1
|
Li Y, Li P, Xue K, Shi P, Xie X, Wang J, Xu C. LepR-Expressing Cells in Bone and Periodontium. Oral Dis 2025; 31:1065-1072. [PMID: 39748446 DOI: 10.1111/odi.15211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE LepR-expressing cells (LepR+ cells), a critical subpopulation of mesenchymal stem cells, have gained increasing attention in the last decade. LepR+ cells have been found to play a crucial role in maintaining bone and periodontal homeostasis. This review summarizes current research advances focusing on the role of LepR+ cells and their underlying regulatory molecular mechanisms in bones and periodontium, aiming to provide a better understanding of the therapeutic potential of this cell lineage. METHODS A literature review was conducted based on publications in PubMed over the past 20 years, summarizing the research progress on LepR+ cells in bone and periodontal tissues. RESULTS Current evidence revealed that LepR+ cells possess the ability of self-renewal and multilineage differentiation and are essential for bone turnover and periodontal tissue remodeling. In addition, LepR+ cells participate in the processes of bone fracture healing and alveolar socket healing. Moreover, under pathological conditions such as osteoporosis, bone marrow fibrosis, and periodontitis, LepR+ cells exhibit enhanced adipogenic or fibrogenic differentiation abilities. CONCLUSION Therapeutic approaches targeting the cell fate of LepR+ cells hold the potential to provide novel insights into bone/periodontal repair and regeneration therapy.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peitong Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kun Xue
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peilei Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Cosme D, Gomes AC. Leptin Levels and Bone Mineral Density: A Friend or a Foe for Bone Loss? A Systematic Review of the Association Between Leptin Levels and Low Bone Mineral Density. Int J Mol Sci 2025; 26:2066. [PMID: 40076690 PMCID: PMC11901020 DOI: 10.3390/ijms26052066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
The introduction of CFTR modulators in the clinics has improved body mass index in cystic fibrosis (CF) individuals. Leptin is a major regulator of appetite and energy expenditure but is also involved in bone metabolism. Whether circulating leptin levels are associated with low bone mineral density (BMD) and fracture risk in CF remains unknown. Therefore, the present study aims to analyze and integrate the current evidence linking leptin and bone loss in CF. As no scientific evidence was found, we focused on secondary dysregulations of bone loss in CF that may be linked to pathologies that are similar to the various dysregulations and multisystemic manifestations in CF. Studies published from 2001 to 2022 were identified through the PubMed, Scopus, and Web of Science databases, and screening was performed following the PRISMA guidelines. The included studies were assessed using a quality checklist. From the 774 records identified, 28 studies met the inclusion criteria. Although no evidence has been found directly related to bone loss in CF individuals, some studies revealed a positive association between leptin levels and BMD, while others found an inverse association. Current evidence suggests that for circulating leptin levels to be a predictive biomarker of bone health, further research will be needed to reveal the direct and indirect mechanisms behind leptin and bone loss and to understand whether changes in leptin levels correlate with changes in BMD. Of note, studies with CF people would be of high importance to understand the role of leptin in CF-related bone disease.
Collapse
Affiliation(s)
- Dina Cosme
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Cordeiro Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Serviço de Medicina Interna, Unidade de Saúde Local São João, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Pierre-Jerome C. The peripheral nervous system: peripheral neuropathies in the diabetic foot. MYOPATHIES AND TENDINOPATHIES OF THE DIABETIC FOOT 2025:451-482. [DOI: 10.1016/b978-0-443-13328-2.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Stromsnes K, Fajardo CM, Soto-Rodriguez S, Kajander ERU, Lupu RI, Pozo-Rodriguez M, Boira-Nacher B, Font-Alberich M, Gambini-Castell M, Olaso-Gonzalez G, Gomez-Cabrera MC, Gambini J. Osteoporosis: Causes, Mechanisms, Treatment and Prevention: Role of Dietary Compounds. Pharmaceuticals (Basel) 2024; 17:1697. [PMID: 39770539 PMCID: PMC11679375 DOI: 10.3390/ph17121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis is a chronic disease that is characterized by a loss of bone density, which mainly affects the microstructure of the bones due to a decrease in bone mass, thereby making them more fragile and susceptible to fractures. Osteoporosis is currently considered one of the pandemics of the 21st century, affecting around 200 million people. Its most serious consequence is an increased risk of bone fractures, thus making osteoporosis a major cause of disability and even premature death in the elderly. In this review, we discuss its causes, the biochemical mechanisms of bone regeneration, risk factors, pharmacological treatments, prevention and the effects of diet, focusing in this case on compounds present in a diet that could have palliative and preventive effects and could be used as concomitant treatments to drugs, which are and should always be the first option. It should be noted as a concluding remark that non-pharmacological treatments such as diet and exercise have, or should have, a relevant role in supporting pharmacology, which is the recommended prescription today, but we cannot ignore that they can have a great relevance in the treatment of this disease.
Collapse
Affiliation(s)
- Kristine Stromsnes
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Cristian Martinez Fajardo
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain;
| | - Silvana Soto-Rodriguez
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Erika Ria Ulrika Kajander
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Remus-Iulian Lupu
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | | | - Balma Boira-Nacher
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
| | - Maria Font-Alberich
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Marcos Gambini-Castell
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Gloria Olaso-Gonzalez
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Maria-Carmen Gomez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Juan Gambini
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| |
Collapse
|
5
|
Graef F, Wei Y, Garbe A, Seemann R, Zenzes M, Tsitsilonis S, Duda GN, Zaslansky P. Increased cancellous bone mass accompanies decreased cortical bone mineral density and higher axial deformation in femurs of leptin-deficient obese mice. J Mech Behav Biomed Mater 2024; 160:106745. [PMID: 39317095 DOI: 10.1016/j.jmbbm.2024.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Leptin is a pleiotropic hormone that regulates food intake and energy homeostasis with enigmatic effects on bone development. It is unclear if leptin promotes or inhibits bone growth. The aim of this study was to characterize the micro-architecture and mechanical competence of femur bones of leptin-deficient mice. MATERIALS AND METHODS Right femur bones of 15-week old C57BL/6 (n = 9) and leptin-deficient (ob/ob, n = 9) mice were analyzed. Whole bones were scanned using micro-CT and morphometric parameters of the cortex and trabeculae were assessed. Elastic moduli were determined from microindentations in midshaft cross-sections. Mineral densities were determined using quantitative backscatter scanning electron microscopy. 3D models of the distal femur metaphysis, cleared from trabecular bone, were meshed and used for finite element simulations of axial loading to identify straining differences between ob/ob and C57BL/6 controls. RESULTS Compared with C57BL/6 controls, ob/ob mice had significantly shorter bones. ob/ob mice showed significantly increased cancellous bone volume and trabecular thickness. qBEI quantified a ∼7% lower mineral density in ob/ob mice in the distal femur metaphysis. Indentation demonstrated a significantly reduced Young's modulus of 12.14 [9.67, 16.56 IQR] GPa for ob/ob mice compared to 23.12 [20.70, 26.57 IQR] GPa in C57BL/6 mice. FEA revealed greater deformation of cortical bone in ob/ob as compared to C57BL/6 mice. CONCLUSION Leptin deficient ob/ob mice have a softer cortical bone in the distal femur metaphysis but an excessive amount of cancellous bone, possibly as a response to increased deformation of the bones during axial loading. Both FEA and direct X-ray and electron microscopy imaging suggest that the morphology and micro-architecture of ob/ob mice have inferior biomechanical properties suggestive of a reduced mechanical competence.
Collapse
Affiliation(s)
- F Graef
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| | - Y Wei
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| | - A Garbe
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany
| | - R Seemann
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany
| | - M Zenzes
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany
| | - S Tsitsilonis
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - G N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - P Zaslansky
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany.
| |
Collapse
|
6
|
Perakakis N, Mantzoros CS. Evidence from clinical studies of leptin: current and future clinical applications in humans. Metabolism 2024; 161:156053. [PMID: 39490439 DOI: 10.1016/j.metabol.2024.156053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Leptin has been established as the prototype adipose tissue secreted hormone and as a major regulator of several human physiology functions. Here, we are primarily reviewing the findings from studies in humans involving leptin administration. We are describing the metabolic, endocrine and immunologic effects of leptin replacement in conditions of leptin deficiency, such as short-term fasting in healthy individuals, relative energy deficiency in sports (REDS), congenital leptin deficiency (CLD), generalized (GL) and partial lipodystrophy (PL), HIV-associated lipodystrophy (HIV-L) and of leptin treatment in conditions of leptin excess (common obesity, type 2 diabetes, steatotic liver disease). We are comparing the results with the findings from preclinical models and present the main conclusions regarding the role of leptin in human physiology, pathophysiology and therapeutics. We conclude that, in conditions of energy deficiency, leptin substitution effectively reduces body weight and fat mass through reduction of appetite, it improves hypertriglyceridemia, insulin resistance and hepatic steatosis (especially in GL and PL), it restores neuroendocrine function (especially the gonadotropic axis), it regulates adaptive immune system cell populations and it improves bone health. On the contrary, leptin treatment in conditions of leptin excess, such as common obesity and type 2 diabetes, does not improve any metabolic abnormalities. Strategies to overcome leptin tolerance/resistance in obesity and type 2 diabetes have provided promising results in animal studies, which should though be tested in humans in randomized clinical trials.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Metabolic and Vascular Medicine, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | - Christos S Mantzoros
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Stefanakis K, Upadhyay J, Ramirez-Cisneros A, Patel N, Sahai A, Mantzoros CS. Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health. Metabolism 2024; 161:156056. [PMID: 39481533 DOI: 10.1016/j.metabol.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Since its discovery and over the past thirty years, extensive research has significantly expanded our understanding of leptin and its diverse roles in human physiology, pathophysiology and therapeutics. A prototypical adipokine initially identified for its critical function in appetite regulation and energy homeostasis, leptin has been revealed to also exert profound effects on the hypothalamic-pituitary-gonadal, thyroid, adrenal and growth hormone axis, differentially between animals and humans, as well as in regulating immune function. Beyond these roles, leptin plays a pivotal role in significantly affecting bone health by promoting bone formation and regulating bone metabolism both directly and indirectly through its neuroendocrine actions. The diverse actions of leptin are particularly notable in leptin-deficient animal models and in conditions characterized by low circulating leptin levels, such as lipodystrophies and relative energy deficiency. Conversely, the effectiveness of leptin is attenuated in leptin-sufficient states, such as obesity and other high-adiposity conditions associated with hyperleptinemia and leptin tolerance. This review attempts to consolidate 30 years of leptin research with an emphasis on its physiology and pathophysiology in humans, including its promising therapeutic potential. We discuss preclinical and human studies describing the pathophysiology of energy deficiency across organ systems and the significant role of leptin in regulating neuroendocrine, immune, reproductive and bone health. We finally present past proof of concept clinical trials of leptin administration in leptin-deficient subjects that have demonstrated positive neuroendocrine, reproductive, and bone health outcomes, setting the stage for future phase IIb and III randomized clinical trials in these conditions.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jagriti Upadhyay
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Arantxa Ramirez-Cisneros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nihar Patel
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Akshat Sahai
- Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
8
|
Hsu CN, Kao CH, Yang CH, Cheng MT, Hsu YP, Hong SG, Yao CL, Chen YH. Leptin Promotes the Expression of Pro-inflammatory Mediator Genes but Does Not Alter Osteoclastogenesis and Early Stage Differentiation of Osteoblasts. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:355-363. [PMID: 39569657 DOI: 10.4103/ejpi.ejpi-d-24-00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/12/2024] [Indexed: 11/22/2024]
Abstract
ABSTRACT Leptin, a hormone secreted by adipose tissue, plays a pivotal role in maintaining energy metabolism and bone quality. Dysregulation of leptin can lead to the development of various pathological conditions. For example, the concentration of leptin is increased in individuals with obesity, and this increased concentration is positively correlated with higher bone mass. In addition, mice lacking leptin or the leptin receptor exhibit substantial bone loss, further highlighting the pivotal role of leptin in regulating bone metabolism. However, the precise mechanism through which leptin affects bone remodeling remains unclear. The present study investigated the effect of leptin on osteoclastogenesis and osteoblastogenesis. Osteoblasts derived from MC3T3-E1 cells and osteoclasts derived from RAW 264.7 cells were used. The findings revealed that leptin did not substantially affect osteoclastogenesis or osteoblastogenesis. Furthermore, leptin did not affect cell viability during osteoclast differentiation. The expression of inflammatory mediators was increased in differentiating RAW 264.7 cells. However, the expression of critical bone resorptive genes, including Ctsk and tartrate-resistant acid phosphatase, was not elevated following leptin stimulation. By contrast, leptin did not alter the expression of key osteogenic genes in preosteoblasts in the early stage of differentiation. These data demonstrate that leptin can stimulate the expression of pro-inflammatory mediators in differentiating osteoclasts. These changes do not affect osteoblastogenesis or osteoclastogenesis. Leptin may downregulate bone resorption and enhance mineralization to increase bone mass.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chih-Hong Kao
- Department of Cardiovascular Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chin-Hua Yang
- Department of Radiology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Te Cheng
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Sinwu Branch, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Engineering, Chung Yung Christian University, Taoyuan, Taiwan
| | - Yu-Pao Hsu
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Shinn-Gwo Hong
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Yu-Hsu Chen
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
9
|
Liu Z, Xie W, Li H, Liu X, Lu Y, Lu B, Deng Z, Li Y. Novel perspectives on leptin in osteoarthritis: Focus on aging. Genes Dis 2024; 11:101159. [PMID: 39229323 PMCID: PMC11369483 DOI: 10.1016/j.gendis.2023.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic joint disease characterized by articular cartilage degeneration, subchondral sclerosis, synovitis, and osteophyte formation. OA is associated with disability and impaired quality of life, particularly among the elderly. Leptin, a 16-kD non-glycosylated protein encoded by the obese gene, is produced on a systemic and local basis in adipose tissue and the infrapatellar fat pad located in the knee. The metabolic mechanisms employed by leptin in OA development have been widely studied, with attention being paid to aging as a corroborative risk factor for OA. Hence, in this review, we have attempted to establish a potential link between leptin and OA, by focusing on aging-associated mechanisms and proposing leptin as a potential diagnostic and therapeutic target in aging-related mechanisms of OA that may provide fruitful guidance and emphasis for future research.
