1
|
Mesenchymal Stem Cell-Specific and Preosteoblast-Specific Ablation of TSC1 in Mice Lead to Severe and Slight Spinal Dysplasia, Respectively. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4572687. [PMID: 32309432 PMCID: PMC7140121 DOI: 10.1155/2020/4572687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/09/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Background TSC1-related signaling plays a pivotal role in intramembranous and endochondral ossification processes during skeletogenesis. This study was aimed at determining the significance of the TSC1 gene at different stages of spinal development. Materials and Methods. TSC1-floxed mice (TSC1flox/flox) were crossed with Prrx1-Cre or BGLAP-Cre transgenic mice or mesenchymal stem cell- and osteoblast-specific TSC1-deficient mice, respectively. Somatic and vertebral differences between WT and Prrx1-TSC1 null mice were examined at 4 weeks after birth. Results No apparent body size abnormalities were apparent in newborn and 4-week- to 2-month-old mice with BGLAP-Cre driver-depleted TSC1. Vertebral and intervertebral discs displayed strong dysplasia in Prrx1-TSC1 null mice. In contrast, vertebrae were only slightly affected, and intervertebral discs from skeletal preparations displayed no apparent changes in BGLAP-TSC1 null mice. Conclusion Our data suggest that the TSC1 gene is crucial for endochondral ossification during postnatal spine development but plays discriminative roles at different stages. Mesenchymal stem cell-specific ablation of TSC1 led to severe spinal dysplasia at early stages of endochondral ossification while osteoblast-specific deletion of TSC1 affected vertebrae slightly and had no detectable effects on intervertebral discs.
Collapse
|
2
|
Feng L, Xia B, Tian BF, Lu GB. MiR-152 influences osteoporosis through regulation of osteoblast differentiation by targeting RICTOR. PHARMACEUTICAL BIOLOGY 2019; 57:586-594. [PMID: 31492082 PMCID: PMC6747012 DOI: 10.1080/13880209.2019.1657153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Context: Evidence suggests that microRNA (miRNA) regulate gene expression and bone tissue homoeostasis of osteoporosis. MiR-152 has found to be abnormally expressed in osteoporosis, but its role in osteoblast differentiation has not been elucidated. Objective: To understand the potential mechanism of miR-152 in osteoblast differentiation via regulation of RICTOR. Materials and methods: The expression of miR-152 and RICTOR were tested in ovariectomized rat models of osteoporosis. Primary osteoblasts and MC3T -E1 cells were assigned into four groups, namely Control, miR-152 inhibitor, miR-control and miR-152 inhibitor + siRICTOR groups. qRT PCR and Western blot were performed to detect the expressions of miR-152 and RICTOR, respectively. MTT assay was used to evaluate cell viability, and ALP activity determination and mineralization analyses were also conducted. Results: In ovariectomy-induced osteoporotic rats, miR-152 (3.06 ± 0.35) in femoral tissues increased significantly, while RICTOR (0.31 ± 0.04) decreased. Compared with Control group, miR-152 inhibitor group presented appreciable reduction of miR-152 in primary osteoblasts and MC3T3-E1 cells, as well as remarkable increases in RICTOR, p-Akt(s473)/Akt ratio, and osteogenesis-related genes, with enhanced cell viability, ALP activity and mineralization. In comparison with cells in the miR-152 inhibitor group, those in the miR-152 inhibitor + siRICTOR group had no observable difference in miR-152, but were dramatically up-regulated in RICTOR, as well as the corresponding opposite tendencies of other factors. Conclusion: Inhibiting miR-152 promoted osteoblasts differentiation and alleviated osteoporosis by up-regulating RICTOR. Therefore, miR-152 may be an essential mediator of osteoblast differentiation and a new therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Li Feng
- Department of Traumatic Orthopedics, Jining No. 1 People’s Hospital, Jining, China
| | - Bo Xia
- Department of Traumatic Orthopedics, Jining No. 1 People’s Hospital, Jining, China
| | - Bao-Fang Tian
- Department of Traumatic Orthopedics, Jining No. 1 People’s Hospital, Jining, China
| | - Gong-Biao Lu
- Department of Spine Surgery, Jining No, 1 People’s Hospital, Jining, China
- CONTACT Gong-Biao Lu Department of Spine Surgery, Jining No. 1 People’s Hospital, No.6, Jiankang Road, Jining, Shandong 272011, China
| |
Collapse
|
3
|
Li Y, Li J, Zhou Q, Liu Y, Chen W, Xu H. mTORC1 signaling is essential for neurofibromatosis type I gene modulated osteogenic differentiation of BMSCs. J Cell Biochem 2018; 120:2886-2896. [DOI: 10.1002/jcb.26626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/19/2017] [Indexed: 12/23/2022]
Affiliation(s)
- YiQiang Li
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - JingChun Li
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - QingHe Zhou
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - Yuanzhong Liu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - WeiDong Chen
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - HongWen Xu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| |
Collapse
|
4
|
Lauzon MA, Drevelle O, Daviau A, Faucheux N. Effects of BMP-9 and BMP-2 on the PI3K/Akt Pathway in MC3T3-E1 Preosteoblasts. Tissue Eng Part A 2016; 22:1075-85. [PMID: 27477105 DOI: 10.1089/ten.tea.2016.0151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The bone morphogenetic proteins (BMPs), which are involved in bone formation and repair, play an important role in tissue engineering. For example, BMP-9 and BMP-2, which are members of different BMP subfamilies, are osteoinductive factors. However, several studies have recently shown that BMP-9 is more osteogenic than BMP-2. We have previously shown that fetal bovine serum (FBS) strongly enhances the osteoblast differentiation of murine preosteoblasts (MC3T3-E1) to BMP-9 but not to BMP-2. This effect is mimicked by IGF-2, which primarily activates the PI3K/Akt pathway, but how Akt phosphorylation sites are implicated in such differentiation is unclear. The effects of BMP-9 and BMP-2 with or without FBS or IGF-2 on Akt phosphorylation sites and subsequent osteoblastic differentiation were determined, respectively, by western blot analysis and alkaline phosphatase activity measurements. The involvement of phosphorylated Akt at Thr308 and/or Ser473 on BMP-mediated osteoblast differentiation was further studied using specific inhibitors. In MC3T3-E1 incubated with or without FBS, BMP-9 and BMP-2 activate Akt on Ser473 and Thr308 very differently in a time and dose-dependent manner. Using inhibitors specific to each Akt phosphorylation site, we showed that both Ser473 and Thr308 must be phosphorylated for BMP-9 and/or IGF-2-induced osteoblast differentiation, whereas BMP-2 requires phosphorylation of only Ser473. Furthermore, cells stimulated with BMP-2 in the presence of FBS require the phosphorylation of Akt at Ser473 and the dephosphorylation of Akt at Thr308 to increase the osteoblast differentiation with alkaline phosphatase activity similar to that of BMP-9 plus FBS. These results provide a better understanding into how BMP-9 induces osteoblast differentiation and its synergy with IGF-2 at the signaling level. This knowledge is essential for preparing the serum-free osteogenic media required for bone tissue engineering or developing growth factor delivery systems to improve bone formation.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke , Sherbrooke, Canada
| | - Olivier Drevelle
- 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke , Sherbrooke, Canada .,2 Department of Chemical Engineering, École Polytechnique de Montréal , Montréal, Canada
| | - Alex Daviau
- 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke , Sherbrooke, Canada
| | - Nathalie Faucheux
- 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke , Sherbrooke, Canada
| |
Collapse
|
5
|
An investigation of BMP-7 mediated alterations to BMP signalling components in human tenocyte-like cells. Sci Rep 2016; 6:29703. [PMID: 27406972 PMCID: PMC4942578 DOI: 10.1038/srep29703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022] Open
Abstract
The incidence of tendon re-tears post-surgery is an ever present complication. It is suggested that the application of biological factors, such as bone morphogenetic protein 7 (BMP-7), can reduce complication rates by promoting tenogenic characteristics in in vitro studies. However, there remains a dearth of information in regards to the mechanisms of BMP-7 signalling in tenocytes. Using primary human tenocyte-like cells (hTLCs) from the supraspinatus tendon the BMP-7 signalling pathway was investigated: induction of the BMP associated Smad pathway and non-Smad pathways (AKT, p38, ERK1/2 and JNK); alterations in gene expression of BMP-7 associated receptors, Smad pathway components, Smad target gene (ID1) and tenogenic marker scleraxis. BMP-7 increases the expression of specific BMP associated receptors, BMPR-Ib and BMPR-II, and Smad8. Additionally, BMP-7 activates significantly Smad1/5/8 and slightly p38 pathways as indicated by an increase in phosphorylation and proven by inhibition experiments, where p-ERK1/2 and p-JNK pathways remain mainly unresponsive. Furthermore, BMP-7 increases the expression of the Smad target gene ID1, and the tendon specific transcription factor scleraxis. The study shows that tenocyte-like cells undergo primarily Smad8 and p38 signalling after BMP-7 stimulation. The up-regulation of tendon related marker genes and matrix proteins such as Smad8/9, scleraxis and collagen I might lead to positive effects of BMP-7 treatment for rotator cuff repair, without significant induction of osteogenic and chondrogenic markers.
