1
|
Kabir M, Hu X, Martin TC, Pokushalov D, Kim YJ, Chen Y, Zhong Y, Wu Q, Chipuk JE, Shi Y, Xiong Y, Gu W, Parsons RE, Jin J. Harnessing the TAF1 Acetyltransferase for Targeted Acetylation of the Tumor Suppressor p53. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413377. [PMID: 39716936 PMCID: PMC11831463 DOI: 10.1002/advs.202413377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Indexed: 12/25/2024]
Abstract
Pharmacological reactivation of the tumor suppressor p53 remains a key challenge for the treatment of cancer. Acetylation Targeting Chimera (AceTAC), a novel technology is previously reported that hijacks lysine acetyltransferases p300/CBP to acetylate the p53Y220C mutant. However, p300/CBP are the only acetyltransferases harnessed for AceTAC development to date. In this study, it is demonstrated for the first time that the TAF1 acetyltransferase can be recruited to acetylate p53Y220C. A novel TAF1-recruiting AceTAC, MS172 is discovered, which effectively acetylates p53Y220C lysine 382 in a concentration-, time- and TAF1-dependent manner via inducing the ternary complex formation between p53Y220C and TAF1. Notably, MS172 suppresses the proliferation in multiple p53Y220C-harboring cancer cell lines more potently than the previously reported p300/CBP-recruiting p53Y220C AceTAC MS78 with little toxicity in p53 WT and normal cells. Additionally, MS172 is bioavailable in mice and suitable for in vivo efficacy studies. Lastly, novel upregulation of metallothionine proteins by MS172-induced p53Y220C acetylation is discovered using RNA-seq and RT-qPCR studies. This work demonstrates that TAF1 can be harnessed for AceTAC development and expands the very limited repertoire of the acetyltransferases that can be leveraged for developing AceTACs, thus advancing the targeted protein acetylation field.
Collapse
Affiliation(s)
- Md Kabir
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Oncological SciencesTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Xiaoping Hu
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Oncological SciencesTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Tiphaine C. Martin
- Department of Oncological SciencesTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Dmitry Pokushalov
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Oncological SciencesTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Yong Joon Kim
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Yiyang Chen
- Department of Oncological SciencesTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Yue Zhong
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Oncological SciencesTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Qiong Wu
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Oncological SciencesTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Jerry E. Chipuk
- Department of Oncological SciencesTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Yi Shi
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Oncological SciencesTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Wei Gu
- Institute for Cancer Geneticsand Department of Pathology and Cell Biologyand Herbert Irving Comprehensive Cancer CenterVagelos College of Physicians & SurgeonsColumbia UniversityNew YorkNY10032USA
| | - Ramon E. Parsons
- Department of Oncological SciencesTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Oncological SciencesTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| |
Collapse
|
2
|
Chen Y, Li C, Li M, Han B. Roles of Copper Transport Systems Members in Breast Cancer. Cancer Med 2024; 13:e70498. [PMID: 39676279 PMCID: PMC11646948 DOI: 10.1002/cam4.70498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND The occurrence and progression of breast cancer are closely linked to copper ion homeostasis. Both copper deficiency and excess can inhibit breast cancer growth, while copper transport systems may contribute to its progression by regulating copper ion transport and the activity of associated proteins. However, a comprehensive review of the roles and applications of copper transport systems in breast cancer remains limited. In this study, we summarize the workflow of copper transport systems and the dual role of copper in cancer, highlighting the contributions of specific members of the copper transport system to breast cancer. METHODS A comprehensive search of the PubMed database was conducted to identify articles published over the past 30 years that focus on the relationship between copper transport system members and breast cancer. The findings were synthesized to elucidate the roles and mechanisms of these transporters in the onset and progression of breast cancer. RESULTS We identified 13 members of the copper transport system associated with the occurrence, progression, and mortality of breast cancer, including SLC31A1, DMT1, ATP7A, ATP7B, MTs, GSH, ATOX1, CCS, COX17, SCO1, SCO2, and COX11. Our findings revealed that, apart from STEAP, the remaining 12 members were overexpressed in breast cancer. These members influence the onset, progression, and cell death of breast cancer by modulating biological pathways such as intracellular copper ion levels and ROS. Notably, we observed for the first time that depletion of the copper storage protein GSH leads to increased copper ion accumulation, resulting in cuproptosis in breast cancer cells. CONCLUSION By integrating the members of the copper transport system in breast cancer, we offer novel insights for the treatment of breast cancer and copper-related therapies.
Collapse
Affiliation(s)
- Yichang Chen
- Department of Breast Surgery, General Surgery CenterFirst Hospital of Jilin UniversityChangchunChina
| | - Chen Li
- Department of NeurosurgeryFirst Hospital of Jilin UniversityChangchunChina
| | - Mengxin Li
- Department of Breast Surgery, General Surgery CenterFirst Hospital of Jilin UniversityChangchunChina
| | - Bing Han
- Department of Breast Surgery, General Surgery CenterFirst Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
3
|
Cheng Y, Zhang C, Li Q, Yang X, Chen W, He K, Chen M. MTF1 genetic variants are associated with lung cancer risk in the Chinese Han population. BMC Cancer 2024; 24:778. [PMID: 38943058 PMCID: PMC11212402 DOI: 10.1186/s12885-024-12516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Metal-regulatory transcription factor 1 (MTF1), a conserved metal-binding transcription factor in eukaryotes, regulates the proliferation of cancer cells by activating downstream target genes and then participates in the formation and progression of tumors, including lung cancer (LC). The expression level of MTF1 is down-regulated in LC, and high expression of MTF1 is associated with a good prognosis of LC. However, the association between MTF1 polymorphism and LC risk has not been explored. METHODS The genotyping of MTF1 Single nucleotide polymorphisms (SNPs) including rs473279, rs28411034, rs28411352, and rs3748682 was identified by the Agena MassARRAY system among 670 healthy controls and 670 patients with LC. The odds ratio (OR) and 95% confidence intervals (CI) were calculated by logistics regression to assess the association of these SNPs with LC risk. RESULTS MTF1 rs28411034 (OR 1.22, 95% CI 1.03-1.45, p = 0.024) and rs3748682 (OR 1.24, 95% CI 1.04-1.47, p = 0.014) were associated with higher LC susceptibility overall. Moreover, the effect of rs28411034 and rs3748682 on LC susceptibility was observed in males, subjects with body mass index (BMI) ≥ 24 kg/m2, smokers, drinkers, and patients with lung squamous carcinoma (OR and 95% CI > 1, p < 0.05). Besides, rs28411352 (OR 0.73, 95% CI 0.55-0.97, p = 0.028,) showed protective effect for reduced LC risk in drinkers. CONCLUSIONS We were first who reported that rs28411034 and rs3748682 tended to be relevant to increased LC susceptibility among the Chinese Han population. These results of this study could help to recognize the pathogenic mechanisms of the MTF1 gene in LC progress.
Collapse
Affiliation(s)
- Yujing Cheng
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiaotong University, Yanta District, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Afiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Chan Zhang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Afiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Qi Li
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Afiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Xin Yang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Afiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Wanlu Chen
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Afiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - KunHua He
- Department of Blood Transfusion, The First People's Hospital of Qujing City, Qujing, 655099, Yunnan, China
| | - Mingwei Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiaotong University, Yanta District, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Elitt CM, Ross MM, Wang J, Fahrni CJ, Rosenberg PA. Developmental regulation of zinc homeostasis in differentiating oligodendrocytes. Neurosci Lett 2024; 831:137727. [PMID: 38467270 DOI: 10.1016/j.neulet.2024.137727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Oligodendrocytes develop through sequential stages and understanding pathways regulating their differentiation remains an important area of investigation. Zinc is required for the function of enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature MBP+ oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after O4+,O1- pre-oligodendrocytes were switched from proliferation medium into terminal differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of major zinc storage proteins metallothioneins (MTs) and metal regulatory transcription factor 1 (MTF1), which controls expression of MTs. MT1, MT2 and MTF1 mRNAs were increased several fold in mature oligodendrocytes compared to oligodendrocytes in proliferation medium. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in ∼ 100% increase in free zinc in pre-oligodendrocytes but, paradoxically more modest ∼ 60% increase in mature oligodendrocytes despite increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Christopher M Elitt
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States.
| | - Madeline M Ross
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States
| | - Jianlin Wang
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States
| | - Christoph J Fahrni
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Paul A Rosenberg
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States
| |
Collapse
|
5
|
Elitt CM, Ross MM, Wang J, Fahrni CJ, Rosenberg PA. Developmental regulation of zinc homeostasis in differentiating oligodendrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550230. [PMID: 37546881 PMCID: PMC10402100 DOI: 10.1101/2023.07.26.550230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Oligodendrocytes develop through well characterized stages and understanding pathways regulating their differentiation remains an active area of investigation. Zinc is required for the function of many enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after developing oligodendrocytes were switched into differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of the major zinc storage proteins metallothioneins (MTs), and metal regulatory transcription factor 1 (MTF-1) which controls expression of MTs. MT-1, MT-2 and MTF1 mRNAs were all increased several fold in mature oligodendrocytes compared to developing oligodendrocytes. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in a ∼100% increase in free zinc in developing oligodendrocytes but, paradoxically more modest ∼60% increase in mature oligodendrocytes despite the increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.
Collapse
|
6
|
Michalczyk K, Kapczuk P, Witczak G, Tousty P, Bosiacki M, Kurzawski M, Chlubek D, Cymbaluk-Płoska A. An Assessment of MT1A (rs11076161), MT2A (rs28366003) and MT1L (rs10636) Gene Polymorphisms and MT2 Concentration in Women with Endometrial Pathologies. Genes (Basel) 2023; 14:genes14030773. [PMID: 36981043 PMCID: PMC10048541 DOI: 10.3390/genes14030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Several studies have indicated a relationship between metallothionein (MT) polymorphisms and the development of different pathologies, including neoplastic diseases. However, no studies thus far have been conducted on the influence of MT polymorphisms and the development of endometrial lesions, including endometrial cancer. This study included 140 patients with normal endometrial tissue, endometrial polyps, uterine myomas and endometrial cancer. The tissue MT2 concentration was determined using the ELISA method. MT1A, MT2A and MT1L polymorphisms were analyzed using TaqMan real-time PCR genotyping assays. We found no statistical difference between the tissue MT2 concentration in patients with EC vs. benign endometrium (p = 0.579). However, tissue MT2 concentration was significantly different between uterine fibromas and normal endometrial tissue samples (p = 0.019). Menopause status did not influence the tissue MT2 concentration (p = 0.282). There were no significant associations between the prevalence of MT1A, MT2A and MT1L polymorphisms and MT2 concentration. The age, menopausal status, and diabetes status of patients were identified as EC risk factors.