Collapse
Affiliation(s)
- Zimo Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xu Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
10
|
Angelidi AM, Stefanakis K, Chou SH, Valenzuela-Vallejo L, Dipla K, Boutari C, Ntoskas K, Tokmakidis P, Kokkinos A, Goulis DG, Papadaki HA, Mantzoros CS. Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments. Endocr Rev 2024; 45:676-708. [PMID: 38488566 DOI: 10.1210/endrev/bnae011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 09/18/2024]
Abstract
Research on lean, energy-deficient athletic and military cohorts has broadened the concept of the Female Athlete Triad into the Relative Energy Deficiency in Sport (REDs) syndrome. REDs represents a spectrum of abnormalities induced by low energy availability (LEA), which serves as the underlying cause of all symptoms described within the REDs concept, affecting exercising populations of either biological sex. Both short- and long-term LEA, in conjunction with other moderating factors, may produce a multitude of maladaptive changes that impair various physiological systems and adversely affect health, well-being, and sport performance. Consequently, the comprehensive definition of REDs encompasses a broad spectrum of physiological sequelae and adverse clinical outcomes related to LEA, such as neuroendocrine, bone, immune, and hematological effects, ultimately resulting in compromised health and performance. In this review, we discuss the pathophysiology of REDs and associated disorders. We briefly examine current treatment recommendations for REDs, primarily focusing on nonpharmacological, behavioral, and lifestyle modifications that target its underlying cause-energy deficit. We also discuss treatment approaches aimed at managing symptoms, such as menstrual dysfunction and bone stress injuries, and explore potential novel treatments that target the underlying physiology, emphasizing the roles of leptin and the activin-follistatin-inhibin axis, the roles of which remain to be fully elucidated, in the pathophysiology and management of REDs. In the near future, novel therapies leveraging our emerging understanding of molecules and physiological axes underlying energy availability or lack thereof may restore LEA-related abnormalities, thus preventing and/or treating REDs-related health complications, such as stress fractures, and improving performance.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Sharon H Chou
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sports Science at Serres, Aristotle University of Thessaloniki, Serres 62100, Greece
| | - Chrysoula Boutari
- Second Propaedeutic Department of Internal Medicine, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Konstantinos Ntoskas
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Panagiotis Tokmakidis
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Alexander Kokkinos
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion 71500, Greece
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Li J, Zhang Z, Tang J, Hou Z, Li L, Li B. Emerging roles of nerve-bone axis in modulating skeletal system. Med Res Rev 2024; 44:1867-1903. [PMID: 38421080 DOI: 10.1002/med.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Over the past decades, emerging evidence in the literature has demonstrated that the innervation of bone is a crucial modulator for skeletal physiology and pathophysiology. The nerve-bone axis sparked extensive preclinical and clinical investigations aimed at elucidating the contribution of nerve-bone crosstalks to skeleton metabolism, homeostasis, and injury repair through the perspective of skeletal neurobiology. To date, peripheral nerves have been widely reported to mediate bone growth and development and fracture healing via the secretion of neurotransmitters, neuropeptides, axon guidance factors, and neurotrophins. Relevant studies have further identified several critical neural pathways that stimulate profound alterations in bone cell biology, revealing a complex interplay between the skeleton and nerve systems. In addition, inspired by nerve-bone crosstalk, novel drug delivery systems and bioactive materials have been developed to emulate and facilitate the process of natural bone repair through neuromodulation, eventually boosting osteogenesis for ideal skeletal tissue regeneration. Overall, this work aims to review the novel research findings that contribute to deepening the current understanding of the nerve-bone axis, bringing forth some schemas that can be translated into the clinical scenario to highlight the critical roles of neuromodulation in the skeletal system.
Collapse
Affiliation(s)
- Jingya Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinru Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeyu Hou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Guan J, Liu T, Chen H, Yang K. Association of type 2 Diabetes Mellitus and bone mineral density: a two-sample Mendelian randomization study. BMC Musculoskelet Disord 2024; 25:130. [PMID: 38347501 PMCID: PMC10860277 DOI: 10.1186/s12891-024-07195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Observational studies have suggested that type 2 Diabetes Mellitus (DM2) is a potentially modifiable risk factor for lower BMD, but the causal relationship is unclear. This study aimed to examine whether the association of DM2 with lower BMD levels was causal by using Mendelian randomization (MR) analyses. METHODS We collected genome-wide association study data for DM2 and BMD of total body and different skeletal sites from the IEU database. Subsequently, we performed a two-sample Mendelian randomization analysis using the Two Sample MR package. RESULTS We identified a positive association between DM2 risk (61,714 DM2 cases and 596,424 controls) and total BMD, and other skeletal sites BMD, such as femoral neck BMD, ultra-distal forearm BMD and heel BMD. However, non-significant trends were observed for the effects of DM2 on lumbar-spine BMD. CONCLUSION In two-sample MR analyses, there was positive causal relationship between DM2 and BMD in both overall samples. In summary, while observational analyses consistently indicate a strong association between DM2 and low BMD, our MR analysis introduces a nuanced perspective. Contrary to the robust association observed in observational studies, our MR analysis suggests a significant link between DM2 and elevated BMD.
Collapse
Affiliation(s)
- Jianbin Guan
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Shannxi Key Laboratory of Spine Bionic Treatment, Xi'an, China
| | - Tao Liu
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Shannxi Key Laboratory of Spine Bionic Treatment, Xi'an, China
| | - Hao Chen
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Shannxi Key Laboratory of Spine Bionic Treatment, Xi'an, China
| | - Kaitan Yang
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
- Shannxi Key Laboratory of Spine Bionic Treatment, Xi'an, China.
| |
Collapse
|
13
|
Eckert D, Evic M, Schang J, Isbruch M, Er M, Dörrschuck L, Rapp F, Donaubauer AJ, Gaipl US, Frey B, Fournier C. Osteo-immunological impact of radon spa treatment: due to radon or spa alone? Results from the prospective, thermal bath placebo-controlled RAD-ON02 trial. Front Immunol 2024; 14:1284609. [PMID: 38292488 PMCID: PMC10824901 DOI: 10.3389/fimmu.2023.1284609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Musculoskeletal disorders (MSDs) are associated with pain and lead to reduced mobility and quality of life for patients. Radon therapy is used as alternative or complementary to pharmaceutical treatments. According to previous reports, radon spa leads to analgesic and anti-inflammatory effects, but the cellular and molecular mechanisms are widely unknown. A previous study (RAD-ON01) revealed, that bone erosion markers like collagen fragments (C-terminal telopeptide, CTX) are reduced after radon spa treatment in serum of patients with degenerative MSDs. Within the scope of the prospective, placebo-controlled RAD-ON02 trial presented here, we analyzed the influence of radon and thermal spa treatment on osteoclastogenesis. From patient blood, we isolate monocytes, seeded them on bone slices and differentiated them in the presence of growth factors into mature osteoclasts (mOCs). Subsequent analysis showed a smaller fraction of mOCs after both treatments, which was even smaller after radon spa treatment. A significantly reduced resorbed area on bone slices reflects this result. Only after radon spa treatment, we detected in the serum of patients a significant decrease of receptor activator of NF-κB ligand (RANKL), which indicates reduced differentiation of OCs. However, other markers for bone resorption (CTX) and bone formation (OPG, OCN) were not altered after both treatments. Adipokines, such as visfatin and leptin that play a role in some MSD-types by affecting osteoclastogenesis, were not changed after both treatments. Further, also immune cells have an influence on osteoclastogenesis, by inhibiting and promoting terminal differentiation and activation of OCs, respectively. After radon treatment, the fraction of Treg cells was significantly increased, whereas Th17 cells were not altered. Overall, we observed that both treatments had an influence on osteoclastogenesis and bone resorption. Moreover, radon spa treatment affected the Treg cell population as well as the Th17/Treg ratio were affected, pointing toward a contribution of the immune system after radon spa. These data obtained from patients enrolled in the RAD-ON02 trial indicate that radon is not alone responsible for the effects on bone metabolism, even though they are more pronounced after radon compared to thermal spa treatment.
Collapse
Affiliation(s)
- Denise Eckert
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Megi Evic
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Jasmin Schang
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Maike Isbruch
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Melissa Er
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Lea Dörrschuck
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Felicitas Rapp
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Anna-Jasmina Donaubauer
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S. Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
14
|
Ruggiero C, Baroni M, Xenos D, Parretti L, Macchione IG, Bubba V, Laudisio A, Pedone C, Ferracci M, Magierski R, Boccardi V, Antonelli-Incalzi R, Mecocci P. Dementia, osteoporosis and fragility fractures: Intricate epidemiological relationships, plausible biological connections, and twisted clinical practices. Ageing Res Rev 2024; 93:102130. [PMID: 38030092 DOI: 10.1016/j.arr.2023.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Dementia, osteoporosis, and fragility fractures are chronic diseases, often co-existing in older adults. These conditions pose severe morbidity, long-term disability, and mortality, with relevant socioeconomic implications. While in the research arena, the discussion remains on whether dementia is the cause or the consequence of fragility fractures, healthcare professionals need a better understanding of the interplay between such conditions from epidemiological and physiological standpoints. With this review, we summarized the available literature surrounding the relationship between cognitive impairment, dementia, and both low bone mineral density (BMD) and fragility fractures. Given the strength of the bi-directional associations and their impact on the quality of life, we shed light on the biological connections between brain and bone systems, presenting the main mediators, including gut microbioma, and pathological pathways leading to the dysregulation of bone and brain metabolism. Ultimately, we synthesized the evidence about the impact of available pharmacological treatments for the prevention of fragility fractures on cognitive functions and individuals' outcomes when dementia coexists. Vice versa, the effects of symptomatic treatments for dementia on the risk of falls and fragility fractures are explored. Combining evidence alongside clinical practice, we discuss challenges and opportunities related to the management of older adults affected by cognitive impairment or dementia and at high risk for fragility fracture prevention, which leads to not only an improvement in patient health-related outcomes and survival but also a reduction in healthcare cost and socio-economic burden.