Collapse
|
6
|
Glanz S, Mirsaidi A, López-Fagundo C, Filliat G, Tiaden AN, Richards PJ. Loss-of-Function of HtrA1 Abrogates All-Trans Retinoic Acid-Induced Osteogenic Differentiation of Mouse Adipose-Derived Stromal Cells Through Deficiencies in p70S6K Activation. Stem Cells Dev 2016; 25:687-98. [PMID: 26950191 DOI: 10.1089/scd.2015.0368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
All-trans retinoic acid (ATRA) is a potent inducer of osteogenic differentiation in mouse adipose-derived stromal cells (mASCs), although the underlying mechanisms responsible for its mode of action have yet to be completely elucidated. High temperature requirement protease A1 (HtrA1) is a newly recognized modulator of human multipotent stromal cell (MSC) osteogenesis and as such, may play a role in regulating ATRA-dependent osteogenic differentiation of mASCs. In this study, we assessed the influence of small interfering RNA (siRNA)-induced repression of HtrA1 production on mASC osteogenesis and examined its effects on ATRA-mediated mammalian target of rapamycin (mTOR) signaling. Inhibition of HtrA1 production in osteogenic mASCs resulted in a significant reduction of alkaline phosphatase activity and mineralized matrix formation. Western blot analyses revealed the rapid activation of Akt (Ser473) and p70S6K (Thr389) in ATRA-treated mASCs, and that levels of phosphorylated p70S6K were noticeably reduced in HtrA1-deficient mASCs. Further studies using mTOR inhibitor rapamycin and siRNA specific for the p70S6K gene Rps6kb1 confirmed ATRA-mediated mASC osteogenesis as being dependent on p70S6K activation. Finally, transfection of cells with a constitutively active rapamycin-resistant p70S6K mutant could restore the mineralizing capacity of HtrA1-deficient mASCs. These findings therefore lend further support for HtrA1 as a positive mediator of MSC osteogenesis and provide new insights into the molecular mode of action of ATRA in regulating mASC lineage commitment.
Collapse
Affiliation(s)
- Stephan Glanz
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland .,2 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich , Zurich, Switzerland
| | - Ali Mirsaidi
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland
| | | | - Gladys Filliat
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland .,2 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich , Zurich, Switzerland
| | - André N Tiaden
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland
| | - Peter J Richards
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland .,2 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich , Zurich, Switzerland
| |
Collapse
|
7
|
Mammalian target of rapamycin signaling inhibition ameliorates vascular calcification via Klotho upregulation. Kidney Int 2015; 88:711-21. [DOI: 10.1038/ki.2015.160] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 11/09/2022]
|
8
|
mTORC1 Prevents Preosteoblast Differentiation through the Notch Signaling Pathway. PLoS Genet 2015; 11:e1005426. [PMID: 26241748 PMCID: PMC4524707 DOI: 10.1371/journal.pgen.1005426] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/07/2015] [Indexed: 01/22/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) integrates both intracellular and extracellular signals to regulate cell growth and metabolism. However, the role of mTOR signaling in osteoblast differentiation and bone formation is undefined, and the underlying mechanisms have not been elucidated. Here, we report that activation of mTOR complex 1 (mTORC1) is required for preosteoblast proliferation; however, inactivation of mTORC1 is essential for their differentiation and maturation. Inhibition of mTORC1 prevented preosteoblast proliferation, but enhanced their differentiation in vitro and in mice. Activation of mTORC1 by deletion of tuberous sclerosis 1 (Tsc1) in preosteoblasts produced immature woven bone in mice due to excess proliferation but impaired differentiation and maturation of the cells. The mTORC1-specific inhibitor, rapamycin, restored these in vitro and in vivo phenotypic changes. Mechanistically, mTORC1 prevented osteoblast maturation through activation of the STAT3/p63/Jagged/Notch pathway and downregulation of Runx2. Preosteoblasts with hyperactive mTORC1 reacquired the capacity to fully differentiate and maturate when subjected to inhibition of the Notch pathway. Together, these findings identified the role of mTORC1 in osteoblast formation and established that mTORC1 prevents preosteoblast differentiation and maturation through activation of the Notch pathway. The coordinated activities of osteoblasts and osteoclasts in bone deposition and resorption form the internal structure of bone. Disruption of the balance between bone formation and resorption results in loss of bone mass and causes bone diseases such as osteoporosis. Current therapies for osteoporosis are limited to anti-resorptive agents, while bone diseases due to reduced osteoblast activity, such as senile osteoporosis, urgently require targeted treatment and novel strategies to promote bone formation. mTORC1 has emerged as a critical regulator of bone formation and is therefore a potential target in the development of novel bone-promoting therapeutics. Identifying the detailed function of mTORC1 in bone formation and clarifying the underlying mechanisms may uncover useful therapeutic targets. In this study, we reveal the role of mTORC1 in osteoblast formation. mTORC1 stimulated preosteoblast proliferation but prevented their differentiation and attenuated bone formation via activation of the Notch pathway. Pharmaceutical coordination of the pathways and agents in preosteoblasts may be beneficial in bone formation.