Collapse
Affiliation(s)
- Kaja Michalczyk
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Grzegorz Witczak
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Piotr Tousty
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Mateusz Bosiacki
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
7
|
Imran M, Khan AL, Mun BG, Bilal S, Shaffique S, Kwon EH, Kang SM, Yun BW, Lee IJ. Melatonin and nitric oxide: Dual players inhibiting hazardous metal toxicity in soybean plants via molecular and antioxidant signaling cascades. CHEMOSPHERE 2022; 308:136575. [PMID: 36155020 DOI: 10.1016/j.chemosphere.2022.136575] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Melatonin (MT), a ubiquitous signaling molecule, is known to improve plant growth. Its regulatory function alongside nitric oxide (NO) is known to induce heavy metal (Cd and Pb) stress tolerance, although the underlying mechanisms remain unknown. Here, we observed that the combined application of MT and NO remarkably enhanced plant biomass by reducing oxidative stress. Both MT and NO minimized metal toxicity by significantly lowering the levels of endogenous abscisic acid and jasmonic acid via downregulating NCED3 and upregulating catabolic genes (CYP707A1 and CYP707A2). MT/NO-induced mitigation of Cd and Pb stress was associated with increased endo-melatonin and variable endo-S-nitrosothiol levels caused by enhanced expression of gmNR and gmGSNOR mRNAs. Remarkably, the combined application of MT/NO reduced soil Cd and Pb mobilization by increasing the uptake of Ca2+ and K+ and increasing the exudation of organic acids into the rhizosphere. These results correlated with the upregulation of MTF-1 and WARKY27 during metal translocation. MT/NO regulates the MAPK and CDPK cascades to promote plant cell survival and Ca2+ signaling, thereby imparting resistance to heavy metal toxicity. In conclusion, MT/NO modulates the stress-resistance machinery to mitigate Cd and Pb toxicity by regulating the activation of antioxidant and molecular transcription factors.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Abdul Latif Khan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Bong-Gyu Mun
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Xu Y, Li H, Lan A, Wu Q, Tang Z, Shu D, Tan Z, Liu X, Liu Y, Liu S. Cuprotosis-Related Genes: Predicting Prognosis and Immunotherapy Sensitivity in Pancreatic Cancer Patients. JOURNAL OF ONCOLOGY 2022; 2022:2363043. [PMID: 36117848 PMCID: PMC9481390 DOI: 10.1155/2022/2363043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/25/2022]
Abstract
Based on TCGA, GTEx, and TIMER databases and various bioinformatics analysis methods, the potential biological roles of cuprotosis-related genes in pancreatic cancer were deeply explored, and a predictive model for pancreatic cancer patients was constructed. We downloaded the RNA-Seq data and clinicopathological and predictive data of 179 pancreatic cancer tissues and 332 adjacent normal tissues from TCGA and GTEx databases. The differential expression of cuprotosis-related genes in pancreatic cancer tissue and adjacent normal tissue was analyzed, and the LASSO regression algorithm was used to construct a prediction model and verify the validity of the model prediction. Based on the LASSO regression algorithm, a predictive model composed of three genes LIPT1, LIAS, and DLAT was screened. The corresponding survival curves showed that the constructed prediction model could significantly distinguish the prognosis of pancreatic cancer patients, and the prognosis of patients in the high-risk group was worse (P = 0.00557). The ROC curve showed that the area under the curve of the predictive model for predicting the 4-, 5-, and 6-year survival rates in pancreatic cancer was 0.816, 0.836, and 0.956, respectively. The AUC value of this risk model was significantly higher than 0.7, which could more accurately predict the prognosis of pancreatic cancer patients. This study determined a risk-scoring model of cuprotosis-related genes, which can provide an essential basis for judging the prognosis of pancreatic cancer patients.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Han Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ailin Lan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qiulin Wu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhenrong Tang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Dan Shu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhaofu Tan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Xin Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yang Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
9
|
Zhang R, Zhao G, Shi H, Zhao X, Wang B, Dong P, Watari H, Pfeffer LM, Yue J. Zinc regulates primary ovarian tumor growth and metastasis through the epithelial to mesenchymal transition. Free Radic Biol Med 2020; 160:775-783. [PMID: 32927017 PMCID: PMC7704937 DOI: 10.1016/j.freeradbiomed.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The trace element zinc plays an indispensable role in human health and diseases including cancer due to its antioxidant properties. While zinc supplements have been used for cancer prevention, zinc is also a risk factor for cancer development. It is still unclear how zinc plays a role in ovarian cancer. METHODS To understand how zinc contributes to ovarian tumor growth and metastasis, we examined whether zinc contributes to tumor metastasis by regulating epithelial to mesenchymal transition (EMT) using ovarian cancer cells in vitro. Cell migration and invasion were examined using transwell plates and EMT markers were examined using Western blot. Primary ovarian tumor growth and metastasis were assessed using orthotopic ovarian cancer mouse models in vivo. RESULTS Zinc promoted EMT, while TPEN (N, N, N', N'-tetrakis-(2-pyridylmethyl)-ethylenediamine), a membrane-permeable selective zinc chelator, inhibited EMT in a dose dependent manner in ovarian cancer cells. Moreover, zinc promoted ovarian cancer cell migration and invasion, while TPEN inhibited cell migration and invasion. Zinc activated expression of the metal response transcriptional factor-1 (MTF-1), while TPEN inhibited MTF-1 expression in a dose dependent manner. Knockout of MTF-1 inhibited zinc-induced cell migration, invasion and augmented the inhibitory effect of TPEN on cell migration and invasion. Loss of MTF-1 attenuated zinc-induced ERK1/2 and AKT activation and augmented the effect of TPEN in attenuating the ERK1/2 and AKT pathways. TPEN effectively inhibited primary ovarian tumor growth and metastasis in an orthotopic ovarian cancer mouse model by suppressing EMT. CONCLUSION zinc contributes to ovarian tumor metastasis by promoting EMT through a MTF-1 dependent pathway. Zinc depletion by TPEN may be a novel approach for ovarian cancer therapy by inhibiting EMT and attenuating the ERK1/2 and AKT pathways.
Collapse
Affiliation(s)
- Ruitao Zhang
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China; Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Huirong Shi
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Xinxin Zhao
- Department of Gynecology and Obstetrics, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Baojin Wang
- Department of Gynecology and Obstetrics, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Peixin Dong
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Hidemichi Watari
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
10
|
Jakovac H, Stašić N, Krašević M, Jonjić N, Radošević-Stašić B. Expression profiles of metallothionein-I/II and megalin/LRP-2 in uterine cervical squamous lesions. Virchows Arch 2020; 478:735-746. [PMID: 33084977 PMCID: PMC7990851 DOI: 10.1007/s00428-020-02947-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/18/2020] [Accepted: 10/09/2020] [Indexed: 12/29/2022]
Abstract
Metallothioneins (MTs) are phylogenetically old cysteine-rich proteins, which are implicated in a variety of physiological and pathological processes. Their growth-regulating, anti-apoptotic and anti-inflammatory functions have been attributed not only to intracellular free radical scavenging and to zinc and copper regulation but also to the ability of secreted MT to bind on surface lipoprotein receptor-megalin/LRP2, which enables the endocytosis of MT-I/II and a wide range of other functionally distinct ligands. In the present study, we analysed the expression pattern of both proteins in 55 cases of premalignant transformation of cervical squamous cells, i.e. in low- and high-grade squamous intraepithelial lesion (LSIL and HSIL). The data showed that in LSIL (cervical intraepithelial neoplasia CIN1; N = 25) MTs were present only in basal and parabasal cells and that megalin was only weakly expressed. In HSIL (CIN2; N = 15 and CIN 3/carcinoma in situ; N = 15), however, overexpression and co-localization of MT with megalin were found in the entire hyperplastic epithelium. Moreover, megalin immunoreactivity appeared on the glandular epithelium and vascular endothelium, as well as on lymphatic cells in stroma. Besides, multiple megalin-positive cells expressed phosphorylated Akt1, implying that MT- and/or megalin-dependent prosurvival signal transduction pathways might contribute to the development of severe cervical dysplasia. The data emphasize the diagnostic power of combined MT/megalin analysis in pre-cancer screening.
Collapse
Affiliation(s)
- Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia
| | - Nikola Stašić
- Teaching Institute of Public Health, Primorsko-goranska County, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | - Maja Krašević
- Department of Pathology, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | - Nives Jonjić
- Department of Pathology, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | - Biserka Radošević-Stašić
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia
| |
Collapse
|
11
|
Blommel K, Knudsen CS, Wegner K, Shrestha S, Singhal SK, Mehus AA, Garrett SH, Singhal S, Zhou X, Voels B, Sens DA, Somji S. Meta-analysis of gene expression profiling reveals novel basal gene signatures in MCF-10A cells transformed with cadmium. Oncotarget 2020; 11:3601-3617. [PMID: 33062196 PMCID: PMC7533076 DOI: 10.18632/oncotarget.27734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/17/2020] [Indexed: 01/19/2023] Open
Abstract
Cadmium (Cd2+) is an environmental toxicant and a human carcinogen. Several studies show an association of Cd2+ exposure to the development of breast cancer. Previously, we have transformed the immortalized non-tumorigenic cell line MCF-10A with Cd2+ and have demonstrated that the transformed cells have anchorage independent growth. In a separate study, we showed that transformation of the immortalized urothelial cells with the environmental carcinogen arsenite (As3+) results in an increase in expression of genes associated with the basal subtype of bladder cancer. In this study, we determined if transformation of the MCF-10A cells with Cd2+ would have a similar effect on the expression of basal genes. The results of our study indicate that there is a decrease in expression of genes associated with keratinization and cornification and this gene signature includes the genes associated with the basal subtype of breast cancer. An analysis of human breast cancer databases indicates an increased expression of this gene signature is associated with a positive correlation to patient survival whereas a reduced expression/absence of this gene signature is associated with poor patient survival. Thus, our study suggests that transformation of the MCF-10A cells with Cd2+ produces a decreased basal gene expression profile that correlates to patient outcome.
