1
|
Gachi MZ, Solouk A, Shafieian M, Daemi H. Chemical structure of antibiotics determines their release rate from drug-loaded poly(vinyl alcohol)/sodium sulfated alginate nanofibrous wound dressings. Int J Biol Macromol 2025; 307:141669. [PMID: 40032114 DOI: 10.1016/j.ijbiomac.2025.141669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Antibiotics are widely used for treatment of infected wounds; however, their application through a local and controlled release system may cause more effectiveness and fewer side-effects. In this study, we fabricated drug-loaded poly(vinyl alcohol)/sodium sulfated alginate (PVA/SSA) nanofibrous mats incorporating cationic antibiotic drugs, i.e., salts of gentamicin, tetracycline, ciprofloxacin and minocycline, and examined their physicochemical and biological properties. The results of FTIR spectroscopy showed that cationic drugs have different interactions with carboxylate and sulfate functional groups of SSA depending on their chemical structure. Furthermore, the results of viscometry and conductivity analyses of the solutions revealed that the solutions with drugs with more electrical charge or/and higher functional groups resulted in a lower viscosity and conductivity compared to other drugs, due to the ability to form more hydrogen bonds. The release profiles of drug-loaded nanofibrous mats showed a burst release and then, a sustained release for 5 days, where the burst release of tetracycline (30.0 ± 0.3 %) from crosslinked mats was noticeably lower than other drugs. Biological assays confirmed the cytocompatibility, antibacterial activity and non-hemolytic behavior of all drug-loaded mats. Finally, ciprofloxacin-loaded nanofibrous mat was used as wound dressing for full-thickness wounds on rats and its efficacy was confirmed.
Collapse
Affiliation(s)
- Maryam Zare Gachi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Biomaterials, ZFZ Chemical Company, Tehran, Iran.
| |
Collapse
|
2
|
L J, Kamaraj S, Kandasamy R, Alagarsamy S. Electrospinning: A New Frontier in Peptide Therapeutics. AAPS PharmSciTech 2025; 26:69. [PMID: 40011310 DOI: 10.1208/s12249-025-03054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
The nanofiber technology has recently undergone an unprecedented transformation, finding widespread utilities across diverse scientific disciplines. It is noteworthy that electrospinning approaches have emerged as an adaptable and successful approach to generate fibers ranging in rapidly as a class of therapeutic agents with a high level of target specificity. Peptides encounter several challenges as drugs, including swift breakdown by the body, rapid elimination from the bloodstream, inadequate stability, and restricted ability to cross cell membranes. This renders it challenging to employ them as drugs. However, electrospun nanofibers might address these problems. This review explores the promising potential of electrospinning nanofibers for peptide delivery. We delve into recent advancements in this technique, highlighting its effectiveness in overcoming challenges associated with peptide drug delivery. It provides an analysis of the trends identified in the use of the electrospinning technique and its role in peptide drug delivery systems, based on a review of data collected over a period of five to seven years.
Collapse
Affiliation(s)
- Jeyanthi L
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Sivadharshini Kamaraj
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
3
|
Astaneh ME, Hashemzadeh A, Fereydouni N. Recent advances in sodium alginate-based dressings for targeted drug delivery in the context of diabetic wound healing. J Mater Chem B 2024; 12:10163-10197. [PMID: 39283024 DOI: 10.1039/d4tb01049c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Diabetic wounds pose a significant challenge in healthcare due to impaired healing and increased risk of complications. In recent years, various drug delivery systems with stimuli-responsive features have been developed to address these issues. These systems enable precise dosage control and tailored drug release, promoting comprehensive tissue repair and regeneration. This review explores targeted therapeutic agents, such as carboxymethyl chitosan-alginate hydrogel formulations, nanofiber mats, and core-shell nanostructures, for diabetic wound healing. Additionally, the integration of nanotechnology and multifunctional biomimetic scaffolds shows promise in enhancing wound healing outcomes. Future research should focus on optimizing the design, materials, and printing parameters of 3D-bio-printed wound dressings, as well as exploring combined strategies involving the simultaneous release of antibiotics and nitric oxide for improved wound healing.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
4
|
Dai Q, Liu H, Gao C, Sun W, Lu C, Zhang Y, Cai W, Qiao H, Jin A, Wang Y, Liu Y. Advances in Mussel Adhesion Proteins and Mussel-Inspired Material Electrospun Nanofibers for Their Application in Wound Repair. ACS Biomater Sci Eng 2024; 10:6097-6119. [PMID: 39255244 DOI: 10.1021/acsbiomaterials.4c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mussel refers to a marine organism with strong adhesive properties, and it secretes mussel adhesion protein (MAP). The most vital feature of MAP is the abundance of the 3,4-dihydroxyphenylalanine (DOPA) group and lysine, which have antimicrobial, anti-inflammatory, antioxidant, and cell adhesion-promoting properties and can accelerate wound healing. Polydopamine (PDA) is currently the most widely used mussel-inspired material characterized by good adhesion, biocompatibility, and biodegradability. It can mediate various interactions to form functional coatings on cell-material surfaces. Nanofibers based on MAP and mussel-inspired materials have been exerting a vital role in wound repair, while there is no comprehensive review presenting them. This Review introduces the structure of MAPs and their adhesion mechanisms and mussel-inspired materials. Second, it introduces the functionalized modification of MAPs and their inspired materials in electrospun nanofibers and application in wound repair. Finally, the future development direction and coping strategies of MAP and mussel-inspired materials are discussed. Moreover, this Review can offer novel strategies for the application of nanofibers in wound repair and bring about new breakthroughs and innovations in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Weihuang Cai
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yeping Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang 325000, China
| | - Yuanyuan Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Dan X, Li S, Chen H, Xue P, Liu B, Ju Y, Lei L, Li Y, Fan X. Tailoring biomaterials for skin anti-aging. Mater Today Bio 2024; 28:101210. [PMID: 39285945 PMCID: PMC11402947 DOI: 10.1016/j.mtbio.2024.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Skin aging is the phenomenon of degenerative changes in the structure and function of skin tissues over time and is manifested by a gradual loss of skin elasticity and firmness, an increased number of wrinkles, and hyperpigmentation. Skin anti-aging refers to a reduction in the skin aging phenomenon through medical cosmetic technologies. In recent years, new biomaterials have been continuously developed for improving the appearance of the skin through mechanical tissue filling, regulating collagen synthesis and degradation, inhibiting pigmentation, and repairing the skin barrier. This review summarizes the mechanisms associated with skin aging, describes the biomaterials that are commonly used in medical aesthetics and their possible modes of action, and discusses the application strategies of biomaterials in this area. Moreover, the synergistic effects of such biomaterials and other active ingredients, such as stem cells, exosomes, growth factors, and antioxidants, on tissue regeneration and anti-aging are evaluated. Finally, the possible challenges and development prospects of biomaterials in the field of anti-aging are discussed, and novel ideas for future innovations in this area are summarized.
