1
|
Giaquinto D, Fonsatti E, Bortoletti M, Radaelli G, De Felice E, de Girolamo P, Bertotto D, D'Angelo L. Olfactory and gustatory chemical sensor systems in the African turquoise killifish: Insights from morphology. Cell Tissue Res 2024; 398:239-252. [PMID: 39432108 PMCID: PMC11615025 DOI: 10.1007/s00441-024-03923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Smell and taste are extensively studied in fish species as essential for finding food and selecting mates while avoiding toxic substances and predators. Depending on the evolutionary position and adaptation, a discrete variation in the morphology of these sense organs has been reported in numerous teleost species. Here, for the first time, we approach the phenotypic characterization of the olfactory epithelium and taste buds in the African turquoise killifish (Nothobranchius furzeri), a model organism known for its short lifespan and use in ageing research. Our observations indicate that the olfactory epithelium of N. furzeri is organized as a simple patch, lacking the complex folding into a rosette, with an average size of approximately 600 µm in length, 300 µm in width, and 70 µm in thickness. Three main cytotypes, including olfactory receptor neurons (CalbindinD28K), supporting cells (β-tubulin IV), and basal cells (Ki67), were identified across the epithelium. Further, we determined the taste buds' distribution and quantification between anterior (skin, lips, oral cavity) and posterior (gills, pharynx, oesophagus) systems. We identified the key cytotypes by using immunohistochemical markers, i.e. CalbindinD28K, doublecortin, and neuropeptide Y (NPY) for gustatory receptor cells, glial fibrillary acidic protein (GFAP) for supporting cells, and Ki67, a marker of cellular proliferation for basal cells. Altogether, these results indicate that N. furzeri is a microsmatic species with unique taste and olfactory features and possesses a well-developed posterior taste system compared to the anterior. This study provides fundamental insights into the chemosensory biology of N. furzeri, facilitating future investigations into nutrient-sensing mechanisms and their roles in development, survival, and ageing.
Collapse
Affiliation(s)
- Daniela Giaquinto
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1 I-80137, Naples, Italy
| | - Elisa Fonsatti
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Martina Bortoletti
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Giuseppe Radaelli
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1 I-80137, Naples, Italy
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1 I-80137, Naples, Italy.
| |
Collapse
|
2
|
Hu XM, Li ZX, Zhang DY, Yang YC, Fu SA, Zhang ZQ, Yang RH, Xiong K. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther 2021; 12:453. [PMID: 34380571 PMCID: PMC8359037 DOI: 10.1186/s13287-021-02527-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are among the most widely available resources and most frequently approved model systems used for studying adult stem cells. HFSCs are particularly useful because of their self-renewal and differentiation properties. Additionally, the cyclic growth of hair follicles is driven by HFSCs. There are high expectations for the use of HFSCs as favourable systems for studying the molecular mechanisms that contribute to HFSC identification and can be applied to hair loss therapy, such as the activation or regeneration of hair follicles, and to the generation of hair using a tissue-engineering strategy. A variety of molecules are involved in the networks that critically regulate the fate of HFSCs, such as factors in hair follicle growth and development (in the Wnt pathway, Sonic hedgehog pathway, Notch pathway, and BMP pathway), and that suppress apoptotic cues (the apoptosis pathway). Here, we review the life cycle, biomarkers and functions of HFSCs, concluding with a summary of the signalling pathways involved in HFSC fate for promoting better understanding of the pathophysiological changes in the HFSC niche. Importantly, we highlight the potential mechanisms underlying the therapeutic targets involved in pathways associated with the treatment of hair loss and other disorders of skin and hair, including alopecia, skin cancer, skin inflammation, and skin wound healing.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Shen-Ao Fu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Zai-Qiu Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, #81, Lingnan North Road, Foshan, 528000, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China.
| |
Collapse
|
3
|
Characterisation of Neurospheres-Derived Cells from Human Olfactory Epithelium. Cells 2021; 10:cells10071690. [PMID: 34359860 PMCID: PMC8307784 DOI: 10.3390/cells10071690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
A major problem in psychiatric research is a deficit of relevant cell material of neuronal origin, especially in large quantities from living individuals. One of the promising options is cells from the olfactory neuroepithelium, which contains neuronal progenitors that ensure the regeneration of olfactory receptors. These cells are easy to obtain with nasal biopsies and it is possible to grow and cultivate them in vitro. In this work, we used RNAseq expression profiling and immunofluorescence microscopy to characterise neurospheres-derived cells (NDC), that simply and reliably grow from neurospheres (NS) obtained from nasal biopsies. We utilized differential expression analysis to explore the molecular changes that occur during transition from NS to NDC. We found that processes associated with neuronal and vascular cells are downregulated in NDC. A comparison with public transcriptomes revealed a depletion of neuronal and glial components in NDC. We also discovered that NDC have several metabolic features specific to neuronal progenitors treated with the fungicide maneb. Thus, while NDC retain some neuronal/glial identity, additional protocol alterations are needed to use NDC for mass sample collection in psychiatric research.
