1
|
Mosallam FM, Shafik MA, Abd Elmawgoud SA, El-Saied MA, Elshimy RM. In vitro and in vivo attenuation of Salmonella resistance using a novel synthesized chloramphenicol magnesium Nano-complex. Microb Pathog 2025; 203:107511. [PMID: 40147554 DOI: 10.1016/j.micpath.2025.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
In this study, Chloramphenicol-Mg-Nano-complex (CHL-Mg-NC) was synthesized as a novel antimicrobial agent to attenuate chloramphenicol resistant Salmonella clinical isolates in vitro and in vivo. The CHL-Mg-NC was prepared in presence of gamma radiation and validated by SEM, DLS, Zeta potential, and FTIR, that revealed typical CHL-Mg-NC characteristics. The Phenotypes, biochemical investigations and molecular identification assays defined Salmonella isolates and further detection of invA gene in S. Paratyphi A NCRR-CHR1, S. Enteritidis NCRR-CHR2 and S. Typhimurium NCRR-CHR3 were appraised. In vitro anti-Salmonella efficacy of CHL-Mg-NC was assessed against Salmonella isolates in addition to Typhimurium ATCC 700720. Gamma radiation improved CHL-Mg-NC synthesis in dose-depend manner up to 5 kGy. CHL-Mg-NC showed MIC at a range from 0.156 to 0.625 μg/mL and MBC from 0.3125 to 2.5 μg/mL with MBC/MIC ratio less than or equal to 4. CHL-Mg-NC inhibited biofilm formation in the range of 45.31 %-100 %. It also had bactericidal activity at 2MIC within the low time ranged from 2h to 4h. The in vivo efficacy of CHL-Mg-NC was observed by the reduction in the number of viable Salmonella recovered from feces in infected mice and showed evident improvement in CHL-Mg-NC treated groups.CHL-Mg-NC has no significant cytotoxic effects on normal cells and CC50 is 13.5 μg/mL against CACO2 cells. Acute toxicity of CHL-Mg-NC indicates that the CHL-Mg-NC is safe at high concentrations.
Collapse
Affiliation(s)
- Farag M Mosallam
- Drug Microbiology Lab, Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Maha A Shafik
- Drug Microbiology Lab, Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Mohamed A El-Saied
- Department of Pathology, Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Rana M Elshimy
- Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt; Microbiology and Immunology, Pharmacy Collage, Al-Ahram Canadian University, 6 October, Egypt
| |
Collapse
|
2
|
Shalaby AMA, Abdel-Aziz Abul-Ela ES, Mohamed Moustafa A, Hafez Mohamed S. The ultrastructural changes in the adult rat ovary after administration of copper oxide nanoparticles and the possible ameliorative influence of selenium. Ultrastruct Pathol 2025; 49:109-129. [PMID: 39799400 DOI: 10.1080/01913123.2024.2449091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/06/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
There is an important concern about the potential health and environmental risks that may develop due to exposure to copper oxide nanoparticles (CuO-NPs). Selenium is an essential trace element. It supports the expression of a variety of selenoproteins. The present study was designed to study the ultrastructural and biochemical changes in the adult rat ovary after oral administration of CuO-NPs and to assess the possible ameliorative influence of Selenium. Sixty adult female albino rats were divided in two major groups: Group I and Group II. Group I was further subdivided into three groups: Group IA (control), Group IB: received a single high dose of 2000 mg/kg CuO-NPs, Group IC: received selenium (0.5 mg/kg), five days before giving a single high dose of CuO-NPs (2000 mg/kg). Thereafter, given selenium for 14 days. Group II was subdivided into three groups: Group IIA (control), Group IIB: received a small dose of 300 mg/kg of CuO-NPs for 28 days, Group IIC: received selenium (0.5 mg/kg), five days before starting concomitant administration of CuO-NPs (300 mg/kg) and Selenium (0.5 mg/kg) for 28 days. Damage of the ovarian ultrastructural features, increased MDA levels, and decreased serum estrogen and progesterone hormones levels were detected in group IB and group IIB. Group IC and group IIC showed improvement of ovarian ultrastructural, decreased MDA levels, and increased serum estrogen and progesterone hormones levels as compared to group IB and group IIB indicating that Selenium could decrease the damage induced by CuO-NPs in the adult rat ovaries.
Collapse
Affiliation(s)
- Abeer Mohamed Ali Shalaby
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Amal Mohamed Moustafa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shehab Hafez Mohamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Siddique MH, Sadia M, Muzammil S, Saqalein M, Ashraf A, Hayat S, Saba S, Khan AM, Hashem A, Avila-Qezada GD, Abd-Allah EF. Biofabrication of copper oxide nanoparticles using Dalbergia sisso leaf extract for antibacterial, antibiofilm and antioxidant activities. Sci Rep 2024; 14:31867. [PMID: 39738430 PMCID: PMC11685889 DOI: 10.1038/s41598-024-83199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
One of the biggest challenges encountered by the current generation is the evolution of antibiotic resistant bacteria as a result of excessive and inappropriate use of antibiotics. This problem has led to the development of alternative approaches to treat the diseases caused by these multidrug resistant bacteria (MDR). One of the most promising and novel approaches to combat these pathogens is utilization of nanomaterials as antimicrobial agents. In the current investigation, copper oxide nanoparticles (CuO NPs) were fabricated by green method using Dalbergia sissoo leaf extract. The fabricated nanoparticles were characterized through various techniques like UV-visible spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The UV-visible spectroscopy revealed an absorption peak at 290 nm. SEM micrograph revealed only few spherical nanoparticles (with average diameter of < 100 nm), whereas most of the CuO NPs were agglomerated and formed large clusters. FTIR indicated presence of different functional groups that were used as reducing and capping agents while XRD analysis showed crystalline phase structure for the nanoparticles. These nanoparticles exhibited significant growth inhibition in terms of maximum inhibitory zones of 24 mm with minimum inhibitory concentrations (MIC) ranging from 62.5 to 125 µg/ml against MDR bacteria such as Acinetobacter baumannii, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. The effect of different concentrations of nanoparticles on cell membrane disruption was also investigated and a significant increase (p < 0.05) in the leakage of cellular content such as DNA, proteins and reducing sugar was measured. These nanoparticles also showed antibiofilm potential and a significant increase (p < 0.05) in biofilm inhibition was observed by increasing the concentration of nanoparticles. It was noted that percentage of inhibition of biofilm was found to be 68.4-75.8% at the highest tested concentration. The combined effects of antibiotics and nanoparticles revealed a synergistic interaction between them against tested bacteria. In vitro antioxidant activity of fabricated nanoparticles revealed significant antioxidant potential (p < 0.05) by quenching free radicals such as DPPH (73.6%), ABTS (68%) and H2O2 (63%) in a dose-dependent manner.
Collapse
Affiliation(s)
- Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University, GCU, Faisalabad, Pakistan
| | - Maimona Sadia
- Institute of Microbiology, Government College University, GCU, Faisalabad, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University, GCU, Faisalabad, Pakistan
| | - Muhammad Saqalein
- Institute of Microbiology, Government College University, GCU, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, GCU, Faisalabad, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University, GCU, Faisalabad, Pakistan.
| | - Saba Saba
- Department of Microbiology and Molecular Genetics, The Women University, Multan, Pakistan
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| | | | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Ahmed AS, Mathew LS, Khan AS, Rohn MM, Docmac OK, Sengupta P, Hantash EM, Elsisy RA. Potential of dehydroepiandrosterone and quercetin to ameliorate copper oxide nanoparticles induced hepatotoxicity in albino wistar rats. J Mol Histol 2024; 56:17. [PMID: 39614022 DOI: 10.1007/s10735-024-10311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/01/2024] [Indexed: 12/01/2024]
Abstract
The current investigation was designed as an experimental endeavor to explore the protective efficacy of dehydroepiandrosterone (DHEA) and quercetin against hepatotoxicity induced by copper oxide (CuO) nanoparticles. Rats were subjected to CuO nanoparticle intoxication through intraperitoneal injection of 150 mg/kg b.w. for three weeks, followed by the administration of the aforementioned antioxidants for an additional three weeks. This study systematically tracked alterations in liver enzymatic activity, antioxidant levels, apoptotic markers, and histopathological changes using the comet assay. CuO nanoparticle-intoxicated rats exhibited a significant increase in serum alanine transaminase aspartate aminotransferase (AST), and bilirubin levels, coupled with a noteworthy reduction in serum albumin. Moreover, there was a marked rise in serum tumor necrosis factor-alpha levels, concomitant with a significant decline in serum hepatocyte growth factor (HGF). Caspase-3 and Bax mRNA levels in the serum showed a substantial increase, while serum Bcl-2 mRNA levels witnessed a significant decrease. Liver tissue levels of malondialdehyde (MDA) and nitric oxide (NOx) experienced a significant elevation, and DNA damage was observed through the comet assay. Histopathological examination of the liver tissue substantiated these aforementioned findings. Administration of the antioxidants DHEA or quercetin, either individually or in combination, mitigated the parameters of hepatotoxicity to varying extents. In summary, the hepatic genotoxicity induced by CuO nanoparticles demonstrated improvement following the administration of either DHEA or quercetin. Additionally, their combined administration exhibited a more potent protective potential.