Collapse
Affiliation(s)
- C Ruggiero
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy.
| | - M Baroni
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - D Xenos
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - L Parretti
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - I G Macchione
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - V Bubba
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - A Laudisio
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - C Pedone
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - M Ferracci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Magierski
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - V Boccardi
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Antonelli-Incalzi
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - P Mecocci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| |
Collapse
|
15
|
Arjunan D, Prasad TN, Das L, Bhadada SK. Osteoporosis and Obesity. Indian J Orthop 2023; 57:218-224. [PMID: 38107795 PMCID: PMC10721772 DOI: 10.1007/s43465-023-01052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023]
Abstract
Introduction This article concisely overviews the complex relationship between obesity and bone health. Obesity, characterized by excessive fat accumulation, has been traditionally associated with higher bone mineral density. Also, recent data suggest a favorable bone microarchitecture profile in these patients. However, the increase in bone mineral density does not necessarily confer protection against fractures, and the risk of fractures may vary depending on the skeletal sites. Factors affecting bone health Various factors, including mechanical factors, hormones, cytokines, inflammation, and bone marrow adiposity, contribute to the adverse effect of obesity on bone. The article explores these factors alongside non-invasive techniques and tools like the Fracture Risk Assessment (FRAX) to evaluate fracture risk. Bone and Adipose tissue This article also highlights the essential roles of hormones such as vitamin D, Parathormone (PTH), FGF-23 (Fibroblast Growth Factor 23), which affect bone health, and some of the hormones secreted from the adipose tissues such as adiponectin and leptin. Obesity Paradox and Sarcopenic Obesity The article delves into the intriguing obesity paradox, where an increased BMI correlates with higher bone mineral density but not necessarily reduced fracture risk. Sarcopenic obesity, a combination of excessive fat accumulation and reduced muscle mass, further complicates the relationship between obesity and bone health. Conclusions Physicians should keep a comprehensive approach to treating obese patients with osteoporosis, including lifestyle modifications, weight management, fall prevention strategies, and pharmacological interventions. Further research is needed to better understand the relationship between obesity and bone health.
Collapse
Affiliation(s)
- Durairaj Arjunan
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Nehru Hospital Extension, Chandigarh, India
| | - Trupti Nagendra Prasad
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Nehru Hospital Extension, Chandigarh, India
| | - Liza Das
- Department of Telemedicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Nehru Hospital Extension, Chandigarh, India
| |
Collapse
|
16
|
Choa R, Panaroni C, Bhatia R, Raje N. It is worth the weight: obesity and the transition from monoclonal gammopathy of undetermined significance to multiple myeloma. Blood Adv 2023; 7:5510-5523. [PMID: 37493975 PMCID: PMC10515310 DOI: 10.1182/bloodadvances.2023010822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
The overweight/obesity epidemic is a serious public health concern that affects >40% of adults globally and increases the risk of numerous chronic diseases, such as type 2 diabetes, heart disease, and various cancers. Multiple myeloma (MM) is a lymphohematopoietic cancer caused by the uncontrolled clonal expansion of plasma cells. Recent studies have shown that obesity is a risk factor not only for MM but also monoclonal gammopathy of undetermined significance (MGUS), a precursor disease state of MM. Furthermore, obesity may promote the transition from MGUS to MM. Thus, in this review, we summarize the epidemiological evidence regarding the role of obesity in MM and MGUS, discuss the biologic mechanisms that drive these disease processes, and detail the obesity-targeted pharmacologic and lifestyle interventions that may reduce the risk of progression from MGUS to MM.
Collapse
Affiliation(s)
- Ruth Choa
- Center for Multiple Myeloma, Massachusetts General Hospital, Boston, MA
| | - Cristina Panaroni
- Center for Multiple Myeloma, Massachusetts General Hospital, Boston, MA
| | - Roma Bhatia
- Center for Multiple Myeloma, Massachusetts General Hospital, Boston, MA
| | - Noopur Raje
- Center for Multiple Myeloma, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
17
|
Jiao Y, Sun J, Li Y, Zhao J, Shen J. Association between Adiposity and Bone Mineral Density in Adults: Insights from a National Survey Analysis. Nutrients 2023; 15:3492. [PMID: 37571429 PMCID: PMC10420642 DOI: 10.3390/nu15153492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Adiposity and bone mineral density (BMD) are closely associated. The aim of this research was to investigate the association between BMD and adiposity measures in adults, including gynoid percent fat (GPF), android percent fat (APF), total percent fat (TPF), visceral adipose tissue percent (VAT%), and total lean mass percent (TLM%). Participants (n = 11,615) aged 18 years and older were analyzed using data from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. Associations between BMD and adiposity measures were investigated, and potential differences based on gender and age were explored. Significant negative associations were observed among TPF, APF, GPF, VAT%, and BMD in the fully adjusted models, while TLM% and BMD were positively associated. Stratifying by age and sex, TPF, GPF, and VAT% consistently demonstrated a negative correlation with BMD. In the young adult group, a TPF of 38.2% eliminated the negative correlation between BMD and TPF. Male BMD exhibited an inverted U-shaped relationship with APF, peaking at 35.6%, while a similar pattern was observed for the middle-aged group BMD and APF, with a peak at 31.7%. This large-sample research found a significant negative association between adiposity measures and BMD, providing valuable revelations regarding the intricate connection between adiposity and bone health.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China; (Y.J.); (J.Z.)
| | - Juan Sun
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China;
| | - Yuanmeng Li
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China;
| | - Junduo Zhao
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China; (Y.J.); (J.Z.)
| | - Jianxiong Shen
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China; (Y.J.); (J.Z.)
| |
Collapse
|
18
|
Karamian BA, Levy HA, Yalla GR, D'Antonio ND, Heard JC, Lambrechts MJ, Canseco JA, Vaccaro AR, Markova DZ, Kepler CK. Varenicline Mitigates the Increased Risk of Pseudoarthrosis Associated with Nicotine. Spine J 2023:S1529-9430(23)00162-6. [PMID: 37086977 DOI: 10.1016/j.spinee.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND CONTEXT High serum nicotine levels increase the risk of non-union after spinal fusion. Varenicline, a pharmaceutical adjunct for smoking cessation, is a partial agonist designed to displace and outcompete nicotine at its receptor binding site, thereby limiting downstream activation. Given its mechanism, varenicline may have therapeutic benefits in mitigating non-union for active smokers undergoing spinal fusion. PURPOSE To compare fusion rate and fusion mass characteristics between cohorts receiving nicotine, varenicline, or concurrent nicotine and varenicline after lumbar fusion. STUDY DESIGN Rodent non-instrumented spinal fusion model. METHODS Sixty eight-week-old male Sprague-Dawley rats weighing approximately 300 grams underwent L4-5 posterolateral fusion (PLF) surgery. Four experimental groups (control: C, nicotine: N, varenicline: V, and combined: NV [nicotine and varenicline]) were included for analysis. Treatment groups received nicotine, varenicline, or a combination of nicotine and varenicline delivered through subcutaneous osmotic pumps beginning two weeks before surgery until the time of sacrifice at age 14 weeks. Manual palpation testing, microCT imaging, bone histomorphometry, and biomechanical testing were performed on harvested spinal fusion segments. RESULTS Control (p=0.016) and combined (p=0.032) groups, when compared directly to the nicotine group, demonstrated significantly greater manual palpation scores. The fusion rate in the control (93.3%) and combined (93.3%) groups were significantly greater than that of the nicotine group (33.3%) (p=0.007, both). Biomechanical testing demonstrated greater Young's modulus of the fusion segment in the control (17.1 MPa) and combined groups (34.5 MPa) compared to the nicotine group (8.07 MPa) (p<0.001, both). MicroCT analysis demonstrated greater bone volume fraction (C:0.35 vs N:0.26 vs NV:0.33) (p<0.001, all) and bone mineral density (C:335 vs N:262 vs NV:328 mg Ha/cm3) (p<0.001, all) in the control and combined groups compared to the nicotine group. Histomorphometry demonstrated a greater mineral apposition rate in the combined group compared to the nicotine group (0.34 vs 0.24 μm/day, p=0.025). CONCLUSION In a rodent spinal fusion model, varenicline mitigates the adverse effects of high nicotine serum levels on the rate and quality of spinal fusion. CLINICAL SIGNIFICANCE These findings have the potential to significantly impact clinical practice guidelines and the use of pharmacotherapy for active nicotine users undergoing fusion surgery.
Collapse
Affiliation(s)
- Brian A Karamian
- Rothman Orthopaedic Institute, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA; Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA.
| | - Hannah A Levy
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Goutham R Yalla
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nicholas D D'Antonio
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jeremy C Heard
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mark J Lambrechts
- Rothman Orthopaedic Institute, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose A Canseco
- Rothman Orthopaedic Institute, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander R Vaccaro
- Rothman Orthopaedic Institute, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dessislava Z Markova
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher K Kepler
- Rothman Orthopaedic Institute, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Walowski CO, Herpich C, Enderle J, Braun W, Both M, Hasler M, Müller MJ, Norman K, Bosy-Westphal A. Determinants of bone mass in older adults with normal- and overweight derived from the crosstalk with muscle and adipose tissue. Sci Rep 2023; 13:5030. [PMID: 36977715 PMCID: PMC10050471 DOI: 10.1038/s41598-023-31642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Lower bone mass in older adults may be mediated by the endocrine crosstalk between muscle, adipose tissue and bone. In 150 community-dwelling adults (59-86 years, BMI 17-37 kg/m2; 58.7% female), skeletal muscle mass index, adipose tissue and fat mass index (FMI) were determined. Levels of myokines, adipokines, osteokines, inflammation markers and insulin were measured as potential determinants of bone mineral content (BMC) and density (BMD). FMI was negatively associated with BMC and BMD after adjustment for mechanical loading effects of body weight (r-values between -0.37 and -0.71, all p < 0.05). Higher FMI was associated with higher leptin levels in both sexes, with higher hsCRP in women and with lower adiponectin levels in men. In addition to weight and FMI, sclerostin, osteocalcin, leptin × sex and adiponectin were independent predictors of BMC in a stepwise multiple regression analysis. Muscle mass, but not myokines, showed positive correlations with bone parameters that were weakened after adjusting for body weight (r-values between 0.27 and 0.58, all p < 0.01). Whereas the anabolic effect of muscle mass on bone in older adults may be partly explained by mechanical loading, the adverse effect of obesity on bone is possibly mediated by low-grade inflammation, higher leptin and lower adiponectin levels.
Collapse
Affiliation(s)
- Carina O Walowski
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany
| | - Catrin Herpich
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Department of Geriatrics and Medical Gerontology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nutrition and Gerontology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Janna Enderle
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany
| | - Wiebke Braun
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | - Mario Hasler
- Applied Statistics, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University, Kiel, Germany
| | - Manfred J Müller
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany
| | - Kristina Norman
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Department of Geriatrics and Medical Gerontology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nutrition and Gerontology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Anja Bosy-Westphal
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany.
| |
Collapse
|
20
|
Zhang R, Wang X, Xie Z, Cao T, Jiang S, Huang L. Lipoxin A4 methyl ester attenuated ketamine-induced neurotoxicity in SH-SY5Y cells via regulating leptin pathway. Toxicol In Vitro 2023; 89:105581. [PMID: 36907275 DOI: 10.1016/j.tiv.2023.105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/18/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Ketamine, the widely used intravenous anesthetic, has been reported to cause neurotoxicity and disturbs normal neurogenesis. However, the efficacy of current treatment strategies targeting ketamine's neurotoxicity remains limited. Lipoxin A4 methyl ester (LXA4 ME) is relatively stable lipoxin analog, which serves an important role in protecting against early brain injury. The purpose of this study was to investigate the protective effect of LXA4 ME on ketamine-caused cytotoxicity in SH-SY5Y cells, as well as the underlying mechanisms. Cell viability, apoptosis and endoplasmic reticulum stress (ER stress) were detected by adopting experimental techniques including CCK-8 assay, flow cytometry, western blotting and transmission electron microscope. Furthermore, examining the expression of leptin and its receptor (LepRb), we also measured the levels of activation of the leptin signaling pathway. Our results showed that LXA4 ME intervention promoted the cell viability, inhibited cell apoptosis, and reduced the expression of ER stress related protein and morphological changes induced by ketamine. In addition, inhibition of leptin signaling pathway caused by ketamine could be reversed by LXA4 ME. However, as the specific inhibitor of leptin pathway, leptin antagonist triple mutant human recombinant (leptin tA) attenuated the cytoprotective effect of LXA4 ME against ketamine-induced neurotoxicity. In conclusion, our findings demonstrated LXA4 ME could exert a neuroprotective effect on ketamine-induced neuronal injury via activation of the leptin signaling pathway.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China; Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People's Hospital), No. 1166, Dongfanghong West Road, Decheng District, Dezhou City, Shandong Province, China
| | - Xueji Wang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China; Hebei Medical University, No.48, Donggang Road, Shijiazhuang, Hebei, China
| | - Ziyu Xie
- Hebei Medical University, No.48, Donggang Road, Shijiazhuang, Hebei, China
| | - Tianyu Cao
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China
| | - Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China.
