem mass spectrometry with data acquisition in the timed-selective reaction monitoring mode (12 min total run time). The analysis pipeline consists of an initial screen of 1903 lipid species, followed by high-throughput quantification of robustly detected species. Lipid quantification is achieved by a single-point calibration with 75 isotopically labeled standards representative of different lipid classes, covering lipid species with diverse acyl/alkyl chain lengths and unsaturation degrees. When applied to human plasma, 795 lipid species were measured with median intra- and inter-day precisions of 8.5 and 10.9%, respectively, evaluated within a single and across multiple batches. The concentration ranges measured in NIST plasma were in accordance with the consensus intervals determined in previous ring-trials. Finally, to benchmark our workflow, we characterized NIST plasma materials with different clinical and ethnic backgrounds and analyzed a sub-set of sera (n = 81) from a clinically healthy elderly population. Our quantitative lipidomic platform allowed for a clear distinction between different NIST materials and revealed the sex-specificity of the serum lipidome, highlighting numerous statistically significant sex differences.
Collapse
Affiliation(s)
- Jessica Medina
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| | - Rebecca Borreggine
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| | - Liang Gao
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, Basel CH-4052, Switzerland
| | - Christina Jones
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Martin Jech
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Alan Atkins
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Claudia Martins
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Arno Schmidt-Trucksass
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, Basel CH-4052, Switzerland
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| |
Collapse
|
9
|
Njume FN, Razzauti A, Soler M, Perschin V, Fazeli G, Bourez A, Delporte C, Ghogomu SM, Poelvoorde P, Pichard S, Birck C, Poterszman A, Souopgui J, Van Antwerpen P, Stigloher C, Vanhamme L, Laurent P. A lipid transfer protein ensures nematode cuticular impermeability. iScience 2022; 25:105357. [PMID: 36339267 PMCID: PMC9626681 DOI: 10.1016/j.isci.2022.105357] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/20/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
The cuticle of C. elegans is impermeable to chemicals, toxins, and pathogens. However, increased permeability is a desirable phenotype because it facilitates chemical uptake. Surface lipids contribute to the permeability barrier. Here, we identify the lipid transfer protein GMAP-1 as a critical element setting the permeability of the C. elegans cuticle. A gmap-1 deletion mutant increases cuticular permeability to sodium azide, levamisole, Hoechst, and DiI. Expressing GMAP-1 in the hypodermis or transiently in the adults is sufficient to rescue this gmap-1 permeability phenotype. GMAP-1 protein is secreted from the hypodermis to the aqueous fluid filling the space between collagen fibers of the cuticle. In vitro, GMAP-1 protein binds phosphatidylserine and phosphatidylcholine while in vivo, GMAP-1 sets the surface lipid composition and organization. Altogether, our results suggest GMAP-1 secreted by hypodermis shuttles lipids to the surface to form the permeability barrier of C. elegans. GMAP-1 is secreted by the hypodermis toward the cuticle of Caenorhabditis elegans GMAP-1 binds and shuttle phosphoglycerides GMAP-1 sets the lipid composition of the cuticle While healthy, gmap-1 mutant displays high cuticular permeability
Collapse
Affiliation(s)
- Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Adria Razzauti
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Miguel Soler
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Gholamreza Fazeli
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Axelle Bourez
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | - Cedric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | - Stephen M. Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
| | - Philippe Poelvoorde
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Simon Pichard
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Catherine Birck
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Arnaud Poterszman
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | | | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
- Corresponding author
| |
Collapse
|
10
|
Sailer S, Lackner K, Pras-Raves ML, Wever EJM, van Klinken JB, Dane AD, Geley S, Koch J, Golderer G, Werner-Felmayer G, Keller MA, Zwerschke W, Vaz FM, Werner ER, Watschinger K. Adaptations of the 3T3-L1 adipocyte lipidome to defective ether lipid catabolism upon Agmo knockdown. J Lipid Res 2022; 63:100222. [PMID: 35537527 PMCID: PMC9192799 DOI: 10.1016/j.jlr.2022.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 10/24/2022] Open
Abstract
Little is known about the physiological role of alkylglycerol monooxygenase (AGMO), the only enzyme capable of cleaving the 1-O-alkyl ether bond of ether lipids. Expression and enzymatic activity of this enzyme can be detected in a variety of tissues including adipose tissue. This labile lipolytic membrane-bound protein uses tetrahydrobiopterin as a cofactor, and mice with reduced tetrahydrobiopterin levels have alterations in body fat distribution and blood lipid concentrations. In addition, manipulation of AGMO in macrophages led to significant changes in the cellular lipidome, and alkylglycerolipids, the preferred substrates of AGMO, were shown to accumulate in mature adipocytes. Here, we investigated the roles of AGMO in lipid metabolism by studying 3T3-L1 adipogenesis. AGMO activity was induced over 11 days using an adipocyte differentiation protocol. We show that RNA interference-mediated knockdown of AGMO did not interfere with adipocyte differentiation or affect lipid droplet formation. Furthermore, lipidomics revealed that plasmalogen phospholipids were preferentially accumulated upon Agmo knockdown, and a significant shift toward longer and more polyunsaturated acyl side chains of diacylglycerols and triacylglycerols could be detected by mass spectrometry. Our results indicate that alkylglycerol catabolism has an influence not only on ether-linked species but also on the degree of unsaturation in the massive amounts of triacylglycerols formed during in vitro 3T3-L1 adipocyte differentiation.
Collapse
Affiliation(s)
- Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Mia L Pras-Raves
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Eric J M Wever
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Jan B van Klinken
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan D Dane
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Geley
- Institute of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Golderer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Werner-Felmayer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
11
|
Smith T, Knudsen KJ, Ritchie SA. Pharmacokinetics, Mass Balance, Excretion, and Tissue Distribution of Plasmalogen Precursor PPI-1011. Front Cell Dev Biol 2022; 10:867138. [PMID: 35547803 PMCID: PMC9081329 DOI: 10.3389/fcell.2022.867138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
PPI-1011 is a synthetic plasmalogen precursor in development as a treatment for multiple plasmalogen-deficiency disorders. Previous work has demonstrated the ability of PPI-1011 to augment plasmalogens and its effects in vitro and in vivo, however, the precise uptake and distribution across tissues in vivo has not been investigated. The purpose of this study was to evaluate the pharmacokinetics, mass balance, and excretion of [14C]PPI-1011 following a single oral administration at 100 mg/kg in Sprague-Dawley rats. Further tissue distribution was examined using quantitative whole-body autoradiography after both single and repeat daily doses at 100 mg/kg/day. Non-compartmental analysis showed that following a single dose, PPI-1011 exhibited peak levels between 6 and 12 h but also a long half-life with mean t1/2 of 40 h. Mass balance showed that over 50% of the compound-associated radioactivity was absorbed by the body, while approximately 40% was excreted in the feces, 2.5% in the urine, and 10% in expired air within the first 24 h. Quantitative whole-body autoradiography following a single dose showed uptake to nearly all tissues, with the greatest initial uptake in the intestines, liver, and adipose tissue, which decreased time-dependently throughout 168 h post-dose. Following 15 consecutive daily doses, uptake was significantly higher across the entire body at 24 h compared to single dose and remained high out to 96 h where 75% of the initially-absorbed compound-associated radioactivity was still present. The adipose tissue remained particularly high, suggesting a possible reserve of either plasmalogens or alkyl diacylglycerols that the body can pull from for plasmalogen biosynthesis. Uptake to the brain was also definitively confirmed, proving PPI-1011’s ability to cross the blood-brain barrier. In conclusion, our results suggest that oral administration of PPI-1011 results in high uptake across the body, and that repeated dosing over time represents a viable therapeutic strategy for treating plasmalogen deficiencies.
