1
|
Rao VN, Coelho CH. Public antibodies: convergent signatures in human humoral immunity against pathogens. mBio 2025:e0224724. [PMID: 40237455 DOI: 10.1128/mbio.02247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
The human humoral immune system has evolved to recognize a vast array of pathogenic threats. This ability is primarily driven by the immense diversity of antibodies generated by gene rearrangement during B cell development. However, different people often produce strikingly similar antibodies when exposed to the same antigen-known as public antibodies. Public antibodies not only reflect the immune system's ability to consistently select for optimal B cells but can also serve as signatures of the humoral responses triggered by infection and vaccination. In this Minireview, we examine and compare public antibody identification methods, including the identification criteria used based on V(D)J gene usage and similarity in the complementarity-determining region three sequences, and explore the molecular features of public antibodies elicited against common pathogens, including viruses, protozoa, and bacteria. Finally, we discuss the evolutionary significance and potential applications of public antibodies in informing the design of germline-targeting vaccines, predicting escape mutations in emerging viruses, and providing insights into the process of affinity maturation. The ongoing discovery of public antibodies in response to emerging pathogens holds the potential to improve pandemic preparedness, accelerate vaccine design efforts, and deepen our understanding of human B cell biology.
Collapse
Affiliation(s)
- Vishal N Rao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Camila H Coelho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
2
|
Biersteker R, Larsen OF, Wuhrer M, Huizinga TWJ, Toes REM, Hafkenscheid L. Variable domain glycosylation as a marker and modulator of immune responses: Insights into autoimmunity and B-cell malignancies. Semin Immunol 2025; 78:101946. [PMID: 40158366 DOI: 10.1016/j.smim.2025.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Glycosylation of antibodies is essential for shaping immune responses, as it contributes significantly to antibody function and diversity. While immunoglobulin G (IgG) Fc glycosylation is well-characterized, variable domain glycosylation (VDG) introduces an additional and less understood layer of complexity. Notably, VDG is associated with rheumatoid arthritis, where disease-specific IgG autoantibodies abundantly express this modification. Moreover, its presence on these antibodies correlates with disease progression in at-risk individuals and therapeutic outcomes. Emerging evidence links increased VDG levels to other autoimmune diseases and B-cell malignancies, highlighting its potential as both a marker and modulator in disease onset and progression. Importantly, VDG on IgG is now recognized to influence antigen binding, enhance antibody stability, and modulate interactions with the human neonatal Fc receptor. In addition, glycans in the antigen-binding domains of autoreactive B-cell receptors (BCRs) can significantly impact B cell activation. In follicular lymphoma and other B-cell malignancies, the presence of N-glycosylation sites in the immunoglobulin variable domains leads to the introduction of oligomannose glycans, which are postulated to bind to mannose-specific lectins. This interaction might promote antigen-independent activation of BCRs, thereby supporting malignant B cell survival and proliferation. Here, we explore the regulatory pathways of VDG and its functional roles across both physiological and pathological conditions, underscoring its prevalence and significance in various autoimmune diseases and B-cell malignancies. Ultimately, advancing our understanding of the regulatory factors influencing VDG and its functional implications could be highly rewarding for identifying potential therapeutic targets and strategies to prevent and treat autoimmune diseases and B-cell malignancies.
Collapse
Affiliation(s)
- Roxane Biersteker
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Oliver F Larsen
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Lise Hafkenscheid
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
3
|
Wu Y, Wu F, Ma Q, Li J, Ma L, Zhou H, Gong Y, Yao X. HTS and scRNA-seq revealed that the location and RSS quality of the mammalian TRBV and TRBJ genes impact biased rearrangement. BMC Genomics 2024; 25:1010. [PMID: 39472808 PMCID: PMC11520388 DOI: 10.1186/s12864-024-10887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
The quality of Recombination signal sequences (RSSs), location, and genetics of mammalian V, D, and J genes synergistically affect the recombination frequency of genes; however, the specific regulatory mechanism and efficiency have not been elucidated. By taking advantage of single-cell RNA-sequencing (scRNA-seq) and high-throughput sequencing (HTS) to investigate V(D)J rearrangement characteristics in the CDR3 repertoire, we found that the distal and proximal V genes (or J genes) "to D" gene were involved in rearrangement significantly more frequently than the middle V genes (or J genes) in the TRB locus among various species, including Primates (human and rhesus monkey), Rodentia (BALB/c, C57BL/6, and Kunming mice), Artiodactyla (buffalo), and Chiroptera (Rhinolophus affinis). The RSS quality of the V and J genes affected their frequency in rearrangement to varying degrees, especially when the V-RSSs with recombination signal information content (RIC) score < -45 significantly reduced the recombination frequency of the V gene. The V and J genes that were "away from D" had the dual advantages of recombinant structural accessibility and relatively high-quality RSSs, which promoted their preferential utilization in rearrangement. The quality of J-RSSs formed during mammalian evolution was apparently greater than that of V-RSSs, and the D-J distance was obviously shorter than that of V-D, which may be one of the reasons for guaranteeing that the "D-to-J preceding V-to-DJ rule" occurred when rearranged. This study provides a novel perspective on the mechanism and efficiency of V-D-J rearrangement in the mammalian TRB locus, as well as the biased utilization characteristics and application of V and J genes in the initial CDR3 repertoire.
Collapse
Affiliation(s)
- Yingjie Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- Department of Laboratory, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Qingqing Ma
- Department of Central Laboratory, Affiliated guizhou aerospace hospital of Zunyi Medical University, Zunyi City, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Hou Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yadong Gong
- Department of Central Laboratory, Affiliated guizhou aerospace hospital of Zunyi Medical University, Zunyi City, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
4
|
Majety N, Ahmed R, Al-Hallaf R, Paul P, Giwa A, Heinemann J, Agha Z, Choong C, Donner T, Jie C, Hamad ARA. Invariant VD and DJ Motifs Define a Novel Class of Human Antibodies and TCRs Prototyped by antigen receptors of Dual-Expresser Lymphocytes. Immunol Invest 2024; 53:1125-1140. [PMID: 39268869 DOI: 10.1080/08820139.2024.2383736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Dual-expressing lymphocytes (DEs) are unique immune cells that express both B cell receptors (BCRs, surface antibody) and T cell receptors (TCRs). In type 1 diabetes, DE antibodies are predominated by one antibody (x-mAb), an IgM monoclonal antibody with a germline-encoded CDR3 that recognizes self-reactive TCRs. We explored if x-mAb and its interacting TCRs have distinct structural features. METHODS Using bioinformatics, we compared x-mAb and its most common interacting TCRαβ to billions of antigen receptor sequences to determine if they were unique or randomly generated. RESULTS X-mAb represents a unique class of human antibodies with a conserved CDR3 sequence (CARx1-4DTAMVYYFYDW), consisting of a fixed DJH motif (DTAMVYYFDYW) paired with various VH genes. A public TCRβ clonotype (CASSPGTEAFF) associated with x-mAb on DEs features two invariant segments, VβD (CASSPGT) and DJβ (PGTEAFF), key to two large families of public TCRβ clonotypes-CASSPGT-Jβx and CASSPGT-Jβx-formed by recombining the VβD motif with Jβ genes and the DJβ motif with Vβ genes. B cells also use CASSPGT as a VHD motif for public IGH clonotypes (CASSPGT-Jβx). DISCUSSION DEs, unlike conventional T and B cells, use invariant motifs to create public antibodies and TCRs, a trait previously seen only in cartilaginous fish.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal/immunology
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/genetics
- Computational Biology/methods
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Amino Acid Motifs
- Immunoglobulin M/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Amino Acid Sequence
Collapse
Affiliation(s)
- Neha Majety
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rafid Al-Hallaf
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Prajita Paul
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adebola Giwa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Heinemann
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zainab Agha
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cherry Choong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, Iowa, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Phongbunchoo Y, Braikia FZ, Pessoa-Rodrigues C, Ramamoorthy S, Ramachandran H, Grosschedl A, Ma F, Cauchy P, Akhtar A, Sen R, Mittler G, Grosschedl R. YY1-mediated enhancer-promoter communication in the immunoglobulin μ locus is regulated by MSL/MOF recruitment. Cell Rep 2024; 43:114456. [PMID: 38990722 DOI: 10.1016/j.celrep.2024.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
The rearrangement and expression of the immunoglobulin μ heavy chain (Igh) gene require communication of the intragenic Eμ and 3' regulatory region (RR) enhancers with the variable (VH) gene promoter. Eμ binding of the transcription factor YY1 has been implicated in enhancer-promoter communication, but the YY1 protein network remains obscure. By analyzing the comprehensive proteome of the 1-kb Eμ wild-type enhancer and that of Eμ lacking the YY1 binding site, we identified the male-specific lethal (MSL)/MOF complex as a component of the YY1 protein network. We found that MSL2 recruitment depends on YY1 and that gene knockout of Msl2 in primary pre-B cells reduces μ gene expression and chromatin looping of Eμ to the 3' RR enhancer and VH promoter. Moreover, Mof heterozygosity in mice impaired μ expression and early B cell differentiation. Together, these data suggest that the MSL/MOF complex regulates Igh gene expression by augmenting YY1-mediated enhancer-promoter communication.
