1
|
Zanela TMP, Zangiabadi M, Zhao Y, Underbakke ES. Molecularly imprinted nanoparticles reveal regulatory scaffolding features in Pyk2 tyrosine kinase. RSC Chem Biol 2024; 5:447-453. [PMID: 38725907 PMCID: PMC11078204 DOI: 10.1039/d3cb00228d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Pyk2 is a multi-domain non-receptor tyrosine kinase that serves dual roles as a signaling enzyme and scaffold. Pyk2 activation involves a multi-stage cascade of conformational rearrangements and protein interactions initiated by autophosphorylation of a linker site. Linker phosphorylation recruits Src kinase, and Src-mediated phosphorylation of the Pyk2 activation loop confers full activation. The regulation and accessibility of the initial Pyk2 autophosphorylation site remains unclear. We employed peptide-binding molecularly imprinted nanoparticles (MINPs) to probe the regulatory conformations controlling Pyk2 activation. MINPs differentiating local structure and phosphorylation state revealed that the Pyk2 autophosphorylation site is protected in the autoinhibited state. Activity profiling of Pyk2 variants implicated FERM and linker residues responsible for constraining the autophosphorylation site. MINPs targeting each Src docking site disrupt the higher-order kinase interactions critical for activation complex maturation. Ultimately, MINPs targeting key regulatory motifs establish a useful toolkit for probing successive activational stages in the higher-order Pyk2 signaling complex.
Collapse
Affiliation(s)
- Tania M Palhano Zanela
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University Ames IA 50011 USA
| | - Milad Zangiabadi
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University Ames IA 50011 USA
| |
Collapse
|
2
|
Gil-Henn H, Girault JA, Lev S. PYK2, a hub of signaling networks in breast cancer progression. Trends Cell Biol 2024; 34:312-326. [PMID: 37586982 DOI: 10.1016/j.tcb.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Breast cancer (BC) involves complex signaling networks characterized by extensive cross-communication and feedback loops between and within multiple signaling cascades. Many of these signaling pathways are driven by genetic alterations of oncogene and/or tumor-suppressor genes and are influenced by various environmental cues. We describe unique roles of the non-receptor tyrosine kinase (NRTK) PYK2 in signaling integration and feedback looping in BC. PYK2 functions as a signaling hub in various cascades, and its involvement in positive and negative feedback loops enhances signaling robustness, modulates signaling dynamics, and contributes to BC growth, epithelial-to-mesenchymal transition (EMT), stemness, migration, invasion, and metastasis. We also discuss the potential of PYK2 as a therapeutic target in various BC subtypes.
Collapse
Affiliation(s)
- Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche en Santé (UMRS) 1270, Sorbonne Université, 75005 Paris, France
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
3
|
Yang CC, Lee IT, Lin YJ, Wu WB, Hsiao LD, Yang CM. Thrombin-Induced COX-2 Expression and PGE 2 Synthesis in Human Tracheal Smooth Muscle Cells: Role of PKCδ/Pyk2-Dependent AP-1 Pathway Modulation. Int J Mol Sci 2023; 24:15130. [PMID: 37894811 PMCID: PMC10606820 DOI: 10.3390/ijms242015130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we confirmed that thrombin significantly increases the production of COX-2 and PGE2 in human tracheal smooth muscle cells (HTSMCs), leading to inflammation in the airways and lungs. These molecules are well-known contributors to various inflammatory diseases. Here, we investigated in detail the involved signaling pathways using specific inhibitors and small interfering RNAs (siRNAs). Our results demonstrated that inhibitors targeting proteins such as protein kinase C (PKC)δ, proline-rich tyrosine kinase 2 (Pyk2), c-Src, epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), or activator protein-1 (AP-1) effectively reduced thrombin-induced COX-2 and PGE2 production. Additionally, transfection with siRNAs against PKCδ, Pyk2, c-Src, EGFR, protein kinase B (Akt), or c-Jun mitigated these responses. Furthermore, our observations revealed that thrombin stimulated the phosphorylation of key components of the signaling cascade, including PKCδ, Pyk2, c-Src, EGFR, Akt, and c-Jun. Thrombin activated COX-2 promoter activity through AP-1 activation, a process that was disrupted by a point-mutated AP-1 site within the COX-2 promoter. Finally, resveratrol (one of the most researched natural polyphenols) was found to effectively inhibit thrombin-induced COX-2 expression and PGE2 release in HTSMCs through blocking the activation of Pyk2, c-Src, EGFR, Akt, and c-Jun. In summary, our findings demonstrate that thrombin-induced COX-2 and PGE2 generation involves a PKCδ/Pyk2/c-Src/EGFR/PI3K/Akt-dependent AP-1 activation pathway. This study also suggests the potential use of resveratrol as an intervention for managing airway inflammation.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan 333008, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yan-Jyun Lin