Collapse
Affiliation(s)
- Ahmed S Ahmed
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, 4184, UAE.
| | - Liju S Mathew
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, 4184, UAE
| | - Asim S Khan
- Department of Pharmacotherapeutics, College of Pharmacy, Immam Abdulrahman University, 8273, Dmmam, Saudi Arabia
| | - Mark M Rohn
- Biochemistry & Molecular Biology Department, Medical Research Institutes in Texas, Austin, Texas, 78712, USA
| | - Omaima K Docmac
- Anatomy and Embryology Department, College of Medicine, Tanta University, Tanta, 31511, Egypt
| | - Pallav Sengupta
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, 4184, UAE
| | - Ehab M Hantash
- Anatomy and Embryology Department, College of Medicine, Tanta University, Tanta, 31511, Egypt
- Neonatal Intensive Care Unit, Dr. Suliman Al Habib Medical Group, 11635, Riyadh, Saudi Arabia
| | - Rasha A Elsisy
- Anatomy and Embryology Department, College of Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
5
|
Majeed A, Akhtar M, Khan M, Ijaz M, Hussain P, Maqbool T, Hanan H. Hemocompatible and biocompatible hybrid nanocarriers for enhanced oral bioavailability of paclitaxel: in vivo evaluation. Colloids Surf B Biointerfaces 2024; 242:114073. [PMID: 39018915 DOI: 10.1016/j.colsurfb.2024.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
Oral administration of BCS class IV anticancer agents has always remained challenging and frequently results in poor oral bioavailability. The goal of the current study was to develop hybrid nanoparticles (HNPs) employing cholesterol and poloxamer-407 to boost paclitaxel's (PTX) oral bioavailability. A series of HNPs with different cholesterol and poloxamer-407 ratios were developed utilizing a single-step nanoprecipitation technique. The PTX loaded HNPs were characterized systematically via particle size, zeta potential, polydispersity index, surface morphology, in vitro drug release, FTIR, DSC, XRD, acute oral toxicity analysis, hemolysis evaluation, accelerated stability studies, and in vivo pharmacokinetic analysis. The HNPs were found within the range of 106.6±55.60 - 244.5±88.24 nm diameter with the polydispersity index ranging from 0.20±0.03 - 0.51±0.11. SEM confirmed circular, nonporous, and smooth surfaces of HNPs. PTX loaded HNPs exhibited controlled release profile. The compatibility between the components of formulation, thermal stability, and amorphous nature of HNPs were confirmed by FTIR, DSC, and XRD, respectively. Acute oral toxicity analysis revealed that developed system have no deleterious effects on the animals' cellular structures. HNPs demonstrated notable cytotoxic effects and were hemocompatible at relatively higher concentrations. In vivo pharmacokinetic profile (AUC0-∞, AUMC0-∞, t1/2, and MRT0-∞) of the PTX loaded HNPs was improved as compared to pure PTX. It is concluded from our findings that the developed HNPs are hemocompatible, biocompatible and have significantly enhanced the oral bioavailability of PTX.
Collapse
Affiliation(s)
- Asma Majeed
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan.
| | - Mehran Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab 54000, Pakistan
| | - Pakeeza Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Punjab 54000, Pakistan
| | - Hanasul Hanan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| |
Collapse
|
6
|
Lohrasbi F, Naghdi Babaei F, Ghasemi-Kasman M, Sadeghi-Chahnasir F, Shirzad M, Zabihi E. Effect of sub-acute exposure of metal-organic framework-199 on cognitive function and oxidative stress level of brain tissue in rat. Food Chem Toxicol 2024; 191:114866. [PMID: 39002791 DOI: 10.1016/j.fct.2024.114866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Metal-Organic Framework-199 (MOF-199) is a subgroup of MOFs that is utilized in different medical fields such as drug delivery. In the current study, the effect of sub-acute exposure to MOF-199 on spatial memory, working memory, inflammatory mediators' expression, and oxidative stress level of brain tissue has been investigated. Thirty-two male Wistar rats were randomly divided into four groups as vehicle, MOF-199 at doses 0.3, 3, or 6 mg/kg. After four injections of relevant interventions via tail vein during 14 days, behavioral parameters were investigated using Y-maze and Morris Water Maze (MWM) tests. Oxidative stress was measured by ferric reducing antioxidant power (FRAP) and thiobarbituric acid-reacting substance (TBARS) tests. The expression levels of TNF-α and IL-1β were assessed by quantitative real-time reverse-transcription PCR (qRT-PCR). No significant differences were observed in working memory, spatial learning and memory of MOF-199 receiving rats. Additionally, the level of oxidative stress and inflammatory genes expression were not remarkably changed in the brain tissues of MOF-199 treated rats. Despite the lack of remarkable toxic effects of sub-acute exposure to MOF-199, more studies with a longer duration of administration are necessary to use this substance for drug delivery systems in diseases related to the nervous system.
Collapse
Affiliation(s)
- Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | | - Moein Shirzad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
7
|
Zamanian Z, Tajbakhsh E, Arbab Soleimani N, Ghasemian A. Aqueous extract-mediated green synthesis of CuO nanoparticles: Potential anti-tuberculosis agents. Food Sci Nutr 2024; 12:5907-5921. [PMID: 39139956 PMCID: PMC11317747 DOI: 10.1002/fsn3.4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 08/15/2024] Open
Abstract
The emergence of drug-resistant strains in tuberculosis treatment underscores the urgency for novel therapeutic approaches. This study investigates the anti-tuberculosis activity of green-synthesized copper oxide (CuO) nanoparticles (NPs) using garlic and astragalus extracts. The physicochemical characterization of the nanoparticles confirms successful synthesis, followed by assessment of their antibacterial properties and safety profile. Rats infected with Mycobacterium tuberculosis are treated with nanocomposites derived from garlic extract at doses of 50 mg/kg and 100 mg/kg body weight. Evaluation includes the analysis of Early secreted antigenic target of 6 kDa (ESAT-6) expression and confirmation of antibodies through molecular assays. Administration of garlic and nanocomposites demonstrates significant inhibitory effects on tuberculosis progression in rats, validated by safety assessments and antibacterial efficacy. Notably, the 100 mg/kg dosage exhibits pronounced mitigation of tuberculosis-induced oxidative stress and lung damage. In conclusion, the combined administration of garlic extracts and green-synthesized nanocomposites shows promising efficacy in reducing tuberculosis infection, highlighting a potential avenue for anti-tuberculosis interventions.
Collapse
Affiliation(s)
- Zohreh Zamanian
- Department of Microbiology, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Elahe Tajbakhsh
- Department of Microbiology, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | | | - AbdolMajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| |
Collapse
|
8
|
Huang Z, Lin M, Wang L, Dou L, Hou X, Zhang J, Huang Y, Wei L, An R, Wang D, Yao Y, Guo D, Li Z, Zhang Y. Bafi A1 inhibits nano-copper oxide-induced mitochondrial damage by reducing the release of copper from lysosomes. J Appl Toxicol 2024; 44:1257-1268. [PMID: 38700028 DOI: 10.1002/jat.4624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
This study demonstrated that both copper oxide nanoparticles (CuO-NPs) and copper nanoparticles (Cu-NPs) can cause swelling, inflammation, and cause damage to the mitochondria of alveolar type II epithelial cells in mice. Cellular examinations indicated that both CuO-NPs and Cu-NPs can reduce cell viability and harm the mitochondria of human bronchial epithelial cells, particularly Beas-2B cells. However, it is clear that CuO-NPs exhibit a more pronounced detrimental effect compared with Cu-NPs. Using bafilomycin A1 (Bafi A1), an inhibitor of lysosomal acidification, was found to enhance cell viability and alleviate mitochondrial damage caused by CuO-NPs. Additionally, Bafi A1 also reduces the accumulation of dihydrolipoamide S-acetyltransferase (DLAT), a marker for mitochondrial protein toxicity, induced by CuO-NPs. This observation suggests that the toxicity of CuO-NPs depends on the distribution of copper particles within cells, a process facilitated by the acidic environment of lysosomes. The release of copper ions is thought to be triggered by the acidic conditions within lysosomes, which aligns with the lysosomal Trojan horse mechanism. However, this association does not seem to be evident with Cu-NPs.
Collapse
Affiliation(s)
- Zhi Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Mo Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Lei Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Liangding Dou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Xin Hou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Jinwen Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Yongchao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Lifang Wei
- Department of Nephrology, Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ran An
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Youliang Yao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Dongbei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Zhibo Li
- The 5th Ward, Department of Internal Medicine, Anshan Tuberculosis Hospital, Anshan, China
| | - Yongxing Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Shaoyong W, Wang W, Pan B, Liu R, Yin L, Wangjie R, Tian H, Wang Y, Jin M. Transgenerational Inheritance Effects of Copper Oxide Nanoparticles (CuONPs) Induced Asthenospermia and Infertility via Gamete H3K9me3 Insufficiency Pathway in Mice. ACS NANO 2024. [PMID: 39058239 DOI: 10.1021/acsnano.4c05660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The widespread use of colloidal copper oxide nanoparticles (CuONPs) poses substantial health risks to humans. CuONPs can penetrate the blood-testis barrier and induce spermatocide, and the understanding of the adverse effects of asthenospermia on spermatogenesis, embryonic development, and transgenerational inheritance is limited. In this study, male mice were orally administered different doses of CuONPs via continuous exposure for one spermatozoon development period (35 days) and then exposed without CuONPs for another 35 days. The CuONPs that accumulated in the testes induced oxidative stress (OS), affected the progress of spermatogenesis and sperm capacitation, and compromised epigenetic modifications, resulting in asthenospermia and embryonic development anomalies in male offspring. In a mechanism, CuONP exposure impaired the self-renewal and differentiation of spermatogonial stem cells (SSCs) via the GDNF/PI3K/AKT signaling pathway under OS. Importantly, CuONP exposure was found to potentially lower H3K9me3 levels in paternal sperm, which would further transgenerational transmission and interfere with sperm mitochondrial energy metabolism and motility, leading to asthenospermia and subfertility in the offspring. Collectively, these data reveal a molecular mechanism by which CuONP exposure disturbs H3K9me3 levels via the OS pathway, which further mediates the asthenospermic effects of reproductive failure by interfering with mitochondrial arrangement and formation in the next generation.
Collapse
Affiliation(s)
- Weike Shaoyong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Center for Metabolic & Gastroenterology, Institute of Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wusu Wang
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Bo Pan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Lin Yin
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Reshouyang Wangjie
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haolun Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Deraz NM, Drweesh EA, El-Gharbawy SM. Alleviative effect of betaine against copper oxide nanoparticles-induced hepatotoxicity in adult male albino rats: histopathological, biochemical, and molecular studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:47. [DOI: 10.1186/s43088-024-00505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 08/14/2024] Open
Abstract
AbstractBackgroundCopper oxide nanoparticles (CuO-NPs) have gained interest due to their availability, efficiency, and their cost-effectiveness. Betaine is an essential methyl donor and takes part in various physiological activities inside the body; it is found to have protective and curative effects against various liver diseases. The present study aimed to evaluate the hepatotoxic effect of CuO-NPs on adult male albino rats and the ability of betaine to alleviate such hepatotoxicity.MethodsForty adult male albino Wister rats were grouped into 4 groups (10 rats/group): group I a negative control, group II (CuO-NPs) injected with CuO-NPs intra peritoneal by insulin needle (0.5 mg/kg/day), group III (betaine + CuO-NPs) administered betaine orally by gavage needle (250 mg/kg/day 1 h before CuO-NPs) and CuO-NPs (0.5 mg/kg/day) finally, group IV (betaine) administered betaine orally by gavage needle (250 mg/kg/day) for consecutive 28 days. Blood and liver samples were gathered and processed for biochemical, molecular, histopathological, and immunohistochemical investigations.ResultsGroup II displayed a marked rise in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) levels. Furthermore, there is an excessive upregulation of the inflammatory biomarkers interleukin1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). On the other hand, substantial reduction in glutathione (GSH) levels and significant downregulation at glutathione peroxidase (GPx) mRNA gene expression. Regarding the histopathological deviations, there were severe congestion, dilatation and hyalinization of blood vessels, steatosis, hydropic degeneration, hepatocytic necrosis, increased binucleation, degenerated bile ducts, hyperplasia of ducts epithelial lining, and inflammatory cells infiltration. Immunohistochemically, there was a pronounced immunoreactivity toward IL-1β. Luckily, the pre-administration of betaine was able to mitigate these changes. MDA was dramatically reduced, resulting in the downregulation of IL-1β and TNF-α. Additionally, there was a considerable rise in GSH levels and an upregulation of GPx. Histopathological deviations were substantially improved as diminished dilatation, hyalinization and congestion of blood vessels, hepatocytes, and bile ducts are normal to some extent. In addition, IL-1β immunohistochemical analysis revealed marked decreased intensity.ConclusionBetaine can effectively reduce the hepatotoxicity caused by CuO-NPs via its antioxidant properties and its ability to stimulate the cell redox system.
