1
|
Blasiak B, MacDonald D, Jasiński K, Cheng FY, Tomanek B. Application of H 2N-Fe 3O 4 Nanoparticles for Prostate Cancer Magnetic Resonance Imaging in an Animal Model. Int J Mol Sci 2024; 25:10334. [PMID: 39408664 PMCID: PMC11477031 DOI: 10.3390/ijms251910334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This paper presents the efficacy of a contrast agent based on H2N-Fe3O4 nanoparticles for the detection of prostate cancer in an animal model using a preclinical 9.4 T MRI system. The relaxivities r1 and r2 of the nanoparticles were 6.31 mM-1s-1 and 8.33 mM-1s-1, respectively. Nanoparticles injected in a concentration of 2 mg Fe/mL decreased the tumor-relative T1 relaxation across all animals from 100 to 76 ± 26, 85 ± 27, 89 ± 20, and 97 ± 16 12 min 1 h, 2 h, and 24 h post injection, respectively. The corresponding T1 decrease in muscle tissues was 90 ± 20, 94 ± 23, 99 ± 12, and 99 ± 14. The relative T2 changes in the tumor were 82 ± 17, 89 ± 19, 97 ± 14, and 99 ± 8 12 min, 1 h, 2 h, and 24 h post injection, respectively, while, for muscle tissues, these values were 95 ± 11, 95 ± 8, 97 ± 6, and 95 ± 10 at the corresponding time points. The differences in the relative T1 and T2 were only significant 12 min after injection (p < 0.05), although a decrease was visible at each time point, but it was statistically insignificant (p > 0.05). The results showed the potential application of H2N-Fe3O4 nanoparticles as contrast agents for enhanced prostate cancer MRI.
Collapse
Affiliation(s)
- Barbara Blasiak
- The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (D.M.); (K.J.); (B.T.)
| | - David MacDonald
- The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (D.M.); (K.J.); (B.T.)
| | - Krzysztof Jasiński
- The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (D.M.); (K.J.); (B.T.)
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Boguslaw Tomanek
- The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (D.M.); (K.J.); (B.T.)
- Division of Medical Physics, Department of Oncology, University of Alberta, 8303 112 St. NW, Edmonton, AB T6G 2T4, Canada
| |
Collapse
|
2
|
Reporter Genes for Brain Imaging Using MRI, SPECT and PET. Int J Mol Sci 2022; 23:ijms23158443. [PMID: 35955578 PMCID: PMC9368793 DOI: 10.3390/ijms23158443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
The use of molecular imaging technologies for brain imaging can not only play an important supporting role in disease diagnosis and treatment but can also be used to deeply study brain functions. Recently, with the support of reporter gene technology, optical imaging has achieved a breakthrough in brain function studies at the molecular level. Reporter gene technology based on traditional clinical imaging modalities is also expanding. By benefiting from the deeper imaging depths and wider imaging ranges now possible, these methods have led to breakthroughs in preclinical and clinical research. This article focuses on the applications of magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) reporter gene technologies for use in brain imaging. The tracking of cell therapies and gene therapies is the most successful and widely used application of these techniques. Meanwhile, breakthroughs have been achieved in the research and development of reporter genes and their imaging probe pairs with respect to brain function research. This paper introduces the imaging principles and classifications of the reporter gene technologies of these imaging modalities, lists the relevant brain imaging applications, reviews their characteristics, and discusses the opportunities and challenges faced by clinical imaging modalities based on reporter gene technology. The conclusion is provided in the last section.
Collapse
|
3
|
Oliveira FA, Nucci MP, Filgueiras IS, Ferreira JM, Nucci LP, Mamani JB, Alvieri F, Souza LEB, Rego GNA, Kondo AT, Hamerschlak N, Gamarra LF. Noninvasive Tracking of Hematopoietic Stem Cells in a Bone Marrow Transplant Model. Cells 2020; 9:cells9040939. [PMID: 32290257 PMCID: PMC7226958 DOI: 10.3390/cells9040939] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
The hematopoietic stem cell engraftment depends on adequate cell numbers, their homing, and the subsequent short and long-term engraftment of these cells in the niche. We performed a systematic review of the methods employed to track hematopoietic reconstitution using molecular imaging. We searched articles indexed, published prior to January 2020, in PubMed, Cochrane, and Scopus with the following keyword sequences: (Hematopoietic Stem Cell OR Hematopoietic Progenitor Cell) AND (Tracking OR Homing) AND (Transplantation). Of 2191 articles identified, only 21 articles were included in this review, after screening and eligibility assessment. The cell source was in the majority of bone marrow from mice (43%), followed by the umbilical cord from humans (33%). The labeling agent had the follow distribution between the selected studies: 14% nanoparticle, 29% radioisotope, 19% fluorophore, 19% luciferase, and 19% animal transgenic. The type of graft used in the studies was 57% allogeneic, 38% xenogeneic, and 5% autologous, being the HSC receptor: 57% mice, 9% rat, 19% fish, 5% for dog, porcine and salamander. The imaging technique used in the HSC tracking had the following distribution between studies: Positron emission tomography/single-photon emission computed tomography 29%, bioluminescence 33%, fluorescence 19%, magnetic resonance imaging 14%, and near-infrared fluorescence imaging 5%. The efficiency of the graft was evaluated in 61% of the selected studies, and before one month of implantation, the cell renewal was very low (less than 20%), but after three months, the efficiency was more than 50%, mainly in the allogeneic graft. In conclusion, our review showed an increase in using noninvasive imaging techniques in HSC tracking using the bone marrow transplant model. However, successful transplantation depends on the formation of engraftment, and the functionality of cells after the graft, aspects that are poorly explored and that have high relevance for clinical analysis.
Collapse
Affiliation(s)
- Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mariana P. Nucci
- LIM44—Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Igor S. Filgueiras
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - João M. Ferreira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Leopoldo P. Nucci
- Centro Universitário do Planalto Central, Brasília DF 72445-020, Brazil;
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Fernando Alvieri
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lucas E. B. Souza
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14049-900, Brazil;
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Andrea T. Kondo
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
4
|
Khairnar S, More N, Mounika C, Kapusetti G. Advances in Contrast Agents for Contrast-Enhanced Magnetic Resonance Imaging. J Med Imaging Radiat Sci 2019; 50:575-589. [PMID: 31727524 DOI: 10.1016/j.jmir.2019.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) is a well-established medical invention in modern medical technology diagnosis. It is a nondestructive, versatile, and sensitive technique with a high spatial resolution for medical diagnosis. However, MRI has some limitations in differentiating certain tissues, particularly tiny blood vessels, pathological to healthy tissues, specific tumors, and inflammatory conditions such as arthritis, atherosclerosis, and multiple sclerosis. The contrast agent (CA) assisted imaging is the best possible solution to resolve the limitations of MRI. METHOD The literature review was carried out using the keywords, "MRI, T1&T2 relaxation, MRI CAs, delivery and adverse effects, classification of CAs." The tools used for the literature search were PubMed, Scopus, and Google Scholar. RESULT AND DISCUSSION The literature findings focus on MRI technique, limitations, and possible solutions. Primarily, the review focuses on the mechanism of CAs in image formation with detailed explanations of T1 and T2 relaxations, the mechanism of the MRI-CA image formations. This review presents the adverse effects of CA as well as available marketed formulations and recent patents to extent complete information about the MRI-CA. CONCLUSION MRI generates detailed visual information of various tissues with high resolution and contrast. The proton present in the biological fluid plays a crucial role in MR image formation, and it is unable to distinguish pathological conditions in many cases. The CAs are the best solution to resolve the limitation by interacting with native protons. The present review discusses the mechanism of CAs in contrast enhancement and its broad classification with the latest literature. Furthermore, the article presents information about CA biodistribution and adverse effects. The review concludes with an appropriate solution for adverse effects and presents the future prospective for researchers to develop advanced formulations.