Collapse
|
9
|
Yeh LCC, Wilkerson M, Lee JC, Adamo ML. IGF-1 Receptor Insufficiency Leads to Age-Dependent Attenuation of Osteoblast Differentiation. Endocrinology 2015; 156:2872-9. [PMID: 26076041 PMCID: PMC4511128 DOI: 10.1210/en.2014-1945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the current study, we determined the effects of IGF-1 receptor haploinsufficiency on osteoblast differentiation and bone formation throughout the lifespan. Bone mineral density was significantly decreased in femurs of male and female Igf1r(+/-) mice compared with wild-type mice. mRNA expression of osteoblast differentiation markers was significantly decreased in femurs and calvariae from Igf1r(+/-) mice compared with cells from wild-type mice. Bone morphogenetic protein-7-induced ectopic bone in Igf1r(+/-) mice was significantly smaller with fewer osteoblasts but more lipid droplets and had reduced expression of osteoblast differentiation markers compared with wild-type mice. In bone marrow cells from middle-aged and old wild-type and Igf1r(+/-) male mice, palmitate inhibited osteoblast markers expression. In cells from young wild-type male mice, palmitate did not inhibit marker expression, but in cells from young male Igf1r(+/-) mice, palmitate inhibited bone sialoprotein and osterix but not osteocalcin or type I collagen (TIC). In female wild-type mice, palmitate inhibited osteoblast markers expression in cells from young, middle-aged, and old mice except TIC in cells from middle-aged mice. Palmitate inhibited bone sialoprotein expression in cells from middle-aged and old female Igf1r(+/-) mice and osteocalcin, osterix, and TIC expression in young and middle-aged female Igf1r(+/-) mice but stimulated expression in cells from old female Igf1r(+/-) mice. We conclude that IGF-1 receptor haploinsufficiency results in a prolipid accrual phenotype in bone in association with inhibition of growth factor-induced osteoblast differentiation, a situation which may phenocopy age-related decreases in bone formation.
Collapse
Affiliation(s)
- Lee-Chuan C Yeh
- Department of Biochemistry (L.-C.C.Y., M.W., J.C.L., M.L.A.) and The Sam and Ann Barshop Institute for Longevity and Aging Studies (J.C.L., M.L.A.), The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| | - Matthew Wilkerson
- Department of Biochemistry (L.-C.C.Y., M.W., J.C.L., M.L.A.) and The Sam and Ann Barshop Institute for Longevity and Aging Studies (J.C.L., M.L.A.), The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| | - John C Lee
- Department of Biochemistry (L.-C.C.Y., M.W., J.C.L., M.L.A.) and The Sam and Ann Barshop Institute for Longevity and Aging Studies (J.C.L., M.L.A.), The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| | - Martin L Adamo
- Department of Biochemistry (L.-C.C.Y., M.W., J.C.L., M.L.A.) and The Sam and Ann Barshop Institute for Longevity and Aging Studies (J.C.L., M.L.A.), The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| |
Collapse
|
10
|
Fang F, Sun S, Wang L, Guan JL, Giovannini M, Zhu Y, Liu F. Neural Crest-Specific TSC1 Deletion in Mice Leads to Sclerotic Craniofacial Bone Lesion. J Bone Miner Res 2015; 30:1195-205. [PMID: 25639352 PMCID: PMC4478231 DOI: 10.1002/jbmr.2447] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 12/16/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in either TSC1 or TSC2. TSC has high frequency of osseous manifestations such as sclerotic lesions in the craniofacial region. However, an animal model that replicates TSC craniofacial bone lesions has not yet been described. The roles of Tsc1 and the sequelae of Tsc1 dysfunction in bone are unknown. In this study, we generated a mouse model of TSC with a deletion of Tsc1 in neural crest-derived (NCD) cells that recapitulated the sclerotic craniofacial bone lesions in TSC. Analysis of this mouse model demonstrated that TSC1 deletion led to enhanced mTORC1 signaling in NCD bones and the increase in bone formation is responsible for the aberrantly increased bone mass. Lineage mapping revealed that TSC1 deficient NCD cells overpopulated the NCD bones. Mechanistically, hyperproliferation of osteoprogenitors at an early postnatal stage accounts for the increased osteoblast pool. Intriguingly, early postnatal treatment with rapamycin, an mTORC1 inhibitor, can completely rescue the aberrant bone mass, but late treatment cannot. Our data suggest that enhanced mTOR signaling in NCD cells can increase bone mass through enlargement of the osteoprogenitor pool, which likely explains the sclerotic bone lesion observed in TSC patients.
Collapse
Affiliation(s)
- Fang Fang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Shaogang Sun
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Li Wang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute, Centers for Cancer and Immunology Research and Neuroscience Research, Children's National Medical Center, Washington DC, USA
| | - Fei Liu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
11
|
mTORC1 Signaling Promotes Osteoblast Differentiation from Preosteoblasts. PLoS One 2015; 10:e0130627. [PMID: 26090674 PMCID: PMC4474698 DOI: 10.1371/journal.pone.0130627] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Preosteoblasts are precursor cells that are committed to the osteoblast lineage. Differentiation of these cells to mature osteoblasts is regulated by the extracellular factors and environmental cues. Recent studies have implicated mTOR signaling in the regulation of osteoblast differentiation. However, mTOR exists in two distinct protein complexes (mTORC1 and mTORC2), and the specific role of mTORC1 in regulating the progression of preosteoblasts to mature osteoblastis still unclear. In this study, we first deleted Raptor, a unique and essential component of mTORC1, in primary calvarial cells. Deletion of Raptor resulted in loss of mTORC1 but an increase in mTORC2 signaling without overtly affecting autophagy. Under the osteogenic culture condition, Raptor-deficient cells exhibited a decrease in matrix synthesis and mineralization. qPCR analyses revealed that deletion of Raptor reduced the expression of late-stage markers for osteoblast differentiation (Bglap, Ibsp, and Col1a), while slightly increasing early osteoblast markers (Runx2, Sp7, and Alpl). Consistent with the findings in vitro, genetic ablation of Raptor in osterix-expressing cells led to osteopenia in mice. Together, our findings have identified a specific role for mTORC1 in the transition from preosteoblasts to mature osteoblasts.
Collapse
|
12
|
Fang F, Wei X, Hu M, Liu F. A mouse model of craniofacial bone lesion of tuberous sclerosis complex. ACTA ACUST UNITED AC 2015; 1. [PMID: 26052552 DOI: 10.14800/mr.814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) signaling pathway plays critical roles in skeletal development. The impact and underlying mechanisms of its dysregulation in bone homeostasis is poorly defined. The best known and characterized mTOR signaling dysregulation in human disease is called Tuberous Sclerosis Complex (TSC). TSC is an autosomal dominant neurocutaneous syndrome with a high frequency (>66%) of osseous manifestations such as sclerotic lesions in the craniofacial region. TSC is caused by mutations of TSC1 or TSC2, the heterodimer protein inhibitor of mTORC1 signaling. The underlying mechanism of bone lesions in TSC is unclear. We generated a TSC mouse model with TSC1 deletion in neural crest derived (NCD) cells, which recapitulated the sclerotic craniofacial bone lesion in TSC patients. We demonstrated that TSC1 null NCD osteoblasts overpopulated the NCD bones and the resultant increased bone formation is responsible for the sclerotic bone phenotype. Mechanistically, osteoblast number increase is due to the hyperproliferation of osteoprogenitor cells at an early postnatal stage. Noteworthy, administration of rapamycin, an mTORC1 inhibitor at early postnatal stage can completely rescue the excess bone acquisition, but late treatment cannot. Altogether, our data suggested that enhanced mTORC1 signaling in NCD cells can enlarge the osteoprogenitor pool and lead to the excess bone acquisition, which is likely the underlying mechanism of sclerotic bone lesion observed in TSC patients.