| |
Collapse
|
21
|
Deepika F, Bathina S, Armamento-Villareal R. Novel Adipokines and Their Role in Bone Metabolism: A Narrative Review. Biomedicines 2023; 11:644. [PMID: 36831180 PMCID: PMC9953715 DOI: 10.3390/biomedicines11020644] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
The growing burden of obesity and osteoporosis is a major public health concern. Emerging evidence of the role of adipokines on bone metabolism has led to the discovery of novel adipokines over the last decade. Obesity is recognized as a state of adipose tissue inflammation that adversely affects bone health. Adipokines secreted from white adipose tissue (WAT) and bone marrow adipose tissue (BMAT) exerts endocrine and paracrine effects on the survival and function of osteoblasts and osteoclasts. An increase in marrow fat is implicated in osteoporosis and, hence, it is crucial to understand the complex interplay between adipocytes and bone. The objective of this review is to summarize recent advances in our understanding of the role of different adipokines on bone metabolism. METHODS This is a comprehensive review of the literature available in PubMED and Cochrane databases, with an emphasis on the last five years using the keywords. RESULTS Leptin has shown some positive effects on bone metabolism; in contrast, both adiponectin and chemerin have consistently shown a negative association with BMD. No significant association was found between resistin and BMD. Novel adipokines such as visfatin, LCN-2, Nesfatin-1, RBP-4, apelin, and vaspin have shown bone-protective and osteoanabolic properties that could be translated into therapeutic targets. CONCLUSION New evidence suggests the potential role of novel adipokines as biomarkers to predict osteoporosis risk, and as therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Fnu Deepika
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| | - Siresha Bathina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
Jain RK, Vokes T. Visceral Adipose Tissue is Negatively Associated With Bone Mineral Density in NHANES 2011-2018. J Endocr Soc 2023; 7:bvad008. [PMID: 36793478 PMCID: PMC9922944 DOI: 10.1210/jendso/bvad008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 01/24/2023] Open
Abstract
Context The relationship of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) with bone mineral density (BMD) is not well established. Objective To examine the associations of VAT and SAT with total body BMD in a large, nationally representative population with a wide range of adiposity. Methods We analyzed 10 641 subjects aged 20 to 59 years in National Health and Nutrition Examination Survey 2011-2018 who had undergone total body BMD and had VAT and SAT measured by dual-energy X-ray absorptiometry. Linear regression models were fitted while controlling for age, sex, race or ethnicity, smoking status, height, and lean mass index. Results In a fully adjusted model, each higher quartile of VAT was associated with an average of 0.22 lower T-score (95% CI, -0.26 to -0.17, P < 0.001), whereas SAT had a weak association with BMD but only in men (-0.10; 95% CI, -0.17 to -0.04, P = 0.002). However, the association of SAT to BMD in men was no longer significant after controlling for bioavailable sex hormones. In subgroup analysis, we also found differences in the relationship of VAT to BMD in Black and Asian subjects, but these differences were eliminated after accounting for racial and ethnic differences in VAT norms. Conclusions VAT has a negative association with BMD. Further research is needed to better understand the mechanism of action and, more generally, to develop strategies for optimizing bone health in obese subjects.
Collapse
Affiliation(s)
- Rajesh K Jain
- Correspondence: Rajesh K. Jain, MD, 5841 S Maryland Ave, MC 1027, Chicago, IL 60637, USA.
| | - Tamara Vokes
- Department of Endocrinology, Diabetes, and Metabolism, University of Chicago Medicine, 5841 S Maryland Ave, MC 1027, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Normand E, Franco A, Alos N, Parent S, Moreau A, Marcil V. Circulatory Adipokines and Incretins in Adolescent Idiopathic Scoliosis: A Pilot Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1619. [PMID: 36360347 PMCID: PMC9688531 DOI: 10.3390/children9111619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/26/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a three-dimensional malformation of the spine of unknown cause that develops between 10 and 18 years old and affects 2-3% of adolescents, mostly girls. It has been reported that girls with AIS have a taller stature, lower body mass index (BMI), and bone mineral density (BMD) than their peers, but the causes remain unexplained. Energy metabolism discrepancies, including alterations in adipokine and incretin circulatory levels, could influence these parameters and contribute to disease pathophysiology. This pilot study aims to compare the anthropometry, BMD, and metabolic profile of 19 AIS girls to 19 age-matched healthy controls. Collected data include participants' fasting metabolic profile, anthropometry (measurements and DXA scan), nutritional intake, and physical activity level. AIS girls (14.8 ± 1.7 years, Cobb angle 27 ± 10°), compared to controls (14.8 ± 2.1 years), were leaner (BMI-for-age z-score ± SD: -0.59 ± 0.81 vs. 0.09 ± 1.11, p = 0.016; fat percentage: 24.4 ± 5.9 vs. 29.2 ± 7.2%, p = 0.036), had lower BMD (total body without head z-score ± SD: -0.6 ± 0.83 vs. 0.23 ± 0.98, p = 0.038; femoral neck z-score: -0.54 ± 1.20 vs. 0.59 ± 1.59, p = 0.043), but their height was similar. AIS girls had higher adiponectin levels [56 (9-287) vs. 32 (7-74) μg/mL, p = 0.005] and lower leptin/adiponectin ratio [0.042 (0.005-0.320) vs. 0.258 (0.024-1.053), p = 0.005]. AIS participants with a Cobb angle superior to 25° had higher resistin levels compared to controls [98.2 (12.8-287.2) vs. 32.1 (6.6-73.8), p = 0.0013]. This pilot study suggests that adipokines are implicated in AIS development and/or progression, but more work is needed to confirm their role in the disease.
Collapse
Affiliation(s)
- Emilie Normand
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Anita Franco
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Viscogliosi Laboratory in Molecular Genetics and Musculoskeletal Diseases, Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Nathalie Alos
- Endocrine Service, Department of Pediatrics, CHU Sainte-Justine, Montreal, QC H3T 1J4, Canada
| | - Stefan Parent
- Department of Surgery, CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics and Musculoskeletal Diseases, Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC H3A 1J4, Canada
| | - Valérie Marcil
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
24
|
Gao Y, Zhao G, Song Y, Haire A, Yang A, Zhao X, Wusiman A. Presence of leptin and its receptor in the ram reproductive system and in vitro effect of leptin on sperm quality. PeerJ 2022; 10:e13982. [PMID: 36187750 PMCID: PMC9521348 DOI: 10.7717/peerj.13982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023] Open
Abstract
Leptin is a 16 kDa hormone encoded by obese (OB) gene in adipocytes. This molecule not only regulates energy metabolism but also plays a role in the reproduction of mammals. Leptin and its receptor (OBR) have been found in male reproductive systems of human, bovine, equine and pig. The effects of leptin on sperm quality vary widely from different research findings. However, the presence of leptin and its receptor in the ram reproductive system and the in vitro effect of leptin on sperm quality have not reported yet. In the present study, we found that the OB was highly expressed in primary and secondary spermatocytes of the testes, OBR was highly expressed in secondary spermatocytes of the testes. The expressions of OB were in stereocilia of epididymis and in columnar cells of epididymal caput and cauda, the expressions of OBR were in columnar cells of epididymis and in stereocilia of epididymal corpus and cauda. The presence of both OB and OBR in testes, epididymis and sperm were confirmed through RT-PCR, immunolocalization and Western blot analyses. The RT-qPCR results indicated OB and OBR had higher expression levels in epididymal sperm than that of the ejaculated sperm in rams. When sperm were treated with 5 ng/mL leptin, the progressive motility (P < 0.01), straight-line velocity (VSL) (P < 0.05), average path velocity (VAP) (P < 0.05), membrane mitochondrial potential (MMP) (P < 0.01) and viability (P < 0.05) significantly increased, while DNA fragmentation index (DFI) and reactive oxygen species (ROS) significantly decreased compared to the control (P < 0.01), and the other semen parameters such as acrosome integrity and acrosome reaction rate had no significant changes between groups (P > 0.05). In conclusion, this is probably the first report describing localization of leptin and its receptors in the reproductive system of rams and their effects on sperm quality parameters. Our findings suggest that 5 ng/mL leptin treatment enhanced sperm motility, viability and MMP, and decrease DFI and ROS without obvious influence on the acrosome reaction in ram sperm. The potential mechanisms may be related to leptin's ability to reduce the oxidative stress and apoptosis of sperms and improve their mitochondrial function and energy supply, therefore, to maintain the physiological homeostasis of the sperm.
Collapse
Affiliation(s)
- Yu Gao
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China,Department of Reproductive Medicine, Zhuozhou Hospital of Hebei Province, Zhuozhou, Hebei, China
| | - Guodong Zhao
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Yukun Song
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Aerman Haire
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Ailing Yang
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Xi Zhao
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Abulizi Wusiman
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| |
Collapse
|
25
|
Zhao P, Xu A, Leung WK. Obesity, Bone Loss, and Periodontitis: The Interlink. Biomolecules 2022; 12:biom12070865. [PMID: 35883424 PMCID: PMC9313439 DOI: 10.3390/biom12070865] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity and periodontitis are both common health concerns that have given rise to considerable economic and societal burden worldwide. There are established negative relationships between bone metabolism and obesity, obesity and diabetes mellitus (DM), and DM and periodontitis, to name a few, with osteoporosis being considered a long-term complication of obesity. In the oral cavity, bone metabolic disorders primarily display as increased risks for periodontitis and alveolar bone loss. Obesity-driven alveolar bone loss and mandibular osteoporosis have been observed in animal models without inoculation of periodontopathogens. Clinical reports have also indicated a possible association between obesity and periodontitis. This review systematically summarizes the clinical periodontium changes, including alveolar bone loss in obese individuals. Relevant laboratory-based reports focusing on biological interlinks in obesity-associated bone remodeling via processes like hyperinflammation, immune dysregulation, and microbial dysbiosis, were reviewed. We also discuss the potential mechanism underlying obesity-enhanced alveolar bone loss from both the systemic and periodontal perspectives, focusing on delineating the practical considerations for managing periodontal disease in obese patients.
Collapse
Affiliation(s)
- Pengfei Zhao
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
| | - Aimin Xu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China;
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
- Correspondence: ; Tel.: +852-2859-0417
| |
Collapse
|
26
|
Behary P, Comninos AN. Bone Perspectives in Functional Hypothalamic Amenorrhoea: An Update and Future Avenues. Front Endocrinol (Lausanne) 2022; 13:923791. [PMID: 35795153 PMCID: PMC9251506 DOI: 10.3389/fendo.2022.923791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 01/22/2023] Open
Abstract
One of the most important and potentially long-lasting detrimental consequences of Functional Hypothalamic Amenorrhoea (FHA) is on skeletal homeostasis. Beyond oestrogen deficiency, FHA is associated with a cascade of additional neuro-endocrine and metabolic alterations, some adaptive, but which combine to disrupt skeletal homeostasis. Ultimately, this leads to a two-fold increased risk of fractures in women with FHA compared to healthy eumenorrhoeic women. Although the cornerstone of management of FHA-related bone loss remains recovery of menses via restoration of metabolic/psychological balance, there is rapidly developing evidence for hormonal manipulations (with a particular emphasis on route of administration) and other pharmacological treatments that can protect or improve skeletal homeostasis in FHA. In this mini-review, we provide an update on the pathophysiology, clinical management and future avenues in the field from a bone perspective.