Collapse
|
4
|
Tang T, Donnelly CR, Shah AA, Bradley RM, Mistretta CM, Pierchala BA. Cell non-autonomous requirement of p75 in the development of geniculate oral sensory neurons. Sci Rep 2020; 10:22117. [PMID: 33335119 PMCID: PMC7747618 DOI: 10.1038/s41598-020-78816-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
During development of the peripheral taste system, oral sensory neurons of the geniculate ganglion project via the chorda tympani nerve to innervate taste buds in fungiform papillae. Germline deletion of the p75 neurotrophin receptor causes dramatic axon guidance and branching deficits, leading to a loss of geniculate neurons. To determine whether the developmental functions of p75 in geniculate neurons are cell autonomous, we deleted p75 specifically in Phox2b + oral sensory neurons (Phox2b-Cre; p75fx/fx) or in neural crest-derived cells (P0-Cre; p75fx/fx) and examined geniculate neuron development. In germline p75-/- mice half of all geniculate neurons were lost. The proportion of Phox2b + neurons, as compared to Phox2b-pinna-projecting neurons, was not altered, indicating that both populations were affected similarly. Chorda tympani nerve recordings demonstrated that p75-/- mice exhibit profound deficits in responses to taste and tactile stimuli. In contrast to p75-/- mice, there was no loss of geniculate neurons in either Phox2b-Cre; p75fx/fx or P0-Cre; p75fx/fx mice. Electrophysiological analyses demonstrated that Phox2b-Cre; p75fx/fx mice had normal taste and oral tactile responses. There was a modest but significant loss of fungiform taste buds in Phox2b-Cre; p75fx/fx mice, although there was not a loss of chemosensory innervation of the remaining fungiform taste buds. Overall, these data suggest that the developmental functions of p75 are largely cell non-autonomous and require p75 expression in other cell types of the chorda tympani circuit.
Collapse
Affiliation(s)
- Tao Tang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
- Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA
| | - Christopher R Donnelly
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Amol A Shah
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Robert M Bradley
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Charlotte M Mistretta
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Brian A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
- Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Yamakawa M, Santosa SM, Chawla N, Ivakhnitskaia E, Del Pino M, Giakas S, Nadel A, Bontu S, Tambe A, Guo K, Han KY, Cortina MS, Yu C, Rosenblatt MI, Chang JH, Azar DT. Transgenic models for investigating the nervous system: Currently available neurofluorescent reporters and potential neuronal markers. Biochim Biophys Acta Gen Subj 2020; 1864:129595. [PMID: 32173376 DOI: 10.1016/j.bbagen.2020.129595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Recombinant DNA technologies have enabled the development of transgenic animal models for use in studying a myriad of diseases and biological states. By placing fluorescent reporters under the direct regulation of the promoter region of specific marker proteins, these models can localize and characterize very specific cell types. One important application of transgenic species is the study of the cytoarchitecture of the nervous system. Neurofluorescent reporters can be used to study the structural patterns of nerves in the central or peripheral nervous system in vivo, as well as phenomena involving embryologic or adult neurogenesis, injury, degeneration, and recovery. Furthermore, crucial molecular factors can also be screened via the transgenic approach, which may eventually play a major role in the development of therapeutic strategies against diseases like Alzheimer's or Parkinson's. This review describes currently available reporters and their uses in the literature as well as potential neural markers that can be leveraged to create additional, robust transgenic models for future studies.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Matthew Del Pino
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sebastian Giakas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arnold Nadel
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sneha Bontu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arjun Tambe
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Maria Soledad Cortina
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
6
|
Expression and Targeting of Tumor Markers in Gelfoam ® Histoculture: Potential Individualized Assays for Immuno-Oncology. Methods Mol Biol 2018. [PMID: 29572791 DOI: 10.1007/978-1-4939-7745-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Tumor-specific antigens are important in the study of tumor biology, tumor diagnosis, and prognosis and as targets for tumor therapy. This chapter reviews patient colon, breast, and ovarian tumors in 3-dimensional Gelfoam® histoculture maintaining in vivo-like expression of the important tumor antigens, for example TAG-72 and CEA. We have also reviewed that fluorescent antibodies can target tumors in Gelfoam® histoculture, thereby providing an assay for individual patients for sensitivity to therapeutic antibodies which have become so important in immuno-oncology and other cancer therapies.