Collapse
Affiliation(s)
- Fang Fang
- Department of Biologic and Materials Sciences Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Xiaoxi Wei
- Department of Biologic and Materials Sciences Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA ; Orthodontic Department, Jilin University College of Dentistry, Changchun, Jilin 130012, China
| | - Min Hu
- Orthodontic Department, Jilin University College of Dentistry, Changchun, Jilin 130012, China
| | - Fei Liu
- Department of Biologic and Materials Sciences Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Martin SK, Fitter S, Dutta AK, Matthews MP, Walkley CR, Hall MN, Ruegg MA, Gronthos S, Zannettino ACW. Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation. Stem Cells 2015; 33:1359-65. [DOI: 10.1002/stem.1931] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/12/2014] [Accepted: 12/03/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Sally K. Martin
- Myeloma Research Laboratory; School of Medical Sciences, University of Adelaide; Adelaide South Australia Australia
- Centre for Cancer Biology, SA Pathology; Adelaide South Australia Australia
- Centre for Stem Cell Research, University of Adelaide; Adelaide South Australia Australia
| | - Stephen Fitter
- Myeloma Research Laboratory; School of Medical Sciences, University of Adelaide; Adelaide South Australia Australia
- Centre for Cancer Biology, SA Pathology; Adelaide South Australia Australia
- Centre for Stem Cell Research, University of Adelaide; Adelaide South Australia Australia
| | - Ankit K. Dutta
- Myeloma Research Laboratory; School of Medical Sciences, University of Adelaide; Adelaide South Australia Australia
| | - Mary P. Matthews
- Myeloma Research Laboratory; School of Medical Sciences, University of Adelaide; Adelaide South Australia Australia
| | - Carl R. Walkley
- Stem Cell Regulation Laboratory; St. Vincent's Institute; Melbourne Victoria Australia
| | | | | | - Stan Gronthos
- Centre for Stem Cell Research, University of Adelaide; Adelaide South Australia Australia
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences; University of Adelaide; Adelaide South Australia Australia
| | - Andrew C. W. Zannettino
- Myeloma Research Laboratory; School of Medical Sciences, University of Adelaide; Adelaide South Australia Australia
- Centre for Cancer Biology, SA Pathology; Adelaide South Australia Australia
- Centre for Stem Cell Research, University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
14
|
Chen C, Akiyama K, Wang D, Xu X, Li B, Moshaverinia A, Brombacher F, Sun L, Shi S. mTOR inhibition rescues osteopenia in mice with systemic sclerosis. ACTA ACUST UNITED AC 2014; 212:73-91. [PMID: 25534817 PMCID: PMC4291526 DOI: 10.1084/jem.20140643] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chen et al. show that treatment with rapamycin, a drug known to inhibit mTOR signaling, rescues low bone density in mice with systemic sclerosis. Fibrillin-1 (FBN1) deficiency-induced systemic sclerosis is attributed to elevation of interleukin-4 (IL4) and TGF-β, but the mechanism underlying FBN1 deficiency–associated osteopenia is not fully understood. We show that bone marrow mesenchymal stem cells (BMMSCs) from FBN1-deficient (Fbn1+/−) mice exhibit decreased osteogenic differentiation and increased adipogenic differentiation. Mechanistically, this lineage alteration is regulated by IL4/IL4Rα-mediated activation of mTOR signaling to down-regulate RUNX2 and up-regulate PPARγ2, respectively, via P70 ribosomal S6 protein kinase (P70S6K). Additionally, we reveal that activation of TGF-β/SMAD3/SP1 signaling results in enhancement of SP1 binding to the IL4Rα promoter to synergistically activate mTOR pathway in Fbn1+/− BMMSCs. Blockage of mTOR signaling by osteoblastic-specific knockout or rapamycin treatment rescues osteopenia phenotype in Fbn1+/− mice by improving osteogenic differentiation of BMMSCs. Collectively, this study identifies a previously unrecognized role of the FBN1/TGF-β/IL4Rα/mTOR cascade in BMMSC lineage selection and provides experimental evidence that rapamycin treatment may provide an anabolic therapy for osteopenia in Fbn1+/− mice.
Collapse
Affiliation(s)
- Chider Chen
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033 Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kentaro Akiyama
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033 Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama 700-8525, Japan
| | - Dandan Wang
- Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xingtian Xu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033 Key Laboratory of Translational Research, Tong Ji University School of Stomatology, Shanghai 200072, China
| | - Bei Li
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033 School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Alireza Moshaverinia
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033
| | - Frank Brombacher
- Division of Immunology, Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), International Center for Genetic Engineering and Biotechnology (ICGEB) University of Cape Town, Cape Town 7925, South Africa
| | - Lingyun Sun
- Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Songtao Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
15
|
Rapamycin inhibits BMP-7-induced osteogenic and lipogenic marker expressions in fetal rat calvarial cells. J Cell Biochem 2013; 114:1760-71. [DOI: 10.1002/jcb.24519] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/07/2013] [Indexed: 01/06/2023]
|
16
|
Kim J, Jung Y, Sun H, Joseph J, Mishra A, Shiozawa Y, Wang J, Krebsbach PH, Taichman RS. Erythropoietin mediated bone formation is regulated by mTOR signaling. J Cell Biochem 2012; 113:220-8. [PMID: 21898543 DOI: 10.1002/jcb.23347] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of erythropoietin (Epo) and Epo/Epo receptor (EpoR) signaling pathways for production of red blood cells are well established. However, little is known about Epo/EpoR signaling in non-hematopoietic cells. Recently, we demonstrated that Epo activates JAK/STAT signaling in hematopoietic stem cells (HSCs), leading to the production of bone morphogenetic protein 2 (BMP2) and bone formation and that Epo also directly activates mesenchymal cells to form osteoblasts in vitro. In this study, we investigated the effects of mTOR signaling on Epo-mediated osteoblastogenesis and osteoclastogenesis. We found that mTOR inhibition by rapamycin blocks Epo-dependent and -independent osteoblastic phenotypes in human bone marrow stromal cells (hBMSCs) and ST2 cells, respectively. Furthermore, we found that rapamycin inhibits Epo-dependent and -independent osteoclastogenesis in mouse bone marrow mononuclear cells and Raw264.7 cells. Finally, we demonstrated that Epo increases NFATc1 expression and decreases cathepsin K expression in an mTOR-independent manner, resulting in an increase of osteoclast numbers and a decrease in resorption activity. Taken together, these results strongly indicate that mTOR signaling plays an important role in Epo-mediated bone homeostasis.
Collapse
Affiliation(s)
- Jinkoo Kim
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xiang X, Zhao J, Xu G, Li Y, Zhang W. mTOR and the differentiation of mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 2011; 43:501-10. [PMID: 21642276 DOI: 10.1093/abbs/gmr041] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The mammalian target of rapamycin (mTOR), an evolutionarily conserved serine-threonine protein kinase, belongs to the phosphoinositide 3-kinase (PI3K)-related kinase family, which contains a lipid kinase-like domain within their C-terminal region. Recent studies have revealed that mTOR as a critical intracellular molecule can sense the extracellular energy status and regulate the cell growth and proliferation in a variety of cells and tissues. This review summarizes our current understanding about the effects of mTOR on cell differentiation and tissue development, with an emphasis on the lineage determination of mesenchymal stem cells. mTOR can promote adipogenesis in white adipocytes, brown adipocytes, and muscle satellite cells, while rapamycin inhibits the adipogenic function of mTOR. mTOR signaling may function to affect osteoblast proliferation and differentiation, however, rapamycin has been reported to either inhibit or promote osteogenesis. Although the precise mechanism remains unclear, mTOR is indispensable for myogenesis. Depending on the cell type, rapamycin has been reported to inhibit, promote, or have no effect on myogenesis.