Collapse
Affiliation(s)
- Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Xue
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
6
|
Li L, Chu Z, Li S, Zheng T, Wei S, Zhao Y, Liu P, Lu Q. BDNF-loaded chitosan-based mimetic mussel polymer conduits for repair of peripheral nerve injury. Front Cell Dev Biol 2024; 12:1431558. [PMID: 39011392 PMCID: PMC11246889 DOI: 10.3389/fcell.2024.1431558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Care for patients with peripheral nerve injury is multifaceted, as traditional methods are not devoid of limitations. Although the utilization of neural conduits shows promise as a therapeutic modality for peripheral nerve injury, its efficacy as a standalone intervention is limited. Hence, there is a pressing need to investigate a composite multifunctional neural conduit as an alternative treatment for peripheral nerve injury. In this study, a BDNF-loaded chitosan-based mimetic mussel polymer conduit was prepared. Its unique adhesion characteristics allow it to be suture-free, improve the microenvironment of the injury site, and have good antibacterial properties. Researchers utilized a rat sciatic nerve injury model to evaluate the progression of nerve regeneration at the 12-week postoperative stage. The findings of this study indicate that the chitosan-based mimetic mussel polymer conduit loaded with BDNF had a substantial positive effect on myelination and axon outgrowth. The observed impact demonstrated a favorable outcome in terms of sciatic nerve regeneration and subsequent functional restoration in rats with a 15-mm gap. Hence, this approach is promising for nerve tissue regeneration during peripheral nerve injury.
Collapse
Affiliation(s)
- Lei Li
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ziyue Chu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shihao Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tong Zheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shusheng Wei
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peilai Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qunshan Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Yang JW, Lee J, Song KI, Park D, Cha HJ. Acrylated adhesive proteinic microneedle patch for local drug delivery and stable device implantation. J Control Release 2024; 371:193-203. [PMID: 38782066 DOI: 10.1016/j.jconrel.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Microneedle patches have been developed as favorable platforms for delivery systems, such as the locoregional application of therapeutic drugs, and implantation systems, such as electronic devices on visceral tissue surfaces. However, the challenge lies in finding materials that can achieve both biocompatibility and stable fixation on the target tissue. To address this issue, utilizing a biocompatible adhesive biomaterial allows the flat part of the patch to adhere as well, enabling double-sided adhesion for greater versatility. In this work, we propose an adhesive microneedle patch based on mussel adhesive protein (MAP) with enhanced mechanical strength via ultraviolet-induced polyacrylate crosslinking and Coomassie brilliant blue molecules. The strong wet tissue adhesive and biocompatible nature of engineered acrylated-MAP resulted in the development of a versatile wet adhesive microneedle patch system for in vivo usage. In a mouse tumor model, this microneedle patch effectively delivered anticancer drugs while simultaneously sealing the skin wound. Additionally, in an application of rat subcutaneous implantation, an electronic circuit was stably anchored using a double-sided wet adhesive microneedle patch, and its signal location underneath the skin did not change over time. Thus, the proposed acrylated-MAP-based wet adhesive microneedle patch system holds great promise for biomedical applications, paving the way for advancements in drug delivery therapeutics, tissue engineering, and implantable electronic medical devices.
Collapse
Affiliation(s)
- Jang Woo Yang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jaeyun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kang Il Song
- Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
8
|
Kim DY, Oh YB, Park JS, Min YH, Park MC. Anti-Microbial Activities of Mussel-Derived Recombinant Proteins against Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:239. [PMID: 38534674 DOI: 10.3390/antibiotics13030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
Many anti-microbial peptides (AMPs) and pro-apoptotic peptides are considered as novel anti-microbial agents, distinguished by their different characteristics. Nevertheless, AMPs exhibit certain limitations, including poor stability and potential toxicity, which hinder their suitability for applications in pharmaceutics and medical devices. In this study, we used recombinant mussel adhesive protein (MAP) as a robust scaffold to overcome these limitations associated with AMPs. Mussel adhesive protein fused with functional peptides (MAP-FPs) was used to evaluate anti-microbial activities, minimal inhibitory concentration (MIC), and time-kill kinetics (TKK) assays against six of bacteria strains. MAP and MAP-FPs were proved to have an anti-microbial effect with MIC of 4 or 8 µM against only Gram-negative bacteria strains. All tested MAP-FPs killed four different Gram-negative bacteria strains within 180 min. Especially, MAP-FP-2 and -5 killed three Gram-negative bacteria strain, including E. coli, S. typhimurium, and K. pneumoniae, within 10 min. A cytotoxicity study using Vero and HEK293T cells indicated the safety of MAP and MAP-FP-2 and -3. Thermal stability of MAP-FP-2 was also validated by HPLC analysis at an accelerated condition for 4 weeks. This study identified that MAP-FPs have novel anti-microbial activity, inhibiting the growth and rapidly killing Gram-negative bacteria strains with high thermal stability and safety.
Collapse
Affiliation(s)
- Dong Yun Kim
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea
| | - You Bin Oh
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50832, Republic of Korea
| | - Je Seon Park
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50832, Republic of Korea
| | - Yu-Hong Min
- College of Health and Welfare, Daegu Hanny University, Gyeongsan 38610, Republic of Korea
| | - Min Chul Park
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea
| |
Collapse
|
9
|
Ren S, Guo S, Yang L, Wang C. Effect of composite biodegradable biomaterials on wound healing in diabetes. Front Bioeng Biotechnol 2022; 10:1060026. [PMID: 36507270 PMCID: PMC9732485 DOI: 10.3389/fbioe.2022.1060026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The repair of diabetic wounds has always been a job that doctors could not tackle quickly in plastic surgery. To solve this problem, it has become an important direction to use biocompatible biodegradable biomaterials as scaffolds or dressing loaded with a variety of active substances or cells, to construct a wound repair system integrating materials, cells, and growth factors. In terms of wound healing, composite biodegradable biomaterials show strong biocompatibility and the ability to promote wound healing. This review describes the multifaceted integration of biomaterials with drugs, stem cells, and active agents. In wounds, stem cells and their secreted exosomes regulate immune responses and inflammation. They promote angiogenesis, accelerate skin cell proliferation and re-epithelialization, and regulate collagen remodeling that inhibits scar hyperplasia. In the process of continuous combination with new materials, a series of materials that can be well matched with active ingredients such as cells or drugs are derived for precise delivery and controlled release of drugs. The ultimate goal of material development is clinical transformation. At present, the types of materials for clinical application are still relatively single, and the bottleneck is that the functions of emerging materials have not yet reached a stable and effective degree. The development of biomaterials that can be further translated into clinical practice will become the focus of research.