Collapse
Affiliation(s)
- Yutthaphong Phongbunchoo
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Fatima-Zohra Braikia
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Cecilia Pessoa-Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Haribaskar Ramachandran
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Anna Grosschedl
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Fei Ma
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Pierre Cauchy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Ranjan Sen
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Gerhard Mittler
- Proteomics Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Rudolf Grosschedl
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
6
|
Greenshields-Watson A, Abanades B, Deane CM. Investigating the ability of deep learning-based structure prediction to extrapolate and/or enrich the set of antibody CDR canonical forms. Front Immunol 2024; 15:1352703. [PMID: 38482007 PMCID: PMC10933040 DOI: 10.3389/fimmu.2024.1352703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 04/13/2024] Open
Abstract
Deep learning models have been shown to accurately predict protein structure from sequence, allowing researchers to explore protein space from the structural viewpoint. In this paper we explore whether "novel" features, such as distinct loop conformations can arise from these predictions despite not being present in the training data. Here we have used ABodyBuilder2, a deep learning antibody structure predictor, to predict the structures of ~1.5M paired antibody sequences. We examined the predicted structures of the canonical CDR loops and found that most of these predictions fall into the already described CDR canonical form structural space. We also found a small number of "new" canonical clusters composed of heterogeneous sequences united by a common sequence motif and loop conformation. Analysis of these novel clusters showed their origins to be either shapes seen in the training data at very low frequency or shapes seen at high frequency but at a shorter sequence length. To evaluate explicitly the ability of ABodyBuilder2 to extrapolate, we retrained several models whilst withholding all antibody structures of a specific CDR loop length or canonical form. These "starved" models showed evidence of generalisation across CDRs of different lengths, but they did not extrapolate to loop conformations which were highly distinct from those present in the training data. However, the models were able to accurately predict a canonical form even if only a very small number of examples of that shape were in the training data. Our results suggest that deep learning protein structure prediction methods are unable to make completely out-of-domain predictions for CDR loops. However, in our analysis we also found that even minimal amounts of data of a structural shape allow the method to recover its original predictive abilities. We have made the ~1.5 M predicted structures used in this study available to download at https://doi.org/10.5281/zenodo.10280181.
Collapse
|
7
|
Yuuki H, Itamiya T, Nagafuchi Y, Ota M, Fujio K. B cell receptor repertoire abnormalities in autoimmune disease. Front Immunol 2024; 15:1326823. [PMID: 38361948 PMCID: PMC10867955 DOI: 10.3389/fimmu.2024.1326823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
B cells play a crucial role in the immune response and contribute to various autoimmune diseases. Recent studies have revealed abnormalities in the B cell receptor (BCR) repertoire of patients with autoimmune diseases, with distinct features observed among different diseases and B cell subsets. Classically, BCR repertoire was used as an identifier of distinct antigen-specific clonotypes, but the recent advancement of analyzing large-scale repertoire has enabled us to use it as a tool for characterizing cellular biology. In this review, we provide an overview of the BCR repertoire in autoimmune diseases incorporating insights from our latest research findings. In systemic lupus erythematosus (SLE), we observed a significant skew in the usage of VDJ genes, particularly in CD27+IgD+ unswitched memory B cells and plasmablasts. Notably, autoreactive clones within unswitched memory B cells were found to be increased and strongly associated with disease activity, underscoring the clinical significance of this subset. Similarly, various abnormalities in the BCR repertoire have been reported in other autoimmune diseases such as rheumatoid arthritis. Thus, BCR repertoire analysis holds potential for enhancing our understanding of the underlying mechanisms involved in autoimmune diseases. Moreover, it has the potential to predict treatment effects and identify therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Hayato Yuuki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Zhang R, Wang D, Ruan GX, Wang R, Li Y, Chen W, Huang H, Wang J, Meng L, Zhu Z, Lei D, Xu S, Ou X. Spliceosome component PHD finger 5A is essential for early B lymphopoiesis. Development 2024; 151:dev202247. [PMID: 38095286 DOI: 10.1242/dev.202247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
The spliceosome, a multi-megadalton ribonucleoprotein complex, is essential for pre-mRNA splicing in the nucleus and ensuring genomic stability. Its precise and dynamic assembly is pivotal for its function. Spliceosome malfunctions can lead to developmental abnormalities and potentially contribute to tumorigenesis. The specific role of the spliceosome in B cell development is poorly understood. Here, we reveal that the spliceosomal U2 snRNP component PHD finger protein 5A (Phf5a) is vital for early B cell development. Loss of Phf5a results in pronounced defects in B cell development, causing an arrest at the transition from pre-pro-B to early pro-B cell stage in the bone marrow of mutant mice. Phf5a-deficient B cells exhibit impaired immunoglobulin heavy (IgH) chain expression due to defective V-to-DJ gene rearrangement. Mechanistically, our findings suggest that Phf5a facilitates IgH gene rearrangement by regulating the activity of recombination-activating gene endonuclease and influencing chromatin interactions at the Igh locus.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Daoqin Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gui-Xin Ruan
- Medical School, Taizhou University, Taizhou 318000, China
| | - Ruisi Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxing Li
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjing Chen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hengjun Huang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Limin Meng
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhijian Zhu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dengfeng Lei
- Department of Ophthalmology, Southern University of Science and Technology Hospital, Shenzhen 518055, China
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Republic of Singapore
| | - Xijun Ou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Mamidi MK, Huang J, Honjo K, Li R, Tabengwa EM, Neeli I, Randall NL, Ponnuchetty MV, Radic M, Leu CM, Davis RS. FCRL1 immunoregulation in B cell development and malignancy. Front Immunol 2023; 14:1251127. [PMID: 37822931 PMCID: PMC10562807 DOI: 10.3389/fimmu.2023.1251127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
Immunotherapeutic targeting of surface regulatory proteins and pharmacologic inhibition of critical signaling pathways has dramatically shifted our approach to the care of individuals with B cell malignancies. This evolution in therapy reflects the central role of the B cell receptor (BCR) signaling complex and its co-receptors in the pathogenesis of B lineage leukemias and lymphomas. Members of the Fc receptor-like gene family (FCRL1-6) encode cell surface receptors with complex tyrosine-based regulation that are preferentially expressed by B cells. Among them, FCRL1 expression peaks on naïve and memory B cells and is unique in terms of its intracellular co-activation potential. Recent studies in human and mouse models indicate that FCRL1 contributes to the formation of the BCR signalosome, modulates B cell signaling, and promotes humoral responses. Progress in understanding its regulatory properties, along with evidence for its over-expression by mature B cell leukemias and lymphomas, collectively imply important yet unmet opportunities for FCRL1 in B cell development and transformation. Here we review recent advances in FCRL1 biology and highlight its emerging significance as a promising biomarker and therapeutic target in B cell lymphoproliferative disorders.
Collapse
Affiliation(s)
- Murali K. Mamidi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jifeng Huang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Edlue M. Tabengwa
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Nar’asha L. Randall
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Manasa V. Ponnuchetty
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang Ming ChiaoTung University, Taipei, Taiwan
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Microbiology, and Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Levi R, Dvorkin S, Louzoun Y. Shared bias in H chain V-J pairing in naive and memory B cells. Front Immunol 2023; 14:1166116. [PMID: 37790930 PMCID: PMC10543446 DOI: 10.3389/fimmu.2023.1166116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/23/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction H chain rearrangement in B cells is a two-step process where first DH binds JH, and only then VH is joined to the complex. As such, there is no direct rearrangement between VH and JH. Results Nevertheless, we here show that the VHJH combinations frequency in humans deviates from the one expected based on each gene usage frequency. This bias is observed mainly in functional rearrangements, and much less in out-of-frame rearrangements. The bias cannot be explained by preferred binding for DH genes or a preferred reading frame. Preferred VH JH combinations are shared between donors. Discussion These results suggest a common structural mechanism for these biases. Through development, thepreferred VH JH combinations evolve during peripheral selection to become stronger, but less shared. We propose that peripheral Heavy chain VH JH usage is initially shaped by a structural selection before the naive B cellstate, followed by pathogen-induced selection for host specific VH-JH pairs.
Collapse
Affiliation(s)
| | | | - Yoram Louzoun
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
Boudinot P, Novas S, Jouneau L, Mondot S, Lefranc MP, Grimholt U, Magadán S. Evolution of T cell receptor beta loci in salmonids. Front Immunol 2023; 14:1238321. [PMID: 37649482 PMCID: PMC10464911 DOI: 10.3389/fimmu.2023.1238321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
T-cell mediated immunity relies on a vast array of antigen specific T cell receptors (TR). Characterizing the structure of TR loci is essential to study the diversity and composition of T cell responses in vertebrate species. The lack of good-quality genome assemblies, and the difficulty to perform a reliably mapping of multiple highly similar TR sequences, have hindered the study of these loci in non-model organisms. High-quality genome assemblies are now available for the two main genera of Salmonids, Salmo and Oncorhynchus. We present here a full description and annotation of the TRB loci located on chromosomes 19 and 25 of rainbow trout (Oncorhynchus mykiss). To get insight about variations of the structure and composition of TRB locus across salmonids, we compared rainbow trout TRB loci with other salmonid species and confirmed that the basic structure of salmonid TRB locus is a double set of two TRBV-D-J-C loci in opposite orientation on two different chromosomes. Our data shed light on the evolution of TRB loci in Salmonids after their whole genome duplication (WGD). We established a coherent nomenclature of salmonid TRB loci based on comprehensive annotation. Our work provides a fundamental basis for monitoring salmonid T cell responses by TRB repertoire sequencing.
Collapse
Affiliation(s)
- Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Samuel Novas
- Immunology Laboratory, Research Center for Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Vigo, Spain
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Stanislas Mondot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Paule Lefranc
- IMGT, The International ImMunoGeneTics Information System® (IMGT), Laboratoire d´ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Unni Grimholt
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
| | - Susana Magadán
- Immunology Laboratory, Research Center for Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Vigo, Spain
| |
Collapse
|
12
|
Liang Z, Zhao L, Ye AY, Lin SG, Zhang Y, Guo C, Dai HQ, Ba Z, Alt FW. Contribution of the IGCR1 regulatory element and the 3' Igh CTCF-binding elements to regulation of Igh V(D)J recombination. Proc Natl Acad Sci U S A 2023; 120:e2306564120. [PMID: 37339228 PMCID: PMC10293834 DOI: 10.1073/pnas.2306564120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023] Open
Abstract
Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from VH, D, and JH gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a JH-based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to JHs to form a DJH-RC. Igh has a provocative number and organization of CTCF-binding elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the VH and D/JH domains, over 100 CBEs across the VH domain convergent to CBE1, and 10 clustered 3'Igh-CBEs convergent to CBE2 and VH CBEs. IGCR1 CBEs segregate D/JH and VH domains by impeding loop extrusion-mediated RAG-scanning. Downregulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJH-RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3'Igh-CBEs in regulating RAG-scanning and elucidate the mechanism of the ordered transition from D-to-JH to VH-to-DJH recombination, we tested effects of inverting and/or deleting IGCR1 or 3'Igh-CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3'Igh-CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL downregulation mechanism in progenitor-B cells as opposed to a strict developmental switch.