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung 406040, Taiwan;
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| |
Collapse
|
4
|
Huang X, Yu J, Lai S, Li Z, Qu F, Fu X, Li Q, Zhong X, Zhang D, Li H. Long Non-Coding RNA LINC00052 Targets miR-548p/Notch2/Pyk2 to Modulate Tumor Budding and Metastasis of Human Breast Cancer. Biochem Genet 2023; 61:336-353. [PMID: 35918619 DOI: 10.1007/s10528-022-10255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/22/2022] [Indexed: 01/24/2023]
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) is involved in many pathological processes of cancers. However, the role of lncRNA LINC00052 in breast cancer progression is still unclear. Here, LINC00052 expression was detected by in situ hybridization and quantitative real-time PCR assays. Cell Counting Kit-8, wound healing, and transwell assays were used to investigate changes in the proliferation, migration, and invasion of breast cancer cells. MiR-548p was found associated with LINC00052 or Notch2 by RNA pull-down, dual-luciferase reporter, and qRT-PCR assays. The effect of LINC00052 on lung metastasis was explored through in vivo experiments. High LINC00052 expression was observed in breast cancer tissues and cells. LINC00052 silencing inhibited the proliferation, migration, and invasion of MCF7 cells, and LINC00052 overexpression produced the opposite results. MiR-548p, a target gene of LINC00052, partially rescued the effects of LINC00052 on proliferation, migration, and invasion of MCF7. Notch2 was the target of miR-548p and LINC00052 could promote Notch2 expression. Moreover, the phosphorylation of proline-rich tyrosine kinase 2 (Pyk2), a downstream factor of Notch2, was increased by LINC00052, and a Pyk2 mutant could inhibit the cell migration and invasion induced by LINC00052 overexpression in MDA-MB-468 cells, which was similar to the function of the miR-548p mimic. We further demonstrated that LINC00052 exacerbated the metastases of breast cancer cells in vivo. Our research demonstrated that LINC00052 is highly expressed in breast cancer and promotes breast cancer proliferation, migration, and invasion via the miR-548p/Notch2/Pyk2 axis. LINC00052 could serve as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Xiaojia Huang
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong, China
| | - Junli Yu
- Department of Medical Ultrasound, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Shengqing Lai
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong, China
| | - Zongyan Li
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong, China
| | - Fanli Qu
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong, China
| | - Xiaoyan Fu
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong, China
| | - Qian Li
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong, China
| | - Xiaofang Zhong
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong, China
| | - Dawei Zhang
- Department of Pancreatic Hepatobiliary Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Haiyan Li
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
5
|
CCL18 signaling from tumor-associated macrophages activates fibroblasts to adopt a chemoresistance-inducing phenotype. Oncogene 2023; 42:224-237. [PMID: 36418470 PMCID: PMC9836934 DOI: 10.1038/s41388-022-02540-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022]
Abstract
The heterogeneity of cancer-associated fibroblasts (CAFs) might be ascribed to differences in origin. CD10 and GPR77 have been reported to identify a chemoresistance-inducing CAF subset in breast cancer. However, the precise mechanism for the formation of the CD10+GPR77+ CAFs remains unknown. In this study, we found that CCL18 expression was positively correlated with the density of CD10+GPR77+ CAFs in breast cancer and associated with a poor response to chemotherapy. Moreover, CCL18 secreted by tumor-associated macrophages (TAMs) activated a CD10+GPR77+ CAF phenotype in normal breast-resident fibroblasts (NBFs), which could then enrich cancer stem cells (CSCs) and induce chemoresistance in breast cancer cells. Mechanistically, CCL18 activated NF-κB signaling via PITPNM3 and thus enhanced the production of IL-6 and IL-8. Furthermore, intratumoral CCL18 injection significantly induced the activation of NBFs and the chemoresistance of xenografts in vivo. In addition, targeting CCL18 by anti-CCL18 antibody could inhibit the formation of CD10+GPR77+ CAFs and recover the chemosensitivity in vivo, leading to effective tumor control. Collectively, these findings reveal that inflammatory signaling crosstalk between TAMs and fibroblasts is responsible for the formation of the CD10+GPR77+ CAFs, suggesting CCL18-PITPNM3 signaling is a potential therapeutic target to block the activation of this specific CAF subtype and tumor chemoresistance.