Collapse
Affiliation(s)
- Xinxin Xiang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
18
|
Kawai M, Breggia AC, DeMambro VE, Shen X, Canalis E, Bouxsein ML, Beamer WG, Clemmons DR, Rosen CJ. The heparin-binding domain of IGFBP-2 has insulin-like growth factor binding-independent biologic activity in the growing skeleton. J Biol Chem 2011; 286:14670-80. [PMID: 21372140 DOI: 10.1074/jbc.m110.193334] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-binding protein 2 (IGFBP-2) is a member of a family of six highly conserved IGFBPs that are carriers for the insulin-like growth factors (IGFs). IGFBP-2 levels rise during rapid neonatal growth and at the time of peak bone acquisition. In contrast, Igfbp2(-/-) mice have low bone mass accompanied by reduced osteoblast numbers, low bone formation rates, and increased PTEN expression. In the current study, we postulated that IGFBP-2 increased bone mass partly through the activity of its heparin-binding domain (HBD). We synthesized a HBD peptide specific for IGFBP-2 and demonstrated in vitro that it rescued the mineralization phenotype of Igfbp2(-/-) bone marrow stromal cells and calvarial osteoblasts. Consistent with its cellular actions, the HBD peptide ex vivo stimulated metacarpal periosteal expansion. Furthermore, administration of HBD peptide to Igfbp2(-/-) mice increased osteoblast number, suppressed marrow adipogenesis, restored trabecular bone mass, and reduced bone resorption. Skeletal rescue in the Igfbp2(-/-) mice was characterized by reduced PTEN expression followed by enhanced Akt phosphorylation in response to IGF-I and increased β-catenin signaling through two mechanisms: 1) stimulation of its cytosolic accumulation and 2) increased phosphorylation of serine 552. We conclude that the HBD peptide of IGFBP-2 has anabolic activity by activating IGF-I/Akt and β-catenin signaling pathways. These data support a growing body of evidence that IGFBP-2 is not just a transport protein but rather that it functions coordinately with IGF-I to stimulate growth and skeletal acquisition.
Collapse
Affiliation(s)
- Masanobu Kawai
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Martin SK, Fitter S, Bong LF, Drew JJ, Gronthos S, Shepherd PR, Zannettino ACW. NVP-BEZ235, a dual pan class I PI3 kinase and mTOR inhibitor, promotes osteogenic differentiation in human mesenchymal stromal cells. J Bone Miner Res 2010; 25:2126-37. [PMID: 20499346 DOI: 10.1002/jbmr.114] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteoblasts are bone-forming cells derived from mesenchymal stromal cells (MSCs) that reside within the bone marrow. In response to a variety of factors, MSCs proliferate and differentiate into mature, functional osteoblasts. Several studies have shown previously that suppression of the PI3K and mTOR signaling pathways in these cells strongly promotes osteogenic differentiation, which suggests that inhibitors of these pathways may be useful as anabolic bone agents. In this study we examined the effect of BEZ235, a newly developed dual PI3K and mTOR inhibitor currently in phase I-II clinical trials for advanced solid tumors, on osteogenic differentiation and function using primary MSC cultures. Under osteoinductive conditions, BEZ235 strongly promotes osteogenic differentiation, as evidenced by an increase in mineralized matrix production, an upregulation of genes involved in osteogenesis, including bone morphogenetic proteins (BMP2, -4, and -6) and transforming growth factor β1 (TGF-β1) superfamily members (TGFB1, TGFB2, and INHBE), and increased activation of SMAD signaling molecules. In addition, BEZ235 enhances de novo bone formation in calvarial organotypic cultures. Using pharmacologic inhibitors to delineate mechanism, our studies reveal that suppression of mTOR and, to a much lesser extent PI3K p110α, mediates the osteogenic effects of BEZ235. As confirmation, shRNA-mediated knockdown of mTOR enhances osteogenic differentiation and function in SAOS-2 osteoblast-like cells. Taken together, our findings suggest that BEZ235 may be useful in treating PI3K/mTOR-dependent tumors associated with bone loss, such as the hematologic malignancy multiple myeloma.
Collapse
Affiliation(s)
- Sally K Martin
- Myeloma Research Program, Division of Haematology, Centre for Cancer Biology, SA Pathology, and University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Yeh LCC, Ma X, Matheny RW, Adamo ML, Lee JC. Protein kinase D mediates the synergistic effects of BMP-7 and IGF-I on osteoblastic cell differentiation. Growth Factors 2010; 28:318-28. [PMID: 20380591 DOI: 10.3109/08977191003766874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously showed that exogenous insulin-like growth factor-I (IGF-I) and bone morphogenetic protein-7 (BMP-7) synergistically stimulated osteoblast differentiation in fetal rat calvaria (FRC) cells. We have now shown that BMP-7 alone and the BMP-7 and IGF-I combination synergistically stimulated protein kinase D (PKD) phosphorylation at Ser744/748 and Ser916. Transfection of FRC cells with a constitutively active PKD stimulated marker expression, while transfection with a catalytically inactive PKD did not. Moreover, Gö6976, which inhibits protein kinase C (PKC) α and β1, blocked PKD phosphorylation and the synergistic action of the BMP-7 and IGF-I combination on osteoblast differentiation, whereas Gö6983, which inhibits PKCα, β, γ, δ, and ζ, did not. Our results suggest that the FRC cell differentiation induced by BMP-7 and the BMP-7 and IGF-I combination requires stimulation of PKD activity. Our results are consistent with a novel mechanism in which combined BMP-7 and IGF-I signaling activates upstream novel PKC(s), which then phosphorylates and activates PKD, leading to enhanced osteoblast differentiation.
Collapse
Affiliation(s)
- Lee-Chuan C Yeh
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | | | | | |
Collapse
|
21
|
Payne KA, Meszaros LB, Phillippi JA, Huard J. Effect of phosphatidyl inositol 3-kinase, extracellular signal-regulated kinases 1/2, and p38 mitogen-activated protein kinase inhibition on osteogenic differentiation of muscle-derived stem cells. Tissue Eng Part A 2010; 16:3647-55. [PMID: 20617875 DOI: 10.1089/ten.tea.2009.0738] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Skeletal muscle-derived stem cells (MDSCs) can undergo osteogenesis when treated with bone morphogenetic proteins (BMPs), making them a potential cell source for bone tissue engineering. The signaling pathways that regulate BMP4-induced osteogenesis in MDSCs are not well understood, although they may provide a means to better regulate differentiation during bone regeneration. The objective of this study was to characterize the signaling pathways involved in the BMP4-induced osteogenesis of MDSCs. Cells were treated with BMP4 and specific inhibitors to the extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and phosphatidyl inositol 3-kinase (PI3K) pathways (PD98059, SB203580, and Ly294002, respectively). Cellular proliferation, expression of osteoblast-related genes, alkaline phosphatase (ALP) activity, and tissue mineralization were measured to determine the role of each pathway in the osteogenic differentiation of MDSCs. Inhibition of the ERK1/2 pathway increased ALP activity and mineralization, whereas inhibition of the p38 MAPK pathway decreased osteogenesis, suggesting opposing roles of these pathways in the BMP4-induced osteogenesis of MDSCs. Inhibition of the PI3K pathway significantly increased mineralization by MDSCs. These findings highlight the involvement of the ERK1/2, p38 MAPK, and PI3K pathways in opposing capacities in MDSC differentiation and warrant further investigation, as it may identify novel therapeutic targets for the development of stem cell-based therapies for bone tissue engineering.