Collapse
Affiliation(s)
- Sihang Ren
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shuaichen Guo
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Mollaghadimi B. Preparation and characterisation of polycaprolactone-fibroin nanofibrous scaffolds containing allicin. IET Nanobiotechnol 2022; 16:239-249. [PMID: 35929581 PMCID: PMC9469789 DOI: 10.1049/nbt2.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
Polycaprolactone (PCL) and silk fibroin are used to make nanofiber wound dressings, and then allicin is added to PCL and silk fibroin to expand antibacterial properties. The polymer solutions are subjected to various electrospinning parameters, and allicin-containing and non-allicin fibres are prepared. Fibres are examined by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), contact angle analysis, mechanical testing, bacterial culture, and 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide (MTT). The SEM results show that the addition of fibroin and allicin at a constant voltage provides a direct relationship between the distance and the diameter of the fibres. Also, the total variation algorithm is used for denoising the signal of FTIR that the results confirm the functional groups present in the fibres. Furthermore, the contact angle test for allicin-free fibres shows that the contact angle of these fibres is 133.3° that decreases to 85.5° by adding allicin to the structure. Moreover, the tensile test of allicin-free fibres shows that Young's modulus of these fibres is 2.06 MPa, while the value increases to 5.12 MPa with the addition of allicin to the structure and at the end of the bacterial culture test, a growth inhibition zone is seen after 17 and 24 h. According to the obtained results, these fibres have the potential to be used in burn applications.
Collapse
Affiliation(s)
- Bita Mollaghadimi
- Faculty of Biomedical Engineering- Biomaterials, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Zhang L, Liu L, Zhang J, Zhou P. Porcine Fibrin Sealant Promotes Skin Wound Healing in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5063625. [PMID: 35783522 PMCID: PMC9246592 DOI: 10.1155/2022/5063625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/22/2022]
Abstract
Objective Fibrin sealant (FS) is widely used for skin wound healing, but data on porcine FS (PFS), a new type of FS, are limited. This study investigated the effects and potential mechanisms of porcine fibrin sealant (PFS) on skin wound healing in rats. Methods. Traumatic rats were randomly divided into three groups: control, PFS, and medical Vaseline. The wound area and wound index of the rats were measured within 14 days after surgery. Hematoxylin-eosin (H&E) staining and Masson staining were used to observe the pathological images and collagen formation on the wounded skin, respectively. To investigate the healing mechanisms, the enzyme-linked immunosorbent assay (ELISA) was used to detect platelet endothelial cell adhesion molecule-1 (CD31) and cluster of differentiation 34 (CD34) expression in the wounded skin. Additionally, quantitative real-time PCR (qRT-PCR) was used to evaluate the mRNA levels of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and epidermal growth factor (EGF), and transforming growth factor-β1 (TGF-β1). Meanwhile, TGF-β1 protein expression was assessed by Western blot analysis. Results Compared with the control group, both PFS and medical Vaseline treatment significantly reduced the wounded area and increased the wound closure rate. H&E staining showed that the cells in the PFS group proliferated rapidly, and the epidermis and dermis were thickened to some extent with a clear epidermal cell structure. Moreover, PFS promoted the formation of collagen and significantly increased the levels of CD31 and CD34 and the growth factors in the skin tissues of the traumatic rats. Conclusion PFS effectively promoted skin wound healing, especially in tissue formation, reepithelialization, angiogenesis, and collagen deposition, in traumatic rat models. This study provides a new strategy and scientific foundation for PFS application in skin wound healing.
Collapse
Affiliation(s)
- Lihuo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Lu Liu
- Shanghai Haohai Biotechnology Co.Ltd., Shanghai 201613, China
| | - Jundong Zhang
- Shanghai Haohai Biotechnology Co.Ltd., Shanghai 201613, China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Maliszewska I, Czapka T. Electrospun Polymer Nanofibers with Antimicrobial Activity. Polymers (Basel) 2022; 14:polym14091661. [PMID: 35566830 PMCID: PMC9103814 DOI: 10.3390/polym14091661] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, nanofibers with antimicrobial activity are of great importance due to the widespread antibiotic resistance of many pathogens. Electrospinning is a versatile method of producing ultrathin fibers with desired properties, and this technique can be optimized by controlling parameters such as solution/melt viscosity, feeding rate, and electric field. High viscosity and slow feeding rate cause blockage of the spinneret, while low viscosity and high feeding rate result in fiber discontinuities or droplet formation. The electric field must be properly set because high field strength shortens the solidification time of the fluid streams, while low field strength is unable to form the Taylor cone. Environmental conditions, temperature, and humidity also affect electrospinning. In recent years, significant advances have been made in the development of electrospinning methods and the engineering of electrospun nanofibers for various applications. This review discusses the current research on the use of electrospinning to fabricate composite polymer fibers with antimicrobial properties by incorporating well-defined antimicrobial nanoparticles (silver, titanium dioxide, zinc dioxide, copper oxide, etc.), encapsulating classical therapeutic agents (antibiotics), plant-based bioactive agents (crude extracts, essential oils), and pure compounds (antimicrobial peptides, photosensitizers) in polymer nanofibers with controlled release and anti-degradation protection. The analyzed works prove that the electrospinning process is an effective strategy for the formation of antimicrobial fibers for the biomedicine, pharmacy, and food industry.
Collapse
Affiliation(s)
- Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (T.C.)
| | - Tomasz Czapka
- Department of Electrical Engineering Fundamentals, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (T.C.)