Collapse
|
6
|
Lee D, Hong JH. Activated PyK2 and Its Associated Molecules Transduce Cellular Signaling from the Cancerous Milieu for Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232415475. [PMID: 36555115 PMCID: PMC9779422 DOI: 10.3390/ijms232415475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
PyK2 is a member of the proline-rich tyrosine kinase and focal adhesion kinase families and is ubiquitously expressed. PyK2 is mainly activated by stimuli, such as activated Src kinases and intracellular acidic pH. The mechanism of PyK2 activation in cancer cells has been addressed extensively. The up-regulation of PyK2 through overexpression and enhanced phosphorylation is a key feature of tumorigenesis and cancer migration. In this review, we summarized the cancer milieu, including acidification and cancer-associated molecules, such as chemical reagents, interactive proteins, chemokine-related molecules, calcium channels/transporters, and oxidative molecules that affect the fate of PyK2. The inhibition of PyK2 leads to a beneficial strategy to attenuate cancer cell development, including metastasis. Thus, we highlighted the effect of PyK2 on various cancer cell types and the distribution of molecules that affect PyK2 activation. In particular, we underlined the relationship between PyK2 and cancer metastasis and its potential to treat cancer cells.
Collapse
|
7
|
Liu Z, Shi Y, Lv L, Chen J, Jiang W, Li J, Lin Q, Fang X, Gao J, Liu Y, Liu Q, Xu X, Song E, Gong C. Small Molecular Inhibitors Reverse Cancer Metastasis by Blockading Oncogenic PITPNM3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204649. [PMID: 36285700 PMCID: PMC9762305 DOI: 10.1002/advs.202204649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Most cancer-related deaths are a result of metastasis. The development of small molecular inhibitors reversing cancer metastasis represents a promising therapeutic opportunity for cancer patients. This pan-cancer analysis identifies oncogenic roles of membrane-associated phosphatidylinositol transfer protein 3 (PITPNM3), which is crucial for cancer metastasis. Small molecules targeting PITPNM3 must be explored further. Here, PITPNM3-selective small molecular inhibitors are reported. These compounds exhibit target-specific inhibition of PITPNM3 signaling, thereby reducing metastasis of breast cancer cells. Besides, by using nanoparticle-based delivery systems, these PITPNM3-selective compounds loaded nanoparticles significantly repress metastasis of breast cancer in mouse xenograft models and organoid models. Notably, the results establish an important metastatic-promoting role for PITPNM3 and offer PITPNM3 inhibition as a therapeutic strategy in metastatic breast cancer.
Collapse
Affiliation(s)
- Zihao Liu
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Department of Breast and Thyroid SurgeryShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityThe First Affiliated Hospital of Southern University of Science and TechnologyShenzhen518020P. R. China
| | - Yu Shi
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Li Lv
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Department of PharmacySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Jianing Chen
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - WenG. Jiang
- Cardiff China Medical Research CollaborativeSchool of MedicineCardiff UniversityHeath ParkCardiffCF14 4XNUK
| | - Jun Li
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Qun Lin
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Xiaolin Fang
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Jingbo Gao
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Yujie Liu
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Qiang Liu
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Erwei Song
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Chang Gong
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| |
Collapse
|
8
|
Huang X, Lai S, Qu F, Li Z, Fu X, Li Q, Zhong X, Wang C, Li H. CCL18 promotes breast cancer progression by exosomal miR-760 activation of ARF6/Src/PI3K/Akt pathway. Mol Ther Oncolytics 2022; 25:1-15. [PMID: 35399607 PMCID: PMC8971730 DOI: 10.1016/j.omto.2022.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/13/2022] [Indexed: 11/02/2022] Open
Abstract
The small GTPase ADP-ribosylation factor 6 (ARF6) mediates chemokine (C-C motif) ligand 18 (CCL18)-induced activation of breast cancer (BC) metastasis through its downstream effector AMAP1. However, the molecular mechanisms underlying CCL18 up-regulating ARF6 remain largely unclear. Here, microRNAs (miRNAs) that target ARF6 were predicted and selected in high metastatic BC cells treated with CCL18. Next, we assessed the role of exosomal miR-760 in vitro and in vivo. We further analyzed the expression of ARF6, AMAP1, and phosphorylated (p)-AMAP1 in tumor and adjacent normal tissues. We first observed that CCL18 increased the expression of ARF6 and p-AMAP1 and activated the Src/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. ARF6 knockdown significantly impaired CCL18-induced malignant cellular behaviors and the Src/PI3K/Akt signaling pathway. Next, ARF6 was confirmed as a target gene of miR-760 in exosomes derived from CCL18-stimulated high metastatic BC cells. Moreover, recipient MCF-7 cells could effectively uptake these miR-760-rich exosomes that significantly promoted proliferation, tumor growth in vivo, migration, invasion, and chemoresistance by activating ARF6-mediated Src/PI3K/Akt signaling and the epithelial-mesenchymal transition (EMT) pathway. Together, our results support that exosomal miR-760 secreted by CCL18-stimulated high metastatic BC cells promoted the malignant behaviors in low metastatic BC cells by up-regulating the ARF6-mediated Src/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaojia Huang