Collapse
Affiliation(s)
- Karin A Payne
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | |
Collapse
|
22
|
Perron JC, Dodd J. ActRIIA and BMPRII Type II BMP receptor subunits selectively required for Smad4-independent BMP7-evoked chemotaxis. PLoS One 2009; 4:e8198. [PMID: 20011660 PMCID: PMC2788225 DOI: 10.1371/journal.pone.0008198] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/15/2009] [Indexed: 01/01/2023] Open
Abstract
Bone morphogenetic protein (BMP)-evoked reorientation and chemotaxis of cells occurs with rapid onset and involves events local to the cell membrane. The signaling pathways underlying these rapid processes likely diverge from those mediating classical transcriptional responses to BMPs but it remains unclear how BMP receptors are utilized to generate distinct intracellular mechanisms. We show that BMP7-evoked chemotaxis of monocytic cells depends on the activity of canonical type II BMP receptors. Although the three canonical type II BMP receptors are expressed in monocytic cells, inhibition of receptor subunit expression by RNAi reveals that ActRIIA and BMPRII, but not ActRIIB, are each essential for BMP7-evoked chemotaxis but not required individually for BMP-mediated induction. Furthermore, the chemotactic response to BMP7 does not involve canonical Smad4-dependent signaling but acts through PI3K-dependent signaling, illustrating selective activation of distinct intracellular events through differential engagement of receptors. We suggest a model of a BMP receptor complex in which the coordinated activity of ActRIIA and BMPRII receptor subunits selectively mediates the chemotactic response to BMP7.
Collapse
Affiliation(s)
- Jeanette C. Perron
- Departments of Physiology and Cellular Biophysics and Neuroscience, Columbia University, New York, New York, United States of America
| | - Jane Dodd
- Departments of Physiology and Cellular Biophysics and Neuroscience, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lee DY, Li YSJ, Chang SF, Zhou J, Ho HM, Chiu JJ, Chien S. Oscillatory flow-induced proliferation of osteoblast-like cells is mediated by alphavbeta3 and beta1 integrins through synergistic interactions of focal adhesion kinase and Shc with phosphatidylinositol 3-kinase and the Akt/mTOR/p70S6K pathway. J Biol Chem 2009; 285:30-42. [PMID: 19889638 DOI: 10.1074/jbc.m109.010512] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interstitial flow in and around bone tissue is oscillatory in nature and affects the mechanical microenvironment for bone cell growth and formation. We investigated the role of oscillatory shear stress (OSS) in modulating the proliferation of human osteoblast-like MG63 cells and its underlying mechanisms. Application of OSS (0.5 +/- 4 dynes/cm(2)) to MG63 cells induced sustained activation of phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR/p70S6K (p70S6 kinase) signaling cascades and hence cell proliferation, which was accompanied by increased expression of cyclins A and D1, cyclin-dependent protein kinases-2, -4, and -6, and bone formation-related genes (c-fos, Egr-1, and Cox-2) and decreased expression of p21(CIP1) and p27(KIP1). OSS-induced activation of PI3K/Akt/mTOR/p70S6K and cell proliferation were inhibited by specific antibodies or small interference RNAs of alpha(v)beta(3) and beta(1) integrins and by dominant-negative mutants of Shc (Shc-SH2) and focal adhesion kinase (FAK) (FAK(F397Y)). Co-immunoprecipitation assay showed that OSS induces sustained increases in association of Shc and FAK with alpha(v)beta(3) and beta(1) integrins and PI3K subunit p85, which were abolished by transfecting the cells with FAK(F397Y) or Shc-SH2. OSS also induced sustained activation of ERK, which was inhibited by the specific PI3K inhibitor LY294002 and was required for OSS-induced activation of mTOR/p70S6K and proliferation in MG63 cells. Our findings provide insights into the mechanisms by which OSS induces osteoblast-like cell proliferation through activation of alpha(v)beta(3) and beta(1) integrins and synergistic interactions of FAK and Shc with PI3K, leading to the modulation of downstream ERK and Akt/mTOR/p70S6K pathways.
Collapse
Affiliation(s)
- Ding-Yu Lee
- Division of Medical Engineering Research, National Health Research Institutes, Miaoli 350, Taiwan
| | | | | | | | | | | | | |
Collapse
|
24
|
Bais MV, Wigner N, Young M, Toholka R, Graves DT, Morgan EF, Gerstenfeld LC, Einhorn TA. BMP2 is essential for post natal osteogenesis but not for recruitment of osteogenic stem cells. Bone 2009; 45:254-66. [PMID: 19398045 PMCID: PMC2745982 DOI: 10.1016/j.bone.2009.04.239] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/19/2009] [Accepted: 04/13/2009] [Indexed: 12/16/2022]
Abstract
The effects of BMP2 on bone marrow stromal cell differentiation and bone formation after bone marrow ablation were determined using C57 BL/6J (B6) mice. Inhibition of BMP2 expression with lentiviral BMP2 shRNA prevented both mineralized nodule formation in vitro and bone formation in vivo, and blocked the expression of Runx2 and osterix, transcriptional determinants of terminal osteogenic differentiation. No effect was observed on the expression of Sox9, a transcription factor, which is the one of the first transcriptional determinant to be expressed in committed chondroprogenitor and osteoprogenitor cells. In vitro studies showed that exogenously added BMP7 rescued the expression of osterix and enhanced the expression of Sox9, but had no effect on the expression of Runx2, while it only partially recovered the development of mineral deposition in the cultures. On the other hand, the exogenous addition of BMP2 rescued both Runx2 and osterix expression, did not enhance the expression of Sox9, but fully recovered the inhibition of mineral deposition in the cultures. Using antibodies against CD146 and Sox9, immunohistological examination of the cell populations found in the medullary space three days after bone marrow ablation, showed qualitatively equal numbers of cells expressing these skeletal progenitor and stem cell markers in control and BMP2 shRNA treated animals. Fluorescence Activated Cell Sorting (FACS) analysis of the cells found with the marrow cavities at three days after marrow ablation using CD146 antibody showed near equal numbers of immunopositive cells in both control and shRNA treated animals. In summary, the differences observed in vitro for BMP2 and BMP7 on osteogenic gene expression and mineralization suggest that they have differing effects on bone cell differentiation. These results further demonstrate that in vivo BMP2 is a central morphogenetic regulator of post natal osteoprogenitor differentiation, but does not affect recruitment of progenitors to the osteoblastic lineage.
Collapse
Affiliation(s)
- M V Bais
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Boston University School of Medicine, Boston, Doctors Office Building, Suite 808, 720 Harrison Ave., Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
DeMambro VE, Clemmons DR, Horton LG, Bouxsein ML, Wood TL, Beamer WG, Canalis E, Rosen CJ. Gender-specific changes in bone turnover and skeletal architecture in igfbp-2-null mice. Endocrinology 2008; 149:2051-61. [PMID: 18276763 PMCID: PMC2329262 DOI: 10.1210/en.2007-1068] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
IGF-binding protein-2 (IGFBP-2) is a 36-kDa protein that binds to the IGFs with high affinity. To determine its role in bone turnover, we compared Igfbp2(-/-) mice with Igfbp2(+/+) colony controls. Igfbp2(-/-) males had shorter femurs and were heavier than controls but were not insulin resistant. Serum IGF-I levels in Igfbp2(-/-) mice were 10% higher than Igfbp2(+/+) controls at 8 wk of age; in males, this was accompanied by a 3-fold increase in hepatic Igfbp3 and Igfbp5 mRNA transcripts compared with Igfbp2(+/+) controls. The skeletal phenotype of the Igfbp2(-/-) mice was gender and compartment specific; Igfbp2(-/-) females had increased cortical thickness with a greater periosteal circumference compared with controls, whereas male Igfbp2(-/-) males had reduced cortical bone area and a 20% reduction in the trabecular bone volume fraction due to thinner trabeculae than Igfbp2(+/+) controls. Serum osteocalcin levels were reduced by nearly 40% in Igfbp2(-/-) males, and in vitro, both CFU-ALP(+) preosteoblasts, and tartrate-resistant acid phosphatase-positive osteoclasts were significantly less abundant than in Igfbp2(+/+) male mice. Histomorphometry confirmed fewer osteoblasts and osteoclasts per bone perimeter and reduced bone formation in the Igfbp2(-/-) males. Lysates from both osteoblasts and osteoclasts in the Igfbp2(-/-) males had phosphatase and tensin homolog (PTEN) levels that were significantly higher than Igfbp2(+/+) controls and were suppressed by addition of exogenous IGFBP-2. In summary, there are gender- and compartment-specific changes in Igfbp2(-/-) mice. IGFBP-2 may regulate bone turnover in both an IGF-I-dependent and -independent manner.