Collapse
Affiliation(s)
- Snehal Khairnar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Namdev More
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Choppadandi Mounika
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Govinda Kapusetti
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India.
| |
Collapse
|
5
|
Zou Q, Zhang CJ, Yan YZ, Min ZJ, Li CS. MUC-1 aptamer targeted superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of pancreatic cancer in vivo and in vitro experiment. J Cell Biochem 2019; 120:18650-18658. [PMID: 31338877 DOI: 10.1002/jcb.28950] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
This study aims to explore the ability of magnetic resonance imaging (MRI) in mucin 1 (MUC1) modified superparamagnetic iron oxide nanoparticle (SPION) targeting human pancreatic cancer (PC). The MUC1 target-directed probe was prepared through MUC1 conjugated to SPION using the chemical method to assess its physiochemical characteristics, including hydration diameter, surface charge, and magnetic resonance signal. The cytotoxicity of MUC1-USPION was verified by MTS assay. BxPC-3 was cultured with MUC1-USPION and SPION in different concentrations. The combined condition of the targeted probes and cells were observed through Prussian blue staining. The nude mice model of pancreatic cancer was established to investigate the application of the probe. MRI was performed to determine the intensity of the signal of the transplanted tumor, while immunohistochemistry and Western blot analysis were performed to detect the expression of MUC1 after taking the transplanted tumor specimen. The particle size of the prepared molecular probe was 63.5 ± 3.2 nm, and the surface charge was 10.2 mV. Furthermore, the probe solution could significantly reduce the MRI at T2 , and the magnetic resonance transverse relaxation rate (ΔR2 ) has a linear relationship with the concentration of iron in the solution. The cell viability of MUC1-USPION in different concentrations revealed no statistical difference, according to the MTS assay. In vitro, the MRI demonstrated decreased T2WI signal intensity in both groups, especially the targeting group. In vivo, MUC1 could selectively accumulate in the nude mice model, and significantly reduce the T2 signal strength. In subsequent experiments, the expression of MUC1 was high in pancreatic cancer tissues, but low in normal pancreatic tissues, as determined by immunohistochemistry and Western blot analysis. The prepared samples can be combined with pancreatic cancer tissue specificity by in vivo imaging, providing reliable early in vivo imaging data for disease diagnosis.
Collapse
Affiliation(s)
- Qi Zou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai, China
| | - Chong-Jie Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai, China
| | - Yu-Zhong Yan
- Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhi-Jun Min
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai, China
| | - Chun-Sheng Li
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Vaidya T, Agrawal A, Mahajan S, Thakur MH, Mahajan A. The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part II). Mol Diagn Ther 2019; 23:27-51. [PMID: 30387041 DOI: 10.1007/s40291-018-0367-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present era of precision medicine sees "cancer" as a consequence of molecular derangements occurring at the commencement of the disease process, with morphological changes happening much later in the process of tumourigenesis. Conventional imaging techniques, such as computed tomography (CT), ultrasound (US) and magnetic resonance imaging (MRI) play an integral role in the detection of disease at the macroscopic level. However, molecular functional imaging (MFI) techniques entail the visualisation and quantification of biochemical and physiological processes occurring during tumourigenesis. MFI has the potential to play a key role in heralding the transition from the concept of "one-size-fits-all" treatment to "precision medicine". Integration of MFI with other fields of tumour biology such as genomics has spawned a novel concept called "radiogenomics", which could serve as an indispensable tool in translational cancer research. With recent advances in medical image processing, such as texture analysis, deep learning and artificial intelligence, the future seems promising; however, their clinical utility remains unproven at present. Despite the emergence of novel imaging biomarkers, the majority of these require validation before clinical translation is possible. In this two part review, we discuss the systematic collaboration across structural, anatomical and molecular imaging techniques that constitute MFI. Part I reviews positron emission tomography, radiogenomics, AI, and optical imaging, while part II reviews MRI, CT and ultrasound, their current status, and recent advances in the field of precision oncology.
Collapse
Affiliation(s)
- Tanvi Vaidya
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Tata Memorial Centre, Room No 125, Dr E Borges Road, Parel, Mumbai, Maharashtra, 400012, India
| | - Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400 012, India
| | - Shivani Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Tata Memorial Centre, Room No 125, Dr E Borges Road, Parel, Mumbai, Maharashtra, 400012, India
| | - M H Thakur
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Tata Memorial Centre, Room No 125, Dr E Borges Road, Parel, Mumbai, Maharashtra, 400012, India
| | - Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Tata Memorial Centre, Room No 125, Dr E Borges Road, Parel, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
7
|
Wu M, Shu J. Multimodal Molecular Imaging: Current Status and Future Directions. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:1382183. [PMID: 29967571 PMCID: PMC6008764 DOI: 10.1155/2018/1382183] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Molecular imaging has emerged at the end of the last century as an interdisciplinary method involving in vivo imaging and molecular biology aiming at identifying living biological processes at a cellular and molecular level in a noninvasive manner. It has a profound role in determining disease changes and facilitating drug research and development, thus creating new medical modalities to monitor human health. At present, a variety of different molecular imaging techniques have their advantages, disadvantages, and limitations. In order to overcome these shortcomings, researchers combine two or more detection techniques to create a new imaging mode, such as multimodal molecular imaging, to obtain a better result and more information regarding monitoring, diagnosis, and treatment. In this review, we first describe the classic molecular imaging technology and its key advantages, and then, we offer some of the latest multimodal molecular imaging modes. Finally, we summarize the great challenges, the future development, and the great potential in this field.
Collapse
Affiliation(s)
- Min Wu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Lajous H, Riva R, Lelièvre B, Tétaud C, Avril S, Hindré F, Boury F, Jérôme C, Lecomte P, Garcion E. Hybrid Gd3+/cisplatin cross-linked polymer nanoparticles enhance platinum accumulation and formation of DNA adducts in glioblastoma cell lines. Biomater Sci 2018; 6:2386-2409. [DOI: 10.1039/c8bm00346g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
New hybrid nanoparticles permitted MRI monitoring of a cisplatin infusion while enhancing drug accumulation and DNA adduct formation in glioblastoma cells.
Collapse
Affiliation(s)
- Hélène Lajous
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | - Raphaël Riva
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liège
- B-4000 Liège
- Belgium
| | - Bénédicte Lelièvre
- Centre régional de pharmacovigilance
- Laboratoire de pharmacologie-toxicologie
- CHU Angers
- F-49100 Angers
- France
| | - Clément Tétaud
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | - Sylvie Avril
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | | | - Frank Boury
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liège
- B-4000 Liège
- Belgium
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liège
- B-4000 Liège
- Belgium
| | | |
Collapse
|
9
|
Hashempour Alamdari N, Alaei-Beirami M, Sadat Shandiz SA, Hejazinia H, Rasouli R, Saffari M, Sadat Ebrahimi SE, Assadi A, Shafiee Ardestani M. Gd 3+-Asparagine-Anionic Linear Globular Dendrimer Second-Generation G2 Complexes: Novel Nanobiohybrid Theranostics. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:3625729. [PMID: 29097918 PMCID: PMC5635473 DOI: 10.1155/2017/3625729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/15/2017] [Indexed: 01/06/2023]
Abstract
Designing a unique theranostic biocompatible, biodegradable, and cost-effective agent which is easy to be synthesized as a biohybrid material was the aim of this study. In this matter, asparagine attached to anionic linear globular dendrimer G2 (as a biocompatible, biodegradable, and cost-effective agent which is negatively charged nanosized and water soluble polymer that outweighs other traditionally used dendrimers) and finally contrast agent (Gd3+) was loaded (which made complexes) in synthesized asparagine-dendrimer. Observations revealed that, in addition to successful colon cancer and brain targeting, Gd3+-dendrimer-asparagine, the proposed theranostic agent, could increase T1 MR relaxation times, decrease T2 MR relaxation times significantly, and improve contrast of image as well as illustrating good cellular uptake based on florescent microscopy/flow cytometry and ICP-mass data. In addition to that, it increased tumor growth inhibition percentage (TGI%) significantly compared to FDA approved contrast agent, Magnevist. Totally, Gd3+-anionic linear globular dendrimer G2-asparagine could be introduced to the cancer imaging/therapy (theranostics) protocols after in vivo MR and fluorescent analysis and passing clinical trials. Hence, this nanotheranostic agent would be a promising candidate for brain drug delivery and imaging in the future.