| |
Collapse
|
13
|
Shaw GS, Samavedi S. Potent Particle-Based Vehicles for Growth Factor Delivery from Electrospun Meshes: Fabrication and Functionalization Strategies for Effective Tissue Regeneration. ACS Biomater Sci Eng 2021; 8:1-15. [PMID: 34958569 DOI: 10.1021/acsbiomaterials.1c00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functionalization of electrospun meshes with growth factors (GFs) is a common strategy for guiding specific cell responses in tissue engineering. GFs can exert their intended biological effects only when they retain their bioactivity and can be subsequently delivered in a temporally controlled manner. However, adverse processing conditions encountered in electrospinning can potentially disrupt GFs and diminish their biological efficacy. Further, meshes prepared using conventional approaches often promote an initial burst and rely solely on intrinsic fiber properties to provide extended release. Sequential delivery of multiple GFs─a strategy that mimics the natural tissue repair cascade─is also not easily achievable with traditional fabrication techniques. These limitations have hindered the effective use and translation of mesh-based strategies for tissue repair. An attractive alternative is the use of carrier vehicles (e.g., nanoparticles, microspheres) for GF incorporation into meshes. This review presents advances in the development of particle-integrated electrospun composites for safe and effective delivery of GFs. Compared to traditional approaches, we reveal how particles can protect GF activity, permit the incorporation of multiple GFs, decouple release from fiber properties, help achieve spatiotemporal control over delivery, enhance surface bioactivity, exert independent biological effects, and augment matrix mechanics. In presenting innovations in GF functionalization and composite engineering strategies, we also discuss specific in vitro and in vivo biological effects and their implications for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Gauri Shankar Shaw
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| | - Satyavrata Samavedi
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| |
Collapse
|
14
|
Handa M, Singh A, Flora SJS, Shukla R. Stimuli-responsive Polymeric nanosystems for therapeutic applications. Curr Pharm Des 2021; 28:910-921. [PMID: 34879797 DOI: 10.2174/1381612827666211208150210] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recent past decades have reported emerging of polymeric nanoparticles as a promising technique for controlled and targeted drug delivery. As nanocarriers, they have high drug loading and delivery to the specific site or targeted cells with an advantage of no drug leakage within en route and unloading of a drug in a sustained fashion at the site. These stimuli-responsive systems are functionalized in dendrimers, metallic nanoparticles, polymeric nanoparticles, liposomal nanoparticles, quantum dots. PURPOSE OF REVIEW The authors reviewed the potential of smart stimuli-responsive carriers for therapeutic application and their behavior in external or internal stimuli like pH, temperature, redox, light, and magnet. These stimuli-responsive drug delivery systems behave differently in In vitro and In vivo drug release patterns. Stimuli-responsive nanosystems include both hydrophilic and hydrophobic systems. This review highlights the recent development of the physical properties and their application in specific drug delivery. CONCLUSION The stimuli (smart, intelligent, programmed) drug delivery systems provide site-specific drug delivery with potential therapy for cancer, neurodegenerative, lifestyle disorders. As development and innovation, the stimuli-responsive based nanocarriers are moving at a fast pace and huge demand for biocompatible and biodegradable responsive polymers for effective and safe delivery.
Collapse
Affiliation(s)
- Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002. India
| | - Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002. India
| | - S J S Flora
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002. India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002. India
| |
Collapse
|
15
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
16
|
Ujjwal RR, Yadav A, Tripathi S, Krishna STVS. Polymer-Based Nanotherapeutics for Burn Wounds. Curr Pharm Biotechnol 2021; 23:1460-1482. [PMID: 34579630 DOI: 10.2174/1389201022666210927103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/11/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
Burn wounds are complex and intricate injuries that have become a common cause of trauma leading to significant mortality and morbidity every year. Dressings are applied to burn wounds with the aim of promoting wound healing, preventing burn infection and restoring skin function. The dressing protects the injury and contributes to recovery of dermal and epidermal tissues. Polymer-based nanotherapeutics are increasingly being exploited as burn wound dressings. Natural polymers such as cellulose, chitin, alginate, collagen, gelatin and synthetic polymers like poly (lactic-co-glycolic acid), polycaprolactone, polyethylene glycol, and polyvinyl alcohol are being obtained as nanofibers by nanotechnological approaches like electrospinning and have shown wound healing and re-epithelialization properties. Their biocompatibility, biodegradability, sound mechanical properties and unique structures provide optimal microenvironment for cell proliferation, differentiation, and migration contributing to burn wound healing. The polymeric nanofibers mimic collagen fibers present in extracellular matrix and their high porosity and surface area to volume ratio enable increased interaction and sustained release of therapeutics at the site of thermal injury. This review is an attempt to compile all recent advances in the use of polymer-based nanotherapeutics for burn wounds. The various natural and synthetic polymers used have been discussed comprehensively and approaches being employed have been reported. With immense research effort that is currently being invested in this field and development of proper characterization and regulatory framework, future progress in burn treatment is expected to occur. Moreover, appropriate preclinical and clinical research will provide evidence for the great potential that polymer-based nanotherapeutics hold in the management of burn wounds.
Collapse
Affiliation(s)
- Rewati Raman Ujjwal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| | - Awesh Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| | - Shourya Tripathi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| | - S T V Sai Krishna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| |
Collapse
|
17
|
Structurally optimized suture resistant polylactic acid (PLA)/poly (є-caprolactone) (PCL) blend based engineered nanofibrous mats. J Mech Behav Biomed Mater 2021; 116:104331. [PMID: 33517099 DOI: 10.1016/j.jmbbm.2021.104331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022]
Abstract
The structural fabrication and optimization of polylactic acid (PLA)/poly (є-caprolactone) (PCL) blend-based bead-free electrospun nanofibrous mats (ENMs) has been carried out by using Response Surface Methodology (RSM) and Taguchi design of experiments (DoE). From the three control parameters i.e., PCL content, N, N- dimethylformamide (DMF) content, and electrospinning solution concentration, the optimal parametric combinations for minimizing the bead defects amongst ENMs were obtained. The parametric optimization outcomes remained identical, from both RSM and Taguchi approaches, irrespective of the difference in the number of experimental trials. The experimental validation of the predicted results from Taguchi-design showed an excellent agreement with >95% accuracy concerning minimization of bead defects and average fiber diameter. The solution concentration was a key determinant in controlling the gross fiber morphology. The quasi-static mechanical response of the optimally designed ENMs showed a distinct role in structural aspects of fibers. The failure responses revealed the role of the structural network of ENMs in controlling the failure stress and network collapse that was also reiterated upon the outcomes of suture retention strength assessment. The optimally designed ENM structures showed a correspondingly optimal level of suture resistance, where fine fibers offered higher resistance to suture failure due to the cooperative network effects unlike the relatively coarse fiber-based ENMs undergoing collapse attributed to fiber buckling and fiber slippage in the labile structural network.