Collapse
Affiliation(s)
- Zhuoyi Liang
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Lijuan Zhao
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Adam Yongxin Ye
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Sherry G. Lin
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Yiwen Zhang
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Chunguang Guo
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Hai-Qiang Dai
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Zhaoqing Ba
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Frederick W. Alt
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
13
|
Liang Z, Zhao L, Yongxin Ye A, Lin SG, Zhang Y, Guo C, Dai HQ, Ba Z, Alt FW. Contribution of the IGCR1 regulatory element and the 3 'Igh CBEs to Regulation of Igh V(D)J Recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537836. [PMID: 37163018 PMCID: PMC10168220 DOI: 10.1101/2023.04.21.537836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from V H , D, and J H gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a J H -based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to J H s to form a DJ H -RC. Igh has a provocative number and organization of CTCF-binding-elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the V H and D/J H domains, over 100 CBEs across the V H domain convergent to CBE1, and 10 clustered 3' Igh -CBEs convergent to CBE2 and V H CBEs. IGCR1 CBEs segregate D/J H and V H domains by impeding loop extrusion-mediated RAG-scanning. Down-regulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJ H -RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3' Igh -CBEs in regulating RAG-scanning and elucidate the mechanism of the "ordered" transition from D-to-J H to V H -to-DJ H recombination, we tested effects of deleting or inverting IGCR1 or 3' Igh -CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3' Igh -CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL down-regulation mechanism in progenitor B cells as opposed to a strict developmental switch. SIGNIFICANCE STATEMENT To counteract diverse pathogens, vertebrates evolved adaptive immunity to generate diverse antibody repertoires through a B lymphocyte-specific somatic gene rearrangement process termed V(D)J recombination. Tight regulation of the V(D)J recombination process is vital to generating antibody diversity and preventing off-target activities that can predispose the oncogenic translocations. Recent studies have demonstrated V(D)J rearrangement is driven by cohesin-mediated chromatin loop extrusion, a process that establishes genomic loop domains by extruding chromatin, predominantly, between convergently-oriented CTCF looping factor-binding elements (CBEs). By deleting and inverting CBEs within a critical antibody heavy chain gene locus developmental control region and a loop extrusion chromatin-anchor at the downstream end of this locus, we reveal how these elements developmentally contribute to generation of diverse antibody repertoires.
Collapse
|
14
|
Fries C, Lee LW, Devidas M, Dai Y, Rabin KR, Gupta S, Loh ML, Kirsch IR, Wood B, Rau RE. Prognostic impact of pretreatment immunoglobulin clonal composition in pediatric B-lymphoblastic leukemia. Haematologica 2023; 108:900-904. [PMID: 36325891 PMCID: PMC9973485 DOI: 10.3324/haematol.2022.281146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Carol Fries
- Department of Pediatrics, Hematology/Oncology, University of Rochester, Rochester.
| | | | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis
| | - Yunfeng Dai
- Department of Biostatistics, College of Medicine and Public Health and Health Professions, University of Florida, Gainesville, FL
| | - Karen R Rabin
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston
| | - Sumit Gupta
- Division of Hematology/Oncology, Hospital for Sick Children, Faculty of Medicine, University of Toronto, Toronto, ON
| | - Mignon L Loh
- Department of Pediatrics, Ben Towne Center for Childhood Cancer Research, Seattle Children's Hospital, Seattle, WA
| | | | - Brent Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - Rachel E Rau
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston
| |
Collapse
|
15
|
Darzentas F, Szczepanowski M, Kotrová M, Hartmann A, Beder T, Gökbuget N, Schwartz S, Bastian L, Baldus CD, Pál K, Darzentas N, Brüggemann M. Insights into IGH clonal evolution in BCP-ALL: frequency, mechanisms, associations, and diagnostic implications. Front Immunol 2023; 14:1125017. [PMID: 37143651 PMCID: PMC10151743 DOI: 10.3389/fimmu.2023.1125017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction The malignant transformation leading to a maturation arrest in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) occurs early in B-cell development, in a pro-B or pre-B cell, when somatic recombination of variable (V), diversity (D), and joining (J) segment immunoglobulin (IG) genes and the B-cell rescue mechanism of VH replacement might be ongoing or fully active, driving clonal evolution. In this study of newly diagnosed BCP-ALL, we sought to understand the mechanistic details of oligoclonal composition of the leukemia at diagnosis, clonal evolution during follow-up, and clonal distribution in different hematopoietic compartments. Methods Utilizing high-throughput sequencing assays and bespoke bioinformatics we identified BCP-ALL-derived clonally-related IGH sequences by their shared 'DNJ-stem'. Results We introduce the concept of 'marker DNJ-stem' to cover the entirety of, even lowly abundant, clonally-related family members. In a cohort of 280 adult patients with BCP-ALL, IGH clonal evolution at diagnosis was identified in one-third of patients. The phenomenon was linked to contemporaneous recombinant and editing activity driven by aberrant ongoing DH/VH-DJH recombination and VH replacement, and we share insights and examples for both. Furthermore, in a subset of 167 patients with molecular subtype allocation, high prevalence and high degree of clonal evolution driven by ongoing DH/VH-DJH recombination were associated with the presence of KMT2A gene rearrangements, while VH replacements occurred more frequently in Ph-like and DUX4 BCP-ALL. Analysis of 46 matched diagnostic bone marrow and peripheral blood samples showed a comparable clonal and clonotypic distribution in both hematopoietic compartments, but the clonotypic composition markedly changed in longitudinal follow-up analysis in select cases. Thus, finally, we present cases where the specific dynamics of clonal evolution have implications for both the initial marker identification and the MRD monitoring in follow-up samples. Discussion Consequently, we suggest to follow the marker DNJ-stem (capturing all family members) rather than specific clonotypes as the MRD target, as well as to follow both VDJH and DJH family members since their respective kinetics are not always parallel. Our study further highlights the intricacy, importance, and present and future challenges of IGH clonal evolution in BCP-ALL.
Collapse
Affiliation(s)
- Franziska Darzentas
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Monika Szczepanowski
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Michaela Kotrová
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alina Hartmann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH-ALL” (KFO 5010/1), funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Bonn, Germany
| | - Thomas Beder
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, Goethe University Hospital, Frankfurt/M, Germany
| | - Stefan Schwartz
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lorenz Bastian
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH-ALL” (KFO 5010/1), funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Bonn, Germany
| | - Claudia Dorothea Baldus
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH-ALL” (KFO 5010/1), funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Bonn, Germany
| | - Karol Pál
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Nikos Darzentas
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- *Correspondence: Nikos Darzentas,
| | - Monika Brüggemann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH-ALL” (KFO 5010/1), funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Bonn, Germany
| |
Collapse
|
16
|
Zhong X, D’Antona AM. A potential antibody repertoire diversification mechanism through tyrosine sulfation for biotherapeutics engineering and production. Front Immunol 2022; 13:1072702. [PMID: 36569848 PMCID: PMC9774471 DOI: 10.3389/fimmu.2022.1072702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
The diversity of three hypervariable loops in antibody heavy chain and light chain, termed the complementarity-determining regions (CDRs), defines antibody's binding affinity and specificity owing to the direct contact between the CDRs and antigens. These CDR regions typically contain tyrosine (Tyr) residues that are known to engage in both nonpolar and pi stacking interaction with antigens through their complementary aromatic ring side chains. Nearly two decades ago, sulfotyrosine residue (sTyr), a negatively charged Tyr formed by Golgi-localized membrane-bound tyrosylprotein sulfotransferases during protein trafficking, were also found in the CDR regions and shown to play an important role in modulating antibody-antigen interaction. This breakthrough finding demonstrated that antibody repertoire could be further diversified through post-translational modifications, in addition to the conventional genetic recombination. This review article summarizes the current advances in the understanding of the Tyr-sulfation modification mechanism and its application in potentiating protein-protein interaction for antibody engineering and production. Challenges and opportunities are also discussed.
Collapse
|
17
|
Ott JA, Haakenson JK, Kelly AR, Christian C, Criscitiello MF, Smider VV. Evolution of surrogate light chain in tetrapods and the relationship between lengths of CDR H3 and VpreB tails. Front Immunol 2022; 13:1001134. [PMID: 36311706 PMCID: PMC9614664 DOI: 10.3389/fimmu.2022.1001134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
In the mammalian immune system, the surrogate light chain (SLC) shapes the antibody repertoire during B cell development by serving as a checkpoint for production of functional heavy chains (HC). Structural studies indicate that tail regions of VpreB contact and cover the third complementarity-determining region of the HC (CDR H3). However, some species, particularly bovines, have CDR H3 regions that may not be compatible with this HC-SLC interaction model. With immense structural and genetic diversity in antibody repertoires across species, we evaluated the genetic origins and sequence features of surrogate light chain components. We examined tetrapod genomes for evidence of conserved gene synteny to determine the evolutionary origin of VpreB1, VpreB2, and IGLL1, as well as VpreB3 and pre-T cell receptor alpha (PTCRA) genes. We found the genes for the SLC components (VpreB1, VpreB2, and IGLL1) only in eutherian mammals. However, genes for PTCRA occurred in all amniote groups and genes for VpreB3 occurred in all tetrapod groups, and these genes were highly conserved. Additionally, we found evidence of a new VpreB gene in non-mammalian tetrapods that is similar to the VpreB2 gene of eutherian mammals, suggesting VpreB2 may have appeared earlier in tetrapod evolution and may be a precursor to traditional VpreB2 genes in higher vertebrates. Among eutherian mammals, sequence conservation between VpreB1 and VpreB2 was low for all groups except rabbits and rodents, where VpreB2 was nearly identical to VpreB1 and did not share conserved synteny with VpreB2 of other species. VpreB2 of rabbits and rodents likely represents a duplicated variant of VpreB1 and is distinct from the VpreB2 of other mammals. Thus, rabbits and rodents have two variants of VpreB1 (VpreB1-1 and VpreB1-2) but no VpreB2. Sequence analysis of VpreB tail regions indicated differences in sequence content, charge, and length; where repertoire data was available, we observed a significant relationship between VpreB2 tail length and maximum DH length. We posit that SLC components co-evolved with immunoglobulin HC to accommodate the repertoire - particularly CDR H3 length and structure, and perhaps highly unusual HC (like ultralong HC of cattle) may bypass this developmental checkpoint altogether.