Collapse
|
12
|
Sailer S, Keller MA, Werner ER, Watschinger K. The Emerging Physiological Role of AGMO 10 Years after Its Gene Identification. Life (Basel) 2021; 11:life11020088. [PMID: 33530536 PMCID: PMC7911779 DOI: 10.3390/life11020088] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
The gene encoding alkylglycerol monooxygenase (AGMO) was assigned 10 years ago. So far, AGMO is the only known enzyme capable of catalysing the breakdown of alkylglycerols and lyso-alkylglycerophospholipids. With the knowledge of the genetic information, it was possible to relate a potential contribution for mutations in the AGMO locus to human diseases by genome-wide association studies. A possible role for AGMO was implicated by genetic analyses in a variety of human pathologies such as type 2 diabetes, neurodevelopmental disorders, cancer, and immune defence. Deficient catabolism of stored lipids carrying an alkyl bond by an absence of AGMO was shown to impact on the overall lipid composition also outside the ether lipid pool. This review focuses on the current evidence of AGMO in human diseases and summarises experimental evidence for its role in immunity, energy homeostasis, and development in humans and several model organisms. With the progress in lipidomics platform and genetic identification of enzymes involved in ether lipid metabolism such as AGMO, it is now possible to study the consequence of gene ablation on the global lipid pool and further on certain signalling cascades in a variety of model organisms in more detail.
Collapse
Affiliation(s)
- Sabrina Sailer
- Biocenter, Institute of Biological Chemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.R.W.)
| | - Markus A. Keller
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Ernst R. Werner
- Biocenter, Institute of Biological Chemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.R.W.)
| | - Katrin Watschinger
- Biocenter, Institute of Biological Chemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.R.W.)
- Correspondence: ; Tel.: +43-512-9003-70344
| |
Collapse
|
13
|
Velasco-Lozano S, Roca M, Leal-Duaso A, Mayoral JA, Pires E, Moliner V, López-Gallego F. Selective oxidation of alkyl and aryl glyceryl monoethers catalysed by an engineered and immobilised glycerol dehydrogenase. Chem Sci 2020; 11:12009-12020. [PMID: 34123216 PMCID: PMC8162780 DOI: 10.1039/d0sc04471g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Enzymes acting over glyceryl ethers are scarce in living cells, and consequently biocatalytic transformations of these molecules are rare despite their interest for industrial chemistry. In this work, we have engineered and immobilised a glycerol dehydrogenase from Bacillus stearothermophilus (BsGlyDH) to accept a battery of alkyl/aryl glyceryl monoethers and catalyse their enantioselective oxidation to yield the corresponding 3-alkoxy/aryloxy-1-hydroxyacetones. QM/MM computational studies decipher the key role of D123 in the oxidation catalytic mechanism, and reveal that this enzyme is highly enantioselective towards S-isomers (ee > 99%). Through structure-guided site-selective mutagenesis, we find that the mutation L252A sculpts the active site to accommodate a productive configuration of 3-monoalkyl glycerols. This mutation enhances the k cat 163-fold towards 3-ethoxypropan-1,2-diol, resulting in a specific activity similar to the one found for the wild-type towards glycerol. Furthermore, we immobilised the L252A variant to intensify the process, demonstrating the reusability and increasing the operational stability of the resulting heterogeneous biocatalyst. Finally, we manage to integrate this immobilised enzyme into a one-pot chemoenzymatic process to convert glycidol and ethanol into 3-ethoxy-1-hydroxyacetone and (R)-3-ethoxypropan-1,2-diol, without affecting the oxidation activity. These results thus expand the uses of engineered glycerol dehydrogenases in applied biocatalysis for the kinetic resolution of glycerol ethers and the manufacturing of substituted hydroxyacetones.
Collapse
Affiliation(s)
- Susana Velasco-Lozano
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
| | - Maite Roca
- Departament de Química Física i Analítica, Universitat Jaume I 12071 Castelló Spain
| | - Alejandro Leal-Duaso
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
| | - José A Mayoral
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
- Depto. de Química Orgánica, Facultad de Ciencias, University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
| | - Elisabet Pires
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
- Depto. de Química Orgánica, Facultad de Ciencias, University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I 12071 Castelló Spain
| | - Fernando López-Gallego
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science María Díaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
14
|
Zhang X, Chen Y, Wang K, Tang J, Chen Y, Jin G, Liu X. The knockdown of the sepiapterin reductase gene suppresses the proliferation of breast cancer by inducing ROS-mediated apoptosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2228-2239. [PMID: 33042327 PMCID: PMC7539867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sepiapterin reductase (SPR) is an important regulator of the biosynthesis of tetrahydrobiopterin (BH4), which has been shown to be a promoter of different kinds of tumors. This study aims to investigate the role of SPR in breast cancer and to explore its molecular mechanism. METHODS SPR expressions in breast cancer tissues with different pathological stages were compared with the corresponding pericarcinomatous tissues and were analyzed using immunohistochemical staining and western blot. SPR knockdown was performed in MDA-MB-231 and MDA-MB-468 triple-negative breast cancer cells using specific siRNAs. Quantitative real-time PCR and western blot were used to determine the efficiency of the SPR knockdown. The intracellular BH4 levels were measured using HPLC, and the intracellular ROS levels were measured using an ROS detection kit. Clone formation and cell proliferation assays were used to study the effect of the SPR knockdown on cell proliferation. Annexin V/PI double staining, cell mitochondria isolation, and western blot were performed to study the effect of the SPR knockdown on cell apoptosis. ROS scavenger NAC was used to inhibit increased ROS caused by the SPR knockdown. RESULTS SPR is highly expressed in breast cancer tissues compared with the pericarcinomatous tissues and positively correlated with the pathological stages. The knockdown of SPR causes decreased intracellular BH4 and increased intracellular ROS and inhibits the proliferation of MDA-MB-231 and MDA-MB-468 cells. The knockdown of SPR also induces mitochondrial pathway-mediated apoptosis. NAC suppresses the SPR knockdown-caused cell apoptosis and cell death. CONCLUSIONS SPR promotes the proliferation of breast cancer cells. The knockdown of SPR suppresses the proliferation of breast cancer cells by inducing ROS-mediated apoptosis.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College Bengbu, Anhui, China