Collapse
Affiliation(s)
- Preeshila Behary
- Endocrine Bone Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alexander N. Comninos
- Endocrine Bone Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
27
|
Misch M, Puthanveetil P. The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems. Int J Mol Sci 2022; 23:ijms23105439. [PMID: 35628271 PMCID: PMC9141226 DOI: 10.3390/ijms23105439] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Leptin is a well-known hunger-sensing peptide hormone. The role of leptin in weight gain and metabolic homeostasis has been explored for the past two decades. In this review, we have tried to shed light upon the impact of leptin signaling on health and diseases. At low or moderate levels, this peptide hormone supports physiological roles, but at chronically higher doses exhibits detrimental effects on various systems. The untoward effects we observe with chronically higher levels of leptin are due to their receptor-mediated effect or due to leptin resistance and are not well studied. This review will help us in understanding the non-anorexic roles of leptin, including their contribution to the metabolism of various systems and inflammation. We will be able to get an alternative perspective regarding the physiological and pathological roles of this mysterious peptide hormone.
Collapse
Affiliation(s)
- Monica Misch
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
| | - Prasanth Puthanveetil
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
- Correspondence: ; Tel.: +1-630-960-3935
| |
Collapse
|
28
|
Fu Y, Wang G, Liu J, Li M, Dong M, Zhang C, Xu R, Liu X. Stimulant use and bone health in US children and adolescents: analysis of the NHANES data. Eur J Pediatr 2022; 181:1633-1642. [PMID: 35091797 DOI: 10.1007/s00431-021-04356-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
UNLABELLED Stimulants have become the most popular psychopharmacologic drugs used in therapy for attention-deficit/hyperactivity disorder (ADHD). Childhood and adolescence are crucial periods for optimizing bone health to prevent osteoporosis-related fractures in old age. However, controversy remains regarding the relationship between stimulant use and bone health. The present study was designed to examine the bone mineral content (BMC) and bone mineral density (BMD) of 5472 individuals aged 8-16 years with or without stimulant use based on National Health and Nutrition Examination Survey (NHANES) 2011-2018 data and to further assess the association between stimulant use and bone health. Among these, 284 (5.2%) participants were using stimulants. In analyses stratified by sex, the BMC and BMD at the level of the lumbar spine, pelvis, and total body were generally lower among stimulant users than among nonusers in males (all P < 0.001), while the differences were not statistically significant in females. In multivariable linear regression models, the increasing range of BMCs and BMDs with age was lower in participants using stimulants than in those not using stimulants after fully adjusting for potential confounding factors. Compared to participants not using stimulants, stimulant use ≥ 3 months was associated with significantly lower BMCs [lumbar spine: β = - 1.35, (95% CI: - 2.56, - 0.14); pelvis: β = - 9.06, (95% CI: - 15.21, - 2.91); and total: β = - 52.96, (95% CI: - 85.87, - 20.04)] and BMDs [pelvis: β = - 0.03, (95% CI: - 0.04, - 0.01), total: β = - 0.01, (95% CI: - 0.02, - 0.00)]. CONCLUSIONS Children and adolescents using stimulants exhibited reductions in BMC and BMD at the lumbar spine, pelvis, and total body compared to those who were not using stimulants, especially among males. WHAT IS KNOWN • Childhood and adolescence are crucial periods for optimizing bone health to prevent osteoporosis-related fractures in old age. • Controversy remains regarding the relationship between stimulant use and bone health. WHAT IS NEW • The bone mineral content and bone mineral density at the level of the lumbar spine, pelvis, and total body were generally lower among stimulant users than among nonusers in males, while the differences were not statistically significant in females. • Body mass index and serum alkaline phosphatase may be predictors for loss of bone mineral content and bone mineral density in stimulant users.
Collapse
Affiliation(s)
- Yanan Fu
- Department of Medical Engineering, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Guan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China.,NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Junhui Liu
- School of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Meng Li
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Meng Dong
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Chen Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Rui Xu
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
29
|
Pennington Kathleen A, Oestreich Arin K, Kylie H, Fogliatti Candace M, Celeste L, Lydon John P, Schulz Laura C. Conditional knockout of leptin receptor in the female reproductive tract reduces fertility due to parturition defects in mice. Biol Reprod 2022; 107:546-556. [PMID: 35349646 DOI: 10.1093/biolre/ioac062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Leptin is required for fertility, including initiation of estrous cycles. It is therefore challenging to assess the role of leptin signaling during pregnancy. While neuron-specific transgene approaches suggest that leptin signaling in the central nervous system is most important, experiments with pharmacologic inhibition of leptin in the uterus or global replacement of leptin during pregnancy suggest leptin signaling in the reproductive tract may be required. Here, conditional leptin receptor knockout (Lepr cKO) with a progesterone receptor-driven Cre recombinase was used to examine the importance of leptin signaling in pregnancy. Lepr cKO mice have almost no leptin receptor in uterus or cervix, and slightly reduced leptin receptor levels in corpus luteum. Estrous cycles and progesterone concentrations were not affected by Lepr cKO. Numbers of viable embryos did not differ between primiparous control and Lepr cKO dams on days 6.5 and 17.5 of pregnancy, despite a slight reduction in the ratio of embryos to corpora lutea, showing that uterine leptin receptor signaling is not required for embryo implantation. Placentas of Lepr cKO dams had normal weight and structure. However, over four parities, Lepr cKO mice produced 22% fewer live pups than controls, and took more time from pairing to delivery by their fourth parity. Abnormal birth outcomes of either dystocia or dead pups occurred in 33% of Lepr cKO deliveries but zero control deliveries, and the average time to deliver each pup after crouching was significantly increased. Thus, leptin receptor signaling in the reproductive tract is required for normal labor and delivery. Summary sentence. Mice lacking leptin receptor in the reproductive tract produce fewer live pups and have more adverse labor outcomes than controls, but normal numbers of embryos near term, showing that leptin receptor signaling is required for normal parturition.
Collapse
Affiliation(s)
- A Pennington Kathleen
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX United States
| | - K Oestreich Arin
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| | - Hohensee Kylie
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| | - M Fogliatti Candace
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| | - Lightner Celeste
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| | - P Lydon John
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX United States
| | - C Schulz Laura
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| |
Collapse
|
30
|
Rösch G, Muschter D, Taheri S, El Bagdadi K, Dorn C, Meurer A, Zaucke F, Schilling AF, Grässel S, Straub RH, Jenei-Lanzl Z. β2-Adrenoceptor Deficiency Results in Increased Calcified Cartilage Thickness and Subchondral Bone Remodeling in Murine Experimental Osteoarthritis. Front Immunol 2022; 12:801505. [PMID: 35095883 PMCID: PMC8794706 DOI: 10.3389/fimmu.2021.801505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Recent studies demonstrated a contribution of adrenoceptors (ARs) to osteoarthritis (OA) pathogenesis. Several AR subtypes are expressed in joint tissues and the β2-AR subtype seems to play a major role during OA progression. However, the importance of β2-AR has not yet been investigated in knee OA. Therefore, we examined the development of knee OA in β2-AR-deficient (Adrb2-/-) mice after surgical OA induction. Methods OA was induced by destabilization of the medial meniscus (DMM) in male wildtype (WT) and Adrb2-/- mice. Cartilage degeneration and synovial inflammation were evaluated by histological scoring. Subchondral bone remodeling was analyzed using micro-CT. Osteoblast (alkaline phosphatase - ALP) and osteoclast (cathepsin K - CatK) activity were analyzed by immunostainings. To evaluate β2-AR deficiency-associated effects, body weight, sympathetic tone (splenic norepinephrine (NE) via HPLC) and serum leptin levels (ELISA) were determined. Expression of the second major AR, the α2-AR, was analyzed in joint tissues by immunostaining. Results WT and Adrb2-/- DMM mice developed comparable changes in cartilage degeneration and synovial inflammation. Adrb2-/- DMM mice displayed elevated calcified cartilage and subchondral bone plate thickness as well as increased epiphyseal BV/TV compared to WTs, while there were no significant differences in Sham animals. In the subchondral bone of Adrb2-/- mice, osteoblasts activity increased and osteoclast activity deceased. Adrb2-/- mice had significantly higher body weight and fat mass compared to WT mice. Serum leptin levels increased in Adrb2-/- DMM compared to WT DMM without any difference between the respective Shams. There was no difference in the development of meniscal ossicles and osteophytes or in the subarticular trabecular microstructure between Adrb2-/- and WT DMM as well as Adrb2-/- and WT Sham mice. Number of α2-AR-positive cells was lower in Adrb2-/- than in WT mice in all analyzed tissues and decreased in both Adrb2-/- and WT over time. Conclusion We propose that the increased bone mass in Adrb2-/- DMM mice was not only due to β2-AR deficiency but to a synergistic effect of OA and elevated leptin concentrations. Taken together, β2-AR plays a major role in OA-related subchondral bone remodeling and is thus an attractive target for the exploration of novel therapeutic avenues.
Collapse
Affiliation(s)
- Gundula Rösch
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Dominique Muschter
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology, University of Regensburg, Regensburg, Germany
| | - Shahed Taheri
- Department of Trauma Surgery, Orthopedic Surgery and Plastic Surgery, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Karima El Bagdadi
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopedic Surgery and Plastic Surgery, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology, University of Regensburg, Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
31
|
Olali AZ, Shi Q, Hoover DR, Bucovsky M, Shane E, Yin MT, Ross RD. Bone and fat hormonal crosstalk with antiretroviral initiation. Bone 2022; 154:116208. [PMID: 34547525 PMCID: PMC8671338 DOI: 10.1016/j.bone.2021.116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Bone mineral density (BMD) loss and fat gain is common in people living with HIV (PLWH), particularly after initiating combination antiretroviral therapy (cART). Given the close metabolic interaction between bone and fat, we tested the hypotheses that changes in bone-derived hormones are associated with fat accumulation and changes in fat-derived hormones are associated with BMD loss following cART initiation. METHODS HIV-seropositive subjects (n = 15) initiating fixed dose cART of tenofovir disoproxil fumarate/emtricitabine/efavirenz (TDF/FTC/EFV) underwent dual X-ray absorptiometry (DXA) assessment pre-cART and again 12-months post-cART initiation. DXA-derived measurements included BMD at the lumbar spine, femoral neck, total hip, and trochanter and the trunk and total fat. Serum undercarboxylated osteocalcin (ucOCN), sclerostin, lipocalin-2, leptin, and adiponectin were measured pre and post-cART. Spearman's rank-order correlations assessed the cross-sectional associations between hormones and bone and fat mass pre- and post-cART. Linear regression models adjusting for baseline bone or fat mass assessed the association between hormone change and BMD/fat changes following cART initiation. RESULTS ucOCN (p = 0.04) and lipocalin-2 (p = 0.03) increased post-cART while sclerostin, leptin, and adiponectin remained unchanged. BMD significantly decreased post-cART at all skeletal sites. Trunk and total fat increased post-cART but not significantly, while weight and BMI remained unchanged. In models adjusting for baseline BMD and fat mass, change in ucOCN was negatively associated with change in trunk (p = 0.008) and total fat (p = 0.01) and the change in leptin was positively associated with change in total hip (p = 0.03) and trochanteric BMD (p = 0.02). CONCLUSION The current study demonstrates bone-fat crosstalk in cART initiating PLWH.