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Shengqing Lai
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Fanli Qu
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Zongyan Li
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Xiaoyan Fu
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Qian Li
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Xiaofang Zhong
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Chao Wang
- Department of Pathology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Haiyan Li
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| |
Collapse
|
9
|
Ding D, Zhang L, Liu X, Sun C, He J, Li J, Gao X, Guan F, Zhang L. Chemokine CCL18 Promotes Phagocytosis Through Its Receptor CCR8 Rather than PITPNM3 in Human Microglial Cells. J Interferon Cytokine Res 2022; 42:19-28. [PMID: 35041514 DOI: 10.1089/jir.2021.0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CCL18 is a CC chemokine that exhibits diverse functions through interaction with various cell subsets with both proinflammatory anti-inflammatory properties through its receptors CCR8 (CC chemokine receptor 8) and PITPNM3 (phosphatidylinositol transfer protein 3). However, the function of CCL18 in microglia remains unclear. In this study, we show that CCL18 did not change the expression of the inflammatory factors, interleukin (IL)-1β, IL-6, tumor necrosis factor alpha (TNF-α), or inducible nitric oxide synthase (iNOS), but significantly induced expression of the macrophage markers, MRC-1 and ARG-1 M2, in a human microglial clone 3 cell line (HMC3). Phagocytosis by HMC3 cells was significantly enhanced in the presence of CCL18, indicated by uptake of amyloid-β and dextran. CCR8 and PITPNM3 were both expressed on HMC3 cells, but selective knockdown of CCR8 and PITPNM3 showed that only the former played a dominant role in phagocytosis of HMC3 through the nuclear factor kappa B (NF-κB)/Src signaling pathway. Our results suggest that CCL18 could have anti-inflammatory activity and activate the phagocytic function of microglia, which is involved in neural development, homeostasis, and repair mechanisms.
Collapse
Affiliation(s)
- Dengfeng Ding
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Liu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Caixian Sun
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiayue He
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingwen Li
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Mao L, Tang Y, Deng MJ, Huang CT, Lan D, Nong WZ, Li L, Wang Q. A combined biomarker panel shows improved sensitivity and specificity for detection of ovarian cancer. J Clin Lab Anal 2022; 36:e24232. [PMID: 34995016 PMCID: PMC8842139 DOI: 10.1002/jcla.24232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Background Combined biomarkers can improve the sensitivity and specificity of ovarian cancer (OC) diagnosis and effectively predict patient prognosis. This study explored the diagnostic and prognostic values of serum CCL18 and CXCL1 antigens combined with C1D, FXR1, ZNF573, and TM4SF1 autoantibodies in OC. Methods CCL18 and CXCL1 monoclonal antibodies and C1D, FXR1, ZNF573, and TM4SF1 antigens were coated with microspheres. Logistic regression was used to construct a serum antigen‐antibody combined detection model; receiver‐operating characteristic curve (ROC) was used to evaluate the diagnostic efficacy of the model; and the Kaplan‐Meier method and Cox regression models were used for survival analysis to evaluate the prognosis of OC. Data from The Cancer Genome Atlas (TCGA) and Genotype‐Tissue Expression (GTEx) projects and online survival analysis tools were used to evaluate prognostic genes for OC. The CIBERSORT immune score was used to explore the factors influencing prognosis and their relationship with tumor‐infiltrating immune cells. Results The levels of each index in the blood samples of patients with OC were higher than those of the other groups. The combined detection model has higher specificity and sensitivity in the diagnosis of OC, and its diagnostic efficiency is better than that of CA125 alone and diagnosing other malignant tumors. CCL18 and TM4SF1 may be factors affecting the prognosis of OC, and CCL18 may be related to immune‐infiltrating cells. Conclusions The serum antigen‐antibody combined detection model established in this study has high sensitivity and specificity for the diagnosis of OC.