| | - Yuzhong Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College Bengbu, Anhui, China
| | - Kangwei Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College Bengbu, Anhui, China
| | - Jingwei Tang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College Bengbu, Anhui, China
| | - Yansong Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College Bengbu, Anhui, China
| | - Gongsheng Jin
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College Bengbu, Anhui, China
| | - Xianfu Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College Bengbu, Anhui, China
| |
Collapse
|
15
|
Wu Y, Du H, Zhan M, Wang H, Chen P, Du D, Liu X, Huang X, Ma P, Peng D, Sun L, Yuan S, Ding J, Lu L, Jiang J. Sepiapterin reductase promotes hepatocellular carcinoma progression via FoxO3a/Bim signaling in a nonenzymatic manner. Cell Death Dis 2020; 11:248. [PMID: 32312975 PMCID: PMC7170898 DOI: 10.1038/s41419-020-2471-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 11/09/2022]
Abstract
Sepiapterin reductase plays an enzymatic role in the biosynthesis of tetrahydrobiopterin, which is reported in limited studies to regulate the progression of several tumors. However, the role of sepiapterin reductase in hepatocellular carcinoma remains largely unknown. Here, we found that sepiapterin reductase was frequently highly expressed in human hepatocellular carcinoma, which was significantly associated with higher T stage, higher tumor node metastasis stage, and even shorter survival of hepatocellular carcinoma patients. Furthermore, cell and animal experiments showed that sepiapterin reductase depletion inhibited cancer cell proliferation and promoted cancer cell apoptosis. Importantly, the results suggested that sepiapterin reductase enzymatic activity was not necessary for the progression of hepatocellular carcinoma, based on the comparison between SMMC-7721 and SMMC-7721 containing sepiapterin reductase mutant. Moreover, we showed that sepiapterin reductase regulated the development of hepatocellular carcinoma via the FoxO3a/Bim-signaling pathway. Collectively, our study suggests that sepiapterin reductase controls hepatocellular carcinoma progression via FoxO3a/Bim signaling in a nonenzymatic manner, which provides a potential prognostic factor and therapeutic strategy for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yao Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, No.16, Huangjiahu Road West, Wuhan, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Hongxv Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danyu Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xinyi Liu
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai, China
| | - Xingxv Huang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai, China
| | - Pengcheng Ma
- Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, China
| | - Dezheng Peng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jian Ding
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China.
| | - Jingwei Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
16
|
Okur V, Watschinger K, Niyazov D, McCarrier J, Basel D, Hermann M, Werner ER, Chung WK. Biallelic variants in AGMO with diminished enzyme activity are associated with a neurodevelopmental disorder. Hum Genet 2019; 138:1259-1266. [PMID: 31555905 DOI: 10.1007/s00439-019-02065-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/15/2019] [Indexed: 11/30/2022]
Abstract
Alkylglycerol monooxygenase (AGMO) is the only enzyme known to cleave the O-alkyl bonds of ether lipids (alkylglycerols) which are essential components of cell membranes. A homozygous frameshift variant [p.(Glu324LysfsTer12)] in AGMO has recently been reported in two male siblings with syndromic microcephaly. In this study, we identified rare nonsense, in frame deletion, and missense biallelic variants in AGMO in two unrelated individuals with neurodevelopmental disabilities. We assessed the activity of seven disease associated AGMO variants including the four variants identified in our two affected individuals expressed in human embryonic kidney (HEK293T) cells. We demonstrated significantly diminished enzyme activity for all disease-associated variants, supporting the mechanism as decreased AGMO activity. Future mechanistic studies are necessary to understand how decreased AGMO activity leads to the neurologic manifestations.
Collapse
Affiliation(s)
- Volkan Okur
- Department of Pediatrics, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Center for Chemistry and Biomedicine (CCB), Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Dmitriy Niyazov
- Department of Pediatrics, Ochsner Clinic, New Orleans, LA, 70394, USA
| | - Julie McCarrier
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Donald Basel
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Center for Chemistry and Biomedicine (CCB), Medical University of Innsbruck, 6020, Innsbruck, Austria.
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY, 10032, USA. .,Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
17
|
Alkylglycerol monooxygenase, a heterotaxy candidate gene, regulates left-right patterning via Wnt signaling. Dev Biol 2019; 456:1-7. [PMID: 31398317 DOI: 10.1016/j.ydbio.2019.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/08/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022]
Abstract
Congenital heart disease (CHD) is a major cause of morbidity in the pediatric population yet its genetic and molecular causes remain poorly defined. Previously, we identified AGMO as a candidate heterotaxy disease gene, a disorder of left-right (LR) patterning that can have a profound effect on cardiac function. AGMO is the only known alkylglycerol monooxygenase, an orphan tetrahydrobiopterin dependent enzyme that cleaves the ether linkage in alkylglycerols. However, whether AGMO plays a role in LR patterning was unexplored. Here we reveal that Agmo is required for correct development of the embryonic LR axis in Xenopus embryos recapitulating the patient's heterotaxy phenotype. Mechanistically, we demonstrate that Agmo is a regulator of canonical Wnt signaling, required during gastrulation for normal formation of the left - right organizer. Mutational analysis demonstrates that this function is dependent on Agmo's alkylglycerol monooxygenase activity. Together, our findings identify Agmo as a regulator of canonical Wnt signaling, demonstrate a role for Agmo in embryonic axis formation, and provide insight into the poorly understood developmental requirements for ether lipid cleavage.