Collapse
Affiliation(s)
- Arnold Z Olali
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, United States of America
| | - Qiuhu Shi
- Department of Public Health, New York Medical College, Valhalla, NY, United States of America
| | - Donald R Hoover
- Department of Statistics and Institute for Health, Health Care Policy and Aging Research, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Bucovsky
- Columbia University Irving Medical Center, New York, NY, United States of America
| | - Elizabeth Shane
- Columbia University Irving Medical Center, New York, NY, United States of America
| | - Michael T Yin
- Columbia University Irving Medical Center, New York, NY, United States of America
| | - Ryan D Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, United States of America.
| |
Collapse
|
32
|
Gomez GA, Rundle CH, Xing W, Kesavan C, Pourteymoor S, Lewis RE, Powell DR, Mohan S. Contrasting effects of <i>Ksr2</i>, an obesity gene, on trabecular bone volume and bone marrow adiposity. eLife 2022; 11:82810. [PMID: 36342465 PMCID: PMC9640193 DOI: 10.7554/elife.82810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Pathological obesity and its complications are associated with an increased propensity for bone fractures. Humans with certain genetic polymorphisms at the kinase suppressor of ras2 (KSR2) locus develop severe early-onset obesity and type 2 diabetes. Both conditions are phenocopied in mice with <i>Ksr2</i> deleted, but whether this affects bone health remains unknown. Here we studied the bones of global <i>Ksr2</i> null mice and found that <i>Ksr2</i> negatively regulates femoral, but not vertebral, bone mass in two genetic backgrounds, while the paralogous gene, <i>Ksr1</i>, was dispensable for bone homeostasis. Mechanistically, KSR2 regulates bone formation by influencing adipocyte differentiation at the expense of osteoblasts in the bone marrow. Compared with <i>Ksr2</i>'s known role as a regulator of feeding by its function in the hypothalamus, pair-feeding and osteoblast-specific conditional deletion of <i>Ksr2</i> reveals that <i>Ksr2</i> can regulate bone formation autonomously. Despite the gains in appendicular bone mass observed in the absence of <i>Ksr2</i>, bone strength, as well as fracture healing response, remains compromised in these mice. This study highlights the interrelationship between adiposity and bone health and provides mechanistic insights into how <i>Ksr2</i>, an adiposity and diabetic gene, regulates bone metabolism.
Collapse
Affiliation(s)
| | - Charles H Rundle
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Weirong Xing
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Chandrasekhar Kesavan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | | | | | | | - Subburaman Mohan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| |
Collapse
|
33
|
Zhang Y, Huang X, Sun K, Li M, Wang X, Han T, Shen H, Qi B, Xie Y, Wei X. The Potential Role of Serum IGF-1 and Leptin as Biomarkers: Towards Screening for and Diagnosing Postmenopausal Osteoporosis. J Inflamm Res 2022; 15:533-543. [PMID: 35095282 PMCID: PMC8791302 DOI: 10.2147/jir.s344009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/07/2022] [Indexed: 01/05/2023] Open
Abstract
Purpose To investigate the differences of several serum markers among population with different bone mass and to explore the utility of new potential biomarker for the diagnosing and screening for postmenopausal osteoporosis (PMOP). Materials and Methods A total of 1055 postmenopausal women were screened and gathered data on BMD screening, biological samples, and questionnaire information. A liquid chip assay was used to measure serum IL-6, IGF-1, BMP-2, VEGF, leptin and FGF23. The predictive value of the indicator panels was assessed using the area under the receiver-operator characteristic curve (AUC). Statistical analyses were conducted by using SAS 9.4 and R software 4.1.1. Figures were created in GraphPad Prism 8.0. Results When compared against the normal group, in addition to the vitamin D, the PMOP group showed a significant increase in median values for other indicators (P < 0.05), especially in P1NP and β-CTX. Among the six cytokines representing different osteoporosis mechanisms, currently, we found that only IGF-1 and leptin showed significant differences between the groups. Also, the liquid chip assay results showed that IGF-1 and leptin, as newer cytokines in osteoporosis, not only have significant differences between groups, but also have a strong correlation with each other (P < 0.05). Then, we reported the accuracy of different indicator combinations by using AUC and, moreover, we demonstrated that IGF-1 with leptin did significantly provide incremental value to the AUC of conventional indexes, it markedly improved diagnostic efficacy, displaying an IDI of 9.45% (P = 0.000). Conclusion IFG-1 and leptin seem to be key biomarker associated with PMOP. The high prevalence of PMOP makes these cytokines might bear the potential of becoming a very useful screening test also for clinical follow-up of patients.
Collapse
Affiliation(s)
- Yili Zhang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xinyi Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Kai Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Mengyuan Li
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xu Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Tao Han
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hao Shen
- Changxindian Community Health Service Center, Beijing, People’s Republic of China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Yanming Xie; Xu Wei, Tel +86 13911112416; +86 13488716557, Email ;
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
34
|
Rinonapoli G, Pace V, Ruggiero C, Ceccarini P, Bisaccia M, Meccariello L, Caraffa A. Obesity and Bone: A Complex Relationship. Int J Mol Sci 2021; 22:13662. [PMID: 34948466 PMCID: PMC8706946 DOI: 10.3390/ijms222413662] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
There is a large literature on the relationship between obesity and bone. What we can conclude from this review is that the increase in body weight causes an increase in BMD, both for a mechanical effect and for the greater amount of estrogens present in the adipose tissue. Nevertheless, despite an apparent strengthening of the bone witnessed by the increased BMD, the risk of fracture is higher. The greater risk of fracture in the obese subject is due to various factors, which are carefully analyzed by the Authors. These factors can be divided into metabolic factors and increased risk of falls. Fractures have an atypical distribution in the obese, with a lower incidence of typical osteoporotic fractures, such as those of hip, spine and wrist, and an increase in fractures of the ankle, upper leg, and humerus. In children, the distribution is different, but it is not the same in obese and normal-weight children. Specifically, the fractures of the lower limb are much more frequent in obese children. Sarcopenic obesity plays an important role. The authors also review the available literature regarding the effects of high-fat diet, weight loss and bariatric surgery.
Collapse
Affiliation(s)
- Giuseppe Rinonapoli
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| | - Valerio Pace
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| | - Carmelinda Ruggiero
- Orthogeriatric Service, Geriatric Unit, Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, 06156 Perugia, Italy;
| | - Paolo Ceccarini
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| | - Michele Bisaccia
- Department of Orthopaedics and Traumatology, AORN San Pio “Gaetano Rummo Hospital”, Via R.Delcogliano, 82100 Benevento, Italy; (M.B.); (L.M.)
| | - Luigi Meccariello
- Department of Orthopaedics and Traumatology, AORN San Pio “Gaetano Rummo Hospital”, Via R.Delcogliano, 82100 Benevento, Italy; (M.B.); (L.M.)
| | - Auro Caraffa
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| |
Collapse
|
35
|
Impact of Leptin on Periodontal Ligament Fibroblasts during Mechanical Strain. Int J Mol Sci 2021; 22:ijms22136847. [PMID: 34202165 PMCID: PMC8268745 DOI: 10.3390/ijms22136847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/20/2023] Open
Abstract
Orthodontic treatment to correct dental malocclusions leads to the formation of pressure zones in the periodontal ligament resulting in a sterile inflammatory reaction, which is mediated by periodontal ligament fibroblasts (PDLF). Leptin levels are elevated in obesity and chronic inflammatory responses. In view of the increasing number of orthodontic patients with these conditions, insights into effects on orthodontic treatment are of distinct clinical relevance. A possible influence of leptin on the expression profile of PDLF during simulated orthodontic mechanical strain, however, has not yet been investigated. In this study, PDLF were exposed to mechanical strain with or without different leptin concentrations. The gene and protein expression of proinflammatory and bone-remodelling factors were analysed with RT-qPCR, Western-blot and ELISA. The functional analysis of PDLF-induced osteoclastogenesis was analysed by TRAP (tartrate-resistant acid phosphatase) staining in coculture with human macrophages. Pressure-induced increase of proinflammatory factors was additionally elevated with leptin treatment. PDLF significantly increased RANKL (receptor activator of NF-kB ligand) expression after compression, while osteoprotegerin was downregulated. An additional leptin effect was demonstrated for RANKL as well as for subsequent osteoclastogenesis in coculture after TRAP staining. Our results suggest that increased leptin concentrations, as present in obese patients, may influence orthodontic tooth movement. In particular, the increased expression of proinflammatory factors and RANKL as well as increased osteoclastogenesis can be assumed to accelerate bone resorption and thus the velocity of orthodontic tooth movement in the orthodontic treatment of obese patients.
Collapse
|
36
|
Li C, Pi G, Li F. The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:579323. [PMID: 33777828 PMCID: PMC7994858 DOI: 10.3389/fcimb.2021.579323] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Intestinal flora located within the intestinal tract comprises a large number of cells, which are referred to as the second gene pool of the human body and form a complex symbiotic relationship with the host. The knowledge of the complex interaction between the intestinal flora and various life activities of the host is a novel and rapidly expanding field. Recently, many studies are being conducted on the relationship between the intestinal flora and bone homeostasis and indicate that the intestinal flora can regulate bone homeostasis via the host immune, metabolic, and endocrine systems. What’s more, based on several clinical and preclinical pieces of evidence, changing the composition and function of the host intestinal flora through the application of probiotics, prebiotics, and fecal microbiota transplantation is being considered to be a potential novel target for the regulation of bone homeostasis. Here, we searched relevant literature and reviewed the role of the intestinal flora in the regulation of bone homeostasis and its modulating interventions.
Collapse
Affiliation(s)
- Chengxiang Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guofu Pi
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Jadhav P, Patwardhan V. Effect of type 2 diabetes mellitus on bone mineral density in patients with rheumatoid arthritis. INDIAN JOURNAL OF RHEUMATOLOGY 2021. [DOI: 10.4103/injr.injr_293_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Tariq S, Tariq S, Khaliq S, Lone KP. Serum resistin levels as predictor of low bone mineral density in postmenopausal women. Health Care Women Int 2021; 42:82-91. [PMID: 32744891 DOI: 10.1080/07399332.2020.1798965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/04/2023]
Abstract
Resistin, a novel adipokine may play an important role in bone metabolism. The study is designed to discover the association of bone mineral density (BMD) with serum resistin levels, anthropometric measures and to elucidate serum resistin as a predictor of BMD in postmenopausal women. Postmenopausal women (n = 160) were recruited and divided into two groups, non-osteoporotic (n = 70) and osteoporotic (n = 90). BMD was evaluated by DXA scan. High serum resistin levels and low weight are independent contributors to low BMD and can influence BMD at lumbar spine, right femoral neck, right hip, left femoral neck, and left hip in postmenopausal women.
Collapse
Affiliation(s)
- Sundus Tariq
- Department of Physiology, University Medical & Dental College, Faisalabad, Pakistan
- Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Saba Tariq
- Pharmacology and Therapeutics, University Medical & Dental College, Faisalabad, Pakistan
- Pharmacology and Therapeutics, University of Health Sciences, Lahore, Pakistan
| | - Saba Khaliq
- Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Khalid Parvez Lone
- Physiology and Metabolic disorders, Government College University, Lahore, Pakistan
| |
Collapse
|
39
|
Hou J, He C, He W, Yang M, Luo X, Li C. Obesity and Bone Health: A Complex Link. Front Cell Dev Biol 2020; 8:600181. [PMID: 33409277 PMCID: PMC7779553 DOI: 10.3389/fcell.2020.600181] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
So far, the connections between obesity and skeleton have been extensively explored, but the results are inconsistent. Obesity is thought to affect bone health through a variety of mechanisms, including body weight, fat volume, bone formation/resorption, proinflammatory cytokines together with bone marrow microenvironment. In this review, we will mainly describe the effects of adipokines secreted by white adipose tissue on bone cells, as well as the interaction between brown adipose tissue, bone marrow adipose tissue, and bone metabolism. Meanwhile, this review also reviews the evidence for the effects of adipose tissue and its distribution on bone mass and bone-related diseases, along with the correlation between different populations with obesity and bone health. And we describe changes in bone metabolism in patients with anorexia nervosa or type 2 diabetes. In summary, all of these findings show that the response of skeleton to obesity is complex and depends on diversified factors, such as mechanical loading, obesity type, the location of adipose tissue, gender, age, bone sites, and secreted cytokines, and that these factors may exert a primary function in bone health.