Collapse
|
18
|
Chen S, John JV, McCarthy A, Xie J. New forms of electrospun nanofiber materials for biomedical applications. J Mater Chem B 2020; 8:3733-3746. [PMID: 32211735 PMCID: PMC7205582 DOI: 10.1039/d0tb00271b] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past two decades, electrospinning has emerged as an enabling nanotechnology to produce nanofiber materials for various biomedical applications. In particular, therapeutic/cellloaded nanofiber scaffolds have been widely examined in drug delivery, wound healing, and tissue repair and regeneration. However, due to the insufficient porosity, small pore size, noninjectability, and inaccurate spatial control in nanofibers of scaffolds, many efforts have been devoted to exploring new forms of nanofiber materials including expanded nanofiber scaffolds, nanofiber aerogels, short nanofibers, and nanofiber microspheres. This short review discusses the preparation and potential biomedical applications of new forms of nanofiber materials.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Johnson V John
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
19
|
|
20
|
Keirouz A, Chung M, Kwon J, Fortunato G, Radacsi N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1626. [DOI: 10.1002/wnan.1626] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Antonios Keirouz
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
- Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland
| | - Michael Chung
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
- Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland
| | - Jaehoon Kwon
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
| |
Collapse
|
21
|
Sabra S, Ragab DM, Agwa MM, Rohani S. Recent advances in electrospun nanofibers for some biomedical applications. Eur J Pharm Sci 2020; 144:105224. [DOI: 10.1016/j.ejps.2020.105224] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
|
22
|
Radially patterned polycaprolactone nanofibers as an active wound dressing agent. Arch Plast Surg 2019; 46:399-404. [PMID: 31550744 PMCID: PMC6759445 DOI: 10.5999/aps.2019.00626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background The objectives of this study were to design polycaprolactone nanofibers with a radial pattern using a modified electrospinning method and to evaluate the effect of radial nanofiber deposition on mechanical and biological properties compared to non-patterned samples. Methods Radially patterned polycaprolactone nanofibers were prepared with a modified electrospinning method and compared with randomly deposited nanofibers. The surface morphology of samples was observed under scanning electron microscopy (SEM). The tensile properties of nanofibrous mats were measured using a tabletop uniaxial testing machine. Fluorescence-stained human bone marrow stem cells were placed along the perimeter of the radially patterned and randomly deposited. Their migration toward the center was observed on days 1, 4, and 7, and quantitatively measured using ImageJ software. Results Overall, there were no statistically significant differences in mechanical properties between the two types of polycaprolactone nanofibrous mats. SEM images of the obtained samples suggested that the directionality of the nanofibers was toward the central area, regardless of where the nanofibers were located throughout the entire sample. Florescence images showed stronger fluorescence inside the circle in radially aligned nanofibers, with significant differences on days 4 and 7, indicating that migration was quicker along radially aligned nanofibers than along randomly deposited nanofibers. Conclusions In this study, we successfully used modified electrospinning to fabricate radially aligned nanofibers with similar mechanical properties to those of conventional randomly aligned nanofibers. In addition, we observed faster migration along radially aligned nanofibers than along randomly deposited nanofibers. Collectively, the radially aligned nanofibers may have the potential for tissue regeneration in combination with stem cells.
Collapse
|
23
|
Khoshnevisan K, Maleki H, Samadian H, Doostan M, Khorramizadeh MR. Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis. Int J Biol Macromol 2019; 140:1260-1268. [PMID: 31472212 DOI: 10.1016/j.ijbiomac.2019.08.207] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/29/2022]
Abstract
Cellulose acetate (CA) electrospun nanofibers are one of the most practical cellulosic material which normally applied as carriers for drug delivery and wound healing systems. In this study, CA and polycaprolactone (PCL) was applied to fabricate the electrospun nanofibrous for wound dressing application. Propolis is a resin-like macromolecule produced by honeybees from the buds and diverse plants. Among many applications of this macromolecule, it has been occasionally employed directly to the skin for wound healing applications. Herein, owing to the significance of propolis, CA/PCL nanofibers were impregnated with a propolis-extracted solution to reach antibacterial and antioxidant mat. The scanning electron microscopy (SEM) images revealed that electrospinning of 10% (w/w) CA along with 14% (w/w) PCL produced excellent nanofibers compared to the resultant nanofibers. Hydrophobicity/hydrophilicity nature of CA/PCL mats was measured using water contact-angle method before and after treatment with NaOH. The nanofibrous mats exhibited a high water absorption capacity of about 400%. Antioxidant effect was measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay and propolis-CA/PCL presented a high antioxidant activity. Additionally, propolis-CA/PCL mats showed antibacterial activity against both the Gram-positive and Gram-negative bacteria. In conclusion, our results have confirmed that the propolis-impregnated CA/PCL mats have provided an appropriate surface for wound healing system.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Maleki
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Samadian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Doostan
- Department of Medical Nanotechnology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Jeon EY, Lee J, Kim BJ, Joo KI, Kim KH, Lim G, Cha HJ. Bio-inspired swellable hydrogel-forming double-layered adhesive microneedle protein patch for regenerative internal/external surgical closure. Biomaterials 2019; 222:119439. [PMID: 31465886 DOI: 10.1016/j.biomaterials.2019.119439] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 12/21/2022]
Abstract
Significant tissue damage, scarring, and an intense inflammatory response remain the greatest concerns for conventional wound closure options, including sutures and staples. In particular, wound closure in internal organs poses major clinical challenges due to air/fluid leakage, local ischemia, and subsequent impairment of healing. Herein, to overcome these limitations, inspired by endoparasites that swell their proboscis to anchor to host's intestines, we developed a hydrogel-forming double-layered adhesive microneedle (MN) patch consisting of a swellable mussel adhesive protein (MAP)-based shell and a non-swellable silk fibroin (SF)-based core. By possessing tissue insertion capability (7-times greater than the force for porcine skin penetration), MAP-derived surface adhesion, and selective swelling-mediated physical entanglement, our hydrogel-forming adhesive MN patch achieved ex vivo superior wound sealing capacity against luminal leaks (139.7 ± 14.1 mmHg), which was comparable to suture (151.0 ± 23.3 mmHg), as well as in vivo excellent performance for wet and/or dynamic external and internal tissues. Collectively, our bioinspired adhesive MN patch can be successfully used in diverse practical applications ranging from vascular and gastrointestinal wound healing to transdermal delivery for pro-regenerative or anti-inflammatory agents to target tissues.
Collapse
Affiliation(s)
- Eun Young Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Jungho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Bum Ju Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kye Il Joo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Geunbae Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
25
|
Epidermal cells differentiated from stem cells from human exfoliated deciduous teeth and seeded onto polyvinyl alcohol/silk fibroin nanofiber dressings accelerate wound repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109986. [PMID: 31499995 DOI: 10.1016/j.msec.2019.109986] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) or epidermal stem cells (ESCs) may be used as a source of cells for skin wound repair in order to preserve the patient's remaining autologous skin and reduce the wound area and pain. Many studies use MSCs as therapeutic cells for wound healing, but treatment with ESCs instead can speed up wound repair. In additional to therapeutic cells, the biomechanical properties and surface topography of the dressing also affect the speed of wound healing. Silk fibroin (SF) has the property of promoting collagen regeneration to accelerate wound healing. It has made into nanofibers as a wound healing dressing with hydrophilic polyvinyl alcohol (PVA). Methanol-treated PVA-SF dressing (PFSM) is a beadless nanofiber that can mimic the structure of endogenous extracellular matrix. In this study, SHED was first differentiated into ESCs and then effects of SHED and ESCs on wound closure were compared. Differentiation of SHED into ESCs was shown to induce growth factors that reached a maximum on the third day. In vivo, PFSM/ESC showed regeneration of granulation tissue on the third day, and the wound closure percent was 53.49%, which was 1.18-fold higher than PFSM/SHED. Therefore, the differentiation of stem cells into ESCs in advance combined with PFSM dressing can effectively accelerate wound healing in vivo. These findings can be applied to clinical treatment in the future.