Collapse
Affiliation(s)
- Jeannine A. Ott
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jeremy K. Haakenson
- Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Abigail R. Kelly
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Claire Christian
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Michael F. Criscitiello
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Vaughn V. Smider
- Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
18
|
Hutter K, Rülicke T, Szabo TG, Andersen L, Villunger A, Herzog S. The miR-15a/16-1 and miR-15b/16-2 clusters regulate early B cell development by limiting IL7R receptor expression. Front Immunol 2022; 13:967914. [PMID: 36110849 PMCID: PMC9469637 DOI: 10.3389/fimmu.2022.967914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that have emerged as post-transcriptional regulators involved in development and function of different types of immune cells, and aberrant miRNA expression has often been linked to cancer. One prominent miRNA family in the latter setting is the miR-15 family, consisting of the three clusters miR-15a/16-1, miR-15b/16-2 and miR-497/195, which is best known for its prominent tumor suppressive role in chronic lymphocytic leukemia (CLL). However, little is known about the physiological role of the miR-15 family. In this study, we provide a comprehensive in vivo analysis of the physiological functions of miR-15a/16-1 and miR-15b/16-2, both of which are highly expressed in immune cells, in early B cell development. In particular, we report a previously unrecognized physiological function of the miR-15 family in restraining progenitor B cell expansion, as loss of both clusters induces an increase of the pro-B as well as pre-B cell compartments. Mechanistically, we find that the miR-15 family mediates its function through repression of at least two different types of target genes: First, we confirm that the miR-15 family suppresses several prominent cell cycle regulators such as Ccne1, Ccnd3 and Cdc25a also in vivo, thereby limiting the proliferation of progenitor B cells. Second, this is complemented by direct repression of the Il7r gene, which encodes the alpha chain of the IL-7 receptor (IL7R), one of the most critical growth factor receptors for early B cell development. In consequence, deletion of the miR-15a/16-1 and miR-15b/16-2 clusters stabilizes Il7r transcripts, resulting in enhanced IL7R surface expression. Consistently, our data show an increased activation of PI3K/AKT, a key signaling pathway downstream of the IL7R, which likely drives the progenitor B cell expansion we describe here. Thus, by deregulating a target gene network of cell cycle and signaling mediators, loss of the miR-15 family establishes a pro-proliferative milieu that manifests in an enlarged progenitor B cell pool.
Collapse
Affiliation(s)
- Katharina Hutter
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Vienna, Austria
| | - Tamas G. Szabo
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Lill Andersen
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Villunger
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sebastian Herzog
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- *Correspondence: Sebastian Herzog,
| |
Collapse
|
19
|
Aubrey M, Warburg ZJ, Murre C. Helix-Loop-Helix Proteins in Adaptive Immune Development. Front Immunol 2022; 13:881656. [PMID: 35634342 PMCID: PMC9134016 DOI: 10.3389/fimmu.2022.881656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The E/ID protein axis is instrumental for defining the developmental progression and functions of hematopoietic cells. The E proteins are dimeric transcription factors that activate gene expression programs and coordinate changes in chromatin organization. Id proteins are antagonists of E protein activity. Relative levels of E/Id proteins are modulated throughout hematopoietic development to enable the progression of hematopoietic stem cells into multiple adaptive and innate immune lineages including natural killer cells, B cells and T cells. In early progenitors, the E proteins promote commitment to the T and B cell lineages by orchestrating lineage specific programs of gene expression and regulating VDJ recombination of antigen receptor loci. In mature B cells, the E/Id protein axis functions to promote class switch recombination and somatic hypermutation. E protein activity further regulates differentiation into distinct CD4+ and CD8+ T cells subsets and instructs mature T cell immune responses. In this review, we discuss how the E/Id proteins define the adaptive immune system lineages, focusing on their role in directing developmental gene programs.
Collapse
Affiliation(s)
| | | | - Cornelis Murre
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
20
|
Bulk gDNA Sequencing of Antibody Heavy-Chain Gene Rearrangements for Detection and Analysis of B-Cell Clone Distribution: A Method by the AIRR Community. Methods Mol Biol 2022; 2453:317-343. [PMID: 35622334 PMCID: PMC9374196 DOI: 10.1007/978-1-0716-2115-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this method we illustrate how to amplify, sequence, and analyze antibody/immunoglobulin (IG) heavy-chain gene rearrangements from genomic DNA that is derived from bulk populations of cells by next-generation sequencing (NGS). We focus on human source material and illustrate how bulk gDNA-based sequencing can be used to examine clonal architecture and networks in different samples that are sequenced from the same individual. Although bulk gDNA-based sequencing can be performed on both IG heavy (IGH) or kappa/lambda light (IGK/IGL) chains, we focus here on IGH gene rearrangements because IG heavy chains are more diverse, tend to harbor higher levels of somatic hypermutations (SHM), and are more reliable for clone identification and tracking. We also provide a procedure, including code, and detailed instructions for processing and annotation of the NGS data. From these data we show how to identify expanded clones, visualize the overall clonal landscape, and track clonal lineages in different samples from the same individual. This method has a broad range of applications, including the identification and monitoring of expanded clones, the analysis of blood and tissue-based clonal networks, and the study of immune responses including clonal evolution.
Collapse
|
21
|
Pongubala JMR, Murre C. Spatial Organization of Chromatin: Transcriptional Control of Adaptive Immune Cell Development. Front Immunol 2021; 12:633825. [PMID: 33854505 PMCID: PMC8039525 DOI: 10.3389/fimmu.2021.633825] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Higher-order spatial organization of the genome into chromatin compartments (permissive and repressive), self-associating domains (TADs), and regulatory loops provides structural integrity and offers diverse gene regulatory controls. In particular, chromatin regulatory loops, which bring enhancer and associated transcription factors in close spatial proximity to target gene promoters, play essential roles in regulating gene expression. The establishment and maintenance of such chromatin loops are predominantly mediated involving CTCF and the cohesin machinery. In recent years, significant progress has been made in revealing how loops are assembled and how they modulate patterns of gene expression. Here we will discuss the mechanistic principles that underpin the establishment of three-dimensional (3D) chromatin structure and how changes in chromatin structure relate to alterations in gene programs that establish immune cell fate.
Collapse
Affiliation(s)
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
22
|
Wu M, Zhao M, Wu H, Lu Q. Immune repertoire: Revealing the "real-time" adaptive immune response in autoimmune diseases. Autoimmunity 2021; 54:61-75. [PMID: 33650440 DOI: 10.1080/08916934.2021.1887149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The diversity of the immune repertoire (IR) enables the human immune system to distinguish multifarious antigens (Ags) that humans may encounter throughout life. At the same time, bias or abnormalities in the IR also pay a contribution to the pathogenesis of autoimmune diseases. Rapid advancements in high-throughput sequencing (HTS) technology have ushered in a new era of immune studies, revealing novel molecules and pathways that might result in autoimmunity. In the field of IR, HTS can monitor the immune response status and identify disease-specific immune repertoires. In this review, we summarize updated progress on the mechanisms of the IR and current related studies on four autoimmune diseases, particularly focusing on systemic lupus erythematosus (SLE). These autoimmune diseases can exhibit slightly or significantly skewed IRs and provide novel insights that inform our comprehending of disease pathogenesis and provide potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Meiyu Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Aslam MA, Alemdehy MF, Hao B, Krijger PHL, Pritchard CEJ, de Rink I, Muhaimin FI, Nurzijah I, van Baalen M, Kerkhoven RM, van den Berk PCM, Skok JA, Jacobs H. The Ig heavy chain protein but not its message controls early B cell development. Proc Natl Acad Sci U S A 2020; 117:31343-31352. [PMID: 33229554 PMCID: PMC7733823 DOI: 10.1073/pnas.2004810117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of progenitor B cells (ProB cells) into precursor B cells (PreB cells) is dictated by immunoglobulin heavy chain checkpoint (IgHCC), where the IgHC encoded by a productively rearranged Igh allele assembles into a PreB cell receptor complex (PreBCR) to generate signals to initiate this transition and suppressing antigen receptor gene recombination, ensuring that only one productive Igh allele is expressed, a phenomenon known as Igh allelic exclusion. In contrast to a productively rearranged Igh allele, the Igh messenger RNA (mRNA) (IgHR) from a nonproductively rearranged Igh allele is degraded by nonsense-mediated decay (NMD). This fact prohibited firm conclusions regarding the contribution of stable IgHR to the molecular and developmental changes associated with the IgHCC. This point was addressed by generating the IghTer5H∆TM mouse model from IghTer5H mice having a premature termination codon at position +5 in leader exon of IghTer5H allele. This prohibited NMD, and the lack of a transmembrane region (∆TM) prevented the formation of any signaling-competent PreBCR complexes that may arise as a result of read-through translation across premature Ter5 stop codon. A highly sensitive sandwich Western blot revealed read-through translation of IghTer5H message, indicating that previous conclusions regarding a role of IgHR in establishing allelic exclusion requires further exploration. As determined by RNA sequencing (RNA-Seq), this low amount of IgHC sufficed to initiate PreB cell markers normally associated with PreBCR signaling. In contrast, the IghTer5H∆TM knock-in allele, which generated stable IgHR but no detectable IgHC, failed to induce PreB development. Our data indicate that the IgHCC is controlled at the level of IgHC and not IgHR expression.