Collapse
Affiliation(s)
- Nasim Hashempour Alamdari
- Department of Radiopharmacy and Medicinal Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahmood Alaei-Beirami
- Drug Applied Research Center and Students' Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Hadi Hejazinia
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Rahimeh Rasouli
- Department of Medical Nanotechnology, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Saffari
- Department of Medical Nanotechnology, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Artin Assadi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
10
|
Bonvin D, Aschauer UJ, Bastiaansen JAM, Stuber M, Hofmann H, Mionić Ebersold M. Versatility of Pyridoxal Phosphate as a Coating of Iron Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E202. [PMID: 28758913 PMCID: PMC5575684 DOI: 10.3390/nano7080202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is the most important cofactor of vitamin B₆-dependent enzymes, which catalyses a wide range of essential body functions (e.g., metabolism) that could be exploited to specifically target highly metabolic cells, such as tumour metastatic cells. However, the use of PLP as a simultaneous coating and targeting molecule, which at once provides colloidal stability and specific biological effects has not been exploited so far. Therefore, in this work iron oxide nanoparticles (IONPs) were coated by PLP at two different pH values to tune PLP bonding (e.g., orientation) at the IONP surface. The surface study, as well as calculations, confirmed different PLP bonding to the IONP surface at these two pH values. Moreover, the obtained PLP-IONPs showed different zeta potential, hydrodynamic radius and agglomeration state, and consequently different uptake by two metastatic-prostate-cancer cell lines (LnCaP and PC3). In LnCaP cells, PLP modified the morphology of IONP-containing intracellular vesicles, while in PC3 cells PLP impacted the amount of IONPs taken up by cells. Moreover, PLP-IONPs displayed high magnetic resonance imaging (MRI) r₂ relaxivity and were not toxic for the two studied cell lines, rendering PLP promising for biomedical applications. We here report the use of PLP simultaneously as a coating and targeting molecule, directly bound to the IONP surface, with the additional high potential for MRI detection.
Collapse
Affiliation(s)
- Debora Bonvin
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Ulrich J Aschauer
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland.
| | - Jessica A M Bastiaansen
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland.
- Center of Biomedical Imaging (CIBM), Lausanne 1011, Switzerland.
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland.
- Center of Biomedical Imaging (CIBM), Lausanne 1011, Switzerland.
| | - Heinrich Hofmann
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Marijana Mionić Ebersold
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland.
- Center of Biomedical Imaging (CIBM), Lausanne 1011, Switzerland.
| |
Collapse
|
11
|
Lee CW, Choi SI, Lee SJ, Oh YT, Park G, Park NY, Yoon KA, Kim S, Kim D, Kim YH, Suh JS. The Effectiveness of Ferritin as a Contrast Agent for Cell Tracking MRI in Mouse Cancer Models. Yonsei Med J 2017; 58:51-58. [PMID: 27873495 PMCID: PMC5122652 DOI: 10.3349/ymj.2017.58.1.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 12/24/2022] Open
Abstract
PURPOSE We aimed to investigate the effectiveness of ferritin as a contrast agent and a potential reporter gene for tracking tumor cells or macrophages in mouse cancer models. MATERIALS AND METHODS Adenoviral human ferritin heavy chain (Ad-hFTH) was administrated to orthotopic glioma models and subcutaneous colon cancer mouse models using U87MG and HCT116 cells, respectively. Brain MR images were acquired before and daily for up to 6 days after the intracranial injection of Ad-hFTH. In the HCT116 tumor model, MR examinations were performed before and at 6, 24, and 48 h after intratumoral injection of Ad-hFTH, as well as before and every two days after intravenous injection of ferritin-labeled macrophages. The contrast effect of ferritin in vitro was measured by MR imaging of cell pellets. MRI examinations using a 7T MR scanner comprised a T1-weighted (T1w) spin-echo sequence, T2-weighted (T2w) relaxation enhancement sequence, and T2*-weighted (T2*w) fast low angle shot sequence. RESULTS Cell pellet imaging of Ad-hFTH in vitro showed a strong negatively enhanced contrast in T2w and T2*w images, presenting with darker signal intensity in high concentrations of Fe. T2w images of glioma and subcutaneous HCT116 tumor models showed a dark signal intensity around or within the Ad-hFTH tumor, which was distinct with time and apparent in T2*w images. After injection of ferritin-labeled macrophages, negative contrast enhancement was identified within the tumor. CONCLUSION Ferritin could be a good candidate as an endogenous MR contrast agent and a potential reporter gene that is capable of maintaining cell labeling stability and cellular safety.
Collapse
Affiliation(s)
- Chan Wha Lee
- Department of Medicine, The Graduate School of Yonsei University, Seoul, Korea
- Research Institute & Hospital, National Cancer Center, Goyang, Korea
| | - Sun Il Choi
- Research Institute & Hospital, National Cancer Center, Goyang, Korea
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Sang Jin Lee
- Research Institute & Hospital, National Cancer Center, Goyang, Korea
- Department of System Cancer Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang, Korea
| | - Young Taek Oh
- Research Institute & Hospital, National Cancer Center, Goyang, Korea
| | - Gunwoo Park
- Research Institute & Hospital, National Cancer Center, Goyang, Korea
| | - Na Yeon Park
- Department of System Cancer Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang, Korea
| | - Kyoung Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Sunshin Kim
- Research Institute & Hospital, National Cancer Center, Goyang, Korea
| | - Daehong Kim
- Research Institute & Hospital, National Cancer Center, Goyang, Korea.
| | - Yun Hee Kim
- Research Institute & Hospital, National Cancer Center, Goyang, Korea
- Department of System Cancer Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang, Korea.
| | - Jin Suck Suh
- Department of Medicine, The Graduate School of Yonsei University, Seoul, Korea
| |
Collapse
|
12
|
Bonvin D, Bastiaansen JAM, Stuber M, Hofmann H, Mionić Ebersold M. Folic acid on iron oxide nanoparticles: platform with high potential for simultaneous targeting, MRI detection and hyperthermia treatment of lymph node metastases of prostate cancer. Dalton Trans 2017; 46:12692-12704. [DOI: 10.1039/c7dt02139a] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Folic acid directly bound to the surface of iron oxide nanoparticles with simultaneously high targeting, MRI relaxivity and heating efficacy.
Collapse
Affiliation(s)
- Debora Bonvin
- Powder Technology Laboratory
- Insitute of Materials
- Ecole polytechnique fédérale de Lausanne
- Switzerland
| | - Jessica A. M. Bastiaansen
- Department of Radiology
- University Hospital (CHUV) and University of Lausanne (UNIL)
- Switzerland
- Center of Biomedical Imaging (CIBM)
- Lausanne
| | - Matthias Stuber
- Department of Radiology
- University Hospital (CHUV) and University of Lausanne (UNIL)
- Switzerland
- Center of Biomedical Imaging (CIBM)
- Lausanne
| | - Heinrich Hofmann
- Powder Technology Laboratory
- Insitute of Materials
- Ecole polytechnique fédérale de Lausanne
- Switzerland
| | - Marijana Mionić Ebersold
- Powder Technology Laboratory
- Insitute of Materials
- Ecole polytechnique fédérale de Lausanne
- Switzerland
- Department of Radiology
| |
Collapse
|
13
|
Nasiri R, Hamzehalipour Almaki J, Idris AB, Abdul Majid FA, Nasiri M, Salouti M, Irfan M, Amini N, Marvibaigi M. In vitro evaluation of actively targetable superparamagnetic nanoparticles to the folate receptor positive cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1147-58. [DOI: 10.1016/j.msec.2016.07.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 07/16/2016] [Accepted: 07/30/2016] [Indexed: 11/29/2022]
|
14
|
Dendrimer-Based Nanodevices as Contrast Agents for MR Imaging Applications. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/978-3-662-48544-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Affiliation(s)
| | - Tae-Hyun Shin
- Department of Chemistry, Yonsei University , Seoul, 120-749, Korea
| | - Jinwoo Cheon
- Department of Chemistry, Yonsei University , Seoul, 120-749, Korea
| | | |
Collapse
|
16
|
Banerjee SR, Ngen EJ, Rotz MW, Kakkad S, Lisok A, Pracitto R, Pullambhatla M, Chen Z, Shah T, Artemov D, Meade TJ, Bhujwalla ZM, Pomper MG. Synthesis and Evaluation of GdIII-Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostate-Specific Membrane Antigen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Banerjee SR, Ngen EJ, Rotz MW, Kakkad S, Lisok A, Pracitto R, Pullambhatla M, Chen Z, Shah T, Artemov D, Meade TJ, Bhujwalla ZM, Pomper MG. Synthesis and Evaluation of Gd(III) -Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostate-Specific Membrane Antigen. Angew Chem Int Ed Engl 2015. [PMID: 26212031 DOI: 10.1002/anie.201503417] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetic resonance (MR) imaging is advantageous because it concurrently provides anatomic, functional, and molecular information. MR molecular imaging can combine the high spatial resolution of this established clinical modality with molecular profiling in vivo. However, as a result of the intrinsically low sensitivity of MR imaging, high local concentrations of biological targets are required to generate discernable MR contrast. We hypothesize that the prostate-specific membrane antigen (PSMA), an attractive target for imaging and therapy of prostate cancer, could serve as a suitable biomarker for MR-based molecular imaging. We have synthesized three new high-affinity, low-molecular-weight Gd(III) -based PSMA-targeted contrast agents containing one to three Gd(III) chelates per molecule. We evaluated the relaxometric properties of these agents in solution, in prostate cancer cells, and in an in vivo experimental model to demonstrate the feasibility of PSMA-based MR molecular imaging.