Collapse
Affiliation(s)
- Katrina Blommel
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
- These authors contributed equally to this work
| | - Carley S. Knudsen
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
- These authors contributed equally to this work
| | - Kyle Wegner
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
- These authors contributed equally to this work
| | - Swojani Shrestha
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Sandeep K. Singhal
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Aaron A. Mehus
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Scott H. Garrett
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Sonalika Singhal
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Xudong Zhou
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Brent Voels
- Department of Science, Cankdeska Cikana Community College, Fort Totten, ND 58335, USA
| | - Donald A. Sens
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Seema Somji
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
12
|
Zhang D, Zhang T, Liu J, Chen J, Li Y, Ning G, Huo N, Tian W, Ma H. Zn Supplement-Antagonized Cadmium-Induced Cytotoxicity in Macrophages In Vitro: Involvement of Cadmium Bioaccumulation and Metallothioneins Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4611-4622. [PMID: 30942077 DOI: 10.1021/acs.jafc.9b00232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a toxic metal leading to multiple forms of organ damage. Zinc (Zn) was reported as a potential antagonist against Cd toxicity. The present study investigates the antagonistic effect of Zn (20 μM) on Cd (20 or 50 μM) cytotoxicity in macrophages in vitro. The results shows that Cd exposure caused dose-dependent morphologic and ultrastructural alterations in RAW 264.7 macrophages. Zn supplement significantly inhibited Cd cytotoxicity in RAW 264.7 or HD-11 macrophages by mitigating cell apoptosis, excessive ROS output, and mitochondrial membrane depolarization. Notably, Zn supplement for 12 h remarkably prevented intracellular Cd2+ accumulation in 20 μM (95.99 ± 9.93 vs 29.64 ± 5.08 ng/106 cells; P = 0.0008) or 50 μM Cd (179.78 ± 28.66 vs 141.62 ± 22.15 ng/106 cells; P = 0.003) exposed RAW 264.7 cells. Further investigation found that Cd promoted metallothioneins (MTs) and metal regulatory transcription factor 1 (MTF-1) expression in RAW 264.7 macrophages. Twenty μM Zn supplement dramatically enhanced MTs and MTF-1 levels in Cd-exposed RAW 264.7 macrophages. Intracellular Zn2+ chelation or MTF-1 gene silencing inhibited MTs synthesis in Cd-exposed RAW 264.7 macrophages, which was accompanied by the declined expression of MTF-1, indicating that regulation of Zn on MTs was partially achieved by MTF-1 mobilization. In conclusion, this study demonstrates the antagonism of Zn against Cd cytotoxicity in macrophages and reveals its antagonistic mechanism by preventing Cd2+ bioaccumulation and promoting MTs expression.
Collapse
Affiliation(s)
- Ding Zhang
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu 030800 , P. R. China
| | - Ting Zhang
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu 030800 , P. R. China
| | - Jingying Liu
- Function Laboratory , Shanxi Medical University , Taiyuan 030001 , P. R. China
| | - Jianshan Chen
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu 030800 , P. R. China
| | - Ying Li
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu 030800 , P. R. China
| | - Guanbao Ning
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu 030800 , P. R. China
| | - Nairui Huo
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu 030800 , P. R. China
| | - Wenxia Tian
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu 030800 , P. R. China
| | - Haili Ma
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu 030800 , P. R. China
| |
Collapse
|
13
|
Yan HX, Du J, Fu J, Huang W, Jia LM, Ping P, Zhao L, Song YQ, Jia XM, Dou JT, Mu YM, Wang FL, Tian W, Lyu ZH. Microarray-based differential expression profiling of long noncoding RNAs and messenger RNAs in formalin-fixed paraffin-embedded human papillary thyroid carcinoma samples. Transl Cancer Res 2019; 8:439-451. [PMID: 35116776 PMCID: PMC8797411 DOI: 10.21037/tcr.2019.02.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/17/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) can regulate the expression of genes at almost every level. The altered expression of lncRNAs was observed in many kinds of cancers. Until recently, few studies have focused on the function of lncRNAs in the context of papillary thyroid carcinoma (PTC). METHODS In the current study, we collected seven PTC and nodular goiter tissue samples and explored mRNA and lncRNA expression patterns in these samples by microarray. RESULTS We observed aberrant expression of 94 lncRNAs and 99 mRNAs in the seven PTC samples as compared to the nodular goiter tissue [fold change (FC) ≥2.0; P<0.01]. To confirm these microarray results, quantitative polymerase chain reaction (q-PCR) was performed to assess the expression of three randomly selected differentially expressed mRNAs and lncRNAs, confirming our microarray findings significantly. We then performed gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses to systematically characterize the twelve significantly differential genes. A co-expression analysis revealed that the lncRNAs n382996, n342483, and n409114 were closely related to the regulation of MT1G, MT1H, and MT1F. CONCLUSIONS In the present study a string of novel lncRNAs associated with PTC were identified. Further study of these lncRNAs should be performed to identify novel target molecules which may improve diagnosis and treatment of PTC.
Collapse
Affiliation(s)
- Hui-Xian Yan
- Department and Key Laboratory of Endocrinology and Metabolism, PLA General Hospital, Beijing 100853, China.,Department of Endocrinology, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing 100080, China
| | - Jin Du
- Department and Key Laboratory of Endocrinology and Metabolism, PLA General Hospital, Beijing 100853, China
| | - Jing Fu
- Department of Pathology, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing 100080, China
| | - Wei Huang
- Department of Endocrinology, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing 100080, China
| | - Li-Meng Jia
- Department of General Surgery, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing 100080, China
| | - Pang Ping
- Department and Key Laboratory of Endocrinology and Metabolism, PLA General Hospital, Beijing 100853, China.,Department of Endocrinology, Hainan Branch of PLA General Hospital, Sanya 572013, China
| | - Ling Zhao
- Department and Key Laboratory of Endocrinology and Metabolism, PLA General Hospital, Beijing 100853, China
| | - Ye-Qiong Song
- Department and Key Laboratory of Endocrinology and Metabolism, PLA General Hospital, Beijing 100853, China
| | - Xiao-Meng Jia
- Department and Key Laboratory of Endocrinology and Metabolism, PLA General Hospital, Beijing 100853, China
| | - Jing-Tao Dou
- Department and Key Laboratory of Endocrinology and Metabolism, PLA General Hospital, Beijing 100853, China
| | - Yi-Ming Mu
- Department and Key Laboratory of Endocrinology and Metabolism, PLA General Hospital, Beijing 100853, China
| | - Fu-Lin Wang
- Department of Pathology, PLA General Hospital, Beijing 100853, China
| | - Wen Tian
- Department of General Surgery, PLA General Hospital, Beijing 100853, China
| | - Zhao-Hui Lyu
- Department and Key Laboratory of Endocrinology and Metabolism, PLA General Hospital, Beijing 100853, China
| |
Collapse
|
14
|
Wu KC, Cui JY, Liu J, Lu H, Zhong XB, Klaassen CD. RNA-Seq provides new insights on the relative mRNA abundance of antioxidant components during mouse liver development. Free Radic Biol Med 2019; 134:335-342. [PMID: 30659941 PMCID: PMC6588412 DOI: 10.1016/j.freeradbiomed.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/18/2022]
Abstract
Mammals have developed a variety of antioxidant systems to protect them from the oxygen environment and toxic stimuli. Little is known about the mRNA abundance of antioxidant components during postnatal development of the liver. Therefore, the purpose of this study was to compare the mRNA abundance of antioxidant components during liver development. Livers from male C57BL/6J mice were collected at 12 ages from prenatal to adulthood. The transcriptome was determined by RNA-Seq with transcript abundance estimated by Cufflinks. RNA-Seq provided a complete, more accurate, and unbiased quantification of the transcriptome. Among 33 known antioxidant components examined, three ontogeny patterns of liver antioxidant components were observed: (1) Prenatal-enriched, in which the mRNAs decreased from fetal livers to adulthood, such as metallothionein and heme oxygenase-1; (2) adolescent-rich and relatively stable expression, such as peroxiredoxins; and (3) adult-rich, in which the mRNA increased with age, such as catalase and superoxide dismutase. Alternative splicing of several antioxidant genes, such as Keap1, Glrx2, Gpx3, and Txnrd1, were also detected by RNA-Seq. In summary, RNA-Seq revealed the relative abundance of hepatic antioxidant enzymes, which are important in protecting against the deleterious effects of oxidative stress.
Collapse
Affiliation(s)
- Kai Connie Wu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Jie Liu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Hong Lu
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
15
|
Ji L, Zhao G, Zhang P, Huo W, Dong P, Watari H, Jia L, Pfeffer LM, Yue J, Zheng J. Knockout of MTF1 Inhibits the Epithelial to Mesenchymal Transition in Ovarian Cancer Cells. J Cancer 2018; 9:4578-4585. [PMID: 30588241 PMCID: PMC6299381 DOI: 10.7150/jca.28040] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022] Open
Abstract
Due to peritoneal metastasis and frequent recurrence, ovarian cancer has the highest mortality among gynecological cancers. Epithelial to mesenchymal transition (EMT) contributes to ovarian tumor metastasis. In this study, we report for the first time that metal regulatory transcription factor 1 (MTF1) was upregulated in ovarian cancer, and its high expression was associated with poor patient survival and disease relapse. Knockout of MTF1 using lentiviral CRISPR/Cas9 nickase vector-mediated gene editing inhibited EMT by upregulating epithelial cell markers E-cadherin and cytokeratin 7, and downregulating mesenchymal markers Snai2 and β-catenin in ovarian cancer SKOV3 and OVCAR3 cells. Loss of MTF1 reduced cell proliferation, migration, and invasion in both SKOV3 and OVCAR3 cells. Knockout of MTF1 upregulated the expression of the KLF4 transcription factor, and attenuated two cellular survival pathways, ERK1/2 and AKT. Our studies demonstrated that MTF1 plays an oncogenic role and contributes to ovarian tumor metastasis by promoting EMT. MTF1 may be a novel biomarker for early diagnosis as well as a drug target for clinical therapy.
Collapse
Affiliation(s)
- Liang Ji
- Department of Anatomy, College of Basic Medical Science, Harbin Medical University, Harbin, China
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Peng Zhang
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wenying Huo
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Limin Jia
- Department of Anatomy, College of Basic Medical Science, Harbin Medical University, Harbin, China
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jinhua Zheng
- Department of Anatomy, College of Basic Medical Science, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in metal homeostasis and protection against heavy metal toxicity, DNA damage, and oxidative stress. In humans, MTs have four main isoforms (MT1, MT2, MT3, and MT4) that are encoded by genes located on chromosome 16q13. MT1 comprises eight known functional (sub)isoforms (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X). Emerging evidence shows that MTs play a pivotal role in tumor formation, progression, and drug resistance. However, the expression of MTs is not universal in all human tumors and may depend on the type and differentiation status of tumors, as well as other environmental stimuli or gene mutations. More importantly, the differential expression of particular MT isoforms can be utilized for tumor diagnosis and therapy. This review summarizes the recent knowledge on the functions and mechanisms of MTs in carcinogenesis and describes the differential expression and regulation of MT isoforms in various malignant tumors. The roles of MTs in tumor growth, differentiation, angiogenesis, metastasis, microenvironment remodeling, immune escape, and drug resistance are also discussed. Finally, this review highlights the potential of MTs as biomarkers for cancer diagnosis and prognosis and introduces some current applications of targeting MT isoforms in cancer therapy. The knowledge on the MTs may provide new insights for treating cancer and bring hope for the elimination of cancer.