Collapse
|
18
|
Lipodisqs for eukaryote lipidomics with retention of viability: Sensitivity and resistance to Leucobacter infection linked to C.elegans cuticle composition. Chem Phys Lipids 2019; 222:51-58. [DOI: 10.1016/j.chemphyslip.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 11/18/2022]
|
19
|
Davidson PL, Thompson JW, Foster MW, Moseley MA, Byrne M, Wray GA. A comparative analysis of egg provisioning using mass spectrometry during rapid life history evolution in sea urchins. Evol Dev 2019; 21:188-204. [PMID: 31102332 PMCID: PMC7232848 DOI: 10.1111/ede.12289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/20/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023]
Abstract
A dramatic life history switch that has evolved numerous times in marine invertebrates is the transition from planktotrophic (feeding) to lecithotrophic (nonfeeding) larval development-an evolutionary tradeoff with many important developmental and ecological consequences. To attain a more comprehensive understanding of the molecular basis for this switch, we performed untargeted lipidomic and proteomic liquid chromatography-tandem mass spectrometry on eggs and larvae from three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and the distantly related planktotroph Lytechinus variegatus. We identify numerous molecular-level changes possibly associated with the evolution of lecithotrophy in H. erythrogramma. We find the massive lipid stores of H. erythrogramma eggs are largely composed of low-density, diacylglycerol ether lipids that, contrary to expectations, appear to support postmetamorphic development and survivorship. Rapid premetamorphic development in this species may instead be powered by upregulated carbohydrate metabolism or triacylglycerol metabolism. We also find proteins involved in oxidative stress regulation are upregulated in H. erythrogramma eggs, and apoB-like lipid transfer proteins may be important for echinoid oogenic nutrient provisioning. These results demonstrate how mass spectrometry can enrich our understanding of life history evolution and organismal diversity by identifying specific molecules associated with distinct life history strategies and prompt new hypotheses about how and why these adaptations evolve.
Collapse
Affiliation(s)
| | - J. Will Thompson
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Matthew W. Foster
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - M. Arthur Moseley
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Maria Byrne
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, North Carolina
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| |
Collapse
|
20
|
Jiang X, Liu H, Shao Y, Peng M, Zhang W, Li D, Li X, Cai Y, Tan T, Lu X, Xu J, Su X, Lin Y, Liu Z, Huang Y, Zeng C, Tang YP, Liu L. A novel GTPCH deficiency mouse model exhibiting tetrahydrobiopterin-related metabolic disturbance and infancy-onset motor impairments. Metabolism 2019; 94:96-104. [PMID: 30742839 DOI: 10.1016/j.metabol.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND GTP cyclohydrolase I (GTPCH) deficiency could impair the synthesis of tetrahydrobiopterin and causes metabolic diseases involving phenylalanine catabolism, neurotransmitter synthesis, nitric oxide production and so on. Though improvements could be achieved by tetrahydrobiopterin and neurotransmitter precursor levodopa supplementation, residual motor and mental deficits remain in some patients. An appropriate GTPCH deficiency animal model with clinical symptoms, especially the motor impairments, is still not available for mechanism and therapy studies yet. OBJECTIVES AND METHODS To investigate whether the heterozygous GTPCH missense mutation p.Leu117Arg identified from a patient with severe infancy-onset dopa-responsive motor impairments is causative and establish a clinical relevant GTPCH deficiency mouse model, we generated a mouse mutant mimicking this missense mutation using the CRISPR/Cas9 technology. Series of characterization experiments on the heterozygous and homozygous mutants were conducted. RESULTS The expressions of GTPCH were not significantly changed in the mutants, but the enzyme activities were impaired in the homozygous mutants. BH4 reduction and phenylalanine accumulation were observed both in the liver and brain of the homozygous mutants. Severer metabolic disturbance occurred in the brain than in the liver. Significant reduction of neurotransmitter dopamine, norepinephrine and serotonin was observed in the brains of homozygous mutants. Live-born homozygous mutants exhibited infancy-onset motor and vocalization deficits similar to the disease symptoms observed in the patient, while no obvious symptoms were observed in the young heterozygous mutant mice. With benserazide-levodopa treatment, survival of the homozygous mutants was improved but not completely rescued. CONCLUSIONS The GTPCH p.Leu117Arg missense mutation is deleterious and could cause tetrahydrobiopterin, phenylalanine and neurotransmitter metabolic disturbances and infancy-onset motor dysfunctions recessively. This is the first GTPCH deficiency mouse model which could be live-born and exhibits significant motor impairments. The different extents of BH4 reduction and phenylalanine accumulation observed between liver and brain in response to GTPCH deficiency gives potential new insights into the vulnerability of brain to GTPCH deficiency.
Collapse
Affiliation(s)
- Xiaoling Jiang
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Huazhen Liu
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yongxian Shao
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Mingzhi Peng
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Wen Zhang
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Duan Li
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Xiuzhen Li
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yanna Cai
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Ting Tan
- Lab of Neural Development and Behavior Genetics, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Xinshuo Lu
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jianan Xu
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Xueying Su
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yunting Lin
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Zongcai Liu
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yonglan Huang
- Department of Neonatal Screening, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Chunhua Zeng
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Ya-Ping Tang
- Lab of Neural Development and Behavior Genetics, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| | - Li Liu
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| |
Collapse
|
21
|
de Rond T, Stow P, Eigl I, Johnson RE, Chan LJG, Goyal G, Baidoo EEK, Hillson NJ, Petzold CJ, Sarpong R, Keasling JD. Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme. Nat Chem Biol 2017; 13:1155-1157. [PMID: 28892091 PMCID: PMC5677514 DOI: 10.1038/nchembio.2471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/26/2017] [Indexed: 11/08/2022]
Abstract
Prodiginines, which are tripyrrole alkaloids displaying a wide array of bioactivities, occur as linear and cyclic congeners. Identification of an unclustered biosynthetic gene led to the discovery of the enzyme responsible for catalyzing the regiospecific C-H activation and cyclization of prodigiosin to cycloprodigiosin in Pseudoalteromonas rubra. This enzyme is related to alkylglycerol monooxygenase and unrelated to RedG, the Rieske oxygenase that produces cyclized prodiginines in Streptomyces, implying convergent evolution.
Collapse
Affiliation(s)
- Tristan de Rond
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Parker Stow
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Ian Eigl
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Rebecca E Johnson
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Leanne Jade G Chan
- DOE Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, California, USA
| | - Garima Goyal
- DOE Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, California, USA
| | - Edward E K Baidoo
- DOE Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, California, USA
| | - Nathan J Hillson
- DOE Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, California, USA
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Christopher J Petzold
- DOE Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, California, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Jay D Keasling
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
- DOE Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, California, USA
- Department of Bioengineering and California Institute for Quantitative Biosciences, University of California, Berkeley, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
22
|
Ohashi A, Mamada K, Harada T, Naito M, Takahashi T, Aizawa S, Hasegawa H. Organic anion transporters, OAT1 and OAT3, are crucial biopterin transporters involved in bodily distribution of tetrahydrobiopterin and exclusion of its excess. Mol Cell Biochem 2017; 435:97-108. [PMID: 28534121 PMCID: PMC5632347 DOI: 10.1007/s11010-017-3060-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/04/2017] [Indexed: 01/05/2023]
Abstract
Tetrahydrobiopterin (BH4) is a common coenzyme of phenylalanine-, tyrosine-, and tryptophan hydroxylases, alkylglycerol monooxygenase, and NO synthases (NOS). Synthetic BH4 is used medicinally for BH4-responsive phenylketonuria and inherited BH4 deficiency. BH4 supplementation has also drawn attention as a therapy for various NOS-related cardio-vascular diseases, but its use has met with limited success in decreasing BH2, the oxidized form of BH4. An increase in the BH2/BH4 ratio leads to NOS dysfunction. Previous studies revealed that BH4 supplementation caused a rapid urinary loss of BH4 accompanied by an increase in the blood BH2/BH4 ratio and an involvement of probenecid-sensitive but unknown transporters was strongly suggested in these processes. Here we show that OAT1 and OAT3 enabled cells to take up BP (BH4 and/or BH2) in a probenecid-sensitive manner using rat kidney slices and transporter-expressing cell systems, LLC-PK1 cells and Xenopus oocytes. Both OAT1 and OAT3 preferred BH2 and sepiapterin as their substrate roughly 5- to 10-fold more than BH4. Administration of probenecid acutely reduced the urinary exclusion of endogenous BP accompanied by a rise in blood BP in vivo. These results indicated that OAT1 and OAT3 played crucial roles: (1) in determining baseline levels of blood BP by excluding endogenous BP through the urine, (2) in the rapid distribution to organs of exogenous BH4 and the exclusion to urine of a BH4 excess, particularly when BH4 was administered, and (3) in scavenging blood BH2 by cellular uptake as the gateway to the salvage pathway of BH4, which reduces BH2 back to BH4.