Collapse
Affiliation(s)
- Sangeeta Ray Banerjee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA).
| | - Ethel J Ngen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Matthew W Rotz
- Chemistry, Northwestern University, Evanston, IL 60208 (USA)
| | - Samata Kakkad
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Ala Lisok
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Richard Pracitto
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Mrudula Pullambhatla
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Zhengping Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Tariq Shah
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Dmitri Artemov
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Thomas J Meade
- Chemistry, Northwestern University, Evanston, IL 60208 (USA)
| | - Zaver M Bhujwalla
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| |
Collapse
|
18
|
Hingorani DV, Bernstein AS, Pagel MD. A review of responsive MRI contrast agents: 2005-2014. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:245-65. [PMID: 25355685 PMCID: PMC4414668 DOI: 10.1002/cmmi.1629] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022]
Abstract
This review focuses on MRI contrast agents that are responsive to a change in a physiological biomarker. The response mechanisms are dependent on six physicochemical characteristics, including the accessibility of water to the agent, tumbling time, proton exchange rate, electron spin state, MR frequency or superparamagnetism of the agent. These characteristics can be affected by changes in concentrations or activities of enzymes, proteins, nucleic acids, metabolites, or metal ions, or changes in redox state, pH, temperature, or light. A total of 117 examples are presented, including ones that employ nuclei other than (1) H, which attests to the creativity of multidisciplinary research efforts to develop responsive MRI contrast agents.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Chemistry and Biochemistry, University of Arizona, USA
| | - Adam S Bernstein
- Department of Biomedical Engineering, University of Arizona, USA
| | - Mark D Pagel
- Department of Chemistry and Biochemistry, University of Arizona, USA
- Department of Biomedical Engineering, University of Arizona, USA
- Department of Medical Imaging, University of Arizona, USA
- University of Arizona Cancer Center, University of Arizona, USA
| |
Collapse
|
19
|
MacDonald ME, Frayne R. Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques. NMR IN BIOMEDICINE 2015; 28:767-791. [PMID: 26010775 DOI: 10.1002/nbm.3322] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Cerebrovascular imaging is of great interest in the understanding of neurological disease. MRI is a non-invasive technology that can visualize and provide information on: (i) the structure of major blood vessels; (ii) the blood flow velocity in these vessels; and (iii) the microcirculation, including the assessment of brain perfusion. Although other medical imaging modalities can also interrogate the cerebrovascular system, MR provides a comprehensive assessment, as it can acquire many different structural and functional image contrasts whilst maintaining a high level of patient comfort and acceptance. The extent of examination is limited only by the practicalities of patient tolerance or clinical scheduling limitations. Currently, MRI methods can provide a range of metrics related to the cerebral vasculature, including: (i) major vessel anatomy via time-of-flight and contrast-enhanced imaging; (ii) blood flow velocity via phase contrast imaging; (iii) major vessel anatomy and tissue perfusion via arterial spin labeling and dynamic bolus passage approaches; and (iv) venography via susceptibility-based imaging. When designing an MRI protocol for patients with suspected cerebral vascular abnormalities, it is appropriate to have a complete understanding of when to use each of the available techniques in the 'MR angiography toolkit'. In this review article, we: (i) overview the relevant anatomy, common pathologies and alternative imaging modalities; (ii) describe the physical principles and implementations of the above listed methods; (iii) provide guidance on the selection of acquisition parameters; and (iv) describe the existing and potential applications of MRI to the cerebral vasculature and diseases. The focus of this review is on obtaining an understanding through the application of advanced MRI methodology of both normal and abnormal blood flow in the cerebrovascular arteries, capillaries and veins.
Collapse
Affiliation(s)
- Matthew Ethan MacDonald
- Biomedical Engineering, Radiology, and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Richard Frayne
- Biomedical Engineering, Radiology, and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Sakulkhu U, Mahmoudi M, Maurizi L, Coullerez G, Hofmann-Amtenbrink M, Vries M, Motazacker M, Rezaee F, Hofmann H. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomater Sci 2015. [DOI: 10.1039/c4bm00264d] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We showed that protein corona is strongly dependent on the coating of the material.
Collapse
Affiliation(s)
- Usawadee Sakulkhu
- Laboratory of Powder Technology
- Ecole Polytechnique Fédérale de Lausanne
- Lausanne
- Switzerland
| | - Morteza Mahmoudi
- Nanotechnology Research Center and Department of Nanotechnology
- Faculty of Pharmacy
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Lionel Maurizi
- Laboratory of Powder Technology
- Ecole Polytechnique Fédérale de Lausanne
- Lausanne
- Switzerland
| | - Geraldine Coullerez
- Laboratory of Powder Technology
- Ecole Polytechnique Fédérale de Lausanne
- Lausanne
- Switzerland
| | | | - Marcel Vries
- University Medical Center Groningen (UMCG)University of Groningen
- Groningen
- The Netherlands
| | - Mahdi Motazacker
- Department for Experimental and Molecular Medicine
- Academic Medical Center
- University of Amsterdam
- Amsterdam
- The Netherlands
| | - Farhad Rezaee
- University Medical Center Groningen (UMCG)University of Groningen
- Groningen
- The Netherlands
| | - Heinrich Hofmann
- Laboratory of Powder Technology
- Ecole Polytechnique Fédérale de Lausanne
- Lausanne
- Switzerland
| |
Collapse
|
21
|
Liu DF, Qian C, An YL, Chang D, Ju SH, Teng GJ. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles. NANOSCALE 2014; 6:15161-7. [PMID: 25374303 DOI: 10.1039/c4nr03942d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.
Collapse
Affiliation(s)
- Dong-Fang Liu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China.
| | | | | | | | | | | |
Collapse
|
22
|
Wabler M, Zhu W, Hedayati M, Attaluri A, Zhou H, Mihalic J, Geyh A, DeWeese TL, Ivkov R, Artemov D. Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content. Int J Hyperthermia 2014; 30:192-200. [PMID: 24773041 DOI: 10.3109/02656736.2014.913321] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Magnetic iron oxide nanoparticles (MNPs) are used as contrast agents for magnetic resonance imaging (MRI) and hyperthermia for cancer treatment. The relationship between MRI signal intensity and cellular iron concentration for many new formulations, particularly MNPs having magnetic properties designed for heating in hyperthermia, is lacking. In this study, we examine the correlation between MRI T2 relaxation time and iron content in cancer cells loaded with various MNP formulations. MATERIALS AND METHODS Human prostate carcinoma DU-145 cells were loaded with starch-coated bionised nanoferrite (BNF), iron oxide (Nanomag® D-SPIO), Feridex™, and dextran-coated Johns Hopkins University (JHU) particles at a target concentration of 50 pg Fe/cell using poly-D-lysine transfection reagent. T2-weighted MRI of serial dilutions of these labelled cells was performed at 9.4 T and iron content quantification was performed using inductively coupled plasma mass spectrometry (ICP-MS). Clonogenic assay was used to characterise cytotoxicity. RESULTS No cytotoxicity was observed at twice the target intracellular iron concentration (∼100 pg Fe/cell). ICP-MS revealed highest iron uptake efficiency with BNF and JHU particles, followed by Feridex and Nanomag-D-SPIO, respectively. Imaging data showed a linear correlation between increased intracellular iron concentration and decreased T2 times, with no apparent correlation among MNP magnetic properties. CONCLUSIONS This study demonstrates that for the range of nanoparticle concentrations internalised by cancer cells the signal intensity of T2-weighted MRI correlates closely with absolute iron concentration associated with the cells. This correlation may benefit applications for cell-based cancer imaging and therapy including nanoparticle-mediated drug delivery and hyperthermia.