Collapse
Affiliation(s)
- Manfei Si
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
17
|
Krizkova S, Kepinska M, Emri G, Eckschlager T, Stiborova M, Pokorna P, Heger Z, Adam V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther 2017; 183:90-117. [PMID: 28987322 DOI: 10.1016/j.pharmthera.2017.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallothioneins (MTs) belong to a group of small cysteine-rich proteins that are ubiquitous throughout all kingdoms. The main function of MTs is scavenging of free radicals and detoxification and homeostating of heavy metals. In humans, 16 genes localized on chromosome 16 have been identified to encode four MT isoforms labelled by numbers (MT-1-MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-1 comprises many (sub)isoforms. The known active MT-1 genes are MT-1A, -1B, -1E, -1F, -1G, -1H, -1M and -1X. The rest of the MT-1 genes (MT-1C, -1D, -1I, -1J and -1L) are pseudogenes. The expression and localization of individual MT (sub)isoforms and pseudogenes vary at intra-cellular level and in individual tissues. Changes in MT expression are associated with the process of carcinogenesis of various types of human malignancies, or with a more aggressive phenotype and therapeutic resistance. Hence, MT (sub)isoform profiling status could be utilized for diagnostics and therapy of tumour diseases. This review aims on a comprehensive summary of methods for analysis of MTs at (sub)isoforms levels, their expression in single tumour diseases and strategies how this knowledge can be utilized in anticancer therapy.
Collapse
Affiliation(s)
- Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Petra Pokorna
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; Department of Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
18
|
Felix-Portillo M, Martínez-Quintana JA, Arenas-Padilla M, Mata-Haro V, Gómez-Jiménez S, Yepiz-Plascencia G. Hypoxia drives apoptosis independently of p53 and metallothionein transcript levels in hemocytes of the whiteleg shrimp Litopenaeus vannamei. CHEMOSPHERE 2016; 161:454-462. [PMID: 27459156 DOI: 10.1016/j.chemosphere.2016.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
The cellular mechanisms used by the shrimp Litopenaeus vannamei to respond to hypoxia have been studied from the energetic metabolism and antioxidant angles. We herein investigated the participation of p53 and metallothionein (MT) in the apoptotic process in response to hypoxia in shrimp hemocytes. The Lvp53 or LvMT genes were efficiently silenced by injection of double stranded RNA for p53 or MT. The effects of silencing on apoptosis were measured as caspase-3 activity and flow cytometry in hemocytes after 24 and 48 h of hypoxia (1.5 mg DO L(-1)). Hemocytes from unsilenced animals had significantly higher apoptosis levels upon both times of hypoxia. The apoptotic levels were diminished but not suppressed in dsp53-silenced but not dsMT-silenced hemocytes after 24 h of hypoxia, indicating a contribution of Lvp53 to apoptosis. Apoptosis in normoxia was significantly higher in dsp53-and dsMT-silenced animals compared to the unsilenced controls, pointing to a possible cytoprotective role of LvMT and Lvp53 during the basal apoptotic program in normoxia. Overall, these results indicate that hypoxia augments apoptosis in shrimp hemocytes and high mRNA levels of Lvp53 and LvMT are not necessary for this response.
Collapse
Affiliation(s)
- Monserrath Felix-Portillo
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - José A Martínez-Quintana
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada, Km 1, Chihuahua, Chihuahua, 33820, Mexico
| | - Marina Arenas-Padilla
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Verónica Mata-Haro
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Silvia Gómez-Jiménez
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico.
| |
Collapse
|
19
|
Pan Y, Lin S, Xing R, Zhu M, Lin B, Cui J, Li W, Gao J, Shen L, Zhao Y, Guo M, Wang JM, Huang J, Lu Y. Epigenetic Upregulation of Metallothionein 2A by Diallyl Trisulfide Enhances Chemosensitivity of Human Gastric Cancer Cells to Docetaxel Through Attenuating NF-κB Activation. Antioxid Redox Signal 2016; 24:839-54. [PMID: 26801633 PMCID: PMC4876530 DOI: 10.1089/ars.2014.6128] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS Metallothionein 2A (MT2A) and nuclear factor-kappaB (NF-κB) are both involved in carcinogenesis and cancer chemosensitivity. We previously showed decreased expression of MT2A and IκB-α in human gastric cancer (GC) associated with poor prognosis of GC patients. The present study investigated the effect of diallyl trisulfide (DATS), a garlic-derived compound, and docetaxel (DOC) on regulation of MT2A in relation to NF-κB in GC cells. RESULTS DATS attenuated NF-κB signaling in GC cells, resulting in G2/M cell cycle arrest and apoptosis, culminating in the inhibition of cell proliferation and tumorigenesis in nude mice. The anti-GC effect of DATS was attributable to its capacity to epigenetically upregulate MT2A, which in turn enhanced transcription of IκB-α to suppress NF-κB activation in GC cells. The combination of DATS with DOC exhibited a synergistic anti-GC activity accompanied by MT2A upregulation and NF-κB inactivation. Histopathologic analysis of GC specimens from patients showed a significant increase in MT2A expression following DOC treatment. GC patients with high MT2A expression in tumor specimens showed significantly improved response to chemotherapy and prolonged survival compared with those with low MT2A expression in tumors. INNOVATION AND CONCLUSION We conclude that DATS exerts its anti-GC activity and enhances chemosensitivity of GC to DOC by epigenetic upregulation of MT2A to attenuate NF-κB signaling. Our findings delineate a mechanistic basis of MT2A/NF-κB signaling for DATS- and DOC-mediated anti-GC effects, suggesting that MT2A may be a chemosensitivity indicator in GC patients receiving DOC-based treatment and a promising target for more effective treatment of GC by combination of DATS and DOC. Antioxid. Redox Signal. 24, 839-854.
Collapse
Affiliation(s)
- Yuanming Pan
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Shuye Lin
- 2 College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuancun, Haidian District, Beijing, P.R. China .,3 Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Rui Xing
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Min Zhu
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Bonan Lin
- 2 College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuancun, Haidian District, Beijing, P.R. China
| | - Jiantao Cui
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Wenmei Li
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Jing Gao
- 4 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of GI Oncology, Peking University School of Oncology , Peking Cancer Hospital, Beijing, P.R. China
| | - Lin Shen
- 4 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of GI Oncology, Peking University School of Oncology , Peking Cancer Hospital, Beijing, P.R. China
| | - Yuanyuan Zhao
- 5 CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing, P.R. China
| | - Mingzhou Guo
- 6 Department of Gastroenterology and Hepatology, Chinese PLA General Hospital , Beijing, P.R. China
| | - Ji Ming Wang
- 3 Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Jiaqiang Huang
- 2 College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuancun, Haidian District, Beijing, P.R. China .,3 Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Youyong Lu
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| |
Collapse
|
20
|
Ostrakhovitch EA, Song YP, Cherian MG. Basal and copper-induced expression of metallothionein isoform 1,2 and 3 genes in epithelial cancer cells: The role of tumor suppressor p53. J Trace Elem Med Biol 2016; 35:18-29. [PMID: 27049123 DOI: 10.1016/j.jtemb.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
Metallothioneins (MTs) are a ubiquitous low-molecular weight, cysteine rich proteins with a high affinity for metal ions. The expression and induction of MTs have been associated with protection against DNA damage, oxidative stress, and apoptosis. Our past research had shown that p53 is an important factor in metal regulation of MTs. The present study was undertaken to explore further the interrelationship between p53 and MTs. We investigated whether silencing of p53 could affect expression pattern of basal and copper induced metallothioneins. The silencing of wild-type p53 (wt-p53) in epithelial breast cancer MCF7 cells affected the basal level of MT-2A RNA, whereas the levels of MT-1A and MT-1X RNA remained largely unchanged. The expression of MT-3 was undetectable in MCF7 with either functional or silenced p53. MCF7 cells with silenced wt-p53 failed to upregulate MT-2A in response to copper and showed a reduced sensitivity toward copper induced cell apoptotic death. Similarly in MCF7-E6 and MDA-MB-231 cells, the presence of inactive/mutated p53 halted MT-1A and MT-2A gene expression in response to copper. Constitutive expression of MT-3 RNA was detectable in the presence of mutated p53 (mtp53). Transient transfection of MDA-MB-231 cells with wt-p53 enabled copper induced upregulation of both MT-1A and MT-2A but not basal level of MT-2A, MT-1E, MT-1X and MT-3. Inactivation of p53 in HepG2 cells amplified the basal expression of studied MT isoforms, including MT-3, as well as copper-induced mRNA expression of MTs except MT-1H and MT-3. Presented data demonstrate a direct relation between p53 and MT-1A and MT-2A and they also indicate that wt-p53 might be a negative regulator of MT-3 in epithelial cancer cells.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Department of Pathology, University of Western Ontario, Canada; Department of Chemistry, University of Western Ontario, Canada.
| | - Y P Song
- Department of Pathology, University of Western Ontario, Canada; Department of Chemistry, University of Western Ontario, Canada
| | - M G Cherian
- Department of Pathology, University of Western Ontario, Canada; Department of Chemistry, University of Western Ontario, Canada
| |
Collapse
|
21
|
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. Metallothioneins: Structure and Functions. METALLOTHIONEINS IN NORMAL AND CANCER CELLS 2016. [DOI: 10.1007/978-3-319-27472-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Nowinska K, Chmielewska M, Piotrowska A, Pula B, Pastuszewski W, Krecicki T, Podhorska-Okołow M, Zabel M, Dziegiel P. Correlation between levels of expression of minichromosome maintenance proteins, Ki-67 proliferation antigen and metallothionein I/II in laryngeal squamous cell cancer. Int J Oncol 2015; 48:635-45. [PMID: 26648405 DOI: 10.3892/ijo.2015.3273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/27/2015] [Indexed: 11/06/2022] Open
Abstract
MCM2, MCM3 and MCM7 are minichromosome maintenance proteins found in dividing cells and they play a role in DNA synthesis. Increased MCM expression level is observed in cells of different cancer types. Additionally, metallothioneins (MT-I/II) are involved in control of cell proliferation and differentiation and changes of their expression are observed in many types of cancer. Ki-67 is known cancer cell proliferation antigen currently used in prognostic evaluation. The study material consisted of 83 laryngeal squamous cell cancer (LSCC) cases and 10 benign hypertrophic lesions of larynx epithelium as a control group. For the present study, laryngeal cancer cell line HEp-2 and human keratinocytes were employed, and to evaluate expression of all the markers, immunohistochemical method (IHC), immunofluorescence (IF) and western blot analysis were used. Statistical analysis showed strong positive correlation between expression of MCM2, MCM3, MCM7 and Ki-67 antigen in LSCC. Additionally, moderate positive correlation was observed between MCM3 and MT-I/II expression. In cancer cells, the level of expression of MCM3, MCM2, MCM7 and Ki-67 markers was increasing with the grade of LSCC malignancy. IF and western blot analysis showed higher MCM2, MCM3, MCM7 expression in HEp-2 cells in comparison to their expression in keratinocytes. MCM proteins might be useful markers of cell proliferation in LSCC.