Collapse
|
11
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Khalil HMA, Deraz NM, S M EG. Neuroprotective Assessment of Betaine against Copper Oxide Nanoparticle-Induced Neurotoxicity in the Brains of Albino Rats: A Histopathological, Neurochemical, and Molecular Investigation. ACS Chem Neurosci 2024; 15:1684-1701. [PMID: 38564598 DOI: 10.1021/acschemneuro.3c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1β and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1β, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1β and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nasrallah M Deraz
- Physical Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
12
|
Noreen S, Pervaiz F, Ijaz M, Hanif MF, Hamza JR, Mahmood H, Shoukat H, Maqbool I, Ashraf MA. pH-sensitive docetaxel-loaded chitosan/thiolated hyaluronic acid polymeric nanoparticles for colorectal cancer. Nanomedicine (Lond) 2024; 19:755-777. [PMID: 38334078 DOI: 10.2217/nnm-2023-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Aim: This study aimed to develop and evaluate pH-sensitive docetaxel-loaded thiolated hyaluronic acid (HA-SH) nanoparticles (NPs) for targeted treatment of colon cancer. Materials & methods: HA-SH, synthesized via oxidation and subsequent covalent linkage to cysteamine, served as the precursor for developing HA-SH NPs through polyelectrolyte complexation involving chitosan and thiol-bearing HA. Results & conclusion: HA-SH NPs displayed favorable characteristics, with small particle sizes (184-270 nm), positive zeta potential (15.4-18.6 mV) and high entrapment efficiency (91.66-95.02%). In vitro, NPs demonstrated potent mucoadhesion and enhanced cytotoxicity compared with free docetaxel. In vivo assessments confirmed safety and biocompatibility, suggesting HA-SH NPs as promising pH-sensitive drug carriers with enhanced antitumor activity for colorectal cancer treatments.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
- Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Ijaz
- Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria
- COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Jam Riyan Hamza
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, MN 55812, USA
| | - Hassan Mahmood
- COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | | |
Collapse
|
13
|
Ahmad M, Khan MKA, Ahmad N, Parveen M, Shahzad K, Hasan A. Histotoxicity induced by copper oxide nanoparticles (CuO-NPs) on developing mice (Mus musculus). Food Chem Toxicol 2024; 184:114369. [PMID: 38110052 DOI: 10.1016/j.fct.2023.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/18/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
The wide range of applications of nanoparticles (NPs) in various industries have led to serious consequences in terms of teratogenic toxicity. The aim of current work was to evaluate the teratogenic effects of copper oxide (CuO) nanoparticles in albino mice.In this experimental study, after mating, inseminated 40 female mice were divided randomly into 4 pools (1 control and 3 experimental), ten each. Doses were administered intravenously (We followed the protocol by Yaqub et al. (2018), intravenous application is faster route as compared to oral dosage)to all the experimental groups on the 6th day of gestation (GD), dose concentrations were 200, 133.3 and 100 mg/kg body weights respectively.The doses were prepared in sequence (1/2, 1/3, 1/4 0f LD50) according to already published work. The effects of CuO-NPs show linear relationship with the above sequence. The control group was administered only with distilled water.The gravid females were sacrificed through cervical disruption at the 18th day of gestation, fetuses were removed and divided into four sets (pools) for morphometric, morphological and histological studies. Data were subjected to statistical analysis by using Tukey's test in light of ANOVA at p < 0.05 level of significance. Findings of the present study showed that CuO-NPs various concentrations affect developmental abnormalities i.e.runt embryos, resorbed uteri, exencephaly, hygroma, macroglossia, micromelia, open eye, omphalocoel, scoliosis, kyphosis and kinked tail. It is concluded that exposure to CuO-NPs may potentially lead to the developmental deformities in mice.
Collapse
Affiliation(s)
- Munir Ahmad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | | | - Naveed Ahmad
- Department of Zoology, University of Education, Vehari campus, Vehari, 56130, Pakistan
| | - Munazza Parveen
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Khurram Shahzad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Ali Hasan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
14
|
Ghareeb OA. Hematotoxicity Induced by Copper Oxide Nanoparticles and the Attenuating Role of Giloy In Vivo. Cureus 2023; 15:e46577. [PMID: 37936991 PMCID: PMC10626200 DOI: 10.7759/cureus.46577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Background In line with the growing industrial applications of copper oxide nanoparticles (CuONPs) in various fields, concerns about their potentially harmful consequences on the environment, human, and animal health are increasing. Giloy is considered an alternative medicine to treat various ailments. Giloy's potential in helping manage diabetes, alleviating arthritis and joint pain, and addressing skin disorders such as eczema and acne underscores its multifaceted role in traditional medicine. Moreover, it is deemed beneficial for reducing stress and anxiety levels, promoting liver health, and potentially impacting heart health by regulating cholesterol levels. Emerging research also explores its potential in cancer prevention. This study aimed to evaluate the hematotoxicity of CuONPs and the alleviating effect of giloy in adult rats. Materials and methods In this experiment, 28 laboratory rats were used, set to four groups (7/group), as follows: control group without any dose; CuONPs group administered copper oxide nanoparticles at 300 mg/kg/day; CuONPs + giloy group dosed with CuONPs at 300 mg/kg/day plus giloy at 100 mg/kg/day; giloy group treated only with giloy at 100 mg/kg/day. All treatments were given by gastric gavage and continued for 28 uninterrupted days. Results Dosing animals with CuONPs led to significant adverse changes in the examined blood profile. In contrast, when the animals were coadministered with giloy, restoring the disturbed blood levels was observed. Conclusion Copper oxide nanoparticles at a high dose had notable hematotoxicity in laboratory rats and, supplemented with giloy, could reduce this hematological toxicity.
Collapse
|
15
|
Li Y, Liu T, Li X, Yang M, Liu T, Bao J, Jiang M, Hu L, Wang Y, Shao P, Jiang J. Combined surface functionalization of MSC membrane and PDA inhibits neurotoxicity induced by Fe 3O 4 in mice based on apoptosis and autophagy through the ASK1/JNK signaling pathway. Aging (Albany NY) 2023; 15:6933-6949. [PMID: 37470690 PMCID: PMC10415563 DOI: 10.18632/aging.204884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
The extensive utilization of iron oxide nanoparticles in medical and life science domains has led to a substantial rise in both occupational and public exposure to these particles. The potential toxicity of nanoparticles to living organisms, their impact on the environment, and the associated risks to human health have garnered significant attention and come to be a prominent area in contemporary research. The comprehension of the potential toxicity of nanoparticles has emerged as a crucial concern to safeguard human health and facilitate the secure advancement of nanotechnology. As nanocarriers and targeting agents, the biocompatibility of them determines the use scope and application prospects, meanwhile surface modification becomes an important measure to improve the biocompatibility. Three different types of iron oxide nanoparticles (Fe3O4, Fe3O4@PDA and MSCM-Fe3O4@PDA) were injected into mice through the tail veins. The acute neurotoxicity of them in mice was evaluated by measuring the levels of autophagy and apoptosis in the brain tissues. Our data revealed that iron oxide nanoparticles could cause nervous system damage by regulating the ASK1/JNK signaling pathway. Apoptosis and autophagy may play potential roles in this process. Exposure to combined surface functionalization of mesenchymal stem cell membrane and polydopamine showed the neuroprotective effect and may alleviate brain nervous system disorders.
Collapse
Affiliation(s)
- Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Yibin Jilin University Research Institute, Jilin University, Yibin, Sichuan, China
| | - Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Tianxin Liu
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Jindian Bao
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Miao Jiang
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Lingling Hu
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Yuzhuo Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Pu Shao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Cabral FV, Santana BDM, Lange CN, Batista BL, Seabra AB, Ribeiro MS. Pluronic F-127 Hydrogels Containing Copper Oxide Nanoparticles and a Nitric Oxide Donor to Treat Skin Cancer. Pharmaceutics 2023; 15:1971. [PMID: 37514157 PMCID: PMC10384138 DOI: 10.3390/pharmaceutics15071971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Melanoma is a serious and aggressive type of skin cancer with growing incidence, and it is the leading cause of death among those affected by this disease. Although surgical resection has been employed as a first-line treatment for the early stages of the tumor, noninvasive topical treatments might represent an alternative option. However, they can be irritating to the skin and result in undesirable side effects. In this context, the potential of topical polymeric hydrogels has been investigated for biomedical applications to overcome current limitations. Due to their biocompatible properties, hydrogels have been considered ideal candidates to improve local therapy and promote wound repair. Moreover, drug combinations incorporated into the polymeric-based matrix have emerged as a promising approach to improve the efficacy of cancer therapy, making them suitable vehicles for drug delivery. In this work, we demonstrate the synthesis and characterization of Pluronic F-127 hydrogels (PL) containing the nitric oxide donor S-nitrosoglutathione (GSNO) and copper oxide nanoparticles (CuO NPs) against melanoma cells. Individually applied NO donor or metallic oxide nanoparticles have been widely explored against various types of cancer with encouraging results. This is the first report to assess the potential and possible underlying mechanisms of action of PL containing both NO donor and CuO NPs toward cancer cells. We found that PL + GSNO + CuO NPs significantly reduced cell viability and greatly increased the levels of reactive oxygen species. In addition, this novel platform had a huge impact on different organelles, thus triggering cell death by inducing nuclear changes, a loss of mitochondrial membrane potential, and lipid peroxidation. Thus, GSNO and CuO NPs incorporated into PL hydrogels might find important applications in the treatment of skin cancer.