Collapse
Affiliation(s)
- Lu Mao
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yong Tang
- Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Ming-Jing Deng
- Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Chun-Tao Huang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Dong Lan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen-Zheng Nong
- National Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li Li
- Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Qi Wang
- Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| |
Collapse
|
11
|
Chen J, Wang Y, Zhang W, Zhao D, Zhang L, Zhang J, Fan J, Zhan Q. NOX5 mediates the crosstalk between tumor cells and cancer-associated fibroblasts via regulating cytokine network. Clin Transl Med 2021; 11:e472. [PMID: 34459125 PMCID: PMC8329696 DOI: 10.1002/ctm2.472] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of cancer-associated fibroblasts (CAFs) is a crucial feature for tumor malignancy. The reciprocal interplay between tumor cells and CAFs not only facilitates tumor progression and metastasis but also sustains the tumor-promoting function of CAFs. Nevertheless, how tumor cells readily adapt to these functional CAFs is still unclear. NADPH oxidase 5 (NOX5) is a strong reactive oxygen species producer overexpressed in esophageal squamous cell carcinoma (ESCC) cells. In this study, we showed that NOX5-positive ESCC cells induced normal fibroblasts (NFs) or adipose-derived mesenchymal stem cells (MSCs) to express the marker of CAFs-α smooth muscle actin. Moreover, these tumor cells reprogrammed the cytokine profile of the activated CAFs, which further stimulated NFs or MSCs to CAFs and induced lymphangiogenesis to facilitate ESCC malignancy. NOX5 activated intratumoral Src/nuclear factor-κB signaling to stimulate secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and lactate from tumor cells. Subsequently, TNF-α, IL-1β, and lactate activated CAFs, and facilitated the secretion of IL-6, IL-7, IL-8, CCL5, and transforming growth factor-β1 from CAFs. These CAFs-derived cytokines reciprocally induced the progression of NOX5-positive ESCC cells. Our findings together indicate that NOX5 serves as the driving oncoprotein to provide a niche that is beneficial for tumor malignant progression.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Di Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Lingyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Jing Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Jiawen Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
12
|
Zhu T, Yang Q, Shao J, Chen Z, Cai B, Mao G. Pyk2 level is a novel prognostic marker for patients with esophageal squamous cell carcinoma after radical surgery. Virchows Arch 2021; 479:905-917. [PMID: 34313839 DOI: 10.1007/s00428-021-03153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/09/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in East Asia. Surgical resection is currently the typical treatment. However, due to the highly invasive and metastatic characteristic of the disease, the mortality rate is still high. A search for potential prognostic biomarkers and therapeutic targets is very necessary. Here, we studied the expression of proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine protein kinase, in ESCC and its influence on prognosis. A total of 112 cases of ESCC and paired adjacent normal tissues (NT) were organized in tissue microarray (TMA) from the Nantong First People's Hospital. Our analysis of TMA revealed that Pyk2 levels were higher in ESCC than in paired adjacent NT by immunohistochemistry (p<0.001). Western blot and real-time quantitative PCR analysis (p=0.0359) also reached similar conclusions. To further explore the significance of Pyk2 in ESCC, another set of tissue microarrays was collected from the Affiliated Hospital of Nantong University, which includes 241 consecutive patients undergoing radical surgery for ESCC, to perform IHC scores. We demonstrated that the expression level of Pyk2 was positively correlated with N stage (node negative versus node positive, p=0.02) and clinical stage (I + II versus III + IV, p=0.042). Univariate and multivariate analyses suggested that high Pyk2 expression was an independent prognostic factor for overall survival with ESCC. Cell function studies found that Pyk2 promoted tumor proliferation and migration and reduced apoptosis. Pyk2 knockdown enhanced the sensitivity to cisplatin in ESCC cells. Western blot analysis confirmed that Pyk2 may promote tumor progression by activating the Akt signaling pathway.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Oncology, The First People's Hospital of Yancheng, Yancheng, China
| | - Qiuxing Yang
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jingjing Shao
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Zhuolin Chen
- Department of Pathology, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Bo Cai
- Nantong Center for Disease Control and Prevention Institute of Chronic Noncommunicable Diseases Prevention and Control, Nantong, China.