Collapse
Affiliation(s)
- Katarzyna Nowinska
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | | | | | - Bartosz Pula
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Tomasz Krecicki
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Wroclaw, Poland
| | | | - Maciej Zabel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
23
|
Gefeller EM, Bondzio A, Aschenbach JR, Martens H, Einspanier R, Scharfen F, Zentek J, Pieper R, Lodemann U. Regulation of intracellular Zn homeostasis in two intestinal epithelial cell models at various maturation time points. J Physiol Sci 2015; 65:317-28. [PMID: 25757458 PMCID: PMC10717430 DOI: 10.1007/s12576-015-0369-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
After weaning, piglets are often fed diets supplemented with high concentrations of zinc (Zn) to decrease post-weaning diarrhea. The aim of this study was to elucidate the regulation of Zn homeostasis within intestinal epithelial cells during excessive Zn exposure. High Zn concentrations elevated the intracellular Zn level in IPEC-J2 and Caco-2 cells which was influenced by differentiation status and time of exposure. With increasing Zn concentrations, mRNA and protein levels of metallothionein (MT) and zinc transporter 1 (ZnT1) were upregulated, whereas zinc transporter 4 (ZIP4) expression was downregulated. Metal-regulatory transcription factor-1 (MTF1) mRNA expression was upregulated at high Zn concentrations in IPEC-J2 cells, which corresponded to higher intracellular Zn concentrations. Based on these results, we suggest that intestinal epithelial cells adapt the expression of these genes to the amount of extracellular Zn available in order to maintain Zn homeostasis. Cell line-dependent differences in the regulation of Zn homeostasis were detected.
Collapse
Affiliation(s)
- Eva-Maria Gefeller
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Angelika Bondzio
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Jörg R. Aschenbach
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Holger Martens
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Ralf Einspanier
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Franziska Scharfen
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Jürgen Zentek
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - Robert Pieper
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - Ulrike Lodemann
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
24
|
Rezk NA, Zidan HE, Riad M, Mansy W, Mohamad SA. Metallothionein 2A expression and its relation to different clinical stages and grades of breast cancer in Egyptian patients. Gene 2015; 571:17-22. [PMID: 26093198 DOI: 10.1016/j.gene.2015.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/19/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To assess the relation of blood MT-2A expression, serum zinc, copper, Cu/Zn ratio, total antioxidant status (TAS), total oxidant status (TOS) and oxidant status index (OSI) with benign and malignant breast tumors, also, their relation to different clinical stages and grades of breast cancer. MATERIAL AND METHODS Unrelated 199 female patients with breast tumor and 120 healthy controls were enrolled in this study. Metallothionein-2A (MT-2A) expression was assessed by quantitative real-time polymerase chain reaction (RT-PCR). Serum MT-2A levels were measured by ELISA. Serum copper (Cu) and Zinc (Zn) concentrations were determined by atomic absorption spectrophotometry. Serum TOS and TAS levels were measured colorimetrically. RESULTS Our study demonstrated that blood metallothionein-2A mRNA level, serum MT-2A, copper, Cu/Zn ratio, total oxidant status and oxidant status index were significantly increased, while, serum zinc level and total antioxidant status were significantly decreased in patients with breast cancer and benign breast disease as compared to controls and in breast cancer group as compared to the benign one. CONCLUSIONS Blood metallothionein-2A expression and serum MT-2A levels could be important prognostic indices of less differentiated, more aggressive breast cancer phenotype. Disturbance of copper, zinc and oxidative stress status might contribute to the pathogenesis of breast tumor and could be useful biomarkers for diagnosing and monitoring such disease.
Collapse
Affiliation(s)
- Noha A Rezk
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Haidy E Zidan
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Riad
- Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Wael Mansy
- Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samya A Mohamad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
25
|
Sztalmachova M, Gumulec J, Raudenska M, Polanska H, Holubova M, Balvan J, Hudcova K, Knopfova L, Kizek R, Adam V, Babula P, Masarik M. Molecular response of 4T1-induced mouse mammary tumours and healthy tissues to zinc treatment. Int J Oncol 2015; 46:1810-8. [PMID: 25672434 DOI: 10.3892/ijo.2015.2883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/29/2014] [Indexed: 11/06/2022] Open
Abstract
Breast cancer patients negative for the nuclear oestrogen receptor α have a particularly poor prognosis. Therefore, the 4T1 cell line (considered as a triple-negative model) was chosen to induce malignancy in mice. The aim of the present study was to assess if zinc ions, provided in excess, may significantly modify the process of mammary oncogenesis. Zn(II) ions were chosen because of their documented antitumour effects. Zn(II) is also known to induce the expression of metallothioneins (MT) and glutathion (GSH). A total dose of zinc sulphate per one gram of mouse weight used in the experiment was 0.15 mg. We studied the expression of MT1, MT2, TP53 and MTF-1 genes and also examined the effect of the tumour on antioxidant capacity. Tumour-free mice had significantly higher expression levels of the studied genes (p<0.003). Significant differences were also revealed in the gene expression between the tissues (p<0.001). The highest expression levels were observed in the liver. As compared to brain, lung and liver, significantly lower concentrations of MT protein were found in the primary tumour; an inverse trend was observed in the concentration of Zinc(II). In non-tumour mice, the amount of hepatic hydrosulphuryl groups significantly increased by the exposure to Zn(II), but the animals with tumour induction showed no similar trend. The primary tumour size of zinc-treated animals was 20% smaller (p=0.002); however, no significant effect on metastasis progression due to the zinc treatment was discovered. In conclusion, Zn(II) itself may mute the growth of primary breast tumours especially at their early stages.
Collapse
Affiliation(s)
- Marketa Sztalmachova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Hana Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Monika Holubova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Kristyna Hudcova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Lucia Knopfova
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Rene Kizek
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
26
|
Phatak VM, Muller PAJ. Metal toxicity and the p53 protein: an intimate relationship. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00117f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The relationship between p53, ROS and transition metals.
Collapse
|
27
|
Nakazato K, Tomioka S, Nakajima K, Saito H, Kato M, Kodaira T, Yatsuzuka SI, Shimomura Y, Hiroki T, Motoyama K, Kodama H, Nagamine T. Determination of the serum metallothionein (MT)1/2 concentration in patients with Wilson's disease and Menkes disease. J Trace Elem Med Biol 2014; 28:441-7. [PMID: 25172214 DOI: 10.1016/j.jtemb.2014.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have developed an easy and specific enzyme-linked immunoassay (ELISA) for the simultaneous determination of serum metallothinein-1 (MT-1) and 2 (MT-2) in both humans and experimental animals. A competitive ELISA was established using a specific polyclonal antibody against rat MT-2. The antibody used for this ELISA had exhibited the same cross-reactivity with MT in humans and experimental animals. The NH2 terminal peptide of MT containing acetylated methionine was shown to be the epitope of this antibody. The reactivity of this ELISA system with the liver, kidney and brain in MT1/2 knock-out mice was significantly low, but was normal in an MT-3 knock-out mouse. The lowest detection limit of this ELISA was 0.6ng/ml and the spiked MT-1was fully recovered from the plasma. We investigated the normal range of MT1/2 (25-75%tile) in 200 healthy human serum and found it to be 27-48ng/ml, and this was compared with the serum levels in various liver diseases. The serum MT1/2 levels in chronic hepatitis C (HCV) patients were significantly lower than healthy controls and also other liver diseases. In the chronic hepatitis cases, the MT1/I2 levels increased gradually, followed by the progression of the disease to liver cirrhosis and hepatocellular carcinoma. In particular, we found significantly elevated MT1/2 plasma levels in Wilson's disease patients, levels which were very similar to those in the Long-Evans Cinnamon (LEC) rat (model animal of Wilson's disease). Furthermore, a significantly elevated MT1/2 level was found in patients with Menkes disease, an inborn error of copper metabolism such as Wilson's disease.
Collapse
Affiliation(s)
- Kyoumi Nakazato
- Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Satoru Tomioka
- Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Katsuyuki Nakajima
- Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan.
| | | | - Mihoko Kato
- Frontier Institute, Ishikari, Hokkaido, Japan
| | | | - Shin-ichi Yatsuzuka
- Diabetes and Metabolic Disease Research Center, Hidaka Hospital, Takasaki, Japan
| | - Younosuke Shimomura
- Diabetes and Metabolic Disease Research Center, Hidaka Hospital, Takasaki, Japan
| | - Tomoko Hiroki
- Diabetes and Metabolic Disease Research Center, Hidaka Hospital, Takasaki, Japan
| | - Kahoko Motoyama
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroko Kodama
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Takeaki Nagamine
- Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
28
|
Felix-Portillo M, Martinez-Quintana JA, Peregrino-Uriarte AB, Yepiz-Plascencia G. The metallothionein gene from the white shrimp Litopenaeus vannamei: characterization and expression in response to hypoxia. MARINE ENVIRONMENTAL RESEARCH 2014; 101:91-100. [PMID: 25299575 DOI: 10.1016/j.marenvres.2014.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/03/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Aquatic animals encounter variation in oxygen tension that leads to the accumulation of reactive oxygen species (ROS) that can harm the organisms. Under these circumstances some organisms have evolved to tolerate hypoxia. In mammals, metallothioneins (MTs) protect against hypoxia-generated ROS. Here we report the MT gene from the shrimp Litopenaeus vannamei (LvMT). LvMT is differentially expressed in hemocytes, intestine, gills, pleopods, heart, hepatopancreas and muscle, with the highest levels in hepatopancreas and heart. LvMT mRNA increases during hypoxia in hepatopancreas and gills after 3 h at 1.5 mg L(-1) dissolved oxygen (DO). This gene structure resembles the homologs from invertebrates and vertebrates possessing three exons, two introns and response elements for metal response transcription factor 1 (MTF-1), hypoxia-inducible factor 1 (HIF-1) and p53 in the promoter region. During hypoxia, HIF-1/MTF-1 might participate inducing MT to contribute towards the tolerance to ROS toxicity. MT importance in aquatic organisms may include also ROS-detoxifying processes.