Collapse
Affiliation(s)
- Fernanda V Cabral
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo 05508-000, SP, Brazil
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Camila N Lange
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Bruno L Batista
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Martha S Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo 05508-000, SP, Brazil
| |
Collapse
|
17
|
Stuparu-Cretu M, Braniste G, Necula GA, Stanciu S, Stoica D, Stoica M. Metal Oxide Nanoparticles in Food Packaging and Their Influence on Human Health. Foods 2023; 12:1882. [PMID: 37174420 PMCID: PMC10178527 DOI: 10.3390/foods12091882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
It is a matter of common knowledge in the literature that engineered metal oxide nanoparticles have properties that are efficient for the design of innovative food/beverage packages. Although nanopackages have many benefits, there are circumstances when these materials are able to release nanoparticles into the food/beverage matrix. Once dispersed into food, engineered metal oxide nanoparticles travel through the gastrointestinal tract and subsequently enter human cells, where they display various behaviors influencing human health or wellbeing. This review article provides an insight into the antimicrobial mechanisms of metal oxide nanoparticles as essential for their benefits in food/beverage packaging and provides a discussion on the oral route of these nanoparticles from nanopackages to the human body. This contribution also highlights the potential toxicity of metal oxide nanoparticles for human health. The fact that only a small number of studies address the issue of food packaging based on engineered metal oxide nanoparticles should be particularly noted.
Collapse
Affiliation(s)
- Mariana Stuparu-Cretu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania
| | - Gheorghe Braniste
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (G.B.); (G.-A.N.)
| | - Gina-Aurora Necula
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (G.B.); (G.-A.N.)
| | - Silvius Stanciu
- Faculty of Food Science, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania;
| | - Dimitrie Stoica
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, 59-61 Balcescu Street, 800001 Galati, Romania;
| | - Maricica Stoica
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (G.B.); (G.-A.N.)
| |
Collapse
|
18
|
Mohammed RS, Aadim KA, Ahmed KA. Histological, haematological, and thyroid hormones toxicity of female rats orally exposed to CuO/ZnO core/shell nanoparticles synthesized by Ar plasma jets. Arch Toxicol 2023; 97:1017-1031. [PMID: 36847821 PMCID: PMC9969385 DOI: 10.1007/s00204-023-03462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Advancements in nanomedicine helped scientists design a new class of nanoparticles known as hybrid nanoparticles (core/shell) for diagnostic and therapeutic purposes. An essential requirement for the successful use of nanoparticles in biomedical applications is their low toxicity. Therefore, toxicological profiling is necessary to understand the mechanism of nanoparticles. The current study aimed to assess the toxicological potential of CuO/ZnO core/shell nanoparticles with a size of 32 nm in Albino female rats. In vivo toxicity was evaluated by oral administration of 0, 5, 10, 20, and 40 (mg/L) of CuO/ZnO core/shell nanoparticles to a female rate for 30 consecutive days. During the time of treatment, no deaths were observed. The toxicological evaluation revealed significant (p < 0.01) alteration in white blood cells (WBC) at a 5 (mg/L) dose. Also, increase in red blood cells (RBC) at 5, 10 (mg/L) doses, while hemoglobin (Hb) levels and hematocrit (HCT) increased at all doses. This maybe indicates that the CuO/ZnO core/shell nanoparticles stimulated the rate of blood corpuscle generation. The anaemia diagnostic indices (mean corpuscular volume MCV and mean corpuscular haemoglobin MCH) remained unchanged throughout the experiment for all the doses tested 5, 10, 20, and 40 (mg/L). According to the results of this study, exposure to CuO/ZnO core/shell NPs deteriorates the Triiodothyronine hormone (T3) and a Thyroxine hormone (T4) activated by Thyroid-Stimulating Hormone (TSH), which is generated and secreted from the pituitary gland. There is possibly related to an increase in free radicals and a decrease in antioxidant activity. Significant (p < 0.01) growth retardation in all groups treated due to rats' infection by Hyperthyroidism induced by thyroxine (T4) level increase. Hyperthyroidism is a catabolic state related to increased energy consumption, protein turnover, and lipolysis. Usually, these metabolic effects result in weight reduction and a decrease in fat storage and lean body mass. The histological examination indicates that the low concentrations of CuO/ZnO core/shell nanoparticles are safe for desired biomedical applications.
Collapse
Affiliation(s)
- Raghad S Mohammed
- Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq.
| | - Kadhim A Aadim
- Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq
| | - Khalid A Ahmed
- Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
19
|
Farshori NN, Siddiqui MA, Al-Oqail MM, Al-Sheddi ES, Al-Massarani SM, Ahamed M, Ahmad J, Al-Khedhairy AA. Copper Oxide Nanoparticles Exhibit Cell Death Through Oxidative Stress Responses in Human Airway Epithelial Cells: a Mechanistic Study. Biol Trace Elem Res 2022; 200:5042-5051. [PMID: 35000107 DOI: 10.1007/s12011-022-03107-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
Abstract
Copper oxide nanoparticles (CuONPs) are purposefully used to inhibit the growth of bacteria, algae, and fungi. Several studies on the beneficial and harmful effects of CuONPs have been conducted in vivo and in vitro, but there are a few studies that explain the toxicity of CuONPs in human airway epithelial cells (HEp-2). As a result, the purpose of this study is to look into the dose-dependent toxicity of CuONPs in HEp-2 cells. After 24 h of exposure to 1-40 µg/ml CuONPs, the MTT and neutral red assays were used to test for cytotoxicity. To determine the mechanism(s) of cytotoxicity in HEp-2 cells, additional oxidative stress assays (LPO and GSH), the amount of ROS produced, the loss of MMP, caspase enzyme activities, and apoptosis-related genes were performed using qRT-PCR. CuONPs exhibited dose-dependent cytotoxicity in HEp-2 cells, with an IC50 value of ~ 10 μg/ml. The morphology of HEp-2 cells was also altered in a dose-dependent manner. The involvement of oxidative stress in CuONP-induced cytotoxicity was demonstrated by increased LPO levels and ROS generation, as well as decreased levels of GSH and MMP. Furthermore, activated caspase enzymes and altered apoptotic genes support CuONPs' ability to induce apoptosis in HEp-2 cells. Overall, this study demonstrated that CuONPs can cause apoptosis in HEp-2 cells via oxidative stress; therefore, CuONPs may pose a risk to human health and should be handled and used with caution.
Collapse
Affiliation(s)
- Nida N Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Maqsood A Siddiqui
- DNA Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mai M Al-Oqail
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Ebtesam S Al-Sheddi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Shaza M Al-Massarani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Javed Ahmad
- DNA Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- DNA Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
20
|
Ruggeri M, Vigani B, Boselli C, Icaro Cornaglia A, Colombo D, Sànchez-Espejo R, Del Favero E, Mandras N, Roana J, Cavallo L, Cantù L, Viseras C, Rossi S, Sandri G. Smart nano-in-microparticles to tackle bacterial infections in skin tissue engineering. Mater Today Bio 2022; 16:100418. [PMID: 36157051 PMCID: PMC9489812 DOI: 10.1016/j.mtbio.2022.100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic wounds (resulting from underlying disease, metabolic disorders, infections, trauma, and even tumours) pose significant health problems. In this work, microparticles, based on polysaccharides (maltodextrin or dextran) and amino acids, and doped with antibacterial nanoparticles (CuO or ZnO NPs) are designed. Smart nano-in-microparticles with a hierarchical 3D structure are developed. The ultimate goal aims at an innovative platform to achieve skin repair and to manage skin colonization by avoiding infection that could delay and even impair the healing process. The microparticles are prepared by spray-drying and cross-linked by heating, to obtain insoluble scaffolds able to facilitate cell proliferation in the wound bed. The nano-in-microparticles are characterized using a multidisciplinary approach: chemico-physical properties (SEM, SEM-EDX, size distribution, swelling and degradation properties, structural characterization - FTIR, XRPD, SAXS - mechanical properties, surface zeta potential) and preclinical properties (in vitro biocompatibility and whole-blood clotting properties, release studies and antimicrobial properties, and in vivo safety and efficacy on murine burn/excisional wound model) were assessed. The hierarchical 3D nano-in microparticles demonstrate to promote skin tissue repair in a preclinical study, indicating that this platform deserves particular attention and further investigation will promote the prototypes translation to clinics.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100, Pavia, Italy
| | - Daniele Colombo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Rita Sànchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja S/n, Granada, 18071, Spain
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milano, LITA, Via Fratelli Cervi 93, 20090, Segrate, Milano, Italy
| | - Narcisa Mandras
- Department of Public Health and Pediatric Sciences, University of Turin, 10126, Turin, Italy
| | - Janira Roana
- Department of Public Health and Pediatric Sciences, University of Turin, 10126, Turin, Italy
| | - Lorenza Cavallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126, Turin, Italy
| | - Laura Cantù
- Department of Medical Biotechnology and Translational Medicine, University of Milano, LITA, Via Fratelli Cervi 93, 20090, Segrate, Milano, Italy
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja S/n, Granada, 18071, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
21
|
Tang X, Song F, Zhao W, Zhang Z, Cao Y. Intratracheal instillation of graphene oxide decreases anti-virus responses and lipid contents via suppressing Toll-like receptor 3 in mouse livers. J Appl Toxicol 2022; 42:1822-1831. [PMID: 35727742 DOI: 10.1002/jat.4359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022]
Abstract
Recent studies revealed a causal relationship between Toll-like receptors (TLRs) and lipid droplet biogenesis. Interestingly, it has been reported before that nanomaterials (NMs) were capable to modulate TLRs, but it remains unclear if NMs could affect lipid levels via TLR signaling pathways. In this study, we investigated the influences of airway exposure to graphene oxide (GO) on TLR3 signaling pathways and lipid levels in mouse livers. Intratracheal instillation of GO (0.1, 1, and 5 mg/kg, once a day, totally 5 days) induced inflammatory cell infiltrations as indicated by hematoxylin-eosin (H&E) staining and fibrosis as indicated by Masson staining in lungs, accompanying with decreased TLR3 proteins. Consistently, a TLR3-regulated anti-virus protein, namely interferon induced protein with tetratricopeptide repeats 1 (IFIT1), as well as two TLR3-regulated lipid proteins, namely radical S-adenosyl methionine domain containing 2 (RSAD2) and perilipin 2 (PLIN2), were decreased in lungs. The protein levels of interferon-β in serum were also decreased. In livers, GO exposure induced disorganization of liver cells but not fibrosis. In agreement with the trends observed in lungs, TLR3, IFIT1, RSAD2, and PLIN2 proteins were decreased in livers. As a possible consequence, GO exposure dose-dependently decreased lipid levels in livers as indicated by oil red O and BODIPY 493/503 staining. We concluded that airway exposure to GO decreased anti-virus responses and lipid levels in mouse livers via the suppression of TLR3.