Collapse
|
7
|
Li Z, Liang Y, Pan K, Li H, Yu M, Guo W, Chen G, Tian W. Schwann cells secrete extracellular vesicles to promote and maintain the proliferation and multipotency of hDPCs. Cell Prolif 2017; 50. [PMID: 28714175 DOI: 10.1111/cpr.12353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/18/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Schwann cells (SCs) are the principal glial cells in peripheral nerve system, involved in neuropathies with great regenerative potential. Dental pulp cells have been reported to maintain neurogenic potential. In contrast, the regulatory role of SCs on human dental pulp cells (hDPCs) development remains undefined. MATERIALS AND METHODS SC secretion and SC-derived extracellular vesicles (EVs) were collected and used to treat hDPCs; and proliferation and multiple differentiation of hDPCs were detected after EVs treatments. Finally, we analysed the proteomes of SC-EVs and SCs through mass spectrum. RESULTS In this study, we found SC secretion showed a predominantly regulatory role on the development of hDPCs. Further, we identified EVs from SC secretion with similar function as SC secretion in regulating hDPCs proliferation and multipotency. And expression of transcription factor Oct4 was upregulated after treatment of both SC secretion and EVs, as well as Sox2 and Nanog. We detected abundant enrichment of Oct4 in EVs, which might be responsible for the upregulation of stem cell-related genes in hDPCs. Through proteome and western blot analysis, we found enriched TGFβs in EVs, indicating that accelerated hDPCs proliferation may be mediated by activated TGFβ-Samd and TGFβ-MAPK signalling. CONCLUSIONS In summary, our study sheds light on critical regulatory ability of SC-derived EVs on hDPCs proliferation and multipotency, suggesting great implications for seeding cells used in tissue engineering.
Collapse
Affiliation(s)
- Ziyue Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kuangwu Pan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pedodontics, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Efficacy of a Cell-Cycle Decoying Killer Adenovirus on 3-D Gelfoam®-Histoculture and Tumor-Sphere Models of Chemo-Resistant Stomach Carcinomatosis Visualized by FUCCI Imaging. PLoS One 2016; 11:e0162991. [PMID: 27673332 PMCID: PMC5038935 DOI: 10.1371/journal.pone.0162991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/30/2016] [Indexed: 02/02/2023] Open
Abstract
Stomach cancer carcinomatosis peritonitis (SCCP) is a recalcitrant disease. The goal of the present study was to establish an in vitro-in vivo-like imageable model of SCCP to develop cell-cycle-based therapeutics of SCCP. We established 3-D Gelfoam® histoculture and tumor-sphere models of SCCP. FUCCI-expressing MKN-45 stomach cancer cells were transferred to express the fluorescence ubiquinized cell-cycle indicator (FUCCI). FUCCI-expressing MKN-45 cells formed spheres on agarose or on Gelfoam® grew into tumor-like structures with G0/G1 cancer cells in the center and S/G2 cancer cells located in the surface as indicated by FUCCI imaging when the cells fluoresced red or green, respectively. We treated FUCCI-expressing cancer cells forming SCCP tumors in Gelfoam® histoculture with OBP-301, cisplatinum (CDDP), or paclitaxel. CDDP or paclitaxel killed only cycling cancer cells and were ineffective against G1/G2 MKN-45 cells in tumors growing on Gelfoam®. In contrast, the telomerase-dependent adenovirus OBP-301 decoyed the MKN-45 cells in tumors on Gelfoam® to cycle from G0/G1 phase to S/G2 phase and reduced their viability. CDDP- or paclitaxel-treated MKN-45 tumors remained quiescent and did not change in size. In contrast, OB-301 reduced the size of the MKN-45 tumors on Gelfoam®. We examined the cell cycle-related proteins using Western blotting. CDDP increased the expression of p53 and p21 indicating cell cycle arrest. In contrast, OBP-301 decreased the expression of p53 and p21 Furthermore, OBP-301 increased the expression of E2F and pAkt as further indication of cell cycle decoy. This 3-D Gelfoam® histoculture and FUCCI imaging are powerful tools to discover effective therapy of SCCP such as OBP-301.