Collapse
Affiliation(s)
- V E DeMambro
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Singha UK, Jiang Y, Yu S, Luo M, Lu Y, Zhang J, Xiao G. Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. J Cell Biochem 2008; 103:434-46. [PMID: 17516572 DOI: 10.1002/jcb.21411] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While the roles of the mammalian target of rapamycin (mTOR) signaling in regulation of cell growth, proliferation, and survival have been well documented in various cell types, its actions in osteoblasts are poorly understood. In this study, we determined the effects of rapamycin, a specific inhibitor of mTOR, on osteoblast proliferation and differentiation using MC3T3-E1 preosteoblastic cells (MC-4) and primary mouse bone marrow stromal cells (BMSCs). Rapamycin significantly inhibited proliferation in both MC-4 cells and BMSCs at a concentration as low as 0.1 nM. Western blot analysis shows that rapamycin treatment markedly reduced levels of cyclin A and D1 protein in both cell types. In differentiating osteoblasts, rapamycin dramatically reduced osteoblast-specific osteocalcin (Ocn), bone sialoprotein (Bsp), and osterix (Osx) mRNA expression, ALP activity, and mineralization capacity. However, the drug treatment had no effect on osteoblast differentiation parameters when the cells were completely differentiated. Importantly, rapamycin markedly reduced levels of Runx2 protein in both proliferating and differentiating but not differentiated osteoblasts. Finally, overexpression of S6K in COS-7 cells significantly increased levels of Runx2 protein and Runx2 activity. Taken together, our studies demonstrate that mTOR signaling affects osteoblast functions by targeting osteoblast proliferation and the early stage of osteoblast differentiation.
Collapse
Affiliation(s)
- Ujjal K Singha
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15240, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhang AX, Yu WH, Ma BF, Yu XB, Mao FF, Liu W, Zhang JQ, Zhang XM, Li SN, Li MT, Lahn BT, Xiang AP. Proteomic identification of differently expressed proteins responsible for osteoblast differentiation from human mesenchymal stem cells. Mol Cell Biochem 2007; 304:167-79. [PMID: 17530189 DOI: 10.1007/s11010-007-9497-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 04/27/2007] [Indexed: 12/19/2022]
Abstract
Human mesenchymal stem cells (hMSC) are a population of multipotent cells that can differentiate into osteoblasts, chondrocytes, adipocytes, and other cells. The exact mechanism governing the differentiation of hMSC into osteoblasts remains largely unknown. Here, we analyzed protein expression profiles of undifferentiated as well as osteogenic induced hMSC using 2-D gel electrophoresis (2-DE), mass spectrometry (MS), and peptide mass fingerprinting (PMF) to investigate the early gene expression in osteoblast differentiation. We have generated proteome maps of undifferentiated hMSC and osteogenic induced hMSC on day 3 and day 7. 2-DE revealed 102 spots with at least 2.0-fold changes in expression and 52 differently expressed proteins were successfully identified by MALDI-TOF-MS. These proteins were classified into 7 functional categories: metabolism, signal transduction, transcription, calcium-binding protein, protein degradation, protein folding and others. The expression of some identified proteins was confirmed by further RT-PCR analyses. This study clarifies the global proteome during osteoblast differentiation. Our results will play an important role in better elucidating the underlying molecular mechanism in hMSC differentiation into osteoblasts.
Collapse
Affiliation(s)
- Ai-Xia Zhang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Isomoto S, Hattori K, Ohgushi H, Nakajima H, Tanaka Y, Takakura Y. Rapamycin as an inhibitor of osteogenic differentiation in bone marrow-derived mesenchymal stem cells. J Orthop Sci 2007; 12:83-8. [PMID: 17260122 DOI: 10.1007/s00776-006-1079-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 09/11/2006] [Indexed: 12/11/2022]
Abstract
BACKGROUND An autograft of cultured bone marrow-derived mesenchymal stem cells has already been used in clinical practice. In those patients whose bone marrow cannot be used, a cell allograft with the use of immunosuppressant drugs will be an option in the future. However, little is known about the effects of immunosuppressant drugs on mesenchymal stem cells. This study assessed the effects of immunosuppressant drugs on osteogenic differentiation of mesenchymal stem cells and analyzed the manner in which immunosuppressant drugs modulate the osteogenic effect of dexamethasone. METHODS Rat bone marrow cells were cultured with or without dexamethasone as an osteogenic supplement. In each experimental group, one of three immunosuppressants (rapamycin, cyclosporine A, or FK506) was added. As a control, cells were cultured without immunosuppressants. Histologically, mineralization was assessed by alizarin red S staining and phase-contrast microscopy. Biochemically, alkaline phosphatase activity, calcium content, and osteocalcin content were assessed. RESULTS On histological analysis, no mineralized nodules were seen on alizarin red S staining or phase-contrast microscopy in the groups not treated with dexamethasone, except in the group that was treated with FK506. Mineralized nodules were seen in the groups treated with dexamethasone, except in the group that was treated with rapamycin. On biochemical analysis, it was found that, compared to the control group, rapamycin reduced alkaline phosphatase activity and the calcium content of mesenchymal stem cells; FK506 increased alkaline phosphatase activity, calcium content, and osteocalcin content; and cyclosporine A had negligible effects. Dexamethasone increased alkaline phosphatase activity, calcium content, and osteocalcin content, but these effects were decreased by rapamycin. CONCLUSIONS Rapamycin did not have an osteogenic effect on mesenchymal stem cells, but inhibited the effect of osteogenic differentiation induced by dexamethasone. In contrast, FK506 had an osteogenic effect on mesenchymal stem cells. Therefore, FK506 might be more useful than rapamycin in allogeneic transplantation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Shinji Isomoto
- Department of Orthopaedic Surgery, Nara Medical University, 840 Shijyo-cho, Kashihara, Nara, 634-8522, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Patterson TE, Sakai Y, Grabiner MD, Ibiwoye M, Midura RJ, Zborowski M, Wolfman A. Exposure of murine cells to pulsed electromagnetic fields rapidly activates the mTOR signaling pathway. Bioelectromagnetics 2006; 27:535-44. [PMID: 16715521 DOI: 10.1002/bem.20244] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Murine pre-osteoblasts and fibroblast cell lines were used to determine the effect of pulsed electromagnetic field (PEMF) exposure on the production of autocrine growth factors and the activation of early signal transduction pathways. Exposure of pre-osteoblast cells to PEMF minimally increased the amount of secreted TGF-beta after 1 day, but had no significant effects thereafter. PEMF exposure of pre-osteoblast cells also had no effect on the amount of prostaglandin E(2) in the conditioned medium. Exposure of both pre-osteoblasts and fibroblasts to PEMF rapidly activated the mTOR signaling pathway, as evidenced by increased phosphorylation of mTOR, p70 S6 kinase, and the ribosomal protein S6. Inhibition of PI3-kinase activity with the chemical inhibitor LY294002 blocked PEMF-dependent activation of mTOR in both the pre-osteoblast and fibroblast cell lines. These findings suggest that PEMF exposure might function in a manner analogous to soluble growth factors by activating a unique set of signaling pathways, inclusive of the PI-3 kinase/mTOR pathway.