Collapse
Affiliation(s)
- Muhammad Assad Aslam
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Mir Farshid Alemdehy
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bingtao Hao
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Peter H L Krijger
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Colin E J Pritchard
- Mouse Clinic for Cancer and Aging Transgenic Facility, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Iris de Rink
- Genome Core Facility, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | - Ika Nurzijah
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Martijn van Baalen
- Flow Cytometry Facility, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ron M Kerkhoven
- Genome Core Facility, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Paul C M van den Berk
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| |
Collapse
|
24
|
Khosraviani N, Ostrowski LA, Mekhail K. Roles for Non-coding RNAs in Spatial Genome Organization. Front Cell Dev Biol 2019; 7:336. [PMID: 31921848 PMCID: PMC6930868 DOI: 10.3389/fcell.2019.00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic loci are non-randomly arranged in the nucleus of the cell. This order, which is important to overall genome expression and stability, is maintained by a growing number of factors including the nuclear envelope, various genetic elements and dedicated protein complexes. Here, we review evidence supporting roles for non-coding RNAs (ncRNAs) in the regulation of spatial genome organization and its impact on gene expression and cell survival. Specifically, we discuss how ncRNAs from single-copy and repetitive DNA loci contribute to spatial genome organization by impacting perinuclear chromosome tethering, major nuclear compartments, chromatin looping, and various chromosomal structures. Overall, our analysis of the literature highlights central functions for ncRNAs and their transcription in the modulation of spatial genome organization with connections to human health and disease.
Collapse
Affiliation(s)
- Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lauren A. Ostrowski
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Canada Research Chairs Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Zhang Y, Zhang X, Ba Z, Liang Z, Dring EW, Hu H, Lou J, Kyritsis N, Zurita J, Shamim MS, Presser Aiden A, Lieberman Aiden E, Alt FW. The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature 2019; 573:600-604. [PMID: 31511698 PMCID: PMC6867615 DOI: 10.1038/s41586-019-1547-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
RAG endonuclease initiates IgH locus (Igh) V(D)J assembly in progenitor (pro)-B cells by joining Ds to JHs, before joining upstream VHs to DJH intermediates1. In mouse pro-B cells, the CTCF-binding element (CBE)-anchored chromatin loop domain2 at the 3’end of Igh contains an internal sub-domain spanning the 5’CBE anchor (IGCR1)3, the DHs, and a RAG-bound recombination center (RC)4. The RC comprises JH-proximal D (DQ52), 4 JHs, and the intronic enhancer (“iEμ”)5. Robust RAG cleavage is restricted to paired V(D)J segments flanked by complementary recombination signal sequences (12RSSs and 23RSSs)6. Ds are flanked downstream and upstream by 12RSSs that, respectively, mediate deletional joining with convergently-oriented JH-23RSSs and VH-23RSSs6. Despite 12/23 compatibility, inversional D to JH joining via upstream D-12RSSs is rare7,8. Plasmid-based assays attributed lack of inversional D to JH joining to sequence-based preference for downstream D-12RSSs9, as opposed to putative linear scanning mechanisms10,11. Given recent findings that RAG linearly scans convergent CBE-anchored chromatin loops4,12-14, potentially formed by cohesin-mediated loop extrusion15-18, we revisited a scanning role. Here, we report that JH-23RSS chromosomal orientation programs RC-bound RAG to linearly scan upstream chromatin in the 3’Igh sub-domain for convergently-oriented D-12RSSs and, thereby, to mediate deletional joining of all Ds, except RC-based DQ52 that joins by a diffusion-related mechanism. In a DQ52-based RC, formed in the absence of JHs, RAG bound by the downstream DQ52-RSS scans the downstream constant region exon-containing 3’Igh sub-domain in which scanning can be impeded by targeted nuclease-dead Cas9 (dCas9) binding, by transcription through repetitive Igh switch sequences, and by the 3’Igh CBE-based loop anchor. Notably, each scanning impediment focally increases RAG activity on potential substrate sequences within the impeded region. High resolution mapping of RC chromatin interactions reveals that such focal RAG targeting is associated with corresponding impediments to the loop extrusion process that drives chromatin past RC-bound RAG.
Collapse
Affiliation(s)
- Yu Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA.,Center for Immunobiology, Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA.,Center for Immunobiology, Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Xuefei Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| | - Zhaoqing Ba
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| | - Zhuoyi Liang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| | - Edward W Dring
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| | - Hongli Hu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| | - Jiangman Lou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| | - Nia Kyritsis
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| | - Jeffrey Zurita
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| | - Muhammad S Shamim
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Computer Science, Rice University, Houston, TX, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Aviva Presser Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Computer Science, Rice University, Houston, TX, USA.,Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
26
|
Mutations in topoisomerase IIβ result in a B cell immunodeficiency. Nat Commun 2019; 10:3644. [PMID: 31409799 PMCID: PMC6692411 DOI: 10.1038/s41467-019-11570-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/23/2019] [Indexed: 02/01/2023] Open
Abstract
B cell development is a highly regulated process involving multiple differentiation steps, yet many details regarding this pathway remain unknown. Sequencing of patients with B cell-restricted immunodeficiency reveals autosomal dominant mutations in TOP2B. TOP2B encodes a type II topoisomerase, an essential gene required to alleviate topological stress during DNA replication and gene transcription, with no previously known role in B cell development. We use Saccharomyces cerevisiae, and knockin and knockout murine models, to demonstrate that patient mutations in TOP2B have a dominant negative effect on enzyme function, resulting in defective proliferation, survival of B-2 cells, causing a block in B cell development, and impair humoral function in response to immunization. Topoisomerases are required to release topological stress on DNA during replication and transcription. Here, Broderick et al. report genetic variants in TOP2B that cause a syndromic B cell immunodeficiency associated with reduced TOP2B function, defects in B cell development and B cell activation.
Collapse
|
27
|
Graf R, Seagal J, Otipoby KL, Lam KP, Ayoub S, Zhang B, Sander S, Chu VT, Rajewsky K. BCR-dependent lineage plasticity in mature B cells. Science 2019; 363:748-753. [PMID: 30765568 DOI: 10.1126/science.aau8475] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/17/2019] [Indexed: 12/17/2022]
Abstract
B2 cells engage in classical antibody responses, whereas B1 cells are considered carriers of innate immunity, biased toward recognizing epitopes present on the surfaces of common pathogens and self antigens. To explore the role of B cell antigen receptor (BCR) specificity in driving B1 cell differentiation, we developed a transgenic system allowing us to change BCR specificity in B cells in an inducible and programmed manner. Mature B2 cells differentiated into bona fide B1 cells upon acquisition of a B1 cell-typical self-reactive BCR through a phase of proliferative expansion. Thus, B2 cells have B1 cell differentiation potential in addition to their classical capacity to differentiate into memory and plasma cells, and B1 differentiation can be instructed by BCR-mediated self-reactivity, in the absence of B1-lineage precommitment.
Collapse
Affiliation(s)
- Robin Graf
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
| | - Jane Seagal
- Program in Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin L Otipoby
- Program in Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kong-Peng Lam
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Salah Ayoub
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, 13125 Berlin, Germany
| | - Baochun Zhang
- Program in Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Sandrine Sander
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Adaptive Immunity and Lymphoma, German Cancer Research Center / National Center for Tumor Diseases Heidelberg, 69120 Heidelberg, Germany
| | - Van Trung Chu
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Berlin Institute of Health, 10117 Berlin, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany. .,Program in Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
28
|
Immunopathology of Airway Surface Liquid Dehydration Disease. J Immunol Res 2019; 2019:2180409. [PMID: 31396541 PMCID: PMC6664684 DOI: 10.1155/2019/2180409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 12/30/2022] Open
Abstract
The primary purpose of pulmonary ventilation is to supply oxygen (O2) for sustained aerobic respiration in multicellular organisms. However, a plethora of abiotic insults and airborne pathogens present in the environment are occasionally introduced into the airspaces during inhalation, which could be detrimental to the structural integrity and functioning of the respiratory system. Multiple layers of host defense act in concert to eliminate unwanted constituents from the airspaces. In particular, the mucociliary escalator provides an effective mechanism for the continuous removal of inhaled insults including pathogens. Defects in the functioning of the mucociliary escalator compromise the mucociliary clearance (MCC) of inhaled pathogens, which favors microbial lung infection. Defective MCC is often associated with airway mucoobstruction, increased occurrence of respiratory infections, and progressive decrease in lung function in mucoobstructive lung diseases including cystic fibrosis (CF). In this disease, a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene results in dehydration of the airway surface liquid (ASL) layer. Several mice models of Cftr mutation have been developed; however, none of these models recapitulate human CF-like mucoobstructive lung disease. As an alternative, the Scnn1b transgenic (Scnn1b-Tg+) mouse model overexpressing a transgene encoding sodium channel nonvoltage-gated 1, beta subunit (Scnn1b) in airway club cells is available. The Scnn1b-Tg+ mouse model exhibits airway surface liquid (ASL) dehydration, impaired MCC, increased mucus production, and early spontaneous pulmonary bacterial infections. High morbidity and mortality among mucoobstructive disease patients, high economic and health burden, and lack of scientific understanding of the progression of mucoobstruction warrants in-depth investigation of the cause of mucoobstruction in mucoobstructive disease models. In this review, we will summarize published literature on the Scnn1b-Tg+ mouse and analyze various unanswered questions on the initiation and progression of mucobstruction and bacterial infections.
Collapse
|
29
|
Khanna N, Zhang Y, Lucas JS, Dudko OK, Murre C. Chromosome dynamics near the sol-gel phase transition dictate the timing of remote genomic interactions. Nat Commun 2019; 10:2771. [PMID: 31235807 PMCID: PMC6591236 DOI: 10.1038/s41467-019-10628-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/20/2019] [Indexed: 11/08/2022] Open
Abstract
Diverse antibody repertoires are generated through remote genomic interactions involving immunoglobulin variable (VH), diversity (DH) and joining (JH) gene segments. How such interactions are orchestrated remains unknown. Here we develop a strategy to track VH-DHJH motion in B-lymphocytes. We find that VH and DHJH segments are trapped in configurations that allow only local motion, such that spatially proximal segments remain in proximity, while spatially remote segments remain remote. Within a subset of cells, however, abrupt changes in VH-DHJH motion are observed, plausibly caused by temporal alterations in chromatin configurations. Comparison of experimental and simulated data suggests that constrained motion is imposed by a network of cross-linked chromatin chains characteristic of a gel phase, yet poised near the sol phase, a solution of independent chromatin chains. These results suggest that chromosome organization near the sol-gel phase transition dictates the timing of genomic interactions to orchestrate gene expression and somatic recombination.