Collapse
|
9
|
Zaidi FN, Cicchini V, Kaufman D, Ko E, Ko A, Van Tassel H, Whitehead MC. Innervation of taste buds revealed with Brainbow-labeling in mouse. J Anat 2016; 229:778-790. [PMID: 27476649 PMCID: PMC5108162 DOI: 10.1111/joa.12527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2016] [Indexed: 11/29/2022] Open
Abstract
Nerve fibers that surround and innervate the taste bud were visualized with inherent fluorescence using Brainbow transgenic mice that were generated by mating the founder line L with nestin-cre mice. Multicolor fluorescence revealed perigemmal fibers as branched within the non-taste epithelium and ending in clusters of multiple rounded swellings surrounding the taste pore. Brainbow-labeling also revealed the morphology and branching pattern of single intragemmal fibers. These taste bud fibers frequently innervated both the peripheral bud, where immature gemmal cells are located, and the central bud, where mature, differentiated cells are located. The fibers typically bore preterminal and terminal swellings, growth cones with filopodia, swellings, and rounded retraction bulbs. These results establish an anatomical substrate for taste nerve fibers to contact and remodel among receptor cells at all stages of their differentiation, an interpretation that was supported by staining with GAP-43, a marker for growing fibers and growth cones.
Collapse
Affiliation(s)
- Faisal N Zaidi
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Vanessa Cicchini
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Kaufman
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth Ko
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Abraham Ko
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Heather Van Tassel
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Mark C Whitehead
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Boggs K, Venkatesan N, Mederacke I, Komatsu Y, Stice S, Schwabe RF, Mistretta CM, Mishina Y, Liu HX. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate. PLoS One 2016; 11:e0146475. [PMID: 26741369 PMCID: PMC4704779 DOI: 10.1371/journal.pone.0146475] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023] Open
Abstract
Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.
Collapse
Affiliation(s)
- Kristin Boggs
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| | - Nandakumar Venkatesan
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| | - Ingmar Mederacke
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Yoshihiro Komatsu
- Department of Pediatrics, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Steve Stice
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| | - Robert F. Schwabe
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Charlotte M. Mistretta
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
11
|
Abstract
Nestin-expressing stem cells of the hair follicle, discovered by our laboratory, have been shown to be able to form outer-root sheaths of the follicle as well as neurons and many other non-follicle cell types. We have termed the nestin-expressing stem cells of the hair follicle as hair-follicle-associated pluripotent (HAP) stem cells. We have shown that the HAP stem cells from the hair follicle can effect the repair of peripheral nerve and spinal cord injury. The hair follicle stem cells differentiate into neuronal and glial cells after transplantation to the injured peripheral nerve and spinal cord, and enhance injury repair and locomotor recovery. When the excised hair follicle with its nerve stump was placed in Gelfoam(®) 3D histoculture, HAP stem cells grew and extended the hair follicle nerve which consisted of βIII-tubulin-positive fibers with F-actin expression at the tip. These findings indicate that βIII-tubulin-positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in HAP stem cells, which appeared to play a major role in its elongation and interaction with other nerves in 3D Gelfoam(®) histoculture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. These results suggest that a major function of the HAP stem cells in the hair follicle is for growth of the follicle sensory nerve. Recently, we have shown that HAP stem cells can differentiate into beating cardiac muscle cells. HAP stem cells have critical advantages for regenerative medicine over embryonic stem (ES) cells and induced pluripotent stem (iPS) cells in that they are highly accessible from each patient, thereby eliminating immunological issues since they are autologous, require no genetic manipulation, are non-tumorigenic, and do not present ethical issues.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA.
- Department of Surgery, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
12
|
Liu Y, Lin C, Zeng Y, Li H, Cai B, Huang K, Yuan Y, Li Y. Comparison of Calcium and Barium Microcapsules as Scaffolds in the Development of Artificial Dermal Papillae. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9128535. [PMID: 27123456 PMCID: PMC4829698 DOI: 10.1155/2016/9128535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 02/05/2023]
Abstract
This study aimed to develop and evaluate barium and calcium microcapsules as candidates for scaffolding in artificial dermal papilla. Dermal papilla cells (DPCs) were isolated and cultured by one-step collagenase treatment. The DPC-Ba and DPC-Ca microcapsules were prepared by using a specially designed, high-voltage, electric-field droplet generator. Selected microcapsules were assessed for long-term inductive properties with xenotransplantation into Sprague-Dawley rat ears. Both barium and calcium microcapsules maintained xenogenic dermal papilla cells in an immunoisolated environment and induced the formation of hair follicle structures. Calcium microcapsules showed better biocompatibility, permeability, and cell viability in comparison with barium microcapsules. Before 18 weeks, calcium microcapsules gathered together, with no substantial immune response. After 32 weeks, some microcapsules were near inflammatory cells and wrapped with fiber. A few large hair follicles were found. Control samples showed no marked changes at the implantation site. Barium microcapsules were superior to calcium microcapsules in structural and mechanical stability. The cells encapsulated in hydrogel barium microcapsules exhibited higher short-term viability. This study established a model to culture DPCs in 3D culture conditions. Barium microcapsules may be useful in short-term transplantation study. Calcium microcapsules may provide an effective scaffold for the development of artificial dermal papilla.