Collapse
|
26
|
Bernal-Chávez S, Nava-Arzaluz MG, Quiroz-Segoviano RIY, Ganem-Rondero A. Nanocarrier-based systems for wound healing. Drug Dev Ind Pharm 2019; 45:1389-1402. [PMID: 31099263 DOI: 10.1080/03639045.2019.1620270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In general, the systems intended for the treatment and recovery of wounds, seek to act as a coating for the damaged area, maintaining an adequate level of humidity, reducing pain, and preventing the invasion and proliferation of microorganisms. Although many of the systems that are currently on the market meet the purposes mentioned above, with the arrival of nanotechnology, it has sought to improve the performance of these coatings. The variety of nano-systems that have been proposed is very extensive, including the use of very different materials (natural or synthetic) ranging from polymers or lipids to systems derived from microorganisms. With the objective of improving the performance of the systems, seeking to combat several of the problems that arise in a wound, especially when it is chronic, these materials have been combined, giving rise to nanocomposites or scaffolds. In recent years, the interest in the development of systems for the treatment of wounds is notable, which is reflected in the increase in publications related to the subject. Therefore, this document presents generalities of systems involving nanocarriers, mentioning some examples of representative systems of each case.
Collapse
Affiliation(s)
- S Bernal-Chávez
- a División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México , Cuautitlán Izcalli , Mexico
| | - M G Nava-Arzaluz
- a División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México , Cuautitlán Izcalli , Mexico
| | - R I Y Quiroz-Segoviano
- a División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México , Cuautitlán Izcalli , Mexico
| | - A Ganem-Rondero
- a División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México , Cuautitlán Izcalli , Mexico
| |
Collapse
|
27
|
Cheong H, Kim J, Kim BJ, Kim E, Park HY, Choi BH, Joo KI, Cho ML, Rhie JW, Lee JI, Cha HJ. Multi-dimensional bioinspired tactics using an engineered mussel protein glue-based nanofiber conduit for accelerated functional nerve regeneration. Acta Biomater 2019; 90:87-99. [PMID: 30978510 DOI: 10.1016/j.actbio.2019.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022]
Abstract
Limited regenerative capacity of the nervous system makes treating traumatic nerve injuries with conventional polymer-based nerve grafting a challenging task. Consequently, utilizing natural polymers and biomimetic topologies became obvious strategies for nerve conduit designs. As a bioinspired natural polymer from a marine organism, mussel adhesive proteins (MAPs) fused with biofunctional peptides from extracellular matrix (ECM) were engineered for accelerated nerve regeneration by enhancing cell adhesion, proliferation, neural differentiation, and neurite formation. To physically promote contact guidance of neural and Schwann cells and to achieve guided nerve regeneration, MAP was fabricated into an electrospun aligned nanofiber conduit by introducing synthetic polymer poly(lactic-co-glycolic acid) (PLGA) to control solubility and mechanical property. In vitro and in vivo experiments demonstrated that the multi-dimensional tactics of combining adhesiveness from MAP, integrin-mediated interaction from ECM peptides (in particular, IKVAV derived from laminin α1 chain), and contact guidance from aligned nanofibers synergistically accelerated functional nerve regeneration. Thus, MAP-based multi-dimensional approach provides new opportunities for neural regenerative applications including nerve grafting. STATEMENT OF SIGNIFICANCE: Findings in neural regeneration indicate that a bioinspired polymer-based nerve conduit design should harmoniously constitute various factors, such as biocompatibility, neurotrophic molecule, biodegradability, and contact guidance. Here, we engineered three fusion proteins of mussel-derived adhesive protein with ECM-derived biofunctional peptides to simultaneously provide biocompatibility and integrin-based interactions. In addition, a fabrication of robust aligned nanofiber conduits containing the fusion proteins realized suitable biodegradability and contact guidance. Thus, our multi-dimensional strategy on conduit design provided outstanding biocompatibility, biodegradability, integrin-interaction, and contact guidance to achieve an accelerated functional nerve regeneration. We believe that our bioengineered mussel adhesive protein-based multi-dimensional strategy would offer new insights into the design of nerve tissue engineering biomaterials.
Collapse
|
28
|
Chakrabarti S, Chattopadhyay P, Islam J, Ray S, Raju PS, Mazumder B. Aspects of Nanomaterials in Wound Healing. Curr Drug Deliv 2019; 16:26-41. [PMID: 30227817 DOI: 10.2174/1567201815666180918110134] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 01/23/2023]
Abstract
Wound infections impose a remarkable clinical challenge that has a considerable influence on morbidity and mortality of patients, influencing the cost of treatment. The unprecedented advancements in molecular biology have come up with new molecular and cellular targets that can be successfully applied to develop smarter therapeutics against diversified categories of wounds such as acute and chronic wounds. However, nanotechnology-based diagnostics and treatments have achieved a new horizon in the arena of wound care due to its ability to deliver a plethora of therapeutics into the target site, and to target the complexity of the normal wound-healing process, cell type specificity, and plethora of regulating molecules as well as pathophysiology of chronic wounds. The emerging concepts of nanobiomaterials such as nanoparticles, nanoemulsion, nanofibrous scaffolds, graphene-based nanocomposites, etc., and nano-sized biomaterials like peptides/proteins, DNA/RNA, oligosaccharides have a vast application in the arena of wound care. Multi-functional, unique nano-wound care formulations have acquired major attention by facilitating the wound healing process. In this review, emphasis has been given to different types of nanomaterials used in external wound healing (chronic cutaneous wound healing); the concepts of basic mechanisms of wound healing process and the promising strategies that can help in the field of wound management.
Collapse
Affiliation(s)
- Srijita Chakrabarti
- Defence Research Laboratory, Tezpur - 784 001, Assam, India.,Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | | | - Johirul Islam
- Defence Research Laboratory, Tezpur - 784 001, Assam, India
| | - Subhabrata Ray
- Dr. B. C. Roy College of Pharmacy & AHS, Durgapur - 713 206, West Bengal, India
| | | | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| |
Collapse
|
29
|
Fernández Robledo JA, Yadavalli R, Allam B, Pales Espinosa E, Gerdol M, Greco S, Stevick RJ, Gómez-Chiarri M, Zhang Y, Heil CA, Tracy AN, Bishop-Bailey D, Metzger MJ. From the raw bar to the bench: Bivalves as models for human health. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:260-282. [PMID: 30503358 PMCID: PMC6511260 DOI: 10.1016/j.dci.2018.11.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/09/2018] [Accepted: 11/24/2018] [Indexed: 05/05/2023]
Abstract
Bivalves, from raw oysters to steamed clams, are popular choices among seafood lovers and once limited to the coastal areas. The rapid growth of the aquaculture industry and improvement in the preservation and transport of seafood have enabled them to be readily available anywhere in the world. Over the years, oysters, mussels, scallops, and clams have been the focus of research for improving the production, managing resources, and investigating basic biological and ecological questions. During this decade, an impressive amount of information using high-throughput genomic, transcriptomic and proteomic technologies has been produced in various classes of the Mollusca group, and it is anticipated that basic and applied research will significantly benefit from this resource. One aspect that is also taking momentum is the use of bivalves as a model system for human health. In this review, we highlight some of the aspects of the biology of bivalves that have direct implications in human health including the shell formation, stem cells and cell differentiation, the ability to fight opportunistic and specific pathogens in the absence of adaptive immunity, as source of alternative drugs, mucosal immunity and, microbiome turnover, toxicology, and cancer research. There is still a long way to go; however, the next time you order a dozen oysters at your favorite raw bar, think about a tasty model organism that will not only please your palate but also help unlock multiple aspects of molluscan biology and improve human health.