Collapse
Affiliation(s)
- Michele Wabler
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , Baltimore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Do MA, Yoon GJ, Yeum JH, Han M, Chang Y, Choi JH. Polyethyleneimine-mediated synthesis of superparamagnetic iron oxide nanoparticles with enhanced sensitivity in T 2 magnetic resonance imaging. Colloids Surf B Biointerfaces 2014; 122:752-759. [DOI: 10.1016/j.colsurfb.2014.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/08/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023]
|
24
|
Bates D, Abraham S, Campbell M, Zehbe I, Curiel L. Development and characterization of an antibody-labeled super-paramagnetic iron oxide contrast agent targeting prostate cancer cells for magnetic resonance imaging. PLoS One 2014; 9:e97220. [PMID: 24819929 PMCID: PMC4018298 DOI: 10.1371/journal.pone.0097220] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/16/2014] [Indexed: 12/11/2022] Open
Abstract
In this study we developed, characterized and validated in vitro a functional superparagmagnetic iron-oxide based magnetic resonance contrast agent by conjugating a commercially available iron oxide nanoparticle, Molday ION Rhodamine-B Carboxyl (MIRB), with a deimmunized mouse monoclonal antibody (muJ591) targeting prostate-specific membrane antigen (PSMA). This functional contrast agent is intended for the specific and non-invasive detection of prostate cancer cells that are PSMA positive, a marker implicated in prostate tumor progression and metastasis. The two-step carbodiimide reaction used to conjugate the antibody to the nanoparticle was efficient and we obtained an elemental iron content of 1958±611 per antibody. Immunofluorescence microscopy and flow cytometry showed that the conjugated muJ591:MIRB complex specifically binds to PSMA-positive (LNCaP) cells. The muJ591:MIRB complex reduced cell adhesion and cell proliferation on LNCaP cells and caused apoptosis as tested by Annexin V assay, suggesting anti-tumorigenic characteristics. Measurements of the T2 relaxation time of the muJ591:MIRB complex using a 400 MHz Innova NMR and a multi-echo spin-echo sequence on a 3T MRI (Achieva, Philips) showed a significant T2 relaxation time reduction for the muJ591:MIRB complex, with a reduced T2 relaxation time as a function of the iron concentration. PSMA-positive cells treated with muJ591:MIRB showed a significantly shorter T2 relaxation time as obtained using a 3T MRI scanner. The reduction in T2 relaxation time for muJ591:MIRB, combined with its specificity against PSMA+LNCaP cells, suggest its potential as a biologically-specific MR contrast agent.
Collapse
Affiliation(s)
- David Bates
- Thunder Bay Regional Research Institute, Ontario, Canada
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Suraj Abraham
- Thunder Bay Regional Research Institute, Ontario, Canada
| | - Michael Campbell
- Thunder Bay Regional Research Institute, Ontario, Canada
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada
| | - Ingeborg Zehbe
- Thunder Bay Regional Research Institute, Ontario, Canada
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Laura Curiel
- Thunder Bay Regional Research Institute, Ontario, Canada
- Department of Physics, Lakehead University, Thunder Bay, Ontario, Canada
- * E-mail:
| |
Collapse
|
25
|
Blanchette M, Tremblay L, Lepage M, Fortin D. Impact of drug size on brain tumor and brain parenchyma delivery after a blood-brain barrier disruption. J Cereb Blood Flow Metab 2014; 34:820-6. [PMID: 24517973 PMCID: PMC4013755 DOI: 10.1038/jcbfm.2014.14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/02/2014] [Indexed: 11/09/2022]
Abstract
Drug delivery to the brain is influenced by the blood-brain barrier (BBB) and blood-tumor barrier (BTB) to an extent that is still debated in neuro-oncology. In this paper, we studied the delivery across the BTB and the BBB of compounds with different molecular sizes in normal and glioma-bearing rats. Studies were performed at baseline as well as after an osmotic BBB disruption (BBBD) using dynamic contrast-enhanced magnetic resonance imaging and two T₁ contrast agents (CAs), Magnevist (743 Da) and Gadomer (17,000 Da). More specifically, we determined the time window for the BBB permeability, the distribution and we calculated the brain exposure to the CAs. A different pattern of accumulation and distribution at baseline as well as after a BBBD procedure was observed for both agents, which is consistent with their different molecular size and weight. Baseline tumor exposure was threefold higher for Magnevist compared with Gadomer, whereas postBBBD tumor exposure was twofold higher for Magnevist. Our study clearly showed that the time window and the extent of delivery across the intact, as well as permeabilized BTB and BBB are influenced by drug size.
Collapse
Affiliation(s)
- Marie Blanchette
- Département de médecine nucléaire et radiobiologie, Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luc Tremblay
- Département de médecine nucléaire et radiobiologie, Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martin Lepage
- Département de médecine nucléaire et radiobiologie, Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - David Fortin
- Département de chirurgie, service de neurochirurgie et de neuro-oncologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
26
|
Zhang L, Zhou H, Belzile O, Thorpe P, Zhao D. Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. J Control Release 2014; 183:114-23. [PMID: 24698945 DOI: 10.1016/j.jconrel.2014.03.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/24/2014] [Indexed: 11/30/2022]
Abstract
Phosphatidylserine (PS) that is normally constrained to the inner plasma membrane becomes exposed on the surface of endothelial cells (ECs) in tumor vasculature. In the present study, we report the development of a novel tumor vasculature-targeted liposomal nanoprobe by conjugating a human monoclonal antibody, PGN635 that specifically targets PS to polyethylene glycol-coated liposomes. MR contrast, superparamagnetic iron oxide nanoparticles (SPIO) were packed into the core of liposomes, while near-infrared dye, DiR was incorporated into the lipophilic bilayer. The liposomal nanoprobe PGN-L-IO/DiR was fully characterized, and its binding specificity and subsequent internalization into PS-exposed vascular ECs was confirmed by in vitro MRI and histological staining. In vivo longitudinal MRI and optical imaging were performed after i.v. injection of the liposomal nanoprobes into mice bearing breast MDA-MB231 tumors. At 9.4T, T2-weighted MRI detected drastic reduction on signal intensity and T2 values of tumors at 24h. Ionizing radiation significantly increased PS exposure on tumor vascular ECs, resulting in a further MRI signal loss of tumors. Concurrent with MRI, optical imaging revealed a clear tumor contrast at 24h. Intriguingly, PGN-L-IO/DiR exhibited distinct pharmacokinetics and biodistribution with significantly reduced accumulations in liver or spleen. Localization of PGN-L-IO/DiR to tumor was antigen specific, since a control probe of irrelevant specificity showed minimal accumulation in the tumors. Our studies indicate that PS-targeted liposomes may provide a useful platform for tumor-targeted delivery of imaging contrast agents or potentially anti-cancer drugs for cancer theranostics.
Collapse
Affiliation(s)
- Liang Zhang
- Radiology, UT Southwestern Medical Center, Dallas, USA
| | - Heling Zhou
- Radiology, UT Southwestern Medical Center, Dallas, USA
| | | | - Philip Thorpe
- Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Dawen Zhao
- Radiology, UT Southwestern Medical Center, Dallas, USA.
| |
Collapse
|
27
|
Akbulut M, D’Addio SM, Gindy ME, Prud’homme RK. Novel methods of targeted drug delivery: the potential of multifunctional nanoparticles. Expert Rev Clin Pharmacol 2014; 2:265-82. [DOI: 10.1586/ecp.09.4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Molecular imaging of EGFR/HER2 cancer biomarkers by protein MRI contrast agents. J Biol Inorg Chem 2013; 19:259-70. [PMID: 24366655 DOI: 10.1007/s00775-013-1076-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/06/2013] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR) and HER2 are major prognosis biomarkers and drug targets overexpressed in various types of cancer cells. There is a pressing need to develop MRI contrast agents capable of enhancing the contrast between normal tissues and tumors with high relaxivity, capable of targeting tumors, and with high intratumoral distribution and minimal toxicity. In this review, we first discuss EGFR signaling and its role in tumor progression as a major drug target. We then report our progress in the development of protein contrast agents with significant improvement of both r1 and r2 relaxivities, pharmacokinetics, in vivo retention time, and in vivo dose efficiency. Finally, we report our effort in the development of EGFR-targeted protein contrast agents with the capability to cross the endothelial boundary and with good tissue distribution across the entire tumor mass. The noninvasive capability of MRI to visualize spatially and temporally the intratumoral distribution as well as quantify the levels of EGFR and HER2 would greatly improve our ability to track changes of the biomarkers during tumor progression, monitor treatment efficacy, aid in patient selection, and further develop novel targeted therapies for clinical application.