Collapse
Affiliation(s)
- Monserrath Felix-Portillo
- Centro de Investigación en Alimentación y Desarrollo. A.C., P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - José A Martinez-Quintana
- Centro de Investigación en Alimentación y Desarrollo. A.C., P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo. A.C., P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo. A.C., P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
29
|
Zalewska M, Trefon J, Milnerowicz H. The role of metallothionein interactions with other proteins. Proteomics 2014; 14:1343-56. [DOI: 10.1002/pmic.201300496] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Marta Zalewska
- Department of Biomedical and Environmental Analysis; Faculty of Pharmacy; Wroclaw Medical University; Wroclaw Poland
| | - Jagoda Trefon
- Students Scientific Association; Department of Biomedical and Environmental Analysis; Faculty of Pharmacy; Wroclaw Medical University; Wroclaw Poland
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analysis; Faculty of Pharmacy; Wroclaw Medical University; Wroclaw Poland
| |
Collapse
|
30
|
Formigari A, Gregianin E, Irato P. The effect of zinc and the role of p53 in copper-induced cellular stress responses. J Appl Toxicol 2013; 33:527-536. [PMID: 23401182 DOI: 10.1002/jat.2854] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/20/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022]
Abstract
Metals can directly or indirectly cause an increase in reactive oxygen species (ROS) accumulation in cells, and this may result in programmed cell death. A number of previous studies have shown that zinc (Zn) modulates mitogenic activity via several signalling pathways, such as AKT, mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF -κB), AP-1 and p53. The exact role that Zn plays in the regulation of apoptosis remains ambiguous. Intracellular free Zn modulates p53 activity and stability, and excess Zn alters the p53 protein structure and down-regulates p53's binding to DNA. Copper (Cu) accumulation causes apoptosis that seems to be mediated by DNA damage and subsequent p53 activation. Cu can also displace Zn from its normal binding site on p53, resulting in abnormal protein folding and disruption of p53 function. In spite of the induction of the tumour suppressor p53, hepatic Cu accumulation significantly increases the risk of cancerous neoplasm both in humans and rats, suggesting that p53 function may be impaired in these cells. It is generally understood that imbalances in Cu and Zn levels may lead to a higher prevalence of p53 mutations. An increased number of p53 mutations have been found in liver samples from Wilson's disease (WD) patients. High levels of the p53 mutation most probably contribute to the pathogenesis of cancer in individuals with WD, but the cause and effect are not clear. The protein p53 also plays a crucial role in the transcriptional regulation of metallothionein, which indicates a novel regulatory role for p53. This review discusses the central role of p53 and the redox-inert metal Zn in the cellular stress responses induced by the redox active biometal Cu.
Collapse
Affiliation(s)
- Alessia Formigari
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | | | | |
Collapse
|
31
|
Aure MR, Steinfeld I, Baumbusch LO, Liestøl K, Lipson D, Nyberg S, Naume B, Sahlberg KK, Kristensen VN, Børresen-Dale AL, Lingjærde OC, Yakhini Z. Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data. PLoS One 2013; 8:e53014. [PMID: 23382830 PMCID: PMC3559658 DOI: 10.1371/journal.pone.0053014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022] Open
Abstract
Genomic copy number alterations are common in cancer. Finding the genes causally implicated in oncogenesis is challenging because the gain or loss of a chromosomal region may affect a few key driver genes and many passengers. Integrative analyses have opened new vistas for addressing this issue. One approach is to identify genes with frequent copy number alterations and corresponding changes in expression. Several methods also analyse effects of transcriptional changes on known pathways. Here, we propose a method that analyses in-cis correlated genes for evidence of in-trans association to biological processes, with no bias towards processes of a particular type or function. The method aims to identify cis-regulated genes for which the expression correlation to other genes provides further evidence of a network-perturbing role in cancer. The proposed unsupervised approach involves a sequence of statistical tests to systematically narrow down the list of relevant genes, based on integrative analysis of copy number and gene expression data. A novel adjustment method handles confounding effects of co-occurring copy number aberrations, potentially a large source of false positives in such studies. Applying the method to whole-genome copy number and expression data from 100 primary breast carcinomas, 6373 genes were identified as commonly aberrant, 578 were highly in-cis correlated, and 56 were in addition associated in-trans to biological processes. Among these in-trans process associated and cis-correlated (iPAC) genes, 28% have previously been reported as breast cancer associated, and 64% as cancer associated. By combining statistical evidence from three separate subanalyses that focus respectively on copy number, gene expression and the combination of the two, the proposed method identifies several known and novel cancer driver candidates. Validation in an independent data set supports the conclusion that the method identifies genes implicated in cancer.
Collapse
Affiliation(s)
- Miriam Ragle Aure
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Israel Steinfeld
- Laboratory of Computational Biology, Computer Science Department, Israel Institute of Technology, Haifa, Israel
| | - Lars Oliver Baumbusch
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Knut Liestøl
- Biomedical Informatics Lab, Department of Computer Science, University of Oslo, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Doron Lipson
- Laboratory of Computational Biology, Computer Science Department, Israel Institute of Technology, Haifa, Israel
| | - Sandra Nyberg
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørn Naume
- Division of Cancer Medicine and Radiotherapy, Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Kristine Kleivi Sahlberg
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vessela N. Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Clinical Epidemiology and Molecular Biology (EpiGen) Akershus University Hospital, Akershus, Norway
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole Christian Lingjærde
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Biomedical Informatics Lab, Department of Computer Science, University of Oslo, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- * E-mail: (OCL); (ZY)
| | - Zohar Yakhini
- Laboratory of Computational Biology, Computer Science Department, Israel Institute of Technology, Haifa, Israel
- Agilent Laboratories, Tel Aviv, Israel
- * E-mail: (OCL); (ZY)
| |
Collapse
|
32
|
Pula B, Domoslawski P, Podhorska-Okolow M, Dziegiel P. Role of metallothioneins in benign and malignant thyroid lesions. Thyroid Res 2012; 5:26. [PMID: 23273222 PMCID: PMC3544669 DOI: 10.1186/1756-6614-5-26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 01/21/2023] Open
Abstract
Recent findings in the past two decades have brought many insights into the biology of thyroid benign and malignant lesions, in particular the papillary and follicular thyroid cancers. Although, much progress have been made, thyroid cancers still pose diagnostic problems regarding differentiation of follicular lesions in relation to their aggressiveness and the treatment of advanced and undifferentiated thyroid cancers. Metallothioneins (MTs) were shown to induce cancer cells proliferation, mediate resistance to apoptosis, certain chemotherapeutics and radiotherapy. Therefore, MTs may be of utility in diagnosis and management of patients with benign and malignant lesions of the thyroid.
Collapse
Affiliation(s)
- Bartosz Pula
- Department of Histology and Embryology, Medical University in Wroclaw, Wroclaw, Poland.
| | | | | | | |
Collapse
|
33
|
Krizkova S, Ryvolova M, Hrabeta J, Adam V, Stiborova M, Eckschlager T, Kizek R. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab Rev 2012; 44:287-301. [PMID: 23050852 DOI: 10.3109/03602532.2012.725414] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metallothioneins (MTs) are involved in protection against oxidative stress (OS) and toxic metals and they participate in zinc metabolism and its homeostasis. Disturbing of zinc homeostasis can lead to formation of reactive oxygen species, which can result in OS causing alterations in immunity, aging, and civilization diseases, but also in cancer development. It is not surprising that altered zinc metabolism and expression of MTs are of great interest in the case of studying of oncogenesis and cancer prognosis. The role of MTs and zinc in cancer development is tightly connected, and the structure and function of MTs are strongly dependent on Zn²⁺ redox state and its binding to proteins. Antiapoptic effects of MTs and their interactions with proteins nuclear factor kappa B, protein kinase C, esophageal cancer-related gene, and p53 as well as the role of MTs in their proliferation, immunomodulation, enzyme activation, and interaction with nitric oxide are reviewed. Utilization of MTs in cancer diagnosis and therapy is summarized and their importance for chemoresistance is also mentioned.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
34
|
Günther V, Lindert U, Schaffner W. The taste of heavy metals: gene regulation by MTF-1. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1416-25. [PMID: 22289350 DOI: 10.1016/j.bbamcr.2012.01.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/08/2012] [Accepted: 01/11/2012] [Indexed: 11/22/2022]
Abstract
The metal-responsive transcription factor-1 (MTF-1, also termed MRE-binding transcription factor-1 or metal regulatory transcription factor-1) is a pluripotent transcriptional regulator involved in cellular adaptation to various stress conditions, primarily exposure to heavy metals but also to hypoxia or oxidative stress. MTF-1 is evolutionarily conserved from insects to humans and is the main activator of metallothionein genes, which encode small cysteine-rich proteins that can scavenge toxic heavy metals and free radicals. MTF-1 has been suggested to act as an intracellular metal sensor but evidence for direct metal sensing was scarce. Here we review recent advances in our understanding of MTF-1 regulation with a focus on the mechanism underlying heavy metal responsiveness and transcriptional activation mediated by mammalian or Drosophila MTF-1. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Viola Günther
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
35
|
Role of p16(INK4A) in Replicative Senescence and DNA Damage-Induced Premature Senescence in p53-Deficient Human Cells. Biochem Res Int 2012; 2012:951574. [PMID: 22924132 PMCID: PMC3424640 DOI: 10.1155/2012/951574] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/21/2012] [Indexed: 11/18/2022] Open
Abstract
The p16(INK4A) (hereafter p16) tumor suppressor is encoded by the INK4A/ARF locus which is among the most commonly dysregulated sequences in human cancer. By inhibiting cyclin-dependent kinases, p16 activates the G1-S checkpoint, and this response is often considered to be critical for establishing a senescence-like growth arrest. Not all studies support a universal role for p16 in senescence. Single-cell analysis of noncancerous human fibroblast cultures undergoing senescence as a function of culture age (replicative senescence) has revealed that p16 is not expressed in the majority (>90%) of cells that exhibit features of senescence (e.g., flattened and enlarged morphology coupled with senescence-associated β-galactosidase expression), ruling out a requirement for p16 in this process. In addition, ionizing radiation triggers premature senescence in human cancer cell lines that do not express p16. These observations are made with cells that express wild-type p53, a key mediator of the DNA damage response. In this paper, we examine the growing evidence suggesting a negative regulatory relationship between p16 and p53 and discuss recent reports that implicate a role for p16 in replicative senescence and ionizing radiation-induced premature senescence in human cells that lack wild-type p53 function.