Collapse
Affiliation(s)
- Nimish Khanna
- Division of Biological Sciences, 0377, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yaojun Zhang
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, 08544, USA
| | - Joseph S Lucas
- Division of Biological Sciences, 0377, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Olga K Dudko
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Cornelis Murre
- Division of Biological Sciences, 0377, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
30
|
Wang S, Chim B, Su Y, Khil P, Wong M, Wang X, Foroushani A, Smith PT, Liu X, Li R, Ganesan S, Kanellopoulou C, Hafner M, Muljo SA. Enhancement of LIN28B-induced hematopoietic reprogramming by IGF2BP3. Genes Dev 2019; 33:1048-1068. [PMID: 31221665 PMCID: PMC6672051 DOI: 10.1101/gad.325100.119] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/16/2019] [Indexed: 01/07/2023]
Abstract
Fetal hematopoietic stem and progenitor cells (HSPCs) hold promise to cure a wide array of hematological diseases, and we previously found a role for the RNA-binding protein (RBP) Lin28b in respecifying adult HSPCs to resemble their fetal counterparts. Here we show by single-cell RNA sequencing that Lin28b alone was insufficient for complete reprogramming of gene expression from the adult toward the fetal pattern. Using proteomics and in situ analyses, we found that Lin28b (and its closely related paralog, Lin28a) directly interacted with Igf2bp3, another RBP, and their enforced co-expression in adult HSPCs reactivated fetal-like B-cell development in vivo more efficiently than either factor alone. In B-cell progenitors, Lin28b and Igf2bp3 jointly stabilized thousands of mRNAs by binding at the same sites, including those of the B-cell regulators Pax5 and Arid3a as well as Igf2bp3 mRNA itself, forming an autoregulatory loop. Our results suggest that Lin28b and Igf2bp3 are at the center of a gene regulatory network that mediates the fetal-adult hematopoietic switch. A method to efficiently generate induced fetal-like hematopoietic stem cells (ifHSCs) will facilitate basic studies of their biology and possibly pave a path toward their clinical application.
Collapse
Affiliation(s)
- Saifeng Wang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bryan Chim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yijun Su
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Pavel Khil
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Madeline Wong
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Amir Foroushani
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Patrick T Smith
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiuhuai Liu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rui Li
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chrysi Kanellopoulou
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Stefan A Muljo
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
31
|
Asensio MA, Lim YW, Wayham N, Stadtmiller K, Edgar RC, Leong J, Leong R, Mizrahi RA, Adams MS, Simons JF, Spindler MJ, Johnson DS, Adler AS. Antibody repertoire analysis of mouse immunization protocols using microfluidics and molecular genomics. MAbs 2019; 11:870-883. [PMID: 30898066 PMCID: PMC6601537 DOI: 10.1080/19420862.2019.1583995] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Immunization of mice followed by hybridoma or B-cell screening is one of the most common antibody discovery methods used to generate therapeutic monoclonal antibody (mAb) candidates. There are a multitude of different immunization protocols that can generate an immune response in animals. However, an extensive analysis of the antibody repertoires that these alternative immunization protocols can generate has not been performed. In this study, we immunized mice that transgenically express human antibodies with either programmed cell death 1 protein or cytotoxic T-lymphocyte associated protein 4 using four different immunization protocols, and then utilized a single cell microfluidic platform to generate tissue-specific, natively paired immunoglobulin (Ig) repertoires from each method and enriched for target-specific binders using yeast single-chain variable fragment (scFv) display. We deep sequenced the scFv repertoires from both the pre-sort and post-sort libraries. All methods and both targets yielded similar oligoclonality, variable (V) and joining (J) gene usage, and divergence from germline of enriched libraries. However, there were differences between targets and/or immunization protocols for overall clonal counts, complementarity-determining region 3 (CDR3) length, and antibody/CDR3 sequence diversity. Our data suggest that, although different immunization protocols may generate a response to an antigen, performing multiple immunization protocols in parallel can yield greater Ig diversity. We conclude that modern microfluidic methods, followed by an extensive molecular genomic analysis of antibody repertoires, can be used to quickly analyze new immunization protocols or mouse platforms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Renee Leong
- a GigaGen Inc ., South San Francisco , CA , USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Aresta-Branco F, Erben E, Papavasiliou FN, Stebbins CE. Mechanistic Similarities between Antigenic Variation and Antibody Diversification during Trypanosoma brucei Infection. Trends Parasitol 2019; 35:302-315. [PMID: 30826207 DOI: 10.1016/j.pt.2019.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Trypanosoma brucei, which causes African trypanosomiasis, avoids immunity by periodically switching its surface composition. The parasite is coated by 10 million identical, monoallelically expressed variant surface glycoprotein (VSG) molecules. Multiple distinct parasites (with respect to their VSG coat) coexist simultaneously during each wave of parasitemia. This substantial antigenic load is countered by B cells whose antigen receptors (antibodies or immunoglobulins) are also monoallelically expressed, and that diversify dynamically to counter each variant antigen. Here we examine parallels between the processes that generate VSGs and antibodies. We also discuss current insights into VSG mRNA regulation that may inform the emerging field of Ig mRNA biology. We conclude by extending the parallels between VSG and Ig to the protein level.
Collapse
Affiliation(s)
- Francisco Aresta-Branco
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany; Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany; These authors contributed equally to this work
| | - Esteban Erben
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany; These authors contributed equally to this work
| | - F Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany.
| | - C Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
33
|
Phage Display Libraries: From Binders to Targeted Drug Delivery and Human Therapeutics. Mol Biotechnol 2019; 61:286-303. [DOI: 10.1007/s12033-019-00156-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
A clinical perspective on immunoglobulin heavy chain clonal heterogeneity in B cell acute lymphoblastic leukemia. Leuk Res 2018; 75:15-22. [DOI: 10.1016/j.leukres.2018.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
|
35
|
Winkler TH, Mårtensson IL. The Role of the Pre-B Cell Receptor in B Cell Development, Repertoire Selection, and Tolerance. Front Immunol 2018; 9:2423. [PMID: 30498490 PMCID: PMC6249383 DOI: 10.3389/fimmu.2018.02423] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022] Open
Abstract
Around four decades ago, it had been observed that there were cell lines as well as cells in the fetal liver that expressed antibody μ heavy (μH) chains in the apparent absence of bona fide light chains. It was thus possible that these cells expressed another molecule(s), that assembled with μH chains. The ensuing studies led to the discovery of the pre-B cell receptor (pre-BCR), which is assembled from Ig μH and surrogate light (SL) chains, together with the signaling molecules Igα and β. It is expressed on a fraction of pro-B (pre-BI) cells and most large pre-B(II) cells, and has been implicated in IgH chain allelic exclusion and down-regulation of the recombination machinery, assessment of the expressed μH chains and shaping the IgH repertoire, transition from the pro-B to pre-B stage, pre-B cell expansion, and cessation.
Collapse
Affiliation(s)
- Thomas H Winkler
- Chair of Genetics, Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Cresson C, Péron S, Jamrog L, Rouquié N, Prade N, Dubois M, Hébrard S, Lagarde S, Gerby B, Mancini SJC, Cogné M, Delabesse E, Delpy L, Broccardo C. PAX5A and PAX5B isoforms are both efficient to drive B cell differentiation. Oncotarget 2018; 9:32841-32854. [PMID: 30214688 PMCID: PMC6132355 DOI: 10.18632/oncotarget.26003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 07/31/2018] [Indexed: 11/25/2022] Open
Abstract
Pax5 is the guardian of the B cell identity since it primes or enhances the expression of B cell specific genes and concomitantly represses the expression of B cell inappropriate genes. The tight regulation of Pax5 is therefore required for an efficient B cell differentiation. A defect in its dosage can translate into immunodeficiency or malignant disorders such as leukemia or lymphoma. Pax5 is expressed from two different promoters encoding two isoforms that only differ in the sequence of their first alternative exon. Very little is known regarding the role of the two isoforms during B cell differentiation and the regulation of their expression. Our work aims to characterize the mechanisms of regulation of the expression balance of these two isoforms and their implication in the B cell differentiation process using murine ex vivo analyses. We show that these two isoforms are differentially regulated but have equivalent function during early B cell differentiation and may have functional differences after B cell activation. The tight control of their expression may thus reflect a way to finely tune Pax5 dosage during B cell differentiation process.
Collapse
Affiliation(s)
- Charlotte Cresson
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| | - Sophie Péron
- Université de Limoges-CNRS UMR 7276, F-87025 Limoges, France
| | - Laura Jamrog
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| | - Nelly Rouquié
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| | - Nais Prade
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse Hospital University, Oncopole, CS 53717, F-31000 Toulouse, France
| | - Marine Dubois
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| | - Sylvie Hébrard
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| | - Stéphanie Lagarde
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse Hospital University, Oncopole, CS 53717, F-31000 Toulouse, France
| | - Bastien Gerby
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| | - Stéphane J C Mancini
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, F-13009 Marseille, France
| | - Michel Cogné
- Université de Limoges-CNRS UMR 7276, Institut Universitaire de France, F-87025 Limoges, France
| | - Eric Delabesse
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse Hospital University, Oncopole, CS 53717, F-31000 Toulouse, France
| | - Laurent Delpy
- Université de Limoges-CNRS UMR 7276, F-87025 Limoges, France
| | - Cyril Broccardo
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| |
Collapse
|
37
|
Lin SG, Ba Z, Alt FW, Zhang Y. RAG Chromatin Scanning During V(D)J Recombination and Chromatin Loop Extrusion are Related Processes. Adv Immunol 2018; 139:93-135. [PMID: 30249335 DOI: 10.1016/bs.ai.2018.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An effective adaptive immune system depends on the ability of developing B and T cells to generate diverse immunoglobulin (Ig) and T cell receptor repertoires, respectively. Such diversity is achieved through a programmed somatic recombination process whereby germline V, D, and J segments of antigen receptor loci are assembled to form the variable region V(D)J exons of Ig and TCRs. Studies of this process, termed V(D)J recombination, have provided key insights into our understanding of a variety of general gene regulatory and DNA repair processes over the last several decades. V(D)J recombination is initiated by the RAG endonuclease which generates DNA double-stranded breaks at the borders of V, D, and J segments. In this review, we cover recent work that has elucidated RAG structure and work that revealed that RAG has a novel chromatin scanning activity, likely mediated by chromatin loop extrusion, that contributes to its ability to locate V, D, J gene segment substrates within large chromosomal loop domains bounded by CTCF-binding elements (CBEs). This latter function, coupled with the role CBE-based chromatin loop domains and subdomains within them play in focusing V(D)J recombination activity within antigen receptor loci, provide mechanistic explanations for long-standing questions regarding V(D)J segment usage diversification and in limiting potentially deleterious off-target RAG-initiated recombination events genome-wide. This review will focus mainly on studies of the mouse Ig heavy chain locus, but the principles described also apply to other Ig loci and to TCR loci in mice and humans.