Collapse
Affiliation(s)
- Akiko Ohashi
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda, Tokyo, 101-8310, Japan.
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-8310, Japan.
| | - Kaori Mamada
- Department of Biosciences, Teikyo University of Science and Technology, Uenohara, Yamanashi, 401-0193, Japan
| | - Tomonori Harada
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Masako Naito
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-8310, Japan
| | - Tomihisa Takahashi
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-8310, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Hiroyuki Hasegawa
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda, Tokyo, 101-8310, Japan
| |
Collapse
|
23
|
Marquet S, Bucheton B, Reymond C, Argiro L, El-Safi SH, Kheir MM, Desvignes JP, Béroud C, Mergani A, Hammad A, Dessein AJ. Exome Sequencing Identifies Two Variants of the Alkylglycerol Monooxygenase Gene as a Cause of Relapses in Visceral Leishmaniasis in Children, in Sudan. J Infect Dis 2017; 216:22-28. [PMID: 28586473 DOI: 10.1093/infdis/jix277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023] Open
Abstract
Background Visceral leishmaniasis (kala-azar, KA) is the most severe form of leishmaniasis, characterized by fever, weight loss, hepatosplenomegaly, and lymphadenopathy. During an outbreak of KA in Babar El Fugara (Sudan), 5.7% of cured patients displayed relapses, with familial clustering in half the cases. Methods We performed whole-exome sequencing on 10 relapsing individuals and 11 controls from 5 nuclear families. Results Rare homozygous and compound-heterozygous nonsense (c.1213C > T, rs139309795, p.Arg405*) and missense (c.701A > G, rs143439626, p.Lys234Arg) mutations of the alkylglycerol monooxygenase (AGMO) gene were associated with KA relapse in 3 families. Sequencing in additional family members confirmed the segregation of these mutations with relapse and revealed an autosomal dominant mode of transmission. These mutations were detected heterozygous in 2 subjects among 100 unrelated individuals with KA who never relapsed after cure, suggesting incomplete penetrance of AGMO deficiency. AGMO is expressed in hematopoietic cells, and is strongly expressed in the liver. AGMO modulates PAF production by mouse macrophages, suggesting that it may act through the PAF/PAF receptor pathway previously shown to have anti-Leishmania activity. Conclusions This is the first demonstration that relapses after a first episode of KA are due to differences in human genetic susceptibility and not to modifications of parasite pathogenicity.
Collapse
Affiliation(s)
- Sandrine Marquet
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| | - Bruno Bucheton
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille.,Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France
| | - Camille Reymond
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| | - Laurent Argiro
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| | - Sayda Hassan El-Safi
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Musa Mohamed Kheir
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Christophe Béroud
- INSERM UMR910, GMGF, Aix-Marseille University.,AP-HM, Département de Génétique Médicale, Hôpital Timone Enfants, Marseille, France
| | - Adil Mergani
- College of Applied Medical Sciences, Taif University, Turabah, Saudi Arabia
| | - Awad Hammad
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Alain J Dessein
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| |
Collapse
|
24
|
Alrayes N, Mohamoud HSA, Ahmed S, Almramhi MM, Shuaib TM, Wang J, Al-Aama JY, Everett K, Nasir J, Jelani M. The alkylglycerol monooxygenase (AGMO) gene previously involved in autism also causes a novel syndromic form of primary microcephaly in a consanguineous Saudi family. J Neurol Sci 2016; 363:240-4. [PMID: 27000257 DOI: 10.1016/j.jns.2016.02.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/28/2022]
Abstract
Autosomal recessive primary microcephaly (MCPH) refers to a genetically heterogeneous group of neurodevelopmental disorders in which patients exhibit a marked decrease in occipitofrontal head circumference at birth and a variable degree of intellectual disability. To date, 18 genes have been reported for MCPH worldwide. We enrolled a consanguineous family from Saudi Arabia presenting with primary microcephaly, developmental delay, short stature and intellectual disability. Whole exome sequencing (WES) with 100× coverage was performed on two affected siblings after defining common regions of homozygosity through genome-wide single nucleotide polymorphism (SNP) microarray genotyping. WES data analysis, confirmed by subsequent Sanger sequence validation, identified a novel homozygous deletion mutation (c.967delA; p.Glu324Lysfs12*) in exon 10 of the alkylglycerol monooxygenase (AGMO) gene on chromosome 7p21.2. Population screening of 178 ethnically matched control chromosomes and consultation of the Exome Aggregation Consortium database, containing 60,706 individuals' exomes worldwide, confirmed that this mutation was not present outside the family. To the best of our knowledge, this is the first evidence of an AGMO mutation underlying primary microcephaly and intellectual disability in humans. Our findings further expand the genetic heterogeneity of MCPH in familial cases.