Collapse
Affiliation(s)
- Yang Liu
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Yang Zeng
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Haihong Li
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Bozhi Cai
- Tissue Engineering Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Keng Huang
- Department of Emergency, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Yanping Yuan
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Yu Li
- Tissue Engineering Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, China
- *Yu Li:
| |
Collapse
|
13
|
Hoffman RM. Nestin-Expressing Hair Follicle-Accessible Pluripotent Stem Cells for Nerve and Spinal Cord Repair. Cells Tissues Organs 2015; 200:42-47. [DOI: 10.1159/000366098] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 11/19/2022] Open
|
14
|
Yano S, Miwa S, Mii S, Hiroshima Y, Uehara F, Yamamoto M, Kishimoto H, Tazawa H, Bouvet M, Fujiwara T, Hoffman RM. Invading cancer cells are predominantly in G0/G1 resulting in chemoresistance demonstrated by real-time FUCCI imaging. Cell Cycle 2014; 13:953-60. [PMID: 24552821 PMCID: PMC3984318 DOI: 10.4161/cc.27818] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/12/2014] [Indexed: 01/20/2023] Open
Abstract
Invasive cancer cells are a critical target in order to prevent metastasis. In the present report, we demonstrate real-time visualization of cell cycle kinetics of invading cancer cells in 3-dimensional (3D) Gelfoam® histoculture, which is in vivo-like. A fluorescence ubiquitination cell cycle indicator (FUCCI) whereby G0/G1 cells express a red fluorescent protein and S/G2/M cells express a green fluorescent protein was used to determine the cell cycle position of invading and non-invading cells. With FUCCI 3D confocal imaging, we observed that cancer cells in G0/G1 phase in Gelfoam® histoculture migrated more rapidly and further than cancer cells in S/G2/M phases. Cancer cells ceased migrating when they entered S/G2/M phases and restarted migrating after cell division when the cells re-entered G0/G1. Migrating cancer cells also were resistant to cytotoxic chemotherapy, since they were preponderantly in G0/G1, where cytotoxic chemotherapy is not effective. The results of the present report suggest that novel therapy targeting G0/G1 cancer cells should be developed to prevent metastasis.
Collapse
Affiliation(s)
- Shuya Yano
- AntiCancer, Inc; San Diego, CA USA
- Department of Surgery; University of California, San Diego; San Diego, CA USA
- Department of Gastroenterological Surgery; Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences; Okayama, Japan
| | - Shinji Miwa
- AntiCancer, Inc; San Diego, CA USA
- Department of Surgery; University of California, San Diego; San Diego, CA USA
| | - Sumiyuki Mii
- AntiCancer, Inc; San Diego, CA USA
- Department of Surgery; University of California, San Diego; San Diego, CA USA
| | - Yukihiko Hiroshima
- AntiCancer, Inc; San Diego, CA USA
- Department of Surgery; University of California, San Diego; San Diego, CA USA
| | - Fuminari Uehara
- AntiCancer, Inc; San Diego, CA USA
- Department of Surgery; University of California, San Diego; San Diego, CA USA
| | - Mako Yamamoto
- AntiCancer, Inc; San Diego, CA USA
- Department of Surgery; University of California, San Diego; San Diego, CA USA
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery; Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences; Okayama, Japan
| | - Hiroshi Tazawa
- Center for Innovative Clinical Medicine; Okayama University Hospital; Okayama, Japan
| | - Michael Bouvet
- Department of Surgery; University of California, San Diego; San Diego, CA USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery; Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences; Okayama, Japan
| | - Robert M Hoffman
- AntiCancer, Inc; San Diego, CA USA
- Department of Surgery; University of California, San Diego; San Diego, CA USA
| |
Collapse
|