Collapse
Affiliation(s)
- Sherry G Lin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Zhaoqing Ba
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States.
| | - Yu Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
The RAG-2 Inhibitory Domain Gates Accessibility of the V(D)J Recombinase to Chromatin. Mol Cell Biol 2018; 38:MCB.00159-18. [PMID: 29760281 DOI: 10.1128/mcb.00159-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
Accessibility of antigen receptor loci to RAG is correlated with the presence of H3K4me3, which binds to a plant homeodomain (PHD) in the RAG-2 subunit and promotes V(D)J recombination. A point mutation in the PHD, W453A, eliminates binding of H3K4me3 and impairs recombination. The debilitating effect of the W453A mutation is ameliorated by second-site mutations that locate an inhibitory domain in the interval from residues 352 through 405 of RAG-2. Disruption of the inhibitory domain stimulates V(D)J recombination within extrachromosomal substrates and at endogenous antigen receptor loci. Association of RAG-1 and RAG-2 with chromatin at the IgH locus in B cell progenitors is dependent on recognition of H3K4me3 by the PHD. Strikingly, disruption of the inhibitory domain permits association of RAG with the IgH locus in the absence of H3K4me3 binding. Thus, the inhibitory domain acts as a gate that prohibits RAG from accessing the IgH locus unless RAG-2 is engaged by H3K4me3.
Collapse
|
39
|
Rosenfeld AM, Meng W, Chen DY, Zhang B, Granot T, Farber DL, Hershberg U, Luning Prak ET. Computational Evaluation of B-Cell Clone Sizes in Bulk Populations. Front Immunol 2018; 9:1472. [PMID: 30008715 PMCID: PMC6034424 DOI: 10.3389/fimmu.2018.01472] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
Abstract
B cell clones expand and contract during adaptive immune responses and can persist or grow uncontrollably in lymphoproliferative disorders. One way to monitor and track B cell clones is to perform large-scale sampling of bulk cell populations, amplifying, and sequencing antibody gene rearrangements by next-generation sequencing (NGS). Here, we describe a series of computational approaches for estimating B cell clone size in NGS immune repertoire profiling data of antibody heavy chain gene rearrangements. We define three different measures of B cell clone size-copy numbers, instances, and unique sequences-and show how these measures can be used to rank clones, analyze their diversity, and study their distribution within and between individuals. We provide a detailed, step-by-step procedure for performing these analyses using two different data sets of spleen samples from human organ donors. In the first data set, 19 independently generated biological replicates from a single individual are analyzed for B cell clone size, diversity and sampling sufficiency for clonal overlap analysis. In the second data set, B cell clones are compared in eight different organ donors. We comment upon frequently encountered pitfalls and offer practical advice with alternative approaches. Overall, we provide a series of pragmatic analytical approaches and show how different clone size measures can be used to study the clonal landscape in bulk B cell immune repertoire profiling data.
Collapse
Affiliation(s)
- Aaron M. Rosenfeld
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dora Y. Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bochao Zhang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Tomer Granot
- Columbia Center for Translational Immunology, Columbia University, New York, NY, United States
| | - Donna L. Farber
- Columbia Center for Translational Immunology, Columbia University, New York, NY, United States
| | - Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
- Department of Microbiology and Immunology, Drexel College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
40
|
Ramchandren R, Jazaerly T, Bluth MH, Gabali AM. Molecular Diagnosis of Hematopoietic Neoplasms. Clin Lab Med 2018; 38:293-310. [DOI: 10.1016/j.cll.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Loguercio S, Barajas-Mora EM, Shih HY, Krangel MS, Feeney AJ. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci. Front Immunol 2018; 9:425. [PMID: 29593713 PMCID: PMC5859386 DOI: 10.3389/fimmu.2018.00425] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/16/2018] [Indexed: 12/19/2022] Open
Abstract
CCCTC-binding factor (CTCF) is largely responsible for the 3D architecture of the genome, in concert with the action of cohesin, through the creation of long-range chromatin loops. Cohesin is hypothesized to be the main driver of these long-range chromatin interactions by the process of loop extrusion. Here, we performed ChIP-seq for CTCF and cohesin in two stages each of T and B cell differentiation and examined the binding pattern in all six antigen receptor (AgR) loci in these lymphocyte progenitors and in mature T and B cells, ES cells, and fibroblasts. The four large AgR loci have many bound CTCF sites, most of which are only occupied in lymphocytes, while only the CTCF sites at the end of each locus near the enhancers or J genes tend to be bound in non-lymphoid cells also. However, despite the generalized lymphocyte restriction of CTCF binding in AgR loci, the Igκ locus is the only locus that also shows significant lineage-specificity (T vs. B cells) and developmental stage-specificity (pre-B vs. pro-B) in CTCF binding. We show that cohesin binding shows greater lineage- and stage-specificity than CTCF at most AgR loci, providing more specificity to the loops. We also show that the culture of pro-B cells in IL7, a common practice to expand the number of cells before ChIP-seq, results in a CTCF-binding pattern resembling pre-B cells, as well as other epigenetic and transcriptional characteristics of pre-B cells. Analysis of the orientation of the CTCF sites show that all sites within the large V portions of the Igh and TCRβ loci have the same orientation. This suggests either a lack of requirement for convergent CTCF sites creating loops, or indicates an absence of any loops between CTCF sites within the V region portion of those loci but only loops to the convergent sites at the D-J-enhancer end of each locus. The V region portions of the Igκ and TCRα/δ loci, by contrast, have CTCF sites in both orientations, providing many options for creating CTCF-mediated convergent loops throughout the loci. CTCF/cohesin loops, along with transcription factors, drives contraction of AgR loci to facilitate the creation of a diverse repertoire of antibodies and T cell receptors.
Collapse
Affiliation(s)
- Salvatore Loguercio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - E. Mauricio Barajas-Mora
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Han-Yu Shih
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Michael S. Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Ann J. Feeney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
42
|
Ward C, Rettig TA, Hlavacek S, Bye BA, Pecaut MJ, Chapes SK. Effects of spaceflight on the immunoglobulin repertoire of unimmunized C57BL/6 mice. LIFE SCIENCES IN SPACE RESEARCH 2018; 16:63-75. [PMID: 29475521 PMCID: PMC5826609 DOI: 10.1016/j.lssr.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 05/25/2023]
Abstract
Spaceflight has been shown to suppress the adaptive immune response, altering the distribution and function of lymphocyte populations. B lymphocytes express highly specific and highly diversified receptors, known as immunoglobulins (Ig), that directly bind and neutralize pathogens. Ig diversity is achieved through the enzymatic splicing of gene segments within the genomic DNA of each B cell in a host. The collection of Ig specificities within a host, or Ig repertoire, has been increasingly characterized in both basic research and clinical settings using high-throughput sequencing technology (HTS). We utilized HTS to test the hypothesis that spaceflight affects the B-cell repertoire. To test this hypothesis, we characterized the impact of spaceflight on the unimmunized Ig repertoire of C57BL/6 mice that were flown aboard the International Space Station (ISS) during the Rodent Research One validation flight in comparison to ground controls. Individual gene segment usage was similar between ground control and flight animals, however, gene segment combinations and the junctions in which gene segments combine was varied among animals within and between treatment groups. We also found that spontaneous somatic mutations in the IgH and Igκ gene loci were not increased. These data suggest that space flight did not affect the B cell repertoire of mice flown and housed on the ISS over a short period of time.
Collapse
Affiliation(s)
- Claire Ward
- Division of Biology, Kansas State University, 1717 Claflin Rd, 116 Ackert Hall, Manhattan, KS 66502, United States
| | - Trisha A Rettig
- Division of Biology, Kansas State University, 1717 Claflin Rd, 116 Ackert Hall, Manhattan, KS 66502, United States
| | - Savannah Hlavacek
- Division of Biology, Kansas State University, 1717 Claflin Rd, 116 Ackert Hall, Manhattan, KS 66502, United States
| | - Bailey A Bye
- Division of Biology, Kansas State University, 1717 Claflin Rd, 116 Ackert Hall, Manhattan, KS 66502, United States
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, 11021 Campus St. Rm 101, Loma Linda, CA 92350, United States
| | - Stephen K Chapes
- Division of Biology, Kansas State University, 1717 Claflin Rd, 116 Ackert Hall, Manhattan, KS 66502, United States.
| |
Collapse
|
43
|
Park J, Choe CH, Kim J, Yang JS, Kim JH, Jang H, Jang YS. Heterogeneous Nuclear Ribonucleoprotein A2B1 Exerts a Regulatory Role in Lipopolysaccharide-stimulated 38B9 B Cell Activation. Immune Netw 2018; 17:437-450. [PMID: 29302256 PMCID: PMC5746613 DOI: 10.4110/in.2017.17.6.437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/01/2022] Open
Abstract
Major histocompatibility complex (MHC) class II molecules, which are recognized for their primary function of presenting an antigen to the T cell receptor, are involved in various signaling pathways in B cell activation. We identified heterogeneous nuclear ribonucleoprotein (hnRNP) A2B1 as an MHC class II molecule-associated protein involved in MHC class II-mediated signal transduction in lipopolysaccharide (LPS)-stimulated 38B9 B cells. Although the function of hnRNP A2B1 in the nucleus is primarily known, the level of hnRNP A2B1 in the cytoplasm was increased in LPS-stimulated 38B9 cells, while it was not detected in the cytoplasm of non-treated 38B9 cells. The silencing of hnRNP A2B1 expression using siRNA disturbed B cell maturation by regulation of mitogen-activated protein kinase signaling, NF-κB activation, and protein kinase B activation. These results suggest that hnRNP A2B1 is associated with MHC class II molecules and is involved in B cell activation signaling pathways in LPS-stimulated 38B9 cells.