Collapse
Affiliation(s)
- Nuha Alrayes
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Cell Sciences and Genetics Research Centre, St. George's University of London (SGUL), London SW17 0RE, United Kingdom
| | - Hussein Sheikh Ali Mohamoud
- Cell Sciences and Genetics Research Centre, St. George's University of London (SGUL), London SW17 0RE, United Kingdom
| | - Saleem Ahmed
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mona Mohammad Almramhi
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Jun Wang
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; BGI-Shenzhen, Shenzhen 518083, China
| | - Jumana Yousuf Al-Aama
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kate Everett
- Cell Sciences and Genetics Research Centre, St. George's University of London (SGUL), London SW17 0RE, United Kingdom
| | - Jamal Nasir
- Cell Sciences and Genetics Research Centre, St. George's University of London (SGUL), London SW17 0RE, United Kingdom
| | - Musharraf Jelani
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Medical Genetics and Molecular Biology Unit, Biochemistry Department, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| |
Collapse
|
25
|
Zvarik M, Martinicky D, Hunakova L, Sikurova L. Differences in pteridine urinary levels in patients with malignant and benign ovarian tumors in comparison with healthy individuals. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2015; 153:191-7. [PMID: 26414289 DOI: 10.1016/j.jphotobiol.2015.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/17/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Pteridines belong to a class of fluorescent metabolites that are excreted by humans in urine and their concentrations can reflect various pathophysiological states. We quantified the differences in urinary pteridine levels in patients with malignant and benign ovarian tumors and in healthy individuals. Urine samples were centrifuged and supernatants were oxidized by MnO2 before analysis. Levels of neopterin, biopterin, and pterin were assessed by fluorescence analysis of human urine after HPLC separation. We have revealed that the median neopterin levels were higher in urine samples from patients with malignant (0.226 μmol/mmol creatinine) and benign ovarian tumors (0.150 μmol/mmol creatinine) than in healthy subjects (0.056 μmol/mmol creatinine). The median neopterin levels of patients with malignant tumors were higher (1.5-times) than in patients with benign tumors. The median biopterin level in urine of patients with benign ovarian tumors (0.268 μmol/mmol creatinine) was found to be very close to the level in patients with malignant ovarian tumors (0.239 μmol/mmol creatinine), and both were higher than in healthy samples (0.096 μmol/mmol creatinine). The levels of urine pterin followed a pattern similar to neopterin levels for both ovarian tumors, but their concentrations were about three times lower than neopterin levels.
Collapse
Affiliation(s)
- M Zvarik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Computer Science, Comenius University, Bratislava, Slovakia.
| | - D Martinicky
- Department of Gynecological Oncology, National Cancer Institute, Bratislava, Slovakia.
| | - L Hunakova
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - L Sikurova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Computer Science, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
26
|
Strasser B, Fuchs D. Role of physical activity and diet on mood, behavior, and cognition. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.npbr.2015.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Loer CM, Calvo AC, Watschinger K, Werner-Felmayer G, O'Rourke D, Stroud D, Tong A, Gotenstein JR, Chisholm AD, Hodgkin J, Werner ER, Martinez A. Cuticle integrity and biogenic amine synthesis in Caenorhabditis elegans require the cofactor tetrahydrobiopterin (BH4). Genetics 2015; 200:237-53. [PMID: 25808955 PMCID: PMC4423366 DOI: 10.1534/genetics.114.174110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/12/2015] [Indexed: 11/18/2022] Open
Abstract
Tetrahydrobiopterin (BH4) is the natural cofactor of several enzymes widely distributed among eukaryotes, including aromatic amino acid hydroxylases (AAAHs), nitric oxide synthases (NOSs), and alkylglycerol monooxygenase (AGMO). We show here that the nematode Caenorhabditis elegans, which has three AAAH genes and one AGMO gene, contains BH4 and has genes that function in BH4 synthesis and regeneration. Knockout mutants for putative BH4 synthetic enzyme genes lack the predicted enzymatic activities, synthesize no BH4, and have indistinguishable behavioral and neurotransmitter phenotypes, including serotonin and dopamine deficiency. The BH4 regeneration enzymes are not required for steady-state levels of biogenic amines, but become rate limiting in conditions of reduced BH4 synthesis. BH4-deficient mutants also have a fragile cuticle and are generally hypersensitive to exogenous agents, a phenotype that is not due to AAAH deficiency, but rather to dysfunction in the lipid metabolic enzyme AGMO, which is expressed in the epidermis. Loss of AGMO or BH4 synthesis also specifically alters the sensitivity of C. elegans to bacterial pathogens, revealing a cuticular function for AGMO-dependent lipid metabolism in host-pathogen interactions.
Collapse
Affiliation(s)
- Curtis M Loer
- Department of Biology, University of San Diego, San Diego, California, 92110
| | - Ana C Calvo
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Katrin Watschinger
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Gabriele Werner-Felmayer
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Delia O'Rourke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Dave Stroud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Amy Tong
- Division of Biological Sciences, University of California, San Diego, California 92093
| | - Jennifer R Gotenstein
- Division of Biological Sciences, University of California, San Diego, California 92093
| | - Andrew D Chisholm
- Division of Biological Sciences, University of California, San Diego, California 92093
| | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
28
|
Tomono S, Miyoshi N, Ohshima H. Comprehensive analysis of the lipophilic reactive carbonyls present in biological specimens by LC/ESI-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 988:149-56. [PMID: 25777478 DOI: 10.1016/j.jchromb.2015.02.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/26/2015] [Accepted: 02/25/2015] [Indexed: 01/10/2023]
Abstract
A new analytical method has been developed for profiling lipophilic reactive carbonyls (RCs) such as aldehydes and ketones in biological samples using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) with selected reaction monitoring (SRM). The method consists of several phases, including (1) extraction of lipophilic RCs with a chloroform/methanol mixture; (2) derivatization of the extracted RCs with dansyl hydrazine (DH); and (3) SRM detection of the characteristic product ion of the 5-dimethylaminonaphthalene-1-sulfonyl moiety (m/z 236.1). The analytical results were expressed as RC maps, which allowed for the occurrence and levels of different lipophilic RCs to be visualized. We also developed a highly reproducible and accurate method to extract, purify and derivatize RCs in small volumes of biological specimens. This method was applied to the detection of free RCs in mice plasma samples, and resulted in the detection of more than 400 RCs in samples obtained from C57BL/6J mice. Thirty-four of these RCs were identified by comparison with authentic RCs. This method could be used to investigate the levels of RCs in biological and environmental samples, as well as studying the role of lipid peroxidation in oxidative stress related-disorders and discovering new biomarkers for the early diagnosis of these diseases.