Collapse
|
29
|
Wu X, Lindner D, Yu GP, Brady-Kalnay S, Lu ZR. MR molecular imaging of prostate cancer with a small molecular CLT1 peptide targeted contrast agent. J Vis Exp 2013. [PMID: 24056726 DOI: 10.3791/50565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Tumor extracellular matrix has abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. In this work, we demonstrated effective MR cancer molecular imaging with a small molecular peptide targeted Gd-DOTA monoamide complex as a targeted MRI contrast agent specific to clotted plasma proteins in tumor stroma. We performed the experiment of evaluating the effectiveness of the agent for non-invasive detection of prostate tumor with MRI in a mouse orthotopic PC-3 prostate cancer model. The targeted contrast agent was effective to produce significant tumor contrast enhancement at a low dose of 0.03 mmol Gd/kg. The peptide targeted MRI contrast agent is promising for MR molecular imaging of prostate tumor.
Collapse
Affiliation(s)
- Xueming Wu
- Department of Biomedical Engineering, Case Western Reserve University
| | | | | | | | | |
Collapse
|
30
|
Zohdiaghdam R, Riyahi-Alam N, Moghimi HR, Haghgoo S, Alinaghi A, Azizian G, Ghanaati H, Gorji E, Rafiei B. Development of a novel lipidic nanoparticle probe using liposomal encapsulated Gd₂O₃-DEG for molecular MRI. J Microencapsul 2013; 30:613-23. [PMID: 23915304 DOI: 10.3109/02652048.2013.770095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, it has been showed that gadolinium oxide nanoparticles can provide high-contrast enhancement in magnetic resonance imaging (MRI). Moreover, liposomes due to high biocompatibility have shown unique model systems, with the most successful application being the drug delivery system. As a suitable cell-tracking contrast agent (CA) in molecular MRI (mMRI), the synthesis and optimisation characteristic of a novel paramagnetic liposomes (PMLs) based on gadolinium nanoparticles, essentially composed of a new complex of gadolinium oxide-diethylene glycol (Gd₂O₃-DEG) loaded in liposomes have been determined in this research. Gd₂O₃-DEG was prepared by a new supervised polyol method and was encapsulated with liposome by the film hydration method. The paramagnetic liposome nanoparticle (PMLN) sizes ranged from 65 to 170 nm. The r₁ of PMLNs and Gd₂O₃-DEG were much higher than that of Gd-diethylenetriamine penta-acetic acid (Gd-DTPA). In MC/9 cell lines, the experiments showed similar results as in water. PMLNs with lower T₁ than Gd-DTPA are sensitive, positive MRI CA that could be attractive candidates for cellular and molecular lipid content targets such as diagnostic applications.
Collapse
Affiliation(s)
- R Zohdiaghdam
- Medical Physics Department, School of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Irure A, Marradi M, Arnáiz B, Genicio N, Padro D, Penadés S. Sugar/gadolinium-loaded gold nanoparticles for labelling and imaging cells by magnetic resonance imaging. Biomater Sci 2013; 1:658-668. [PMID: 32481838 DOI: 10.1039/c3bm60032g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeted magnetic resonance imaging (MRI) probes for selective cell labelling and tracking are highly desired. We here present biocompatible sugar-coated paramagnetic Gd-based gold nanoparticles (Gd-GNPs) and test them as MRI T1 reporters in different cellular lines at a high magnetic field (11.7 T). With an average number of 20 Gd atoms per nanoparticle, Gd-GNPs show relaxivity values r1 ranging from 7 to 18 mM-1 s-1 at 1.41 T. The multivalent presentation of carbohydrates on the Gd-GNPs enhances the avidity of sugars for carbohydrate-binding receptors at the cell surface and increases the local concentration of the probes. A large reduction in longitudinal relaxation times T1 is achieved with both fixed cells and live cells. Differences in cellular labelling are obtained by changing the type of sugar on the gold surface, indicating that simple monosaccharides and disaccharides are able to modulate the cellular uptake. These results stress the benefits of using sugars to produce nanoparticles for cellular labelling. To the best of our knowledge this is the first report on labelling and imaging cells with Gd-based gold nanoparticles which use simple sugars as receptor reporters.
Collapse
Affiliation(s)
- Ainhoa Irure
- Laboratory of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, P° Miramón 182, 20009 San Sebastián, Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Rashid HU, Yu K, Zhou J. Lanthanide(III) chelates as MRI contrast agents: A brief description. J STRUCT CHEM+ 2013. [DOI: 10.1134/s002247661301037x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Abstract
Molecular imaging fundamentally changes the way we look at cancer. Imaging paradigms are now shifting away from classical morphological measures towards the assessment of functional, metabolic, cellular, and molecular information in vivo. Interdisciplinary driven developments of imaging methodology and probe molecules utilizing animal models of human cancers have enhanced our ability to non-invasively characterize neoplastic tissue and follow anti-cancer treatments. Preclinical molecular imaging offers a whole palette of excellent methodology to choose from. We will focus on positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques, since they provide excellent and complementary molecular imaging capabilities and bear high potential for clinical translation. Prerequisites and consequences of using animal models as surrogates of human cancers in preclinical molecular imaging are outlined. We present physical principles, values and limitations of PET and MRI as molecular imaging modalities and comment on their high potential to non-invasively assess information on hypoxia, angiogenesis, apoptosis, gene expression, metabolism, and cell trafficking in preclinical cancer research.
Collapse
Affiliation(s)
- Gunter Wolf
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
34
|
Zhou Z, Lu ZR. Gadolinium-based contrast agents for magnetic resonance cancer imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 5:1-18. [PMID: 23047730 DOI: 10.1002/wnan.1198] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is a clinical imaging modality effective for anatomical and functional imaging of diseased soft tissues, including solid tumors. MRI contrast agents (CA) have been routinely used for detecting tumor at an early stage. Gadolinium-based CA are the most commonly used CA in clinical MRI. There have been significant efforts to design and develop novel Gd(III) CA with high relaxivity, low toxicity, and specific tumor binding. The relaxivity of the Gd(III) CA can be increased by proper chemical modification. The toxicity of Gd(III) CA can be reduced by increasing the agents' thermodynamic and kinetic stability, as well as optimizing their pharmacokinetic properties. The increasing knowledge in the field of cancer genomics and biology provides an opportunity for designing tumor-specific CA. Various new Gd(III) chelates have been designed and evaluated in animal models for more effective cancer MRI. This review outlines the design and development, physicochemical properties, and in vivo properties of several classes of Gd(III)-based MR CA tumor imaging.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
35
|
Zhao S, Lin X, Zhang L, Sun L, Li J, Yang W, Sun Z. THE IN VIVO INVESTIGATION OF Fe3O4-NANOPARTICLES ACUTE TOXICITY IN MICE. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237212500056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To observe acute toxicity of naked Fe3O4 -nanoparticles in mice, ICR mice were selected and exposed once to naked Fe3O4 -nanoparticles by tail intravenous injection with different doses, i.e. 0, 102.4, 128, 160, 200, 250 mg/kg of body weight. 15 days later, Fe3O4 distribution and pathologic changes in main organs were investigated. By tail intravenous injection, LD50 of naked Fe3O4 -nanoparticles in mice was 163.60 mg/kg of body weight (147.58, 181.37 mg/kg of body weight, 95% confidence interval). Deaths of mice mainly caused by decompensation and twitching were observed. Immediately after injection, nanoparticles performed fast distribution in lung, liver, spleen etc, yet little were traced in brain, heart and kidney. 15 days after injection, apparent decline of nanoparticles content in lung and spleen was observed, whereas in liver the content rose. Pathologic detection indicated local particle denaturation and necrosis in the cardiac tissue. Protein cast was seen in several kidney tubules, and extravasated blood in carunculae papillaris, yet no pathologic changes were observed in other organs. LD50 of Fe3O4 nanoparticles (9 nm) by means of tail intravenous injection is 163.60 mg/kg, and they mainly distributed in liver, spleen, lung and caused denaturation and necrosis in the cardiac muscle and malfunction of kidney. Also, the process of excreting the particles takes a long time.