Collapse
Affiliation(s)
- Xiaomin Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhaohui Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
22
|
Ibrahim Fouad G, El-Sayed SAM, Mabrouk M, Ahmed KA, Beherei HH. Neuroprotective Potential of Intranasally Delivered Sulforaphane-Loaded Iron Oxide Nanoparticles Against Cisplatin-Induced Neurotoxicity. Neurotox Res 2022; 40:1479-1498. [PMID: 35969308 PMCID: PMC9515146 DOI: 10.1007/s12640-022-00555-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Cisplatin (CIS) is a platinum-based chemotherapeutic drug that is widely used to treat cancer. However, its therapeutic efficiency is limited due to its potential to provoke neurotoxicity. Sulforaphane (SF) is a natural phytochemical that demonstrated several protective activities. Iron oxide nanoparticles (Fe3O4-NPs) could be used as drug carriers. This study aimed to explore the nanotoxic influence of SF-loaded within Fe3O4-NPs (N.SF), and to compare the neuroprotective potential of both N.SF and SF against CIS-induced neurotoxicity. N.SF or SF was administrated intranasally for 5 days before and 3 days after a single dose of CIS (12 mg/kg/week, i.p.) on the 6th day. Neuromuscular coordination was assessed using hanging wire and tail-flick tests. Acetylcholinesterase (AChE) activities and markers of oxidative stress were measured in the brain. In addition, the brain iron (Fe) content was estimated. CIS significantly induced a significant increase in AChE activities and lipid peroxides, and a significant decrement in glutathione (GSH) and nitric oxide (NO) contents. CIS elicited impaired neuromuscular function and thermal hyperalgesia. CIS-induced brains displayed a significant reduction in Fe content. Histopathological examination of different brain regions supported the biochemical and behavioral results. Contradict, treatment of CIS-rats with either N.SF or SF significantly decreased AChE activity, mitigated oxidative stress, and ameliorated the behavioral outcome. The histopathological features supported our results. Collectively, N.SF demonstrated superior neuroprotective activities on the behavioral, biochemical, and histopathological (striatum and cerebral cortex) aspects. N.SF could be regarded as a promising “pre-clinical” neuroprotective agent. Furthermore, this study confirmed the safe toxicological profile of Fe3O4-NPs.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
23
|
Mabrouk M, Ibrahim Fouad G, El-Sayed SAM, Rizk MZ, Beherei HH. Hepatotoxic and Neurotoxic Potential of Iron Oxide Nanoparticles in Wistar Rats: a Biochemical and Ultrastructural Study. Biol Trace Elem Res 2022; 200:3638-3665. [PMID: 34704196 DOI: 10.1007/s12011-021-02943-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Iron oxide nanoparticles (IONPs) are increasingly being employed for in vivo biomedical nanotheranostic applications. The development of novel IONPs should be accompanied by careful scrutiny of their biocompatibility. Herein, we studied the effect of administration of three formulations of IONPs, based on their starting materials along with synthesizing methods, IONPs-chloride, IONPs-lactate, and IONPs-nitrate, on biochemical and ultrastructural aspects. Different techniques were utilized to assess the effect of different starting materials on the physical, morphological, chemical, surface area, magnetic, and particle size distribution accompanied with their surface charge properties. Their nanoscale sizes were below 40 nm and demonstrated surface up to 69m2/g, and increased magnetization of 71.273 emu/g. Moreover, we investigated the effects of an oral IONP administration (100 mg/kg/day) in rat for 14 days. The liver enzymatic functions were investigated. Liver and brain tissues were analyzed for oxidative stress. Finally, a transmission electron microscope (TEM) and inductively coupled plasma optical emission spectrometer (ICP-OES) were employed to investigate the ultrastructural alterations and to estimate content of iron in the selected tissues of IONP-exposed rats. This study showed that magnetite IONPs-chloride exhibited the safest toxicological profile and thus could be regarded as a promising nanotherapeutic candidate for brain or liver disorders.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St, PO Box 12622, Dokki, Cairo, Egypt
| | - Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St, 12622, Dokki, Cairo, Egypt.
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St, PO Box 12622, Dokki, Cairo, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St, 12622, Dokki, Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St, PO Box 12622, Dokki, Cairo, Egypt
| |
Collapse
|
24
|
Yasin NAE, El-Naggar ME, Ahmed ZSO, Galal MK, Rashad MM, Youssef AM, Elleithy EMM. Exposure to Polystyrene nanoparticles induces liver damage in rat via induction of oxidative stress and hepatocyte apoptosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103911. [PMID: 35724857 DOI: 10.1016/j.etap.2022.103911] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 05/26/2023]
Abstract
Plastic products are widely used in different applications. Thus, exposure of human and other organisms to these products may affect their biological system. The current study was conducted to investigate the potential deleterious effect of Polysterene nanoparticles (PS-NPs) on the liver and to state the cellular and molecular mechanisms associated with exposure to PS-NPs.30 male rats were divided randomly and equally into 3 groups; control (distilled water), low dose (3 mg/kg/day) and high dose (10 mg/kg/day) exposed group via oral gavage for 5 successive weeks. PS-NPs caused elevation in ALT, AST and MDA, upregulation of apoptosis-related genes and significant decrease in GSH and mRNA expression for antioxidant-related genes (Nrf-2 and GPx). Moreover, alterations in hepatic tissue architecture and positive caspase-3 expression was noticed in a dose- dependent manner. Collectively, PS-NPs can induce hepatoxicity in rats in a dose dependent manner, so the health risk of PS-NPs should not be ignored.
Collapse
Affiliation(s)
- Noha A E Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mehrez E El-Naggar
- Textile Research Division, National Research Centre, Dokki, Cairo, Egypt.
| | - Zainab Sabry Othman Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, South Sinai, Egypt.
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Ahmed M Youssef
- Packaging and packing materials Department, National Research Center, Dokki, Cairo, Egypt.
| | - Ebtihal M M Elleithy
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
25
|
Lin HY, Yen SC, Kang CH, Chung CY, Hsu MC, Wang CY, Lin JHY, Huang CC, Lin HJ. How to evaluate the potential toxicity of therapeutic carbon nanomaterials? A comprehensive study of carbonized nanogels with multiple animal toxicity test models. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128337. [PMID: 35121295 DOI: 10.1016/j.jhazmat.2022.128337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based nanomaterials have great potential in medical applications, especially in the treatment of infectious diseases and even tumors. However, to safely execute the application of carbon nanomaterials in human treatments, conducting safety assessments and establishing suitable evaluation criteria are necessary. In this study, lysine-carbonized nanogels (Lys-CNGs) that display antibacterial and antiviral abilities were employed in a comprehensive evaluation of their toxicity profiles through assessments in different animal models and growth stages. It was observed that zebrafish at the embryo and eleutheroembryo stages experienced significant toxic effects at a concentration of 15-fold the recommended dosage (0.5 ppm), whereas adult zebrafish following long-term consumption of fodder containing Lys-CNGs presented no adverse effects. Further microbiota analysis indicated that Lys-CNGs did not cause significant changes in the composition of the intestinal bacteria. In contrast, in the toxicity assessments with mammalian animal models, the Lys-CNGs showed no adverse effects, such as weight loss, dermal irritation, and skin sensitization responses in rabbits and guinea pigs, even at a high dose of 2000 mg/kg body weight. Our study revealed that Lys-CNGs have different toxic effects on different growth stages of zebrafish. Researchers in this field should carefully consider the implications of these toxicity profiles during the development of therapeutic carbon-based nanomaterials and for comparison of studies.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Shao-Chieh Yen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chia-Hui Kang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chih-Yu Chung
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Man-Chun Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chen-Yow Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - John Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
26
|
Lin HY, Zeng YT, Lin CJ, Harroun SG, Anand A, Chang L, Wu CJ, Lin HJ, Huang CC. Partial carbonization of quercetin boosts the antiviral activity against H1N1 influenza A virus. J Colloid Interface Sci 2022; 622:481-493. [PMID: 35525149 DOI: 10.1016/j.jcis.2022.04.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
Inflenza A viruses (IAVs) are highly transmissible and pathogenic Orthomyxoviruses, which have led to worldwide outbreaks and seasonal pandemics of acute respiratory diseases, causing serious threats to public health. Currently used anti-influenza drugs may cause neurological side effects, and they are increasingly less effective against mutant strains. To help prevent the spread of IAVs, in this work, we have developed quercetin-derived carbonized nanogels (CNGsQur) that display potent viral inhibitory, antioxidative, and anti-inflammatory activities. The antiviral CNGsQur were synthesized by mild carbonization of quercetin (Qur), which successfully preserved their antioxidative and anti-inflammatory properties while also contributed enhanced properties, such as water solubility, viral binding, and biocompatibility. Antiviral assays of co-treatment, pre-treatment, and post-treatment indicate that CNGsQur interacts with the virion, revealing that the major antiviral mechanism resulting in the inhibition of the virus is by their attachment on the cell surface. Among them, the selectivity index (SI) of CNGsQur270 (>857.1) clearly indicated its great potential for clinical application in IAVs inhibition, which was much higher than that of pristine quercetin (63.7) and other clinical drugs (4-81). Compared with quercetin at the same dose, the combined effects of viral inhibition, antioxidative and anti-inflammatory activities impart the superior therapeutic effects of CNGsQur270 aerosol inhalation in the treatment of IAVs infection, as evidenced by a mouse model. These CNGsQur effectively prevent the spread of IAVs and suppress virus-induced inflammation while also exhibiting good in vivo biocompatibility. CNGsQur shows much promise as a clinical therapeutic agent against infection by IVAs.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yu-Ting Zeng
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Lung Chang
- Department of Pediatrics, Nursing and Management, Mackay Memorial Hospital and Mackay Junior College of Medicine, Taipei 10449, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
27
|
Tulinska J, Mikusova ML, Liskova A, Busova M, Masanova V, Uhnakova I, Rollerova E, Alacova R, Krivosikova Z, Wsolova L, Dusinska M, Horvathova M, Szabova M, Lukan N, Stuchlikova M, Kuba D, Vecera Z, Coufalik P, Krumal K, Alexa L, Vrlikova L, Buchtova M, Dumkova J, Piler P, Thon V, Mikuska P. Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation. Front Immunol 2022; 13:874253. [PMID: 35547729 PMCID: PMC9082266 DOI: 10.3389/fimmu.2022.874253] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Milena Busova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Zora Krivosikova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Ladislava Wsolova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Daniel Kuba
- National Transplant Organization, Bratislava, Slovakia
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lukas Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lucie Vrlikova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
28
|
Tulinska J, Mikusova ML, Liskova A, Busova M, Masanova V, Uhnakova I, Rollerova E, Alacova R, Krivosikova Z, Wsolova L, Dusinska M, Horvathova M, Szabova M, Lukan N, Stuchlikova M, Kuba D, Vecera Z, Coufalik P, Krumal K, Alexa L, Vrlikova L, Buchtova M, Dumkova J, Piler P, Thon V, Mikuska P. Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation. Front Immunol 2022. [PMID: 35547729 DOI: 10.3389/2022.874253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Milena Busova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Zora Krivosikova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Ladislava Wsolova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Daniel Kuba
- National Transplant Organization, Bratislava, Slovakia
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lukas Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lucie Vrlikova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
29
|
Alvi Z, Akhtar M, Rahman NU, Hosny KM, Sindi AM, Khan BA, Nazir I, Sadaquat H. Utilization of Gelling Polymer to Formulate Nanoparticles Loaded with Epalrestat-Cyclodextrin Inclusion Complex: Formulation, Characterization, In-Silico Modelling and In-Vivo Toxicity Evaluation. Polymers (Basel) 2021; 13:polym13244350. [PMID: 34960901 PMCID: PMC8708980 DOI: 10.3390/polym13244350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Epalrestat (EPL) is an aldose reductase inhibitor with poor aqueous solubility that affects its therapeutic efficacy. The research study was designed to prepare epalrestat-cyclodextrins (EPL-CDs) inclusion complexes to enhance the aqueous solubility by using beta-cyclodextrin (β-CD) and sulfobutyl ether₇ β-CD (SBE7 β-CD). Furthermore, polymeric nanoparticles (PNPs) of EPL-CDs were developed using chitosan (CS) and sodium tripolyphosphate (sTPP). The EPL-CDs complexed formulations were then loaded into chitosan nanoparticles (CS NPs) and further characterized for different physico-chemical properties, thermal stability, drug-excipient compatibility and acute oral toxicity studies. In-silico molecular docking of cross-linker with SBE7 β-CD was also carried out to determine the binding site of the CDs with the cross-linker. The sizes of the prepared NPs were laid in the range of 241.5–348.4 nm, with polydispersity index (PDI) ranging from 0.302–0.578. The surface morphology of the NPs was found to be non-porous, smooth, and spherical. The cumulative percentage of drug release from EPL-CDs loaded CS NPs was found to be higher (75–88%) than that of the pure drug (25%). Acute oral toxicity on animal models showed a biochemical, histological profile with no harmful impact at the cellular level. It is concluded that epalrestat-cyclodextrin chitosan nanoparticles (EPL-CDs-CS NPs) with improved solubility are safe for oral administration since no toxicity was reported on vital organs in rabbits.