Collapse
Affiliation(s)
- Jing Hou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
40
|
Zhuang-Gu-Fang Treats Osteoporosis in Ovariectomized Rats by Increasing the Osteogenesis-Related Factors Leptin, Ghrelin, and PYY. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8164064. [PMID: 33281915 PMCID: PMC7685821 DOI: 10.1155/2020/8164064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/05/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022]
Abstract
Zhuang-Gu-Fang is a Chinese medicinal compound mixture, which is mainly composed of traditional remedies like the Epimedium Herb, Astragalus, and Eucommia among many others. The study is aimed at investigating the therapeutic effect of Zhuang-Gu-Fang in ovariectomized rats. Fifty six-month-old Wistar rats were randomly selected and divided into 5 groups (n = 10), namely, model group, positive group, low-dose Chinese medicine group, medium-dose group, and high-dose group. Another 10 sham operation Wistar rats were taken as a negative control group. After 3 months of intervention, the bone mineral density (BMD), procollagen type I N-peptide (PINP), beta C-terminal cross-linked telopeptides of type I collagen carboxyl-terminal peptide (β-CTX), Leptin, Ghrelin, and Peptide YY (PYY) of each group were measured. Besides, the ultrastructure of bone structure and osteoblasts was also observed by transmission electron microscopy. Western blot method was used to detect the expression levels of Leptin and Ghrelin in bone tissue, and RT-PCR detected the mRNA expression levels of Leptin and Ghrelin. BMD test indicated that Zhuang-Gu-Fang could effectively prevent the loss of tibia bone in ovariectomized rats. Histomorphology analysis showed that Zhuang-Gu-Fang could preserve trabecular bone structure integrity and improve osteoblast ultrastructure. Notably, the study found out that Zhuang-Gu-Fang worked through balancing the bone metabolism via increasing bone formation/resorption ratio. Additionally, Zhuang-Gu-Fang highlighted the recovery effects in multiple levels of osteogenesis- and osteanagenesis-related factors Leptin, Ghrelin, and PYY. Conclusively, the study proved the therapeutic potential of the Zhuang-Gu-Fang for postmenopausal osteoporosis (PMOP) and further revealed that its therapeutic effect was related to the balance of bone metabolism and the recovery effects of bone-related factors Leptin, Ghrelin, and PYY.
Collapse
|
41
|
Li J, Gao Y, Yu T, Lange JK, LeBoff MS, Gorska A, Luu S, Zhou S, Glowacki J. Obesity and leptin influence vitamin D metabolism and action in human marrow stromal cells. J Steroid Biochem Mol Biol 2020; 198:105564. [PMID: 31809868 DOI: 10.1016/j.jsbmb.2019.105564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023]
Abstract
Obesity is associated with low serum 25-hydroxyvitamin D [s25(OH)D], high serum leptin, and generally high bone mineral density (BMD). Human Marrow Stromal Cells (hMSCs) differentiate to osteoblasts and are both a target and source of vitamin D metabolites in bone marrow. There is no information about the influence of obesity on vitamin D metabolism and osteoblastogenesis in hMSCs and little about direct effects of leptin on hMSCs. In this study, we tested the hypotheses that 1) obesity has an influence on the ex vivo constitutive expression of vitamin D-hydroxylase genes in hMSCs, and 2) recombinant human (rh) Leptin regulates the D-hydroxylases and promotes osteoblastogenesis in hMSCs. In a cohort of female subjects undergoing joint replacement surgery, the effects of Body Mass Index (BMI) and Fat Mass Index (FMI) on BMD T-scores and s25(OH)D were evaluated. hMSCs were isolated from bone tissues discarded during surgery. The direct effects of rh-Leptin on osteoblast differentiation and D-related genes in hMSCs were examined in vitro. There were positive correlations for BMD T-score of femoral neck and spine with BMI and FMI. Serum 25(OH)D levels in obese subjects were 71% of that in non-obese counterparts (p = 0.001). hMSCs from obese women had higher constitutive expression of CYP27A1/25-hydroxylase and vitamin D receptor. Those findings raised the mechanistic question of how obesity could influence vitamin D metabolism and osteoblast differentiation in hMSCs. Treating hMSCs with rh-Leptin in vitro significantly stimulated osteoblastogenesis. In addition, leptin downregulated CYP24A1 and upregulated CYP27B1, CYP27A1 and VDR, which play vital roles in vitamin D metabolism. Furthermore, co-treatment with leptin and vitamin D3 metabolites promoted ALP activity compared with either alone. This research demonstrates links between obesity, vitamin D metabolism, and osteoblastogenesis by which leptin's direct effects on D-metabolism and osteoblast differentiation in hMSCs may protect bone from low s25(OH)D in obese subjects.
Collapse
Affiliation(s)
- Jing Li
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Endocrinology, West China Hospital, Sichuan University West China School of Medicine, Chengdu, Sichuan, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Yu
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jeffrey K Lange
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meryl S LeBoff
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Gorska
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Luu
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Oral & Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
42
|
Beiler TFCSB, de Mello Neto JM, Alves JC, Hamlet S, Ipe D, da Silva Figueredo CM. Impact of non-surgical periodontal treatment on salivary expression of cytokines related to bone metabolism. Odontology 2020; 108:646-652. [PMID: 32100142 DOI: 10.1007/s10266-020-00502-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 02/03/2023]
Abstract
We aimed to evaluate the impact of non-surgical periodontal treatment on the salivary expression of leptin, TNF-α, sclerostin, parathyroid hormone, osteoprotegerin, osteopontin, osteocalcin, IL-6, IL-1β and fibroblast growth factor 23 in patients with chronic periodontitis after 1 year of follow-up. Fifteen patients with chronic periodontitis (56.0 ± SD 9.6 years) and 15 subjects with gingivitis (39.7 ± SD 4.4 years) were included in the study. Clinical periodontal parameters, such as probing pocket depth (PPD), clinical attachment level (CAL), % of plaque and bleeding on probing (BOP) were evaluated, and non-stimulated whole saliva was collected from all patients before periodontal treatment and after 1 year of follow-up. A bead-based multiplex assay measured cytokines. In the chronic periodontitis group, periodontal treatment significantly improved clinical parameters and reduced the salivary levels of IL-1β, leptin and TNF-α (p = 0.002, 0.007 and 0.015, respectively). In the gingivitis group, there were also significant improvements in the mean patient %BOP, % Plaque, CAL and PPD. However, there were no significant changes in the cytokine's salivary levels. In conclusion, chronic periodontitis patients showed a significant reduction in the salivary levels of leptin, TNF-α and IL-1β 1 year after periodontal treatment and a significant improvement in their clinical periodontal parameters suggesting that periodontal treatment alone can downregulate important cytokines associated with bone metabolism.
Collapse
Affiliation(s)
- Tatiane F C S B Beiler
- Department of Periodontology, Faculty of Odontology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - João Martins de Mello Neto
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus Parklands Drive, Southport, QLD, 4222, Australia
| | - Juliana Cardoso Alves
- Department of Periodontology, Faculty of Odontology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Stephen Hamlet
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus Parklands Drive, Southport, QLD, 4222, Australia
| | - Deepak Ipe
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus Parklands Drive, Southport, QLD, 4222, Australia
| | - Carlos Marcelo da Silva Figueredo
- Department of Periodontology, Faculty of Odontology, Rio de Janeiro State University, Rio de Janeiro, Brazil. .,School of Dentistry and Oral Health, Griffith University, Gold Coast Campus Parklands Drive, Southport, QLD, 4222, Australia.
| |
Collapse
|
43
|
Li J, Chen X, Lu L, Yu X. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev 2020; 52:88-98. [PMID: 32081538 DOI: 10.1016/j.cytogfr.2020.02.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a prevalent skeletal disorder associated with menopause-related estrogen withdrawal. PMOP is characterized by low bone mass, deterioration of the skeletal microarchitecture, and subsequent increased susceptibility to fragility fractures, thus contributing to disability and mortality. Accumulating evidence indicates that abnormal expansion of marrow adipose tissue (MAT) plays a crucial role in the onset and progression of PMOP, in part because both bone marrow adipocytes and osteoblasts share a common ancestor lineage. The cohabitation of MAT adipocytes, mesenchymal stromal cells, hematopoietic cells, osteoblasts and osteoclasts in the bone marrow creates a microenvironment that permits adipocytes to act directly on other cell types in the marrow. Furthermore, MAT, which is recognized as an endocrine organ, regulates bone remodeling through the secretion of adipokines and cytokines. Although an enhanced MAT volume is linked to low bone mass and fractures in PMOP, the detailed interactions between MAT and bone metabolism remain largely unknown. In this review, we examine the possible mechanisms of MAT expansion under estrogen withdrawal and further summarize emerging findings regarding the pathological roles of MAT in bone remodeling. We also discuss the current therapies targeting MAT in osteoporosis. A comprehensive understanding of the relationship between MAT expansion and bone metabolism in estrogen deficiency conditions will provide new insights into potential therapeutic targets for PMOP.
Collapse
Affiliation(s)
- Jiao Li
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
Li X, Liu X, Wang Y, Cao F, Chen Z, Hu Z, Yu B, Feng H, Ba Z, Liu T, Li H, Jiang B, Huang Y, Li L, Wu D. Intervertebral disc degeneration in mice with type II diabetes induced by leptin receptor deficiency. BMC Musculoskelet Disord 2020; 21:77. [PMID: 32024487 PMCID: PMC7003448 DOI: 10.1186/s12891-020-3091-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background The leptin receptor-deficient knockout (db/db) mouse is a well-established model for studying type II diabetes mellitus (T2DM). T2DM is an important risk factor of intervertebral disc degeneration (IVDD). Although the relationship between type I diabetes and IVDD has been reported by many studies, few studies have reported the effects of T2DM on IVDD in db/db mice model. Methods Mice were separated into 3 groups: wild-type (WT), db/db, and IGF-1 groups (leptin receptor-deficient mice were treated with insulin-like growth factor-1 (IGF-1). To observe the effects of T2DM and glucose-lowering treatment on IVDD, IGF-1 injection was used. The IVD phenotype was detected by H&E and safranin O fast green staining among db/db, WT and IGF-1 mice. The levels of blood glucose and weight in mice were also recorded. The changes in the mass of the trabecular bone in the fifth lumbar vertebra were documented by micro-computed tomography (micro-CT). Tunnel assays were used to detect cell apoptosis in each group. Results The weight of the mice were 27.68 ± 1.6 g in WT group, which was less than 57.56 ± 4.8 g in db/db group, and 52.17 ± 3.7 g in IGF-1 injected group (P < 0.05). The blood glucose levels were also significantly higher in the db/db mice group. T2DM caused by leptin receptor knockout showed an association with significantly decreased vertebral bone mass and increased IVDD when compared to WT mice. The db/db mice induced by leptin deletion showed a higher percentage of MMP3 expression as well as cell apoptosis in IVDD mice than WT mice (P < 0.05), while IGF-1 treatment reversed this situation (P < 0.05). Conclusions T2DM induced by leptin receptor knockout led to IVDD by increasing the levels of MMP3 and promoting cell apoptosis. IGF-1 treatment partially rescue the phenotype of IVDD induced by leptin receptor knockout.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xiaoming Liu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Yiru Wang
- Department of endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fuming Cao
- Department of endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhaoxiong Chen
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhouyang Hu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Bin Yu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Hang Feng
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhaoyu Ba
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Tao Liu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Haoxi Li
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Bei Jiang
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yufeng Huang
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Lijun Li
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Desheng Wu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
45
|
E Hassan N, A El-Masry S, A El Banna R, Al-Tohamy M, El-Lebedy D, Adel Abdelhalim D, Amin D, Megahed S, Khalil A. Bone Health and its Relation to Energy Intake, Fat Mass and its Distribution. Pak J Biol Sci 2020; 23:1075-1085. [PMID: 32700859 DOI: 10.3923/pjbs.2020.1075.1085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Osteoporosis and obesity are two of the most important inter-related diseases worldwide. This study aimed to investigate impact of fat mass and its distribution on bone health in relation to energy intake among sample of Egyptian women. MATERIALS AND METHODS A cross-sectional study included 116 Egyptian women with age range 25-65 years old. They were classified according to the menopause into 2 groups: Pre-menopausal (n = 51) and post menopausal (n = 65). All participants have undergone anthropometric measurements, body composition, DEXA and laboratory investigations. RESULTS Among overweight/obese women, pre-menopausal women had significant higher values of BMR and BMD at both lumbar spines, neck of femur and significant lower values of central obesity (waist/hip ratio, waist/height ratio, visceral fat) and C-terminal peptides than postmenopausal ones. Among pre and post-menopausal women, BMD at both sites had significant positive correlations with obesity markers (BMI, waist and hip circumferences), fat mass, BMR, in addition to fat distribution, visceral fat, leptin among pre-menopausal women and C-terminal peptide among postmenopausal women. Among pre-menopausal women, BMR significantly explained 56% of the variations in BMD at neck of femur, while at lumbar spines the best model was BMI, BMR and waist circumference, which significantly explain 33% of the variations in BMD. CONCLUSION Bone health positively correlated with BMI, fat mass and its distribution and BMR, particularly at femur neck, among pre and post-menopausal Egyptian women. Overweight/obesity can be considered as a protective factor for bone health.