Collapse
Affiliation(s)
- Shuhua Zhao
- School of Public Health, Jilin University, Changchun, Jilin, 130021, P. R. China
| | - Xinli Lin
- School of Public Health, Jilin University, Changchun, Jilin, 130021, P. R. China
| | - Long Zhang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, P. R. China
| | - Lei Sun
- School of Public Health, Jilin University, Changchun, Jilin, 130021, P. R. China
| | - Jun Li
- School of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Wensheng Yang
- School of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Zhiwei Sun
- School of Public Health, Jilin University, Changchun, Jilin, 130021, P. R. China
- School of Public Health and Family Medicine, Capital Medical University, Beijing, 100069, P. R. China
| |
Collapse
|
36
|
Vithanarachchi SM, Allen MJ. Strategies for Target-Specific Contrast Agents for Magnetic Resonance Imaging. ACTA ACUST UNITED AC 2012; 1:12-25. [PMID: 23316452 DOI: 10.2174/2211555211201010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes recent research efforts focused on increasing the specificity of contrast agents for proton magnetic resonance imaging (MRI). Contrast agents play an indispensable role in MRI by enhancing the inherent contrast of images; however, the non-specific nature of current clinical contrast agents limits their usefulness. This limitation can be addressed by conjugating contrast agents or contrast-agent-loaded carriers-including polymers, nanoparticles, dendrimers, and liposomes-to molecules that bind to biological sites of interest. An alternative approach to conjugation is synthetically mimicking biological structures with metal complexes that are also contrast agents. In this review, we describe the advantages and limitations of these two targeting strategies with respect to translation from in vitro to in vivo imaging while focusing on advances from the last ten years.
Collapse
|
37
|
Bernard ED, Beking MA, Rajamanickam K, Tsai EC, Derosa MC. Target binding improves relaxivity in aptamer-gadolinium conjugates. J Biol Inorg Chem 2012; 17:1159-75. [PMID: 22903502 DOI: 10.1007/s00775-012-0930-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 07/29/2012] [Indexed: 11/24/2022]
Abstract
MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer-gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist(®). The stability of the conjugated DNA aptamer-DTPA-Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA-Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.
Collapse
Affiliation(s)
- Elyse D Bernard
- Department of Chemistry, Ottawa-Carleton Chemistry Institute, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | | | | | | | | |
Collapse
|
38
|
Wu X, Burden-Gulley SM, Yu GP, Tan M, Lindner D, Brady-Kalnay SM, Lu ZR. Synthesis and evaluation of a peptide targeted small molecular Gd-DOTA monoamide conjugate for MR molecular imaging of prostate cancer. Bioconjug Chem 2012; 23:1548-56. [PMID: 22812444 DOI: 10.1021/bc300009t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tumor extracellular matrix has an abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. Innovative design and development of safe and effective targeted contrast agents to these biomarkers would allow effective MR cancer molecular imaging with high spatial resolution. In this study, we synthesized a low molecular weight CLT1 peptide targeted Gd(III) chelate CLT1-dL-(Gd-DOTA)(4) specific to clotted plasma proteins in tumor stroma for cancer MR molecular imaging. CLT1-dL-(Gd-DOTA)(4) was synthesized by conjugating four Gd-DOTA monoamide chelates to a CLT1 peptide via generation 1 lysine dendrimer. The T(1) relaxivity of CLT1-dL-(Gd-DOTA)(4) was 40.4 mM(-1) s(-1) per molecule (10.1 mM(-1) s(-1) per Gd) at 37 °C and 1.5 T. Fluorescence imaging showed high binding specificity of CLT1 to orthotopic PC3 prostate tumor in mice. The contrast agent resulted in improved tumor contrast enhancement in male athymic nude mice bearing orthotopic PC3 prostate tumor xenograft at a dose of 0.03 mmol Gd/kg. The peptide targeted MRI contrast agent is promising for high-resolution MR molecular imaging of prostate tumor.
Collapse
Affiliation(s)
- Xueming Wu
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Illy N, Majonis D, Herrera I, Ornatsky O, Winnik MA. Metal-Chelating Polymers by Anionic Ring-Opening Polymerization and Their Use in Quantitative Mass Cytometry. Biomacromolecules 2012; 13:2359-69. [DOI: 10.1021/bm300613x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nicolas Illy
- Department
of Chemistry, University
of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S3H6
| | - Daniel Majonis
- Department
of Chemistry, University
of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S3H6
| | - Isaac Herrera
- Department
of Chemistry, University
of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S3H6
| | - Olga Ornatsky
- Department
of Chemistry, University
of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S3H6
| | - Mitchell A. Winnik
- Department
of Chemistry, University
of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S3H6
| |
Collapse
|
40
|
Kumar M, Singh G, Arora V, Mewar S, Sharma U, Jagannathan NR, Sapra S, Dinda AK, Kharbanda S, Singh H. Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells. Int J Nanomedicine 2012; 7:3503-16. [PMID: 22848174 PMCID: PMC3405889 DOI: 10.2147/ijn.s32694] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of the study was to develop tumor specific, water dispersible superparamagnetic iron oxide nanoparticles (SPIONs) and evaluate their efficacy as a contrast agent in magnetic resonance imaging (MRI). We have developed SPIONs capped with citric acid/2-bromo-2-methylpropionic acid which are compact, water dispersible, biocompatible having narrow range of size dispersity (8–10 nm), and relatively high T2 relaxivity (R2 = 222L · mmol−1 · sec−l). The targeting efficacy of unconjugated and folic acid-conjugated SPIONs (FA-SPIONS) was evaluated in a folic acid receptor overexpressing and negative tumor cell lines. Folic acid receptor-positive cells incubated with FA-SPIONs showed much higher intracellular iron content without any cytotoxicity. Ultrastructurally, SPIONs were seen as clustered inside the various stages of endocytic pathways without damaging cellular organelles and possible mechanism for their entry is via receptor mediated endocytosis. In vitro MRI studies on tumor cells showed better T2-weighted images in FA-SPIONs. These findings indicate that FA-SPIONs possess high colloidal stability with excellent sensitivity of imaging and can be a useful MRI contrast agent for the detection of cancer.
Collapse
Affiliation(s)
- Manoj Kumar
- Center for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Poulin E, Lebel R, Croteau E, Blanchette M, Tremblay L, Lecomte R, Bentourkia M, Lepage M. Conversion of arterial input functions for dual pharmacokinetic modeling using Gd-DTPA/MRI and 18F-FDG/PET. Magn Reson Med 2012; 69:781-92. [PMID: 22570280 DOI: 10.1002/mrm.24318] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 01/15/2023]
Abstract
Reaching the full potential of magnetic resonance imaging (MRI)-positron emission tomography (PET) dual modality systems requires new methodologies in quantitative image analyses. In this study, methods are proposed to convert an arterial input function (AIF) derived from gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) in MRI, into a (18)F-fluorodeoxyglucose ((18)F-FDG) AIF in PET, and vice versa. The AIFs from both modalities were obtained from manual blood sampling in a F98-Fisher glioblastoma rat model. They were well fitted by a convolution of a rectangular function with a biexponential clearance function. The parameters of the biexponential AIF model were found statistically different between MRI and PET. Pharmacokinetic MRI parameters such as the volume transfer constant (K(trans)), the extravascular-extracellular volume fraction (ν(e)), and the blood volume fraction (ν(p)) calculated with the Gd-DTPA AIF and the Gd-DTPA AIF converted from (18)F-FDG AIF normalized with or without blood sample were not statistically different. Similarly, the tumor metabolic rates of glucose (TMRGlc) calculated with (18) F-FDG AIF and with (18) F-FDG AIF obtained from Gd-DTPA AIF were also found not statistically different. In conclusion, only one accurate AIF would be needed for dual MRI-PET pharmacokinetic modeling in small animal models.