Collapse
Affiliation(s)
- Susumu Tomono
- Laboratory of Longevity Biochemistry, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Graduate Program in Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Noriyuki Miyoshi
- Laboratory of Longevity Biochemistry, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Graduate Program in Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroshi Ohshima
- Laboratory of Longevity Biochemistry, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Graduate Program in Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
29
|
Yang S, Jan YH, Mishin V, Richardson JR, Hossain MM, Heindel ND, Heck DE, Laskin DL, Laskin JD. Sulfa drugs inhibit sepiapterin reduction and chemical redox cycling by sepiapterin reductase. J Pharmacol Exp Ther 2015; 352:529-40. [PMID: 25550200 PMCID: PMC4352594 DOI: 10.1124/jpet.114.221572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/29/2014] [Indexed: 12/11/2022] Open
Abstract
Sepiapterin reductase (SPR) catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4), a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism. SPR also mediates chemical redox cycling, catalyzing one-electron reduction of redox-active chemicals, including quinones and bipyridinium herbicides (e.g., menadione, 9,10-phenanthrenequinone, and diquat); rapid reaction of the reduced radicals with molecular oxygen generates reactive oxygen species (ROS). Using recombinant human SPR, sulfonamide- and sulfonylurea-based sulfa drugs were found to be potent noncompetitive inhibitors of both sepiapterin reduction and redox cycling. The most potent inhibitors of sepiapterin reduction (IC50s = 31-180 nM) were sulfasalazine, sulfathiazole, sulfapyridine, sulfamethoxazole, and chlorpropamide. Higher concentrations of the sulfa drugs (IC50s = 0.37-19.4 μM) were required to inhibit redox cycling, presumably because of distinct mechanisms of sepiapterin reduction and redox cycling. In PC12 cells, which generate catecholamine and monoamine neurotransmitters via BH4-dependent amino acid hydroxylases, sulfa drugs inhibited both BH2/BH4 biosynthesis and redox cycling mediated by SPR. Inhibition of BH2/BH4 resulted in decreased production of dopamine and dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxytryptamine. Sulfathiazole (200 μM) markedly suppressed neurotransmitter production, an effect reversed by BH4. These data suggest that SPR and BH4-dependent enzymes, are "off-targets" of sulfa drugs, which may underlie their untoward effects. The ability of the sulfa drugs to inhibit redox cycling may ameliorate ROS-mediated toxicity generated by redox active drugs and chemicals, contributing to their anti-inflammatory activity.
Collapse
Affiliation(s)
- Shaojun Yang
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Yi-Hua Jan
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Vladimir Mishin
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Jason R Richardson
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Muhammad M Hossain
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Ned D Heindel
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Diane E Heck
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Debra L Laskin
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| |
Collapse
|
30
|
Douglas G, Hale AB, Crabtree MJ, Ryan BJ, Hansler A, Watschinger K, Gross SS, Lygate CA, Alp NJ, Channon KM. A requirement for Gch1 and tetrahydrobiopterin in embryonic development. Dev Biol 2015; 399:129-138. [PMID: 25557619 PMCID: PMC4347993 DOI: 10.1016/j.ydbio.2014.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/19/2014] [Accepted: 12/20/2014] [Indexed: 10/28/2022]
Abstract
INTRODUCTION GTP cyclohydrolase I (GTPCH) catalyses the first and rate-limiting reaction in the synthesis of the enzymatic cofactor, tetrahydrobiopterin (BH4). Loss of function mutations in the GCH1 gene lead to congenital neurological diseases such as DOPA-responsive dystonia and hyperphenylalaninemia. However, little is known about how GTPCH and BH4 affects embryonic development in utero, and in particular whether metabolic replacement or supplementation in pregnancy is sufficient to rescue genetic GTPCH deficiency in the developing embryo. METHODS AND RESULTS Gch1 deficient mice were generated by the insertion of loxP sites flanking exons 2-3 of the Gch1 gene. Gch1(fl/fl) mice were bred with Sox2cre mice to generate mice with global Gch1 deficiency. Genetic ablation of Gch1 caused embryonic lethality by E13.5. Despite loss of Gch1 mRNA and GTPCH enzymatic activity, whole embryo BH4 levels were maintained until E11.5, indicating sufficient maternal transfer of BH4 to reach this stage of development. After E11.5, Gch1(-/-) embryos were deficient in BH4, but an unbiased metabolomic screen indicated that the lethality was not due to a gross disturbance in metabolic profile. Embryonic lethality in Gch1(-/-) embryos was not caused by structural abnormalities, but was associated with significant bradycardia at E11.5. Embryonic lethality was not rescued by maternal supplementation of BH4, but was partially rescued, up to E15.5, by maternal supplementation of BH4 and l-DOPA. CONCLUSION These findings demonstrate a requirement for Gch1 in embryonic development and have important implications for the understanding of pathogenesis and treatment of genetic BH4 deficiencies, as well as the identification of new potential roles for BH4.
Collapse
Affiliation(s)
- Gillian Douglas
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.
| | - Ashley B Hale
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Mark J Crabtree
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Brent J Ryan
- Oxford Parkinson׳s Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alex Hansler
- Department of Pharmacology, Weill Cornell Medical College, NY, USA
| | - Katrin Watschinger
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College, NY, USA
| | - Craig A Lygate
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Nicholas J Alp
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Keith M Channon
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| |
Collapse
|
31
|
Watschinger K, Keller MA, McNeill E, Alam MT, Lai S, Sailer S, Rauch V, Patel J, Hermetter A, Golderer G, Geley S, Werner-Felmayer G, Plumb RS, Astarita G, Ralser M, Channon KM, Werner ER. Tetrahydrobiopterin and alkylglycerol monooxygenase substantially alter the murine macrophage lipidome. Proc Natl Acad Sci U S A 2015; 112:2431-6. [PMID: 25675482 PMCID: PMC4345615 DOI: 10.1073/pnas.1414887112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tetrahydrobiopterin is a cofactor synthesized from GTP with well-known roles in enzymatic nitric oxide synthesis and aromatic amino acid hydroxylation. It is used to treat mild forms of phenylketonuria. Less is known about the role of tetrahydrobiopterin in lipid metabolism, although it is essential for irreversible ether lipid cleavage by alkylglycerol monooxygenase. Here we found intracellular alkylglycerol monooxygenase activity to be an important regulator of alkylglycerol metabolism in intact murine RAW264.7 macrophage-like cells. Alkylglycerol monooxygenase was expressed and active also in primary mouse bone marrow-derived monocytes and "alternatively activated" M2 macrophages obtained by interleukin 4 treatment, but almost missing in M1 macrophages obtained by IFN-γ and lipopolysaccharide treatment. The cellular lipidome of RAW264.7 was markedly changed in a parallel way by modulation of alkylglycerol monooxygenase expression and of tetrahydrobiopterin biosynthesis affecting not only various ether lipid species upstream of alkylglycerol monooxygenase but also other more complex lipids including glycosylated ceramides and cardiolipins, which have no direct connection to ether lipid pathways. Alkylglycerol monooxygenase activity manipulation modulated the IFN-γ/lipopolysaccharide-induced expression of inducible nitric oxide synthase, interleukin-1β, and interleukin 1 receptor antagonist but not transforming growth factor β1, suggesting that alkylglycerol monooxygenase activity affects IFN-γ/lipopolysaccharide signaling. Our results demonstrate a central role of tetrahydrobiopterin and alkylglycerol monooxygenase in ether lipid metabolism of murine macrophages and reveal that alteration of alkylglycerol monooxygenase activity has a profound impact on the lipidome also beyond the class of ether lipids.