Collapse
|
36
|
Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R. Mammalian metallothioneins: properties and functions. Metallomics 2012; 4:739-50. [PMID: 22791193 DOI: 10.1039/c2mt20081c] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metallothioneins (MT) are a family of ubiquitous proteins, whose role is still discussed in numerous papers, but their affinity to some metal ions is undisputable. These cysteine-rich proteins are connected with antioxidant activity and protective effects on biomolecules against free radicals, especially reactive oxygen species. In this review, the connection between zinc(II) ions, reactive oxygen species, heavy metal ions and metallothioneins is demonstrated with respect to effect of these proteins on cell proliferation and a possible negative role in resistance to heavy metal-based and non-heavy metal-based drugs.
Collapse
Affiliation(s)
- Petr Babula
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang Y, Andrews GK, Wang L. Zinc-induced Dnmt1 expression involves antagonism between MTF-1 and nuclear receptor SHP. Nucleic Acids Res 2012; 40:4850-60. [PMID: 22362755 PMCID: PMC3367194 DOI: 10.1093/nar/gks159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/24/2012] [Accepted: 01/28/2012] [Indexed: 11/14/2022] Open
Abstract
Dnmt1 is frequently overexpressed in cancers, which contributes significantly to cancer-associated epigenetic silencing of tumor suppressor genes. However, the mechanism of Dnmt1 overexpression remains elusive. Herein, we elucidate a pathway through which nuclear receptor SHP inhibits zinc-dependent induction of Dnmt1 by antagonizing metal-responsive transcription factor-1 (MTF-1). Zinc treatment induces Dnmt1 transcription by increasing the occupancy of MTF-1 on the Dnmt1 promoter while decreasing SHP expression. SHP in turn represses MTF-1 expression and abolishes zinc-mediated changes in the chromatin configuration of the Dnmt1 promoter. Dnmt1 expression is increased in SHP-knockout (sko) mice but decreased in SHP-transgenic (stg) mice. In human hepatocellular carcinoma (HCC), increased DNMT1 expression is negatively correlated with SHP levels. Our study provides a molecular explanation for increased Dnmt1 expression in HCC and highlights SHP as a potential therapeutic target.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Cell Line
- Cell Line, Tumor
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/biosynthesis
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Hepatocytes/enzymology
- Humans
- Liver/enzymology
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Mice
- Mice, Knockout
- Mice, Transgenic
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repressor Proteins/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Zinc/pharmacology
- Transcription Factor MTF-1
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 and Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Glen K. Andrews
- Department of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 and Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Li Wang
- Department of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 and Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
38
|
Arriaga JM, Bravo IA, Bruno L, Morales Bayo S, Hannois A, Sanchez Loria F, Pairola F, Huertas E, Roberti MP, Rocca YS, Aris M, Barrio MM, Baffa Trasci S, Levy EM, Mordoh J, Bianchini M. Combined metallothioneins and p53 proteins expression as a prognostic marker in patients with Dukes stage B and C colorectal cancer. Hum Pathol 2012; 43:1695-703. [PMID: 22516242 DOI: 10.1016/j.humpath.2011.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022]
Abstract
Our study aimed to evaluate metallothionein and p53 expression in colorectal cancer and to correlate their combined expression with selected clinical and pathologic variables of the disease, to define their prognostic significance. Colorectal cancer specimens from 99 patients were retrospectively analyzed by immunohistochemistry for metallothionein and p53 expression. Survival curves were generated according to the Kaplan-Meier method, and univariate survival distributions were compared with the use of the log-rank test. Multivariate models were computed using Cox proportional hazards regression. This research was approved by the institutional review boards of all centers. Tumors showing concomitant high metallothionein expression and negative p53 (metallothionein(H)/p53(-)) were significantly inversely related to depth of invasion, frequency of nodal metastasis, and Dukes stage (P < .01). In univariate analysis, patients with metallothionein(H)/p53(-) phenotype showed a better overall survival (hazard ratio [HR], 2.83; P < .05) and disease-free survival (HR, 2.03; P < .05). In multivariate analysis, considering staging, metallothionein, and metallothionein + p53 variables, in 83 patients with Dukes stages B and C, metallothionein(H)/p53(-) combination was the sole factor showing an independent prognostic value for overall survival (HR, 3.88; P < .1) and disease-free survival (HR, 2.56; P < .1). In conclusion, the combined analysis of metallothionein and p53 may enhance the prognostic power of each individual marker by predicting the progression of the disease and contributing to a better identification of patients at low risk for mortality, especially for those with Dukes stage B and C colorectal cancer.
Collapse
Affiliation(s)
- J M Arriaga
- Instituto Médico Especializado Alexander Fleming, Centro de Investigaciones Oncológicas de la Fundación Cáncer, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Darling MR, McCord C, Jackson-Boeters L, Copete M. Markers of potential malignancy in chronic hyperplastic candidiasis. ACTA ACUST UNITED AC 2012; 3:176-81. [DOI: 10.1111/j.2041-1626.2012.00120.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Nzengue Y, Candéias SM, Sauvaigo S, Douki T, Favier A, Rachidi W, Guiraud P. The toxicity redox mechanisms of cadmium alone or together with copper and zinc homeostasis alteration: its redox biomarkers. J Trace Elem Med Biol 2011; 25:171-80. [PMID: 21820296 DOI: 10.1016/j.jtemb.2011.06.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 05/01/2011] [Accepted: 06/29/2011] [Indexed: 12/27/2022]
Abstract
Cadmium (Cd) is a toxic metal and can induce and/or promote diseases in humans (cancer, aging diseases, kidney and bone diseases, etc.). Its toxicity involves many mechanisms including the alteration of copper (Cu) and zinc (Zn) homeostasis leading to reactive oxygen species (ROS) production, either directly or through the inhibition of antioxidant activities. Importantly, ROS can induce oxidative damages in cells. Cadmium, Cu and Zn are also able to induce glutathione (GSH) and metallothioneins (MT) synthesis in a cell-type-dependent manner. As a consequence, the effects induced by these three metals result simultaneously from the inhibition of antioxidant activities and the induction of other factors such as GSH and MT synthesis. MT levels are regulated not only by the p53 protein in a cell-type-dependent manner, or by transcription factors such as metal-responsive transcription factor 1 (MTF-1) and cellular Zn levels but also by cellular GSH level. As described in the literature, DNA damage, GSH and MT levels are sensitive biomarkers used to identify Cd-induced toxicity alone or together with Cu and Zn homeostasis alteration.
Collapse
Affiliation(s)
- Yves Nzengue
- INAC/SCIB UMR-E3 CEA/UJF, Laboratoire Lésions des Acides Nucléiques, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Correlation between metallothionein (MT) expression and selected prognostic factors in ductal breast cancers. Folia Histochem Cytobiol 2010; 48:242-8. [DOI: 10.2478/v10042-010-0011-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Zhao RY, Liang D, Li G, Larrimore CW, Mirkin BL. Anti-cancer effect of HIV-1 viral protein R on doxorubicin resistant neuroblastoma. PLoS One 2010; 5:e11466. [PMID: 20628645 PMCID: PMC2898807 DOI: 10.1371/journal.pone.0011466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 06/08/2010] [Indexed: 01/21/2023] Open
Abstract
Several unique biological features of HIV-1 Vpr make it a potentially powerful agent for anti-cancer therapy. First, Vpr inhibits cell proliferation by induction of cell cycle G2 arrest. Second, it induces apoptosis through multiple mechanisms, which could be significant as it may be able to overcome apoptotic resistance exhibited by many cancerous cells, and, finally, Vpr selectively kills fast growing cells in a p53-independent manner. To demonstrate the potential utility of Vpr as an anti-cancer agent, we carried out proof-of-concept studies in vitro and in vivo. Results of our preliminary studies demonstrated that Vpr induces cell cycle G2 arrest and apoptosis in a variety of cancer types. Moreover, the same Vpr effects could also be detected in some cancer cells that are resistant to anti-cancer drugs such as doxorubicin (DOX). To further illustrate the potential value of Vpr in tumor growth inhibition, we adopted a DOX-resistant neuroblastoma model by injecting SK-N-SH cells into C57BL/6N and C57BL/6J-scid/scid mice. We hypothesized that Vpr is able to block cell proliferation and induce apoptosis regardless of the drug resistance status of the tumors. Indeed, production of Vpr via adenoviral delivery to neuroblastoma cells caused G2 arrest and apoptosis in both drug naïve and DOX-resistant cells. In addition, pre-infection or intratumoral injection of vpr-expressing adenoviral particles into neuroblastoma tumors in SCID mice markedly inhibited tumor growth. Therefore, Vpr could possibly be used as a supplemental viral therapeutic agent for selective inhibition of tumor growth in anti-cancer therapy especially when other therapies stop working.
Collapse
Affiliation(s)
- Richard Y Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
43
|
Liu Q, Wang G, Zhou G, Tan Y, Wang X, Wei W, Liu L, Xue W, Feng W, Cai L. Angiotensin II-induced p53-dependent cardiac apoptotic cell death: its prevention by metallothionein. Toxicol Lett 2009; 191:314-320. [PMID: 19808082 DOI: 10.1016/j.toxlet.2009.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 09/25/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
Abstract
Apoptotic cell death was found to play a critical role in the development of diabetic cardiomyopathy. As one of pathogenic components of diabetes angiotensin II (Ang II) induced cardiac cell death in vitro and in vivo through induction of reactive oxygen and nitrogen species. However, Ang II-induced cell death signaling in the heart remains unclear. The present study was to investigate whether Ang II induces p53 expression and activation and if so, whether Ang II-induced cardiac cell death is p53-dependent, and whether a potent antioxidant metallothionein (MT) prevents Ang II-induced p53 expression, and associate apoptotic cell death signaling. A cardiac cell line (H9c2) was exposed to Ang II. We found that exposure of H9c2 cells to Ang II at 10, 50 and 100 nM for 24 h induced a significant apoptotic effect, measured by DNA fragmentation and cleaved caspase-3. Induction of apoptotic cell death by Ang II can be completely blocked by p53 inhibitor Pitithrin-alpha. Exposure of H9c2 cells to Ang II also significantly increased p53 phosphorylation, DNA double strand breaks and Bax/Bcl-2 ratio. All these effects were not observed in H9c2MT7 cells that forcedly overexpresses human MT-IIA gene, suggesting the preventive effect of antioxidant MT against Ang II-induced p53 activation and its apoptotic death signaling. Furthermore, the in vitro finding was validated in animal models by supplying Ang II to wild-type mice (WT) and MT-TG mice that has cardiac-specifically overexpressed MT gene. Ang II-induced significant up-regulation of p53 expression along with an increase in Bax/Bcl-2 ratio in the hearts of WT mice, but not MT-TG mice. These results suggest that Ang II-induced cardiac apoptotic cell death is mediated by p53 apoptotic signaling pathway, which is related to oxidative stress. Antioxidant MT can completely prevent Ang II-induced p53 activation and associated apoptotic effect in the heart.