Collapse
Affiliation(s)
| | | | - Bassem Allam
- Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY, 11794, USA
| | | | - Marco Gerdol
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Samuele Greco
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Rebecca J Stevick
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, 02882, USA
| | - Marta Gómez-Chiarri
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, Kingston, RI, 02881, USA
| | - Ying Zhang
- University of Rhode Island, Department of Cell and Molecular Biology, Kingston, RI, 02881, USA
| | - Cynthia A Heil
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Adrienne N Tracy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA; Colby College, Waterville, 4,000 Mayflower Hill Dr, ME, 04901, USA
| | | | | |
Collapse
|
30
|
Ahmed S, Chauhan VM, Ghaemmaghami AM, Aylott JW. New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol Lett 2019; 41:1-25. [PMID: 30368691 PMCID: PMC6313369 DOI: 10.1007/s10529-018-2611-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Bioreactors hold a lot of promise for tissue engineering and regenerative medicine applications. They have multiple uses including cell cultivation for therapeutic production and for in vitro organ modelling to provide a more physiologically relevant environment for cultures compared to conventional static conditions. Bioreactors are often used in combination with scaffolds as the nutrient flow can enhance oxygen and diffusion throughout the 3D constructs to prevent the formation of necrotic cores. A variety of scaffolds have been fabricated to achieve a structural architecture that mimic native extracellular matrix. Future developments of in vitro models will incorporate the ability to non-invasively monitor the cellular microenvironment to enhance the understanding of in vitro conditions. This review details current advancements in bioreactor and scaffold systems and provides insight on how in vitro models can be augmented for future biomedical applications.
Collapse
Affiliation(s)
- Shehnaz Ahmed
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| | - Veeren M. Chauhan
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, Life Sciences Building, University Park, Nottingham, NG7 2RD UK
| | - Jonathan W. Aylott
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| |
Collapse
|
31
|
|
32
|
Kaushik AC, Kumar A, Yu CY, Kuo SW, Liang SS, Singh SP, Wang X, Wang YJ, Yen CK, Dai X, Wei DQ, Pan CT, Shiue YL. PCL–DOX microdroplets: an evaluation of the enhanced intracellular delivery of doxorubicin in metastatic cancer cells via in silico and in vitro approaches. NEW J CHEM 2019. [DOI: 10.1039/c9nj01902b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A schematic diagram of HCC & TACE; injections of HepaSphere with DOX are made into the femoral artery, abdominal aorta, and hepatic artery to make the tumor shrink to a resectable size due to a shortage of nutrients and drug treatment.
Collapse
|
33
|
Shahmoradi S, Golzar H, Hashemi M, Mansouri V, Omidi M, Yazdian F, Yadegari A, Tayebi L. Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. NANOTECHNOLOGY 2018; 29:475101. [PMID: 30179859 DOI: 10.1088/1361-6528/aadedc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, we introduce a novel graphene oxide/silver/arginine (GO/Ag/Arg) nanohybrid structure, which can act as an angiogenesis promoter and provide antibacterial nanostructure for improving the wound healing process. GO/Ag nanostructure has been optimized in terms of the GO/Ag mass ratio and pH values using central composite design and the response surface method to increase the Ag loading efficiency. Then, Arg was chemically introduced to the surface of GO/Ag nanostructure. Electrospun polycaprolactone (PCL)-GO/Ag/Arg nanocomposite was successfully fabricated and characterized. The synthesized nanocomposite demonstrated not only a great antibacterial effect on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial species, but appropriate biocompatibility against L929 fibroblastic cell lines. The results demonstrated that the preparation of the PCL-GO/Ag/Arg nanocomposite at a concentration of 1.0 wt% GO/Ag/Arg possessed the best biological and mechanical features. In vivo experiments also revealed that the use of optimized PCL-GO/Ag/Arg nanocomposite, after 12 d of treatment, led to significant increase in the healing process and also regeneration of the wound via reconstruction of a thickened epidermis layer on the wound surface, which was confirmed by histological analysis. In conclusion, the proposed approach can introduce a novel notion for preparing antibacterial material that significantly promotes angiogenesis.
Collapse
Affiliation(s)
- Saleheh Shahmoradi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Simões D, Miguel SP, Correia IJ. Biofunctionalization of electrospun poly(caprolactone) fibers with Maillard reaction products for wound dressing applications. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Sun L, Gao W, Fu X, Shi M, Xie W, Zhang W, Zhao F, Chen X. Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basketweave pattern of collagen fibrils in native skin. Biomater Sci 2018; 6:340-349. [PMID: 29265119 DOI: 10.1039/c7bm00545h] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanofibrous scaffolds that offer proper microenvironmental cues to promote the healing process are highly desirable for patients with chronic wounds. Although studies have shown that fiber organization regulates cell behaviors in vitro, little is known about its effects on the wound healing process in vivo. Most of the nanofibrous scaffolds currently used in skin repair are randomly oriented. Herein, inspired by the basketweave-like pattern of collagen fibrils in native skin, we fabricated biomimetic nanofibrous scaffolds with crossed fiber organization via electrospinning. The regulation of crossed nanofibrous scaffolds on fibroblasts was compared with that of aligned and random nanofibrous scaffolds. Unexpectedly, crossed nanofibrous scaffolds induced different cellular responses in fibroblasts, including differences in cellular morphology, migration and wound healing related gene expression, in comparison to either aligned or random nanofibrous scaffolds. More importantly, the regulation of nanofibrous scaffolds with different fiber organizations on wound repair was systematically investigated in diabetic rats. While the healing processes were enhanced by all nanofibrous scaffolds, wounds treated with crossed nanofibrous scaffolds achieved the best healing outcome, which was evidenced by the resolution of inflammation, the accelerated migration of fibroblasts and keratinocytes, and the promotion of angiogenesis. These findings helped reveal the role of fiber organization in regulating the wound healing process in vivo and suggest the potential utility of biomimetic crossed nanofibrous scaffolds for the repair of chronic wounds.