Collapse
Affiliation(s)
- Katrin Watschinger
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Markus A Keller
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Eileen McNeill
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Mohammad T Alam
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | | - Sabrina Sailer
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Veronika Rauch
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jyoti Patel
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Georg Golderer
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gabriele Werner-Felmayer
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Robert S Plumb
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Giuseppe Astarita
- Waters Corporation, Milford, MA 01757; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057-1468; and
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, United Kingdom; Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
32
|
Wang D, Coco MW, Rose RB. Interactions with the bifunctional interface of the transcriptional coactivator DCoH1 are kinetically regulated. J Biol Chem 2015; 290:4319-29. [PMID: 25538247 DOI: 10.1074/jbc.m114.616870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pterin-4a-carbinolamine dehydratase (PCD) is a highly conserved enzyme that evolved a second, unrelated function in mammals, as a transcriptional coactivator. As a coactivator, PCD is known as DCoH or dimerization cofactor of the transcription factor HNF-1. These two activities are associated with a change in oligomeric state: from two dimers interacting as an enzyme in the cytoplasm to a dimer interacting with a dimer of HNF-1 in the nucleus. The same interface of DCoH forms both complexes. To determine how DCoH partitions between its two functions, we studied the folding and stability of the DCoH homotetramer. We show that the DCoH1 homotetramer is kinetically trapped, meaning once it forms it will not dissociate to interact with HNF-1. In contrast, DCoH2, a paralog of DCoH1, unfolds within hours. A simple mutation in the interface of DCoH2 from Ser-51 to Thr, as found in DCoH1, increases the kinetic stability by 9 orders of magnitude, to τ(½) ∼ 2 million years. This suggests that the DCoH1·HNF-1 complex must co-fold to interact. We conclude that simple mutations can dramatically affect the dissociation kinetics of a complex. Residue 51 represents a "kinetic hot spot" instead of a "thermodynamic hot spot." Kinetic regulation allows PCD to adopt two distinct functions. Mutations in DCoH1 associated with diabetes affect both functions of DCoH1, perhaps by disrupting the balance between the two DCoH complexes.
Collapse
Affiliation(s)
- Dongli Wang
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Matthew W Coco
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Robert B Rose
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| |
Collapse
|
33
|
Kleberg K, Nielsen LL, Stuhr-Hansen N, Nielsen J, Hansen HS. Evaluation of the immediate vascular stability of lipoprotein lipase-generated 2-monoacylglycerol in mice. Biofactors 2014; 40:596-602. [PMID: 25359532 DOI: 10.1002/biof.1189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/14/2014] [Indexed: 11/07/2022]
Abstract
2-Monoacylglycerols are gaining increasing interest as signaling lipids, beyond endocannabinoids, for example, as ligands for the receptor GPR119 and as mediators of insulin secretion. In the vascular system, they are formed by the action of lipoprotein lipase (LPL); however, their further disposition is unclear. Assuming similar affinity for uptake and incorporation into tissues of 2-oleoylglycerol and 2-oleylglyceryl ether, we have synthesized a (3)H-labeled 2-ether analog of triolein (labeled in alkyl group) and compared its disposition with (14)C-labeled triolein (labeled in glycerol) 20 min after intravenous coadministration in a ratio of 1:1 to mice. We found that peripheral tissues and the liver in particular are able to take up 2-monoacylglycerols as seen from (3)H uptake. In muscle and adipose tissue, 2-monoacylglycerols are probably further hydrolyzed as seen by an increased (3)H/(14)C ratio, whereas in the liver and the heart, data suggest that they are also subjected to re-esterification to triacylglycerol, as seen by an unchanged (3)H/(14)C ratio in the lipid fraction of the tissues. Our findings suggest that LPL-generated 2-monoacylglycerol is likely to be stable in the vascular system and thus have a potential to circulate or at least exert effects in tissues where it may be locally produced.
Collapse
Affiliation(s)
- Karen Kleberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
34
|
Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ. Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal 2014; 20:3040-77. [PMID: 24294830 PMCID: PMC4038990 DOI: 10.1089/ars.2013.5566] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023]
Abstract
Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases.
Collapse
Affiliation(s)
- Jennifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford , John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Tarui M, Shindou H, Kumagai K, Morimoto R, Harayama T, Hashidate T, Kojima H, Okabe T, Nagano T, Nagase T, Shimizu T. Selective inhibitors of a PAF biosynthetic enzyme lysophosphatidylcholine acyltransferase 2. J Lipid Res 2014; 55:1386-96. [PMID: 24850807 PMCID: PMC4076079 DOI: 10.1194/jlr.m049205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Indexed: 01/09/2023] Open
Abstract
Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid mediator. In response to extracellular stimuli, PAF is rapidly biosynthesized by lyso-PAF acetyltransferase (lyso-PAFAT). Previously, we identified two types of lyso-PAFATs: lysophosphatidylcholine acyltransferase (LPCAT)1, mostly expressed in the lungs where it produces PAF and dipalmitoyl-phosphatidylcholine essential for respiration, and LPCAT2, which biosynthesizes PAF and phosphatidylcholine (PC) in the inflammatory cells. Under inflammatory conditions, LPCAT2, but not LPCAT1, is activated and upregulated to produce PAF. Thus, it is important to develop inhibitors specific for LPCAT2 in order to ameliorate PAF-related inflammatory diseases. Here, we report the first identification of LPCAT2-specific inhibitors, N-phenylmaleimide derivatives, selected from a 174,000-compound library using fluorescence-based high-throughput screening followed by the evaluation of the effects on LPCAT1 and LPCAT2 activities, cell viability, and cellular PAF production. Selected compounds competed with acetyl-CoA for the inhibition of LPCAT2 lyso-PAFAT activity and suppressed PAF biosynthesis in mouse peritoneal macrophages stimulated with a calcium ionophore. These compounds had low inhibitory effects on LPCAT1 activity, indicating that adverse effects on respiratory functions may be avoided. The identified compounds and their derivatives will contribute to the development of novel drugs for PAF-related diseases and facilitate the analysis of LPCAT2 functions in phospholipid metabolism in vivo.
Collapse
Affiliation(s)
- Megumi Tarui
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan Department of Respiratory Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuo Kumagai
- Open Innovation Center for Drug Discovery, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Morimoto
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Harayama
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Tomomi Hashidate
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hirotatsu Kojima
- Open Innovation Center for Drug Discovery, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Okabe
- Open Innovation Center for Drug Discovery, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuo Nagano
- Open Innovation Center for Drug Discovery, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takao Shimizu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
36
|
Tokuoka SM, Kita Y, Shindou H, Shimizu T. Alkylglycerol monooxygenase as a potential modulator for PAF synthesis in macrophages. Biochem Biophys Res Commun 2013; 436:306-12. [DOI: 10.1016/j.bbrc.2013.05.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
|