| | - Guoxin Mao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
13
|
A multi-cellular molecular signaling and functional network map of C-C motif chemokine ligand 18 (CCL18): a chemokine with immunosuppressive and pro-tumor functions. J Cell Commun Signal 2021; 16:293-300. [PMID: 34196939 DOI: 10.1007/s12079-021-00633-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/23/2021] [Indexed: 12/09/2022] Open
Abstract
The C-C Motif Chemokine Ligand 18 (CCL18) is a beta-chemokine sub-family member with immunomodulatory functions in primates. CCL18-dependent migration and epithelial-to-mesenchymal transition of oral squamous cell carcinoma, squamous cell carcinoma of head and neck, breast cancer, hepatocellular carcinoma, non-small cell lung carcinoma, ovarian cancer, pancreatic ductal carcinoma and bladder cancer cells are well-established. In the tumor niche, tumor-associated macrophages produce CCL18 and its overexpression is correlated with reduced patient survival in multiple cancers. Although multiple receptors including C-C chemokine receptor type 3 (CCR3), type 6 (CCR6), type 8 (CCR8) and G-protein coupled estrogen receptor (GPER1) are reported for CCL18, the Phosphatidylinositol Transfer Protein, Membrane-Associated 3 (PITPNM3) receptor is currently considered as its predominant receptor. Characterization of the molecular events and check points associated with the immunosuppressive and cancer progression support functions induced by CCL18 for their potential towards therapeutic applications is an area of active research. Hence, in this study, we assembled 917 signaling events reported to be induced by CCL18 through their studied receptors in diverse cell types as an integrated knowledgebase for reference, data integration and gene-set enrichment analysis of global transcriptomic and/or proteomics datasets.
Collapse
|
14
|
Cardoso AP, Pinto ML, Castro F, Costa ÂM, Marques-Magalhães Â, Canha-Borges A, Cruz T, Velho S, Oliveira MJ. The immunosuppressive and pro-tumor functions of CCL18 at the tumor microenvironment. Cytokine Growth Factor Rev 2021; 60:107-119. [PMID: 33863622 DOI: 10.1016/j.cytogfr.2021.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Chemokines are essential mediators of immune cell trafficking. In a tumor microenvironment context, chemotactic cytokines are known to regulate the migration, positioning and interaction of different cell subsets with both anti- and pro-tumor functions. Additionally, chemokines have critical roles regarding non-immune cells, highlighting their importance in tumor growth and progression. CCL18 is a primate-specific chemokine produced by macrophages and dendritic cells. This chemokine presents both constitutive and inducible expression. It is mainly associated with a tolerogenic response and involved in maintaining homeostasis of the immune system under physiological conditions. Recently, CCL18 has been noticed as an important component of the complex chemokine system involved in the biology of tumors. This chemokine induces T regulatory cell differentiation and recruitment to the tumor milieu, with subsequent induction of a pro-tumor (M2-like) macrophage phenotype. CCL18 is also directly involved in cancer cell-invasion, migration, epithelial-to-mesenchymal transition and angiogenesis stimulation, pinpointing an important role in the promotion of cancer progression. Interestingly, this chemokine is highly expressed in tumor tissues, particularly at the invasive front of more advanced stages (e.g. colorectal cancer), and high levels are detected in the serum of patients, correlating with poor prognosis. Despite the promising role of CCL18 as a biomarker and/or therapeutic target to hamper disease progression, its pleiotropic functions in a context of cancer are still poorly explored. The scarce knowledge concerning the receptors for this chemokine, together with the insufficient insight on the downstream signaling pathways, have impaired the selection of this molecule as an immediate target for translational research. In this Review, we will discuss recent findings concerning the role of CCL18 in cancer, integrate recently disclosed molecular mechanisms and compile data from current clinical studies.