Collapse
Affiliation(s)
- Luyao Sun
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Aydogdu MO, Altun E, Crabbe-Mann M, Brako F, Koc F, Ozen G, Kuruca SE, Edirisinghe U, Luo CJ, Gunduz O, Edirisinghe M. Cellular interactions with bacterial cellulose: Polycaprolactone nanofibrous scaffolds produced by a portable electrohydrodynamic gun for point-of-need wound dressing. Int Wound J 2018; 15:789-797. [PMID: 29806201 DOI: 10.1111/iwj.12929] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 01/10/2023] Open
Abstract
Electrospun nanofibrous scaffolds are promising regenerative wound dressing options but have yet to be widely used in practice. The challenge is that nanofibre productions rely on bench-top apparatuses, and the delicate product integrity is hard to preserve before reaching the point of need. Timing is critically important to wound healing. The purpose of this investigation is to produce novel nanofibrous scaffolds using a portable, hand-held "gun", which enables production at the wound site in a time-dependent fashion, thereby preserving product integrity. We select bacterial cellulose, a natural hydrophilic biopolymer, and polycaprolactone, a synthetic hydrophobic polymer, to generate composite nanofibres that can tune the scaffold hydrophilicity, which strongly affects cell proliferation. Composite scaffolds made of 8 different ratios of bacterial cellulose and polycaprolactone were successfully electrospun. The morphological features and cell-scaffold interactions were analysed using scanning electron microscopy. The biocompatibility was studied using Saos-2 cell viability test. The scaffolds were found to show good biocompatibility and allow different proliferation rates that varied with the composition of the scaffolds. A nanofibrous dressing that can be accurately moulded and standardised via the portable technique is advantageous for wound healing in practicality and in its consistency through mass production.
Collapse
Affiliation(s)
- Mehmet Onur Aydogdu
- Department of Metallurgical and Materials Engineering, Marmara University, Istanbul, Turkey
| | - Esra Altun
- Department of Metallurgical and Materials Engineering, Marmara University, Istanbul, Turkey
| | - Maryam Crabbe-Mann
- Department of Mechanical Engineering, University College London (UCL), London, UK
| | - Francis Brako
- Department of Mechanical Engineering, University College London (UCL), London, UK
| | - Fatma Koc
- Department of Medical Microbiology, Medipol University, Istanbul, Turkey
| | - Gunes Ozen
- Department of Molecular Medicine, Istanbul University, Istanbul, Turkey
| | | | | | - C J Luo
- Department of Mechanical Engineering, University College London (UCL), London, UK
| | - Oguzhan Gunduz
- Department of Metallurgical and Materials Engineering, Marmara University, Istanbul, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London (UCL), London, UK
| |
Collapse
|
37
|
Ashtikar M, Wacker MG. Nanopharmaceuticals for wound healing - Lost in translation? Adv Drug Deliv Rev 2018; 129:194-218. [PMID: 29567397 DOI: 10.1016/j.addr.2018.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
Today, many of the newly developed pharmaceuticals and medical devices take advantage of nanotechnology and with a rising incidence of chronic diseases such as diabetes and cardiovascular disease, the number of patients afflicted globally with non-healing wounds is growing. This has created a requirement for improved therapies and wound care. However, converting the strategies applied in early research into new products is still challenging. Many of them fail to comply with the market requirements. This review discusses the legal and scientific challenges in the design of nanomedicines for wound healing. Are they lost in translation or is there a new generation of therapeutics in the pipeline?
Collapse
Affiliation(s)
- Mukul Ashtikar
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - Matthias G Wacker
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany.
| |
Collapse
|
38
|
Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, Nuutila K, Giatsidis G, Mostafalu P, Derakhshandeh H, Yue K, Swieszkowski W, Memic A, Tamayol A, Khademhosseini A. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 2018; 127:138-166. [PMID: 29626550 PMCID: PMC6003879 DOI: 10.1016/j.addr.2018.04.008] [Citation(s) in RCA: 448] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 01/22/2023]
Abstract
Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted.
Collapse
Affiliation(s)
- Saghi Saghazadeh
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Chiara Rinoldi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology. Warsaw 02-507, Poland
| | - Maik Schot
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- MIRA Institute of Biomedical Technology and Technical Medicine, Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands
| | - Sara Saheb Kashaf
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- The University of Chicago Medical Scientist Training Program, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Fatemeh Sharifi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Elmira Jalilian
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Giorgio Giatsidis
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Pooria Mostafalu
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Hossein Derakhshandeh
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - Kan Yue
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology. Warsaw 02-507, Poland
| | - Adnan Memic
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Department of Radiology, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
39
|
Lu M, Yu J. Mussel-Inspired Biomaterials for Cell and Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:451-474. [PMID: 30357703 DOI: 10.1007/978-981-13-0947-2_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In designing biomaterial for regenerative medicine or tissue engineering, there are a variety of issues to consider including biocompatibility, biochemical reactivity, and cellular interaction etc. Mussel-inspired biomaterials have received much attention because of its appealing features including strong adhesiveness on moist surfaces, enhancement of cell adhesion, immobilization of bioactive molecules and its amenability to post-functionalization via catechol chemistry. In this review chapter, we give a brief introduction on the basic principles of mussel-inspired polydopamine coating, catechol conjugation, and discuss how their features play a vital role in biomedical application. Special emphasis is placed on tissue engineering and regenerative applications. We aspire to give readers of this book a comprehensive insight into mussel-inspired biomaterials that can facilitate them make significant contributions in this promising field.
Collapse
Affiliation(s)
- Min Lu
- Biomedical and Tissue Engineering Laboratory, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Jiashing Yu
- Biomedical and Tissue Engineering Laboratory, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Nanotechnology-based delivery systems to release growth factors and other endogenous molecules for chronic wound healing. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Seif S, Planz V, Windbergs M. Delivery of Therapeutic Proteins Using Electrospun Fibers-Recent Developments and Current Challenges. Arch Pharm (Weinheim) 2017; 350. [PMID: 28845905 DOI: 10.1002/ardp.201700077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/22/2022]
Abstract
Proteins play a vital role within the human body by regulating various functions and even serving as structural constituent of many body parts. In this context, protein-based therapeutics have attracted a lot of attention in the last few decades as potential treatment of different diseases. Due to the steadily increasing interest in protein-based therapeutics, different dosage forms were investigated for delivering such complex macromolecules to the human body. Here, electrospun fibers hold a great potential for embedding proteins without structural damage and for controlled release of the protein for therapeutic applications. This review provides a comprehensive overview of the current state of protein-based carrier systems using electrospun fibers, with special emphasis on discussing their potential and key challenges in developing such therapeutic strategies, along with a prospective view of anticipated future directions.
Collapse
Affiliation(s)
- Salem Seif
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbruecken, Germany
| | - Viktoria Planz
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbruecken, Germany
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Maike Windbergs
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbruecken, Germany
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|