Collapse
Affiliation(s)
- Jisang Park
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| | | | - Ju Kim
- Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| | - Jing Shian Yang
- Department of Dentistry, Graduate School of Medicine, Korea University, Seoul 02841, Korea
| | - Jin Hyun Kim
- Department of Dentistry, Graduate School of Medicine, Korea University, Seoul 02841, Korea
| | - Hyonseok Jang
- Department of Dentistry, Graduate School of Medicine, Korea University, Seoul 02841, Korea.,Department of Oral Maxillofacial Surgery, Korea University Ansan Hospital, Ansan 15355, Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea.,Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
44
|
Lee SE, Kang SY, Yoo HY, Kim SJ, Kim WS, Ko YH. Clonal relationships in recurrent B-cell lymphomas. Oncotarget 2017; 7:12359-71. [PMID: 26848863 PMCID: PMC4914290 DOI: 10.18632/oncotarget.7132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin (Ig) gene rearrangements remain largely unmodified during the clonal expansion of neoplastic cells. We investigated the clonal relationships between lymphoma components at diagnosis and at relapse by analyzing Ig gene rearrangements. A BIOMED-2 multiplex polymerase chain reaction (PCR) assay was performed in 27 patients using formalin-fixed paraffin embedded tissues, with subsequent cloning and sequencing of the amplified Ig genes in 17 patients. All 27 cases of primary and corresponding relapsed tumors showed monoclonal rearrangements of the Ig genes by BIOMED-2 PCR. Whereas IgVH or IgVK fragment lengths were identical in 8/27 pairs (30%), fragment lengths differed in 19/27 pairs (70%). In 17 cases analyzed by sequencing, an identical VDJ gene rearrangement was confirmed in 4/4 pairs (100%) with the same fragment lengths and in 10/13 pairs (77%) with different fragment lengths. Four of 17 primary lymphomas had multiple VDJ rearrangements, and three of them showed an unrelated relapse. Unrelated relapse was observed in 1/8 mantle cell lymphomas, 1/5 diffuse large B-cell lymphomas, and a large B cell lymphoma developed in a patient with a small lymphocytic lymphoma. Unrelated relapses developed after a longer disease-free interval and tended to show poorer outcome compared with related relapse. In summary, relapse of a lymphoma from an unrelated clone is uncommon, but can occur in B-cell lymphomas. Clonal relationships should be determined by sequencing of the Ig genes, and not just by comparing the PCR product size.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Pathology, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul, Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hae Yong Yoo
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Hyeh Ko
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Ghraichy M, Galson JD, Kelly DF, Trück J. B-cell receptor repertoire sequencing in patients with primary immunodeficiency: a review. Immunology 2017; 153:145-160. [PMID: 29140551 DOI: 10.1111/imm.12865] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
The advent of next-generation sequencing (NGS) now allows a detailed assessment of the adaptive immune system in health and disease. In particular, high-throughput B-cell receptor (BCR) repertoire sequencing provides detailed information about the functionality and abnormalities of the B-cell system. However, it is mostly unknown how the BCR repertoire is altered in the context of primary immunodeficiencies (PID) and whether findings are consistent throughout phenotypes and genotypes. We have performed an extensive literature search of the published work on BCR repertoire sequencing in PID patients, including several forms of predominantly antibody disorders and combined immunodeficiencies. It is somewhat surprising that BCR repertoires, even from severe clinical phenotypes, often show only mild abnormalities and that diversity or immunoglobulin gene segment usage is generally preserved to some extent. Despite the great variety of wet laboratory and analytical methods that were used in the different studies, several findings are common to most investigated PIDs, such as the increased usage of gene segments that are associated with self-reactivity. These findings suggest that BCR repertoire characteristics may be used to assess the functionality of the B-cell compartment irrespective of the underlying defect. With the use of NGS approaches, there is now the opportunity to apply BCR repertoire sequencing to multiple patients and explore the PID BCR repertoire in more detail. Ultimately, using BCR repertoire sequencing in translational research could aid the management of PID patients by improving diagnosis, estimating functionality of the immune system and improving assessment of prognosis.
Collapse
Affiliation(s)
- Marie Ghraichy
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Jacob D Galson
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Johannes Trück
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Kim Wiese A, Schluterman Burdine M, Turnage RH, Tackett AJ, Burdine LJ. DNA-PKcs controls calcineurin mediated IL-2 production in T lymphocytes. PLoS One 2017; 12:e0181608. [PMID: 28750002 PMCID: PMC5531461 DOI: 10.1371/journal.pone.0181608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/05/2017] [Indexed: 01/12/2023] Open
Abstract
Loss of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity in mammals results in severe combined immuno-deficiency (SCID). This SCID phenotype has been postulated to be due solely to the function of DNA-PKcs in V(D)J recombination, a process critical for lymphocyte maturation. However; we show that DNA-PKcs is required for IL-2 production via regulation of the calcineurin signaling pathway. Reducing DNA-PKcs activity in activated T cells either by shRNA or an inhibitor significantly reduced IL-2 production by blocking calcineurin activity and the translocation of NFAT into the nucleus. Additionally, we show that DNA-PKcs exerts its effect on calcineurin by altering the expression of the endogenous calcineurin inhibitor Cabin1 through activation of the kinase CHK2, a known Cabin1 regulator. The discovery of DNA-PKcs as a potent regulator of IL-2 production will drive continued investigation of small molecule inhibition of this enzyme within the clinic.
Collapse
Affiliation(s)
- Ara Kim Wiese
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Marie Schluterman Burdine
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Richard H. Turnage
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lyle J. Burdine
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Transplant Surgery, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
High-throughput sequencing reveals novel features of immunoglobulin gene rearrangements in Burkitt lymphoma. Blood Adv 2017; 1:1261-1262. [PMID: 29296767 DOI: 10.1182/bloodadvances.2017008060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Arya R, Bassing CH. V(D)J Recombination Exploits DNA Damage Responses to Promote Immunity. Trends Genet 2017; 33:479-489. [PMID: 28532625 PMCID: PMC5499712 DOI: 10.1016/j.tig.2017.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
Abstract
It has been recognized for 40 years that the variable (diversity) joining [V(D)J] recombination-mediated assembly of diverse B and T lymphocyte antigen receptor (AgR) genes is not only essential for adaptive immunity, but also a risk for autoimmunity and lymphoid malignancies. Over the past few years, several studies have revealed that recombination-activating gene (RAG) endonuclease-induced DNA double-strand breaks (DSBs) transcend hazardous intermediates during antigen receptor gene assembly. RAG cleavage within the genomes of lymphocyte progenitors and immature lymphocytes regulates the expression of ubiquitous and lymphocyte-specific gene transcripts to control the differentiation and function of both adaptive and innate immune cell lineages. These unexpected discoveries raise important new questions that have broad implications for basic immunology research and the screening, diagnosis, and treatment of human immunological disease.
Collapse
Affiliation(s)
- Rahul Arya
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Sudhakar N, Rajkumar T, Rajalekshmy KR, Nancy NK. Characterization of clonal immunoglobulin heavy (IGH) V-D-J gene rearrangements and the complementarity-determining region in South Indian patients with precursor B-cell acute lymphoblastic leukemia. Blood Res 2017; 52:55-61. [PMID: 28401103 PMCID: PMC5383589 DOI: 10.5045/br.2017.52.1.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 11/13/2016] [Accepted: 12/27/2016] [Indexed: 12/01/2022] Open
Abstract
Background This study characterized clonal IG heavy V-D-J (IGH) gene rearrangements in South Indian patients with precursor B-cell acute lymphoblastic leukemia (precursor B-ALL) and identified age-related predominance in VDJ rearrangements. Methods IGH rearrangements were studied in 50 precursor B-ALL cases (common ALL=37, pre-B ALL=10, pro-B ALL=3) by polymerase chain reaction (PCR) heteroduplex analysis. Twenty randomly selected clonal IGH rearrangement sequences were analyzed using the IMGT/V-QUEST tool. Results Clonal IGH rearrangements were detected in 41 (82%) precursor B-ALL cases. Among the IGHV1-IGHV7 subgroups, IGHV3 was used in 25 (50%) cases. Among the IGHD1-IGHD7 genes, IGHD2 and IGHD3 were used in 8 (40%) and 5 (25%) clones, respectively. Among the IGHJ1-IGHJ6 genes, IGHJ6 and IGHJ4 were used in 9 (45%) and 6 (30%) clones, respectively. In 6 out of 20 (30%) IGH rearranged sequences, CDR3 was in frame whereas 14 (70%) had rearranged sequences and CDR3 was out of frame. A somatic mutation in Vmut/Dmut/Jmut was detected in 14 of 20 IGH sequences. On average, Vmut/Dmut/Jmut were detected in 0.1 nt, 1.1 nt, and 0.2 nt, respectively. Conclusion The IGHV3 gene was frequently used whereas lower frequencies of IGHV5 and IGHV6 and a higher frequency of IGHV4 were detected in children compared with young adults. The IGHD2 and IGHD3 genes were over-represented, and the IGHJ6 gene was predominantly used in precursor-B-ALL. However, the IGH gene rearrangements in precursor-B-ALL did not show any significant age-associated genotype pattern attributed to our population.
Collapse
Affiliation(s)
- Natarajan Sudhakar
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, India.; Department of Biotechnology, Dr. M.G.R. Educational & Research Institute, Chennai, India
| | | | | | | |
Collapse
|
50
|
Abstract
Immune tolerance hinders the potentially destructive responses of lymphocytes to host tissues. Tolerance is regulated at the stage of immature B cell development (central tolerance) by clonal deletion, involving apoptosis, and by receptor editing, which reprogrammes the specificity of B cells through secondary recombination of antibody genes. Recent mechanistic studies have begun to elucidate how these divergent mechanisms are controlled. Single-cell antibody cloning has revealed defects of B cell central tolerance in human autoimmune diseases and in several human immunodeficiency diseases caused by single gene mutations, which indicates the relevance of B cell tolerance to disease and suggests possible genetic pathways that regulate tolerance.
Collapse
|