Collapse
Affiliation(s)
- Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
- Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
- Correspondence: ; Tel.: +92-300-6720628
| | - Nisar U. Rahman
- Department of Pharmacy, Royal Institute of Medical Sciences (RIMS), Multan 60000, Punjab, Pakistan;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amal M. Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Barkat A. Khan
- Drug Design and Cosmetics Lab (DDCL), Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtoonkhwa, Pakistan;
| | - Imran Nazir
- Bahawal Victoria Hospital, Bahawalpur 63100, Punjab, Pakistan;
| | - Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
| |
Collapse
|
30
|
Wu CY, Hsu YH, Chen Y, Yang LC, Tseng SC, Chen WR, Huang CC, Wan D. Robust O 2 Supplementation from a Trimetallic Nanozyme-Based Self-Sufficient Complementary System Synergistically Enhances the Starvation/Photothermal Therapy against Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38090-38104. [PMID: 34342219 DOI: 10.1021/acsami.1c10656] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Much effort has been focused on novel nanomedicine for cancer therapy. However, tumor hypoxia limits the efficacy of various cancer therapeutics. Herein, we constructed a self-sufficient hybrid enzyme-based silk fibroin hydrogel system, consisting of Pt-decorated hollow Ag-Au trimetallic nanocages (HGN@Pt) and glucose oxidase (GOx), to supply O2 continuously and consume glucose concurrently and, thereby, synergistically enhance the anti-cancer efficacy of a combined starvation and photothermal therapy operating in a hypoxic tumor microenvironment. Thanks to the cooperative effects of the active surface atoms (resulting from the island-like features of the Pt coating), the intrinsically hollow structure, and the strain effect induced by the trimetallic composition, HGN@Pt displayed efficient catalase-like activity. The enhancement in the generation of O2 through the decomposition of H2O2 mediated by the as-designed nanozyme was greater than 400% when compared with that of hollow Ag-Pt bimetallic nanospheres or tiny Pt nanoparticles. Moreover, in the presence of HGN@Pt, significant amounts of O2 could be generated within a few minutes, even in an acidic buffer solution (pH 5.8-6.5) containing a low concentration of H2O2 (100-500 μM). Because HGN@Pt exhibited a strong surface plasmon resonance peak in the near-infrared wavelength range, it could be used as a photothermal agent for hyperthermia therapy. Furthermore, GOx was released gradually from the SF hydrogel into the tumor microenvironment to mediate the depletion of glucose, leading to glucose starvation-induced cancer cell death. Finally, the O2 supplied by HGN@Pt overcame the hypoxia of the microenvironment and, thereby, promoted the starvation therapeutic effect of the GOx-mediated glucose consumption. Meanwhile, the GOx-produced H2O2 from the oxidation of glucose could be used to regenerate O2 and, thereby, construct a complementary circulatory system. Accordingly, this study presents a self-sufficient hybrid enzyme-based system that synergistically alleviates tumor hypoxia and induces an anti-cancer effect when combined with irradiation of light from a near-infrared laser.
Collapse
Affiliation(s)
- Cheng-Yun Wu
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Yu-Hsuan Hsu
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Ling-Chu Yang
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Shao-Chin Tseng
- Experimental Facility Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Wan-Ru Chen
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
31
|
Attia A, Ramadan H, ElMazoudy R, Abdelnaser A. Disruption of brain conductivity and permittivity and neurotransmitters induced by citrate-coated silver nanoparticles in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38332-38347. [PMID: 33733404 DOI: 10.1007/s11356-021-13397-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
As one of the most exonerative, competitive, and abundant nanoparticles in curative uses, silver nanoparticles (AgNPs) play a growing important role in developing global neurodegeneration. Herein, we inspected the neurotoxic and histopathological effects of the oral dose of 26.9 nm citrate-coated AgNPs (100 and 1000 mg/kgbw, 28 days) on the brain conductivity and permittivity combined with neurotransmitter assays. While male mice in the control group were given deionized water. In terms of biophysical levels, the brain electric conductivity and relative permittivity were significantly decreased in the 26.9 nm citrate-coated AgNP treated groups versus the controls. Besides, 26.9 nm citrate-coated AgNP treatment resulted in a significant deficiency in the concentrations of brain acetylcholine esterase, dopamine, and serotonin. Total brain contents of silver ion significantly increased in a dose-dependent manner. Further, light and electron microscopy revealed a progressive disruption in the lamellar pattern of the myelinated axons of the nerve fibers, in addition to the accumulation of nanosilver in lysosomes and swollen mitochondria in axoplasm. In conclusion, 26.9 nm citrate-coated AgNPs are capable of gaining access to the brain of mice and causing electric conductivity and relative permittivity damage along with a high degree of cellular toxicity in the brain tissue. Therefore, the present study highlights, for the first time, the adverse effects of the citrate-coated AgNPs to the brain of mice and raises the concern of their probable neurotoxic impacts which is helpful for conclusive interpretation of future behavioral and potential neurodegeneration-based aspects. It would be of interest to investigate citrate-coated AgNPs mediated axonal relevant-signal transduction levels in future studies.
Collapse
Affiliation(s)
- Azza Attia
- Zoology Department, Faculty of Science, Alexandria University, P.O. Box. 21511, Moharram Bek, Alexandria, Egypt.
| | - Heba Ramadan
- Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Reda ElMazoudy
- Zoology Department, Faculty of Science, Alexandria University, P.O. Box. 21511, Moharram Bek, Alexandria, Egypt.
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box. 1982, 31441, Dammam, Saudi Arabia.
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box. 1982, 31441, Dammam, Saudi Arabia.
| | - Asmaa Abdelnaser
- Department of Biomedical Sciences, Pharos University, Smouha, Alexandria, Egypt
| |
Collapse
|
32
|
Hassanen EI, Ibrahim MA, Hassan AM, Mehanna S, Aljuaydi SH, Issa MY. Neuropathological and Cognitive Effects Induced by CuO-NPs in Rats and Trials for Prevention Using Pomegranate Juice. Neurochem Res 2021; 46:1264-1279. [PMID: 33570729 DOI: 10.1007/s11064-021-03264-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/01/2021] [Accepted: 01/30/2021] [Indexed: 12/16/2022]
Abstract
Copper oxide nanoparticles (CuO-NPs) are extensively utilized in several industries and in pharmaceutical production. This excess exposure elevates the concern about its expected poisonous impacts on humans and animals. Pomegranate juice (PJ) is a natural source of polyphenols and exhibits potent antioxidant activities. Our experiment intended to explore the neurobehavioral and toxicopathological impacts of CuO-NPs and to explain the mechanistic role of PJ to reduce their toxicity. Thirty Wistar albino rats received the subsequent materials through oral gavage, every day for 28d: (1) normal saline, (2) 3 mL/kg bwt PJ, (3) 6 mL/kg bwt PJ, (4) 300 mg/kg bwt CuO-NPs, (5) CuO-NPs + 3 mL/kg bwt PJ, (6) CuO-NPs + 6 mL/kg bwt PJ. Continuous exposure to CuO-NPs caused a significant elevation of MDA levels and reduction of total antioxidant capacity associated with remarkable pathological alterations in all brain regions including cerebrum, hippocampus and cerebellum. Progressive decline of memory along with cognitive and psychiatric disturbances were observed in rats exposed to CuO-NPs not in PJ co-treated rats. Continuous exposure to CuO-NPs caused over expression of the immunohistochemical markers of caspase-3, iNOS and GFAP altogether with DAN fragmentation and down-regulation of HO-1 and Nrf2 gene in the whole brain tissues. Conversely, rats co-treated with PJ showed dose dependent improvements in the entire toxicological, behavioral, and pathological parameters. We showed that PJ had the ability to reduce the oxidative stress damage via up-regulation of HO-1 and Nrf2 genes in the brain. So that PJ had the ability to protect the brain and DNA from further damage.