Collapse
Affiliation(s)
- Ana Patrícia Cardoso
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal.
| | | | - Flávia Castro
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal
| | - Ângela Margarida Costa
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal
| | - Ângela Marques-Magalhães
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal; ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Ana Canha-Borges
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal
| | - Tânia Cruz
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal
| | - Sérgia Velho
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; IPATIMUP, Institute of Pathology and Molecular Immunology, University of Porto, Portugal
| | - Maria José Oliveira
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal; ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
15
|
Korbecki J, Olbromski M, Dzięgiel P. CCL18 in the Progression of Cancer. Int J Mol Sci 2020; 21:ijms21217955. [PMID: 33114763 PMCID: PMC7663205 DOI: 10.3390/ijms21217955] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
A neoplastic tumor consists of cancer cells that interact with each other and non-cancerous cells that support the development of the cancer. One such cell are tumor-associated macrophages (TAMs). These cells secrete many chemokines into the tumor microenvironment, including especially a large amount of CCL18. This chemokine is a marker of the M2 macrophage subset; this is the reason why an increase in the production of CCL18 is associated with the immunosuppressive nature of the tumor microenvironment and an important element of cancer immune evasion. Consequently, elevated levels of CCL18 in the serum and the tumor are connected with a worse prognosis for the patient. This paper shows the importance of CCL18 in neoplastic processes. It includes a description of the signal transduction from PITPNM3 in CCL18-dependent migration, invasion, and epithelial-to-mesenchymal transition (EMT) cancer cells. The importance of CCL18 in angiogenesis has also been described. The paper also describes the effect of CCL18 on the recruitment to the cancer niche and the functioning of cells such as TAMs, regulatory T cells (Treg), cancer-associated fibroblasts (CAFs) and tumor-associated dendritic cells (TADCs). The last part of the paper describes the possibility of using CCL18 as a therapeutic target during anti-cancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Correspondence: ; Tel.: +48-717-841-354
| | - Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Department of Physiotherapy, Wroclaw University School of Physical Education, Ignacego Jana Paderewskiego 35 Av., 51-612 Wroclaw, Poland
| |
Collapse
|
16
|
Lokeshwar BL, Kallifatidis G, Hoy JJ. Atypical chemokine receptors in tumor cell growth and metastasis. Adv Cancer Res 2020; 145:1-27. [PMID: 32089162 DOI: 10.1016/bs.acr.2019.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atypical chemokine receptors (ACKRs) are seven-transmembrane cell surface protein receptors expressed in immune cells, normal mesenchymal cells, and several tumor cells. As of this writing, six ACKRs have been characterized by diverse activities. They bind both cysteine-cysteine (CC) type and cysteine-X-cysteine (CXC)-type chemokines, either alone, or together with a ligand bound-functional G-protein coupled (typical) chemokine receptor. The major structural difference between ACKRs and typical chemokine receptors is the substituted DRYLAIV amino acid motif in the second intracellular loop of the ACKR. Due to this substitution, these receptors cannot bind Gαi-type G-proteins responsible for intracellular calcium mobilization and cellular chemotaxis. Although initially characterized as non-signaling transmembrane receptors (decoy receptors) that attenuate ligand-induced signaling by GPCRs, studies of all ACKRs have shown ligand-independent and ligand-dependent transmembrane signaling in both non-tumor and tumor cells. The precise function and mechanism of the differential expression of ACKRs in many tumors are not understood well. The use of antagonists of ACKRs ligands has shown limited antitumor potential; however, depleting ACKR expression resulted in a reduction in experimental tumor growth and metastasis. The ACKRs represent a unique class of transmembrane signaling proteins that regulate growth, survival, and metastatic processes in tumor cells, affecting multiple pathways of tumor growth. Therefore, closer investigations of ACKRs have a high potential for identifying therapeutics which affect the intracellular signaling, preferentially via the ligand-independent mechanism.