Collapse
|
46
|
Interaction of Osteoarthritis and BMI on Leptin Promoter Methylation in Taiwanese Adults. Int J Mol Sci 2019; 21:ijms21010123. [PMID: 31878053 PMCID: PMC6981657 DOI: 10.3390/ijms21010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Leptin (LEP) regulates glucose metabolism and energy storage in the body. Osteoarthritis (OA) is associated with the upregulation of serum LEP. LEP promoter methylation is associated with obesity. So far, few studies have explored the association of BMI and OA with LEP methylation. We assessed the interaction between body mass index (BMI) and OA on LEP promoter methylation. Data of 1114 participants comprising 583 men and 558 women, aged 30–70 years were retrieved from the Taiwan Biobank Database (2008–2015). Osteoarthritis was self-reported and cases were those who reported having ever been clinically diagnosed with osteoarthritis. BMI was categorized into underweight, normal weight, overweight, and obesity. The mean LEP promoter methylation level in individuals with osteoarthritis was 0.5509 ± 0.00437 and 0.5375 ± 0.00101 in those without osteoarthritis. The interaction between osteoarthritis and BMI on LEP promoter methylation was significant (p-value = 0.0180). With normal BMI as the reference, the mean LEP promoter methylation level was significantly higher in obese osteoarthritic individuals (β = 0.03696, p-value = 0.0187). However, there was no significant association between BMI and LEP promoter methylation in individuals without osteoarthritis, regardless of BMI. In conclusion, only obesity was significantly associated with LEP promoter methylation (higher levels) specifically in osteoarthritic patients.
Collapse
|
47
|
Pullisaar H, Colaianni G, Lian AM, Vandevska-Radunovic V, Grano M, Reseland JE. Irisin promotes growth, migration and matrix formation in human periodontal ligament cells. Arch Oral Biol 2019; 111:104635. [PMID: 31869727 DOI: 10.1016/j.archoralbio.2019.104635] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The objective of the study was to examine the effect of irisin on human periodontal ligament cells (hPDLCs) growth, migration and osteogenic behaviour in vitro. MATERIALS AND METHODS Primary hPDLCs and human osteoblasts (hOBs), used as positive controls, were cultured with irisin (10 and 100 ng/ml), and effect on cell proliferation was evaluated with 5-bromo-2`-deoxyuridine incorporation at 1, 2, and 3 days, and on migration capacity was investigated by scratch assay at 2, 6, and 24 h. Osteogenic behaviour was assessed with alkaline phosphatase activity, immunoassay at 3, 7, 14, and 21 days, and confocal laser scanning microscopy at 21 days. Mineralization was examined by Alizarin red staining at 21 days. Data were compared group wise using ANOVA tests. RESULTS Irisin induced increased proliferation of primary hPDLCs and hOBs at all time points compared to untreated controls. This was confirmed by scratch assay where irisin enhanced migration of both hPDLCs and hOBs after 6 and 24 h compared to controls. Irisin treatment promoted osteogenic behaviour of both cell types by enhancement of extracellular matrix formation. In hPDLCs irisin increased expression of type I collagen, secretion of osteoblastogenesis related proteins osteocalcin and leptin, and calcium deposition/mineralization compared to controls at 21 days. In addition, to enhance calcium deposition/mineralization in hOBs, irisin increased expression of periostin, and secretion of osteoblastogenesis related proteins osteopontin, alkaline phosphatase and osteocalcin, as compared to controls at 21 days. CONCLUSIONS Primary hPDLCs responded to irisin treatment with enhanced cell growth, migration, and matrix formation in vitro.
Collapse
Affiliation(s)
- Helen Pullisaar
- Department of Orthodontics, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Aina-Mari Lian
- Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Janne Elin Reseland
- Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway; Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
Brady RD, Wong KR, Robinson DL, Mychasiuk R, McDonald SJ, D'Cunha RA, Yamakawa GR, Sun M, Wark JD, Lee PVS, O'Brien TJ, Casillas-Espinosa PM, Shultz SR. Bone Health in Rats With Temporal Lobe Epilepsy in the Absence of Anti-Epileptic Drugs. Front Pharmacol 2019; 10:1278. [PMID: 31749702 PMCID: PMC6842946 DOI: 10.3389/fphar.2019.01278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Abstract
Rationale: Epilepsy patients often exhibit reduced bone mineral density and are at an increased risk of bone fracture. Whether these bone abnormalities are due to the use of anti-epileptic drugs (AED’s) or the disease itself is unknown. For example, although decreased bone health in epilepsy patients is generally attributed to the use of AED’s, seizures can also trigger a number of physiological processes that have the potential to affect bone. Therefore, to assess whether bone abnormalities occur in epilepsy in the absence of AED’s, the current study investigated mechanical characteristics and trabecular bone morphology in rats with chronic temporal lobe epilepsy. Methods: Ten-week old male Wistar rats underwent kainic acid-induced status epilepticus (SE; n = 7) or a sham procedure (n = 9). Rats were implanted with EEG recording electrodes at nine weeks post-SE, and video-EEG was continuously recorded for one week at 10- and 22-weeks post-SE to confirm that SE rats had spontaneous seizures. Open-field testing to assess locomotion was conducted at 23-weeks post-SE. At 24-weeks post-SE, rats were euthanized and tibia were extracted to determine trabecular morphology by micro-computed tomography (µCT), while femurs were used to investigate mechanical properties via 3-point bending. Results: All post-SE rats had spontaneous seizures at 10- and 22-weeks post-SE, while none of the sham rats had seizures. µCT trabecular analysis of tibia revealed no differences in total volume, bone volume, bone volume fraction, trabecular number, or trabecular separation between post-SE or sham rats, although post-SE rats did have increased trabecular thickness. There were also no group differences in total distance travelled in the open field suggesting that activity levels did not account for the increased trabecular thickness. In addition, no differences in mechanical properties of femurs were observed between the two groups. Conclusion: There was a lack of overt bone abnormalities in rats with chronic temporal lobe epilepsy in the absence of AED treatment. Although further studies are still needed, these findings may have important implications towards understanding the source (e.g., AED treatments) of bone abnormalities in epilepsy patients.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Ker Rui Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Ryan A D'Cunha
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - John D Wark
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
49
|
Man GCW, Tam EMS, Wong YS, Hung VWY, Hu Z, Lam TP, Liu Z, Cheung WH, Ng TB, Zhu Z, Qiu Y, Cheng JCY. Abnormal Osteoblastic Response to Leptin in Patients with Adolescent Idiopathic Scoliosis. Sci Rep 2019; 9:17128. [PMID: 31748652 PMCID: PMC6868007 DOI: 10.1038/s41598-019-53757-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional structural deformity of the spine with unknown etiology. Although leptin has been postulated as one of the etiologic factors in AIS, its effects on osteoblastic activity remain unknown. Herein, we conducted this study to investigate whether there are abnormal functional responses to leptin and abnormal expression of leptin receptor in AIS osteoblasts. In vitro assays were performed with osteoblasts isolated from 12 severe AIS girls and 6 non-AIS controls. The osteoblasts were exposed to different concentrations of leptin (0, 10, 100, 1000 ng/mL). The effects of leptin on cell proliferation, differentiation and mineralization were determined. Protein expressions of leptin receptor (LEP-R) under basal and osteogenic conditions were also evaluated by Western blot. Our results showed that leptin significantly stimulated osteoblasts from non-AIS subjects to proliferate, differentiate and mineralized. However, in the AIS group, the stimulatory effects of leptin on cell proliferation, differentiation, and mineralization were not observed. In addition, no statistically significant difference in the expression of leptin receptor under both basal and osteogenic conditions was found between AIS and control group. In conclusion, these findings might help to explain the low bone mass and deranged bone quality that is clinically associated with AIS girls.
Collapse
Affiliation(s)
- Gene Chi-Wai Man
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, The Prince of Wales Hospital, Hong Kong, SAR, China.,The Joint Scoliosis Research Center of the Chinese University of Hong Kong-Nanjing University, Hong Kong, SAR, China
| | - Elisa Man-Shan Tam
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, The Prince of Wales Hospital, Hong Kong, SAR, China.,The Joint Scoliosis Research Center of the Chinese University of Hong Kong-Nanjing University, Hong Kong, SAR, China
| | - Yi Shun Wong
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, The Prince of Wales Hospital, Hong Kong, SAR, China.,The Joint Scoliosis Research Center of the Chinese University of Hong Kong-Nanjing University, Hong Kong, SAR, China
| | - Vivian Wing-Ying Hung
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, The Prince of Wales Hospital, Hong Kong, SAR, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China.,The Joint Scoliosis Research Center of the Chinese University of Hong Kong-Nanjing University, Hong Kong, SAR, China
| | - Zongshan Hu
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, The Prince of Wales Hospital, Hong Kong, SAR, China.,The Joint Scoliosis Research Center of the Chinese University of Hong Kong-Nanjing University, Hong Kong, SAR, China
| | - Tsz Ping Lam
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, The Prince of Wales Hospital, Hong Kong, SAR, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China.,The Joint Scoliosis Research Center of the Chinese University of Hong Kong-Nanjing University, Hong Kong, SAR, China
| | - Zhen Liu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.,The Joint Scoliosis Research Center of the Chinese University of Hong Kong-Nanjing University, Hong Kong, SAR, China
| | - Wing Hoi Cheung
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, The Prince of Wales Hospital, Hong Kong, SAR, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Zezhang Zhu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.,The Joint Scoliosis Research Center of the Chinese University of Hong Kong-Nanjing University, Hong Kong, SAR, China
| | - Yong Qiu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.,The Joint Scoliosis Research Center of the Chinese University of Hong Kong-Nanjing University, Hong Kong, SAR, China
| | - Jack Chun-Yiu Cheng
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, The Prince of Wales Hospital, Hong Kong, SAR, China. .,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China. .,The Joint Scoliosis Research Center of the Chinese University of Hong Kong-Nanjing University, Hong Kong, SAR, China.
| |
Collapse
|
50
|
Ansari MGA, Hussain SD, Wani KA, Yakout SM, Al-Disi D, Alokail MS, Reginster JY, Al-Daghri NM. Influence of bone mineral density in circulating adipokines among postmenopausal Arab women. Saudi J Biol Sci 2019; 27:374-379. [PMID: 31889860 PMCID: PMC6933263 DOI: 10.1016/j.sjbs.2019.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis and osteopenia has a significant link with substantial fracture risk. Epidemiological data revealed a protective role of adipose tissue on bone biology in postmenopausal osteoporosis. The current study assessed the associations between select adipokines and bone mineral density (BMD) in postmenopausal women. A total of 175 Saudi postmenopausal women were selected and categorized based on their BMD (normal & low-BMD). Circulating levels of select adipokines (adiponectin, resistin, leptin, and adipsin), insulin, 25(OH)D and RANKl were determined using commercially available assay kits. BMD was measured by dual-energy X-ray absorptiometry (DXA). Overall and among low-BMD subjects, adiponectin consistently showed a significant inverse association with BMD (overall −0.34, p < 0.01; low BMD group −0.34, p < 0.01). In multiple regression, adiponectin (−0.29 ± 0.06, p < 0.00) and resistin (−0.08 ± 0.04, p < 0.05) were inversely significant with BMD overall, but after stratification the significance was lost for resistin (−0.05 ± 0.04, p < 0.224) whereas adiponectin remained (−0.22 ± 0.07, p < 0.02) in low-BMD subjects. Adipsin, leptin and lipocalin-2 showed no significant associations. Findings of the present study revealed that only adiponectin showed a significantly strong inverse association with low BMD, suggesting that insulin sensitivity may influence bone health in Arab postmenopausal women.
Collapse
Affiliation(s)
- Mohammed Ghouse Ahmed Ansari
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Danish Hussain
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kaiser Ahmed Wani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sobhy M Yakout
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dara Al-Disi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed S Alokail
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jean-Yves Reginster
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.,Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - Nasser M Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|