Collapse
Affiliation(s)
- Eman I Hassanen
- Faculty of Veterinary Medicine, Pathology Department, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Marwa A Ibrahim
- Faculty of Veterinary Medicine, Biochemistry Department, Cairo University, Giza, Egypt
| | - Azza M Hassan
- Faculty of Veterinary Medicine, Pathology Department, Cairo University, P.O. Box 12211, Giza, Egypt
| | - Sally Mehanna
- Faculty of Veterinary Medicine, Department of Animal Hygiene and Management, Cairo University, Giza, Egypt
| | - Samira H Aljuaydi
- Faculty of Veterinary Medicine, Biochemistry Department, Cairo University, Giza, Egypt
| | - Marwa Y Issa
- Faculty of Pharmacy, Pharmacognosy Department, Cairo University, Giza, Egypt
| |
Collapse
|
33
|
Sadaquat H, Akhtar M, Nazir M, Ahmad R, Alvi Z, Akhtar N. Biodegradable and biocompatible polymeric nanoparticles for enhanced solubility and safe oral delivery of docetaxel: In vivo toxicity evaluation. Int J Pharm 2021; 598:120363. [PMID: 33556487 DOI: 10.1016/j.ijpharm.2021.120363] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Docetaxel (DTX) is a chemotherapeutic drug with poor hydrophilicity and permeability. Its lipophilic properties decrease its absorption in systemic circulation which hinders its therapeutic efficacy & safety. Cyclodextrins (CDs) with their unique structural properties enhance solubility of chemotherapeutic drugs. The study was designed to formulate docetaxel-cyclodextrins inclusion complexes for enhancement of solubility with sulfobutyl ether β-cyclodextrin (SBE7-β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and β-cyclodextrin (β-CD). Further, by using ionic gelation method polymeric nanoparticles of docetaxel-cyclodextrins were prepared with sodium tri poly phosphate (STPP) and chitosan (CS). Optimization is performed by varying CS and STPP mass ratios. Nanoparticles were analyzed for their physicochemical properties, drug-excipient compatibility, thermal stability and oral toxicity. CDs enhanced the solubility of DTX. Nanoparticles were found within 144.8 ± 65.19 - 372.0 ± 126.9 nm diameters with polydispersity ranging 0.117-0.375. The particles were found round & circular in shape with smooth and non-porous surface. Increased quantity of drug release was observed from DTX-CDs loaded nanoparticles than pure drug loaded nanoparticles. Oral toxicity in rabbits revealed biochemical, histopathological profile with no toxic effect on cellular structure of animals.
Collapse
Affiliation(s)
- Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan.
| | | | - Rabbiya Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
34
|
Liu H, Lai W, Liu X, Yang H, Fang Y, Tian L, Li K, Nie H, Zhang W, Shi Y, Bian L, Ding S, Yan J, Lin B, Xi Z. Exposure to copper oxide nanoparticles triggers oxidative stress and endoplasmic reticulum (ER)-stress induced toxicology and apoptosis in male rat liver and BRL-3A cell. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123349. [PMID: 32659578 DOI: 10.1016/j.jhazmat.2020.123349] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 05/15/2023]
Abstract
Copper oxide nanoparticles (Nano-CuO) toxicity has been researched widely in recent years. However, the relationship between oxidative stress and ER-stress and the possible mechanisms induced by Nano-CuO have been rarely studied. Here, the mechanism of hepatotoxicity and apoptosis through oxidative stress and ER-stress induced by Nano-CuO was investigated in vivo and in vitro. In in vivo experiments, male Wistar rats were intranasally instilled 10 μg Nano-CuO/g body weight daily for 60 days, which caused liver function impairment, oxidative stress, inflammatory response, histopathological and ultrastructural damage, ER-stress and apoptosis in liver tissue. in vitro experiments on rat hepatocytes BRL-3A cells showed that exposure to Nano-CuO for 24 h resulted in excess production of reactive oxygen species leading to decrease in mitochondria membrane potential causing cell death by inducing apoptosis. However, administration of n-acetyl cysteine decreased the apoptosis in Nano-cuo treated group. The in vivo and in vitro experiments confirmed that oxidative stress triggered ER-stress pathway, leading to the opening of apoptosis pathways of CHOP, JNK, and Caspase-12. In summary, treatment of Nano Cuo triggered oxidative stress by ROS, which in turn resulted in activation of ER stress pathways causing cell death in liver tissue and BRL-3A cells.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Wei Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Susu Ding
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
35
|
Joshi A, Farber K, Scheiber IF. Neurotoxicity of copper and copper nanoparticles. ADVANCES IN NEUROTOXICOLOGY 2021:115-157. [DOI: 10.1016/bs.ant.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
36
|
Elkhateeb SA, Ibrahim TR, El-Shal AS, Abdel Hamid OI. Ameliorative role of curcumin on copper oxide nanoparticles-mediated renal toxicity in rats: An investigation of molecular mechanisms. J Biochem Mol Toxicol 2020; 34:e22593. [PMID: 32738191 DOI: 10.1002/jbt.22593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/25/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
The increasing role of copper oxide nanoparticles (CuO NPs) in many industries and their broad range of applications increase its potential toxic effects. Curcumin possesses a wide range of health benefits. This study aimed to evaluate the role of curcumin in attenuating CuO NPs toxicity in rat kidney. Thirty six animals were divided into five groups; control groups (I, II), curcumin group orally received curcumin 200 mg/kg bw, CuO NPs group orally gavaged 250 mg/kg bw CuO NPs and combined group orally gavaged curcumin and CuO NPs. Treatment was given for 3 months. Administration of CuO NPs revealed elevation in serum creatinine and blood urea nitrogen levels, elevated kidney and urine levels of kidney injury molecule-1, decreased catalase, superoxide dismutase activities, total sulfhydryl, reduced glutathione content, increased serum reactive oxygen species, tissue total oxidant status, lipid hydroperoxides, protein carbonyl, malondialdehyde, nitric oxide levels, increased interleukin-1β, tumor necrosis factor-α, nuclear factor (NF-κB), and decreased heme oxygenase-1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCS) genes expression. Moreover, histopathological alteration in kidney structure was detected. Immunohistochemical-stained sections by caspase-3 reaction revealed apoptosis. Pretreatment with curcumin improved most of the adverse effects in rats treated with CuO NPs regarding oxidative stress and inflammatory indices in kidney, and kept histopathological- and immunohistochemical-stained sections near to normal. This study shows that curcumin administration attenuates the toxicity in the kidney of CuO NPs-treated rats through its antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Shereen A Elkhateeb
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Taiseer R Ibrahim
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal S El-Shal
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Omaima I Abdel Hamid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
37
|
Amelioration of oxidative stress-mediated apoptosis in copper oxide nanoparticles-induced liver injury in rats by potent antioxidants. Sci Rep 2020; 10:10812. [PMID: 32616881 PMCID: PMC7331709 DOI: 10.1038/s41598-020-67784-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study is to investigate the therapeutic efficacy of individual or combined doses of dehydro-epiandrosterone (DHEA) and quercetin in ameliorating some biochemical indices in liver of CuO-NPs intoxicated-rats. CuO-NPs (50 nm) was administered as a daily oral dose 100 mg/kg for 2 weeks to rats followed by the fore-mentioned antioxidants for 1 month. We highlighted the therapeutic effect of DHEA and quercetin against CuO-NPs toxicity through monitoring the alteration of liver enzyme activity, antioxidant defense mechanism, necrosis, apoptosis, histopathological alterations, and DNA damage. The rats given CuO-NPs only showed marked significant elevation in liver enzymes, alteration in oxidant-antioxidant balance and an elevation in the hepatic inflammatory marker; tumor necrosis factor-α. Additionally, over expression of both caspase-3 and Bax proteins were detected. Whereas, Bcl2 was down regulated and DNA fragmentation was elevated. Moreover, Histopathological examination of hepatic tissue reinforced the previous biochemical results. Co-treatment with either DHEA, quercetin alone or in combination ameliorated the deviated parameters with variable degrees against CuO-NPs toxicity in rat. In conclusion, our findings suggested that the aforementioned treatments exert therapeutic effect in CuO-NPs toxicity by diminishing oxidative stress, mRNA gene expression and hepatic tissues DNA damage.
Collapse
|
38
|
El Bialy BE, Hamouda RA, Abd Eldaim MA, El Ballal SS, Heikal HS, Khalifa HK, Hozzein WN. Comparative Toxicological Effects of Biologically and Chemically Synthesized Copper Oxide Nanoparticles on Mice. Int J Nanomedicine 2020; 15:3827-3842. [PMID: 32581533 PMCID: PMC7269235 DOI: 10.2147/ijn.s241922] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction Copper oxide nanoparticles (CuO-NPs) are widely used as feed additives for livestock and poultry and implicated in many biomedical applications; however, overload of copper NPs induces various toxicological changes and dysfunction of animal’s organs. Thus, this study was designed to evaluate the comparative toxicological effects of biologically and chemically synthesized CuO-NPs on mice. Methods Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were used to characterize the sizes, shapes and functional groups of CuO-NPs. Forty-five mice were randomly allocated into three groups. Control group received distilled water. The second group was administered a single dose of biologically synthesized CuO-NPs (500 mg/kg bw) orally. The third group was administered a single dose of chemically synthesized CuO-NPs (500 mg/kg bw) orally. Results TEM revealed that biologically synthesized NPs were spherical in shape, whereas chemically synthesized NPs were spherical or elongated in shape. XRD showed that the size of biologically synthesized NPs ranged from 4.14 to 12.82 nm and that of chemically synthesized NPs ranged from 4.06 to 26.82 nm. FT-IR spectroscopy indicated that the peaks appeared between 779 cm−1 and 425 cm−1 in biologically synthesized NPs and between 858 cm−1 and 524 cm−1 in chemically synthesized NPs were for Cu-O nanostructure. Four mice died due to administration of biologically synthesized CuO-NPs. Both biologically and chemically synthesized CuO-NPs induced leukocytosis, elevated serum activities of alanine aminotransferase and aspartate aminotransferase and serum levels of urea and creatinine and increased P53 mRNA and caspase-3 protein expressions in hepatic tissues. Moreover, CuO-NPs induced degenerative and necrotized changes in hepatic, renal and splenic tissues. Biochemical, apoptotic and pathological changes were more serious in mice administered with biologically synthesized CuO-NPs. Conclusion This study indicated that a high dose of biologically and chemically synthesized CuO-NPs induced adverse effects on hepatic, renal and splenic tissues. At the same dose level, the biologically synthesized CuO-NPs evoked more potent toxic effects than the chemically synthesized CuO-NPs.