Collapse
Affiliation(s)
- Thomas E Patterson
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Yeh LCC, Lee JC. Co-transfection with the osteogenic protein (OP)-1 gene and the insulin-like growth factor (IGF)-I gene enhanced osteoblastic cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:57-63. [PMID: 16364466 DOI: 10.1016/j.bbamcr.2005.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 10/10/2005] [Accepted: 11/01/2005] [Indexed: 11/30/2022]
Abstract
Previous studies from this laboratory showed that the action of Osteogenic Protein-1 (OP-1, BMP-7) on osteoblastic cell differentiation could be enhanced by other protein factors, such as Insulin-like Growth Factor (IGF)-I. In the present study, we examined the effects of co-transfection with a combination of the OP-1 and the IGF-I gene on osteoblastic cell differentiation. The results first showed that fetal rat calvaria (FRC) cells transfected with the OP-1 gene under the control of the cytomegalovirus (CMV) promoter showed substantial production of the OP-1 protein. Transfected FRC cells also showed a DNA concentration-dependent increase in alkaline phosphatase (AP) activity, an osteoblastic cell differentiation marker. Von Kossa-positive nodules, a hallmark of bone formation in long-term cultures of bone-derived cells, were also observed in the transfected cells after 26 days in culture, whereas none were observed in control cells. Co-transfection of FRC cells with the combination of the OP-1 and the IGF-I gene resulted in a synergistic stimulation of AP activity. The increase was DNA dose-dependent. The current data show that transfection of OP-1 gene into osteoblastic cells stimulates osteoblastic cell differentiation in vitro. The study further demonstrates the feasibility of employing gene transfer of a second gene in combination with an OP-1 vector to synergistically enhance OP-1 activity.
Collapse
Affiliation(s)
- Lee-Chuan C Yeh
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA.
| | | |
Collapse
|
31
|
Osyczka AM, Leboy PS. Bone morphogenetic protein regulation of early osteoblast genes in human marrow stromal cells is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling. Endocrinology 2005; 146:3428-37. [PMID: 15905316 PMCID: PMC1237031 DOI: 10.1210/en.2005-0303] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone marrow stromal cells (MSC) are the major source of osteoblasts for bone remodeling and repair in postnatal animals. Rodent MSC cultured with bone morphogenetic proteins (BMPs) differentiate into osteoblasts, but most human MSC show a poor osteogenic response to BMPs. In this study we demonstrate that BMP-induced osteogenesis in poorly responsive human MSC requires modulation of ERK and phosphatidylinositol 3-kinase (PI3-K) pathways. Either treating human MSC cultures with the MAPK/ERK kinase inhibitor PD98059 or transferring them to serum-free medium with insulin or IGF-I permits BMP-dependent increases in the expression of the early osteoblast-associated genes, alkaline phosphatase and osteopontin. Increased expression of these genes in BMP-treated, serum-free cultures correlates with increased nuclear levels of activated Smads, whereas serum-free cultures of human MSC expressing constitutively active MAPK/ERK kinase show decreased expression of early osteoblast genes and decreased nuclear translocation of BMP-activated Smads. Inhibiting ERK activity in human MSC also elevates the expression of Msx2, a transcription factor that is directly regulated by Smad-binding elements in its promoter. Therefore, growth factor stimulation leading to high levels of ERK activity in human MSC results in suppressed BMP-induced transcription of several early osteoblast genes, probably because levels of BMP-activated nuclear Smads are decreased. In contrast, inhibiting the insulin/IGF-I-activated PI3-K/AKT pathway decreases BMP-induced alkaline phosphatase and osteopontin expression in serum-free cultures of human MSC, but increases BMP activation of Smads; thus, PI3-K signaling is required for BMP-induced expression of early osteoblast genes in human MSC either downstream or independent of the BMP-activated Smad signaling pathway.
Collapse
Affiliation(s)
- Anna M Osyczka
- Department of Biochemistry, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, Pennsylvania 19104-6030, USA.
| | | |
Collapse
|
32
|
Celil AB, Hollinger JO, Campbell PG. Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling. J Cell Biochem 2005; 95:518-28. [PMID: 15786511 DOI: 10.1002/jcb.20429] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bone morphogenetic protein (BMP)-2 induces Osterix (Osx) in mouse C2C12 cells and chondrocytes. Genetic studies place Osx downstream to the BMP-2/Smad/Runx2 signaling pathway; however, limited information is available on the mediators of Osx expression in osteoblast lineage commitment. Several lines of research implicate the presence of Runx2-independent ossification. Therefore, the purpose of this study was to identify possible mediators of Osx expression beyond the BMP-2/Smad pathway. Using real-time RT-PCR, we showed upregulation of Osx in response to BMP-2 in human mesenchymal stem cells (hMSC). Insulin-like growth factor (IGF)-I upregulated Osx, but not Runx2. Further, IGF-I in combination with BMP-2 was synergistic for Osx, suggesting a pathway beyond Smad signaling. MAPK was tested as a common mediator across BMP-2 and IGF-I signaling pathways. Inhibition of MAPK component ERK1/2 did not affect Runx2 gene expression, but inhibited Osx expression and matrix mineralization. BMP-2-mediated Osx expression was downregulated in response to p38 inhibition. We therefore conclude that during osteogenic lineage progression, in addition to the BMP-2/Smad pathway, IGF-I and MAPK signaling may mediate Osx.
Collapse
Affiliation(s)
- Ayse B Celil
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
33
|
Nielsen-Preiss SM, Silva SR, Gillette JM. Role of PTEN and Akt in the regulation of growth and apoptosis in human osteoblastic cells. J Cell Biochem 2004; 90:964-75. [PMID: 14624456 DOI: 10.1002/jcb.10709] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cancer cells are characterized by either an increased ability to proliferate or a diminished capacity to undergo programmed cell death. PTEN is instrumental in regulating the balance between growth and death in several cell types and has been described as a tumor suppressor. The chromosome arm on which PTEN is located is deleted in a subset of human osteosarcoma tumors. Therefore, we predicted that the loss of PTEN expression was contributing to increased Akt activation and the subsequent growth and survival of osteosarcoma tumor cells. Immunoblot analyses of several human osteosarcoma cell lines and normal osteoblasts revealed relatively abundant levels of PTEN. Furthermore, stimulation of cell growth or induction of apoptosis in osteosarcoma cells failed to affect PTEN expression or activity. Therefore, routine regulation of osteosarcoma cell growth and survival appears to be independent of changes in PTEN. Subsequently, the activation of a downstream target of PTEN activity, the survival factor Akt, was analyzed. Inappropriate activation of Akt could bypass the negative regulation by PTEN. Analyses of Akt expression in several osteosarcoma cell lines and normal osteoblasts revealed uniformly low basal levels of phosphorylated Akt. The levels of phosphorylated Akt did not increase following growth stimulation. In addition, osteosarcoma cell growth was unaffected by inhibitors of phosphatidylinositol-3 kinase, an upstream activator of the Akt signaling pathway. These data further suggest that the Akt pathway is not the predominant signaling cascade required for osteoblastic growth. However, inhibition of PTEN activity resulted in increased levels of Akt phosphorylation and enhanced cell proliferation. These data suggest that while abundant levels of PTEN normally maintain Akt in an inactive form in osteoblastic cells, the Akt signaling pathway is intact and functional.
Collapse
Affiliation(s)
- Sheila M Nielsen-Preiss
- Department of Orthopaedics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|