Collapse
Affiliation(s)
- Eric Poulin
- Centre d'Imagerie Moléculaire de Sherbrooke, Département de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu D, Wu W, Chen X, Wen S, Zhang X, Ding Q, Teng G, Gu N. Conjugation of paclitaxel to iron oxide nanoparticles for tumor imaging and therapy. NANOSCALE 2012; 4:2306-2310. [PMID: 22362270 DOI: 10.1039/c2nr11918h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A strategy for conjugating an antitumor agent to superparamagnetic iron oxide nanoparticles (SPIONs) via a biocleavable ester binding is reported. Paclitaxel (PTX) was selected as a model drug. Both the in vitro and in vivo performance of the conjugates of SPION-PTX was investigated respectively. PTX can be released slowly through the hydrolysis of the ester bond in a pH-dependent manner and the SPION-PTX has near equal cytotoxity to the clinical PTX injection (Taxol) at the equivalent dose of PTX. Furthermore, the SPION-PTX can accumulate in tumor tissues as demonstrated by MRI and exhibit better tumor suppression effect than Taxol in vivo. The above good performance of the SPION-PTX together with the good biocompatibility of the SPIONs would promote greatly the application of the SPIONs in the biomedicine field.
Collapse
Affiliation(s)
- Dongfang Liu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wolters M, Oostendorp M, Coolen BF, Post MJ, Janssen JMH, Strijkers GJ, Kooi ME, Nicolay K, Backes WH. Efficacy of positive contrast imaging techniques for molecular MRI of tumor angiogenesis. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:130-9. [DOI: 10.1002/cmmi.471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M. Wolters
- Cardiovascular Research Institute Maastricht; Maastricht University Medical Center; Maastricht the Netherlands
- Biomedical NMR, Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| | - M. Oostendorp
- Cardiovascular Research Institute Maastricht; Maastricht University Medical Center; Maastricht the Netherlands
- Department of Radiology; Maastricht University Medical Center; Maastricht the Netherlands
- Laboratory of Clinical Chemistry and Haematology; University Medical Centre Utrecht; the Netherlands
| | - B. F. Coolen
- Biomedical NMR, Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| | - M. J. Post
- Cardiovascular Research Institute Maastricht; Maastricht University Medical Center; Maastricht the Netherlands
- Department of Physiology; Maastricht University Medical Center; Maastricht the Netherlands
| | - J. M. H. Janssen
- Department of Pathology; Maastricht University Medical Center; Maastricht the Netherlands
| | - G. J. Strijkers
- Biomedical NMR, Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| | - M. E. Kooi
- Cardiovascular Research Institute Maastricht; Maastricht University Medical Center; Maastricht the Netherlands
- Department of Radiology; Maastricht University Medical Center; Maastricht the Netherlands
| | - K. Nicolay
- Biomedical NMR, Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| | - W. H. Backes
- Cardiovascular Research Institute Maastricht; Maastricht University Medical Center; Maastricht the Netherlands
- Department of Radiology; Maastricht University Medical Center; Maastricht the Netherlands
| |
Collapse
|
44
|
Varna M, Ratajczak P, Ferreira I, Leboeuf C, Bousquet G, Janin A. <i>In vivo</i> Distribution of Inorganic Nanoparticles in Preclinical Models. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbnb.2012.322033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 2011; 112:2373-433. [PMID: 22204603 DOI: 10.1021/cr100449n] [Citation(s) in RCA: 1617] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rajib Ghosh Chaudhuri
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769 008, Orissa, India
| | | |
Collapse
|
46
|
Li S, Jiang J, Zou J, Qiao J, Xue S, Wei L, Long R, Wang L, Castiblanco A, White N, Ngo J, Mao H, Liu ZR, Yang JJ. PEGylation of protein-based MRI contrast agents improves relaxivities and biocompatibilities. J Inorg Biochem 2011; 107:111-8. [PMID: 22178673 DOI: 10.1016/j.jinorgbio.2011.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 10/15/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
Abstract
Magnetic resonance imaging (MRI) has emerged as a leading diagnostic technique in clinical and preclinical settings. However, the application of MRI to assess specific disease markers for diagnosis and monitoring drug effect has been severely hampered by the lack of desired contrast agents with high relaxivities, and optimized in vivo retention time. We have reported the development of protein-based MRI contrast agents (ProCA1) by rational design of Gd(3+) binding sites into a stable protein resulting in significantly increased longitudinal (r(1)) and transverse (r(2)) relaxivities compared to Gd-DTPA. Here, we report a further improvement of protein contrast agents ProCA1 for in vivo imaging by protein modification with various sizes of polyethylene glycol (PEG) chain. PEGylation results in significant increases of both r(1) and r(2) relaxivities (up to 200%), and these high relaxivities persist even at field strengths up to 9.4 T. In addition, our experimental results demonstrate that modified contrast agents have significant improvement of in vivo MR imaging and biocompatibilities including dose efficiency, protein solubility, blood retention time and decreased immunogenicity. Such improvement can be important to the animal imaging and pre-clinical research at high or ultra-high field where there is an urgent need for molecular imaging probes and optimized contrast agent.
Collapse
Affiliation(s)
- Shunyi Li
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Due to their high magnetization, superparamagnetic iron oxide nanoparticles induce an important decrease in the transverse relaxation of water protons and are, therefore, very efficient negative MRI contrast agents. The knowledge and control of the chemical and physical characteristics of nanoparticles are of great importance. The choice of the synthesis method (microemulsions, sol-gel synthesis, laser pyrolysis, sonochemical synthesis or coprecipitation) determines the magnetic nanoparticle's size and shape, as well as its size distribution and surface chemistry. Nanoparticles can be used for numerous in vivo applications, such as MRI contrast enhancement and hyperthermia drug delivery. New developments focus on targeting through molecular imaging and cell tracking.
Collapse
|
48
|
Pan D, Caruthers SD, Senpan A, Yalaz C, Stacy AJ, Hu G, Marsh JN, Gaffney PJ, Wickline SA, Lanza GM. Synthesis of NanoQ, a copper-based contrast agent for high-resolution magnetic resonance imaging characterization of human thrombus. J Am Chem Soc 2011; 133:9168-71. [PMID: 21599030 PMCID: PMC3124378 DOI: 10.1021/ja201918u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new site-targeted molecular imaging contrast agent based on a nanocolloidal suspension of lipid-encapsulated, organically soluble divalent copper has been developed. Concentrating a high payload of divalent copper ions per nanoparticle, this agent provides a high per-particle r1 relaxivity, allowing sensitive detection in T1-weighted magnetic resonance imaging when targeted to fibrin clots in vitro. The particle also exhibits a defined clearance and safety profile in vivo.
Collapse
Affiliation(s)
- Dipanjan Pan
- C-TRAIN and Division of Cardiology, Washington University School of Medicine, 4320 Forest Park Avenue, Saint Louis, Missouri 63108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gore JC, Manning HC, Quarles CC, Waddell KW, Yankeelov TE. Magnetic resonance in the era of molecular imaging of cancer. Magn Reson Imaging 2011; 29:587-600. [PMID: 21524870 PMCID: PMC3285504 DOI: 10.1016/j.mri.2011.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/26/2011] [Indexed: 12/16/2022]
Abstract
Magnetic resonance imaging (MRI) has played an important role in the diagnosis and management of cancer since it was first developed, but other modalities also continue to advance and provide complementary information on the status of tumors. In the future, there will be a major continuing role for noninvasive imaging in order to obtain information on the location and extent of cancer, as well as assessments of tissue characteristics that can monitor and predict treatment response and guide patient management. Developments are currently being undertaken that aim to provide improved imaging methods for the detection and evaluation of tumors, for identifying important characteristics of tumors such as the expression levels of cell surface receptors that may dictate what types of therapy will be effective and for evaluating their response to treatments. Molecular imaging techniques based mainly on radionuclide imaging can depict numerous, specific, cellular and molecular markers of disease and have unique potential to address important clinical and research challenges. In this review, we consider what continuing and evolving roles will be played by MRI in this era of molecular imaging. We discuss some of the challenges for MRI of detecting imaging agents that report on molecular events, but highlight also the ability of MRI to assess other features such as cell density, blood flow and metabolism which are not specific hallmarks of cancer but which reflect molecular changes. We discuss the future role of MRI in cancer and describe the use of selected quantitative imaging techniques for characterizing tumors that can be translated to clinical applications, particularly in the context of evaluating novel treatments.
Collapse
Affiliation(s)
- John C Gore
- Vanderbilt University Institute of Imaging Science AA1105 MCN, Vanderbilt University Nashville, TN 37232-2310, USA.
| | | | | | | | | |
Collapse
|
50
|
|