Collapse
Affiliation(s)
- Badr E El Bialy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ragaa A Hamouda
- Department of Biology, Faculty of Sciences and Arts-Khulais, University of Jeddah, Jeddah, Saudi Arabia.,Department of Microbial Biotechnology, Genetic Engineering & Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mabrouk A Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom 32511, Egypt
| | - Salah S El Ballal
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Hanim S Heikal
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Hanem K Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
39
|
Raval N, Jogi H, Gondaliya P, Kalia K, Tekade RK. Cyclo-RGD Truncated Polymeric Nanoconstruct with Dendrimeric Templates for Targeted HDAC4 Gene Silencing in a Diabetic Nephropathy Mouse Model. Mol Pharm 2020; 18:641-666. [PMID: 32453574 DOI: 10.1021/acs.molpharmaceut.0c00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), a chronic progressive kidney disease, is a significant complication of diabetes mellitus. Dysregulation of the histone deacetylases (HDACs) gene has been implicated in the pathogenesis of DN. Hence, the HDAC-inhibitors have emerged as a critical class of therapeutic agents in DN; however, the currently available HDAC4-inhibitors are mostly nonselective in nature as well as inhibit multiple HDACs. RNA interference of HDAC4 (HDAC4 siRNA) has shown immense promise, but the clinical translation has been impeded due to lack of a targeted, specific, and in vivo applicable delivery modality. In the present investigation, we examined Cyclo(RGDfC) (cRGD) truncated polymeric nanoplex with dendrimeric templates for targeted HDAC4 Gene Silencing. The developed nanoplex exhibited enhanced encapsulation of siRNA and offered superior protection against serum RNase nucleases degradation. The nanoplex was tested on podocytes (in vitro), wherein it showed selective binding to the αvβ3 integrin receptor, active cellular uptake, and significant in vitro gene silencing. The in vivo experiments showed remarkable suppression of the HDAC4 and inhibition in the progression of renal fibrosis in the Streptozotocin (STZ) induced DN C57BL/6 mice model. Histopathological and toxicological studies revealed nonsignificant abnormality/toxicity with the nanoplex. Conclusively, nanoplex was found as a promising tactic for targeted therapy of podocytes and could be extended for other kidney-related ailments.
Collapse
Affiliation(s)
- Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Hardi Jogi
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
40
|
Cui X, Bao L, Wang X, Chen C. The Nano-Intestine Interaction: Understanding the Location-Oriented Effects of Engineered Nanomaterials in the Intestine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907665. [PMID: 32347646 DOI: 10.1002/smll.201907665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Engineered nanomaterials (ENMs) are used in food additives, food packages, and therapeutic purposes owing to their useful properties, Therefore, human beings are orally exposed to exogenous nanomaterials frequently, which means the intestine is one of the primary targets of nanomaterials. Consequently, it is of great importance to understand the interaction between nanomaterials and the intestine. When nanomaterials enter into gut lumen, they inevitably interact with various components and thereby display different effects on the intestine based on their locations; these are known as location-oriented effects (LOE). The intestinal LOE confer a new biological-effect profile for nanomaterials, which is dependent on the involvement of the following biological processes: nano-mucus interaction, nano-intestinal epithelial cells (IECs) interaction, nano-immune interaction, and nano-microbiota interaction. A deep understanding of NM-induced LOE will facilitate the design of safer NMs and the development of more efficient nanomedicine for intestine-related diseases. Herein, recent progress in this field is reviewed in order to better understand the LOE of nanomaterials. The distant effects of nanomaterials coupling with microbiota are also highlighted. Investigation of the interaction of nanomaterials with the intestine will stimulate other new research areas beyond intestinal nanotoxicity.
Collapse
Affiliation(s)
- Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| |
Collapse
|
41
|
Joshi A, Naatz H, Faber K, Pokhrel S, Dringen R. Iron-Doping of Copper Oxide Nanoparticles Lowers Their Toxic Potential on C6 Glioma Cells. Neurochem Res 2020; 45:809-824. [PMID: 31997104 PMCID: PMC7078150 DOI: 10.1007/s11064-020-02954-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 01/02/2020] [Indexed: 01/27/2023]
Abstract
Copper oxide nanoparticles (CuO-NPs) are well known for their cytotoxicity which in part has been attributed to the release of copper ions from CuO-NPs. As iron-doping has been reported to reduce the susceptibility of CuO-NPs to dissolution, we have compared pure CuO-NPs and CuO-NPs that had been doped with 10% iron (CuO-Fe-NPs) for copper release and for their toxic potential on C6 glioma cells. Physicochemical characterization revealed that dimercaptosuccinate (DMSA)-coated CuO-NPs and CuO-Fe-NPs did not differ in their size or zeta potential. However, the redox activity and liberation of copper ions from CuO-Fe-NPs was substantially slower compared to that from CuO-NPs, as demonstrated by cyclic voltammetry and by the photometric quantification of the copper ion-bathocuproine complex, respectively. Exposure of C6 cells to these NPs caused an almost identical cellular copper accumulation and each of the two types of NPs induced ROS production and cell toxicity. However, the time- and concentration-dependent loss in cell viability was more severe for cells that had been treated with CuO-NPs compared to cells exposed to CuO-Fe-NPs. Copper accumulation and toxicity after exposure to either CuO-NPs or CuO-Fe-NPs was prevented in the presence of copper chelators, while neutralization of the lysosomal pH by bafilomycin A1 prevented toxicity without affecting cellular copper accumulation or ROS production. These data demonstrate that iron-doping does not affect cellular accumulation of CuO-NPs and suggests that the intracellular liberation of copper ions from CuO-NPs is slowed by the iron doping, which in turn lowers the cell toxic potential of iron-doped CuO-NPs.
Collapse
Affiliation(s)
- Arundhati Joshi
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Leobener Strasse 5, 28359, Bremen, Germany
| | - Hendrik Naatz
- Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359, Bremen, Germany
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Kathrin Faber
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Leobener Strasse 5, 28359, Bremen, Germany
| | - Suman Pokhrel
- Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359, Bremen, Germany
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Leobener Strasse 5, 28359, Bremen, Germany.
| |
Collapse
|
42
|
Fahmy HM, Aly EM, Mohamed FF, Noor NA, Elsayed AA. Neurotoxicity of green- synthesized magnetic iron oxide nanoparticles in different brain areas of wistar rats. Neurotoxicology 2019; 77:80-93. [PMID: 31899250 DOI: 10.1016/j.neuro.2019.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
AIMS The aim of the present study was to evaluate the toxicity of magnetic iron oxide nanoparticles (MIONs) which were synthesized using carob leaf extract on various brain areas of Wistar rats. MAIN METHODS Carob leaf synthesized-MIONs were characterized using different techniques: Dynamic Light Scattering (DLS), Transmission Electron Microscope (TEM), UV-vis spectrophotometer, Fourier Transform infrared (FTIR), X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM). The toxicity of MIONs in vivo was evaluated by: monitoring rat's body weight, measuring iron content in different brain areas, evaluating some oxidative stress parameters, estimating acetylcholinesterase (AChE) in addition to histopathological investigations. KEY FINDINGS The present study demonstrated no body weight changes of MIONs- treated rats. According to the conditions of the present study, the hippocampus and striatum were the most affected areas and demonstrated neuronal degeneration due to MIONs exposure. MIONs treatment of Wistar rats, also affected the iron homeostasis in both striatum and midbrain by decreasing iron content in these areas. The least affected areas were thalamus and cerebellum. The histopathological examination of brain areas demonstrated moderate neuronal degeneration in hippocampus and striatum, mild neuronal degeneration in cortex and slight degeneration in hypothalamus and pons-medulla areas were detected. SIGNIFICANCE The results suggested that MIONs have a toxic impact on different brain areas and the effect varies according to the brain area.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | - Esraa M Aly
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Faten F Mohamed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12613, Giza, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Anwar A Elsayed
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
43
|
Ouni S, Askri D, Jeljeli M, Abdelmalek H, Sakly M, Amara S. Toxicity and effects of copper oxide nanoparticles on cognitive performances in rats. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2019; 75:384-394. [PMID: 31876265 DOI: 10.1080/19338244.2019.1689376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is increasing scientific evidences that the physical and chemical properties of manufactured nanoparticles lead to an increase in their bioavailability and toxicity. Among them Copper oxide nanoparticles (CuO-NPs) are widely used in different fields. However their potential adverse effects namely on brain functions are still discussed. Thus, the present study aimed to investigate the subacute oral toxicity and effects of CuO-NPs on cognitive performances in rats. Rats were randomly divided into three groups of 8 animals each, a control group received a dose 9‰ sodium chloride and the other groups received a suspension of CuO-NPs at doses of 250 and 500 mg/kg through oral gavage for 14 consecutive days. Multiple behavioral tests showed that CuO-NPs caused little changes in memory and learning performances as well as the locomotors activity, while the anxiety index increased. Copper NPs exposure increased also the liver and stomach relative weights and altered some blood biochemical parameters.
Collapse
Affiliation(s)
- Souhir Ouni
- Faculty of Sciences Bizerta, Laboratory of Integrated Physiology, Carthage University, Jarzouna, Tunisia
| | - Dalel Askri
- Faculty of Sciences Bizerta, Laboratory of Integrated Physiology, Carthage University, Jarzouna, Tunisia
| | - Mustapha Jeljeli
- Faculty of Sciences Bizerta, Laboratory of Integrated Physiology, Carthage University, Jarzouna, Tunisia
| | - Hafedh Abdelmalek
- Faculty of Sciences Bizerta, Laboratory of Integrated Physiology, Carthage University, Jarzouna, Tunisia
| | - Mohsen Sakly
- Faculty of Sciences Bizerta, Laboratory of Integrated Physiology, Carthage University, Jarzouna, Tunisia
| | - Salem Amara
- Faculty of Sciences Bizerta, Laboratory of Integrated Physiology, Carthage University, Jarzouna, Tunisia
- Department of Natural and Applied Sciences, Faculty of Sciences and Humanities, Shaqra University, Afif, Saudi Arabia
| |
Collapse
|