Collapse
Affiliation(s)
- Qiuju Liu
- Department of Hematology & Oncology at the First Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lopez V, Kelleher SL. Zip6-attenuation promotes epithelial-to-mesenchymal transition in ductal breast tumor (T47D) cells. Exp Cell Res 2009; 316:366-75. [PMID: 19852955 DOI: 10.1016/j.yexcr.2009.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/21/2009] [Accepted: 10/14/2009] [Indexed: 01/21/2023]
Abstract
Breast cancer is associated with zinc (Zn) hyper-accumulation in breast tissue which is postulated to be potentiated by the over-expression of Zn importing proteins. Zip6 (LIV-1) over-expression has been documented in estrogen receptor-positive (ER+) breast tumors. Anti-estrogens, such as fulvestrant, are typically prescribed for ER+ breast cancer and thus may play a role in modulating cellular Zn hyper-accumulation. Herein, we investigated the physiological relevance of Zip6 over-expression and the consequences of Zip6-attenuation in breast tumor cells as a mechanism in the development of anti-estrogen resistance. We documented that over-expression of Zip6 was associated with significantly higher cellular Zn levels in tumor cells compared with normal breast cells. Fulvestrant significantly reduced Zn accumulation in tumor cells, without robust effects on Zip6 protein abundance. Zip6-attenuation significantly reduced cellular Zn pools, which was associated with increased mitochondrial membrane potential (DeltaPsim) and decreased apoptotic stimuli (cytoplasmic cytochrome C release, caspase-3 and -9 activities). Importantly, decreased apoptosis significantly increased tumor colony formation in soft agar and was associated with reduced E-cadherin expression. Our data suggest that anti-estrogen treatment regulates Zn level and importantly verify that Zip6 over-expression is not an underlying mechanism initiating breast cancer, but in fact may play a "tumor-constraining" role.
Collapse
Affiliation(s)
- Veronica Lopez
- Department of Nutritional Sciences, The Pennsylvania State University, 222 Chandlee, University Park, PA 16802-6110, USA
| | | |
Collapse
|
45
|
SM22α inhibits cell proliferation and protects against anticancer drugs and γ-radiation in HepG2 cells: Involvement of metallothioneins. FEBS Lett 2009; 583:3356-62. [DOI: 10.1016/j.febslet.2009.09.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/23/2022]
|
46
|
Pedersen MØ, Jensen R, Pedersen DS, Skjolding AD, Hempel C, Maretty L, Penkowa M. Metallothionein-I+II in neuroprotection. Biofactors 2009; 35:315-25. [PMID: 19655389 DOI: 10.1002/biof.44] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metallothionein (MT)-I+II synthesis is induced in the central nervous system (CNS) in response to practically any pathogen or disorder, where it is increased mainly in reactive glia. MT-I+II are involved in host defence reactions and neuroprotection during neuropathological conditions, in which MT-I+II decrease inflammation and secondary tissue damage (oxidative stress, neurodegeneration, and apoptosis) and promote post-injury repair and regeneration (angiogenesis, neurogenesis, neuronal sprouting and tissue remodelling). Intracellularly the molecular MT-I+II actions involve metal ion control and scavenging of reactive oxygen species (ROS) leading to cellular redox control. By regulating metal ions, MT-I+II can control metal-containing transcription factors, zinc-finger proteins and p53. However, the neuroprotective functions of MT-I+II also involve an extracellular component. MT-I+II protects the neurons by signal transduction through the low-density lipoprotein family of receptors on the cell surface involving lipoprotein receptor-1 (LRP1) and megalin (LRP2). In this review we discuss the newest data on cerebral MT-I+II functions following brain injury and experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Mie Ø Pedersen
- Section of Neuroprotection, Institute of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
47
|
Simmons SO, Fan CY, Ramabhadran R. Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci 2009; 111:202-25. [PMID: 19567883 DOI: 10.1093/toxsci/kfp140] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
High costs, long test times, and societal concerns related to animal use have required the development of in vitro assays for the rapid and cost-effective toxicological evaluation and characterization of compounds in both the pharmaceutical and environmental arenas. Although the pharmaceutical industry has developed very effective, high-throughput in vitro assays for determining the therapeutic potential of compounds, the application of this approach to toxicological screening has been limited. A primary reason for this is that while drug candidate screens are directed to a specific target/mechanism, xenobiotics can cause toxicity through any of a myriad of undefined interactions with cellular components and processes. Given that it is not practical to design assays that can interrogate each potential toxicological target, an integrative approach is required if there is to be a rapid and low-cost toxicological evaluation of chemicals. Cellular stress response pathways offer a viable solution to the creation of a set of integrative assays as there is a limited and hence manageable set (a small ensemble of 10 or less) of major cellular stress response pathways through which cells mount a homoeostatic response to toxicants and which also participate in cell fate/death decisions. Further, over the past decades, these pathways have been well characterized at a molecular level thereby enabling the development of high-throughput cell-based assays using the components of the pathways. Utilization of the set of cellular stress response pathway-based assays as indicators of toxic interactions of chemicals with basic cellular machinery will potentially permit the clustering of chemicals based on biological response profiles of common mode of action (MOA) and also the inference of the specific MOA of a toxicant. This article reviews the biochemical characteristics of the stress response pathways, their common architecture that enables rapid activation during stress, their participation in cell fate decisions, the essential nature of these pathways to the organism, and the biochemical basis of their cross-talk that permits an assay ensemble screening approach. Subsequent sections describe how the stress pathway ensemble assay approach could be applied to screening potentially toxic compounds and discuss how this approach may be used to derive toxicant MOA from the biological activity profiles that the ensemble strategy provides. The article concludes with a review of the application of the stress assay concept to noninvasive in vivo assessments of chemical toxicants.
Collapse
Affiliation(s)
- Steven O Simmons
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina 27711, USA
| | | | | |
Collapse
|
48
|
Pedersen MØ, Larsen A, Stoltenberg M, Penkowa M. The role of metallothionein in oncogenesis and cancer prognosis. ACTA ACUST UNITED AC 2008; 44:29-64. [PMID: 19348910 DOI: 10.1016/j.proghi.2008.10.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 10/02/2008] [Indexed: 12/12/2022]
Abstract
The antiapoptotic, antioxidant, proliferative, and angiogenic effects of metallothionein (MT)-I+II has resulted in increased focus on their role in oncogenesis, tumor progression, therapy response, and patient prognosis. Studies have reported increased expression of MT-I+II mRNA and protein in various human cancers; such as breast, kidney, lung, nasopharynx, ovary, prostate, salivary gland, testes, urinary bladder, cervical, endometrial, skin carcinoma, melanoma, acute lymphoblastic leukemia (ALL), and pancreatic cancers, where MT-I+II expression is sometimes correlated to higher tumor grade/stage, chemotherapy/radiation resistance, and poor prognosis. However, MT-I+II are downregulated in other types of tumors (e.g. hepatocellular, gastric, colorectal, central nervous system (CNS), and thyroid cancers) where MT-I+II is either inversely correlated or unrelated to mortality. Large discrepancies exist between different tumor types, and no distinct and reliable association exists between MT-I+II expression in tumor tissues and prognosis and therapy resistance. Furthermore, a parallel has been drawn between MT-I+II expression as a potential marker for prognosis, and MT-I+II's role as oncogenic factors, without any direct evidence supporting such a parallel. This review aims at discussing the role of MT-I+II both as a prognostic marker for survival and therapy response, as well as for the hypothesized role of MT-I+II as causal oncogenes.
Collapse
Affiliation(s)
- Mie Ø Pedersen
- Section of Neuroprotection, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
49
|
Laryea D, Isaksson A, Wright CW, Larsson R, Nygren P. Characterization of the cytotoxic activity of the indoloquinoline alkaloid cryptolepine in human tumour cell lines and primary cultures of tumour cells from patients. Invest New Drugs 2008; 27:402-11. [PMID: 18853102 DOI: 10.1007/s10637-008-9185-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/30/2008] [Indexed: 01/30/2023]
Abstract
The plant derived indoloquinoline alkaloid cryptolepine was investigated for its cytotoxic properties in 12 human tumour cell lines and in primary cultures of tumour cells from patients. The fluorometric microculture cytotoxicity assay was used to assess cytotoxicity and DNA micro-array analysis to evaluate gene expression. Cryptolepine mean IC(50) in the cell line panel was 0.9 microM compared with 1.0 and 2.8 microM in haematological and solid tumour malignancies, respectively. Among patient solid tumour samples, those from breast cancer were the most sensitive and essentially as sensitive as haematological malignancies. Cryptolepine activity showed highest correlations to topoisomerase II and microtubule targeting drugs. In the cell lines cryptolepine activity was essentially unaffected by established mechanisms of drug resistance. A number of genes were identified as associated with cryptolepine activity. In conclusion, cryptolepine shows interesting in vitro cytotoxic properties and its further evaluation as an anti-cancer drug seems warranted.
Collapse
Affiliation(s)
- Daniel Laryea
- Division of Clinical Pharmacology, Department of Medical Sciences, University Hospital, 751 85, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
50
|
Alonso-Gonzalez C, Mediavilla D, Martinez-Campa C, Gonzalez A, Cos S, Sanchez-Barcelo EJ. Melatonin modulates the cadmium-induced expression of MT-2 and MT-1 metallothioneins in three lines of human tumor cells (MCF-7, MDA-MB-231 and HeLa). Toxicol Lett 2008; 181:190-5. [DOI: 10.1016/j.toxlet.2008.07.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/24/2008] [Accepted: 07/27/2008] [Indexed: 12/15/2022]
|