Collapse
Affiliation(s)
- Bal L Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA, United States; Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, GA, United States.
| | - Georgios Kallifatidis
- Georgia Cancer Center, Augusta University, Augusta, GA, United States; Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, GA, United States; Department of Biological Sciences, Augusta University, Augusta, GA, United States
| | - James J Hoy
- LCMB Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
17
|
Liu MY, Su H, Huang HL, Chen JQ. Cancer stem-like cells with increased expression of NY-ESO-1 initiate breast cancer metastasis. Oncol Lett 2019; 18:3664-3672. [PMID: 31579408 PMCID: PMC6757292 DOI: 10.3892/ol.2019.10699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer stem-like cells (BCSLCs) with a CD44+/CD24−/low phenotype initiate the invasion and metastasis of breast cancer. The expression of New York oesophageal squamous cell carcinoma 1 (NY-ESO-1), one of the most immunogenic cancer-testicular antigens, is largely restricted to cancer and germ cells/placental trophoblasts, with little to no expression in normal adult somatic cells. Currently, few studies have reported the expression or function of NY-ESO-1 in BCSLCs. In the present study, immunohistochemistry indicated enhanced expression levels of NY-ESO-1/CD44 (P<0.01) and decreased expression levels of CD24 (P<0.01) in metastatic breast cancer tissues (MBCT) compared with non-MBCT. Additionally, the co-localization of CD44, CD24 and NY-ESO-1 in tissue samples was determined using immunofluorescence analysis. The results revealed that the expression of NY-ESO-1/CD44/CD24 was associated with breast cancer metastasis. Moreover, Spearman's rank correlation analysis indicated that CD44/CD24 expression was significantly correlated with that of NY-ESO-1. In the present study, mammosphere culture, a valuable method of BCSLC enrichment, was used to enrich MCF-7 and SK-BR-3 BCSLCs; immunofluorescence, western blotting and flow cytometry demonstrated increased expression levels of NY-ESO-1 and CD44, and low expression levels of CD24 in BCSLCs. Furthermore, the cell migration and invasion assays verified that BCSLCs with an increased NY-ESO-1 expression level exhibited greater invasive and migratory capacity compared with parental breast cancer cells. In addition to previously reported findings from the Oncomine database, it was ascertained that CD44+/CD24−/low BCSLCs with an increased level of NY-ESO-1 expression initiated the invasion and metastasis of breast cancer; therefore, NY-ESO-1 may serve as a novel target for metastatic breast cancer immunotherapy.
Collapse
Affiliation(s)
- Mai-Ying Liu
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China.,Department of Medical Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China.,Stem Cell Translational Medicine Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Hang Su
- Stem Cell Translational Medicine Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Hua-Lan Huang
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China.,Stem Cell Translational Medicine Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Jing-Qi Chen
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China.,Department of Medical Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China.,Stem Cell Translational Medicine Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
18
|
Lin P, Yao Z, Sun Y, Li W, Liu Y, Liang K, Liu Y, Qin J, Hou X, Chen L. Deciphering novel biomarkers of lymph node metastasis of thyroid papillary microcarcinoma using proteomic analysis of ultrasound-guided fine-needle aspiration biopsy samples. J Proteomics 2019; 204:103414. [PMID: 31195151 DOI: 10.1016/j.jprot.2019.103414] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023]
Abstract
Thyroid papillary microcarcinoma is now a common clinical problem. Cervical lymph node metastasis is the main metastasis mode of PTMC. However, before operation, it is still difficult to determine exactly whether PTMC patient is suffering with cervical lymph node metastasis. To resolve this dilemma, for better selection of optimum treatment plans, it is necessary to investigate the overall changes in proteomes of PTMC, and evaluate the potential of biomarkers to predict lymph node metastasis. Tandem mass tags combined with multidimensional liquid chromatography and mass spectrometry analyses were used aiming to screen the proteomic profiles of fine-needle aspiration biopsy samples. Quantitative proteomic analysis, significant pathway and functional categories were investigated. In total, 3391 proteins of the 3793 protein groups identified were quantified. Bioinformatics analysis indicated that differentially expressed proteins were involved in multiple biological functions, metastasis-related pathways. Moreover, IFN-stimulated gene 15 proteins were found to be well distinguished between patients with lymph node metastatic and patients with nonmetastatic PTMC. Knocking down ISG15 with shRNA inhibited the xenografted tumor growth. This study provided a reference proteome map for lymph node metastatic PTMC. ISG15 probably is a prognosis marker of thyroid papillary microcarcinoma patients with lymph node metastasis. SIGNIFICANCE: Nowadays, thyroid cancer has become a widespread epidemic. The rate of thyroid cancer incidence has been faster than any other cancers, reported by the American Cancer Society. Papillary thyroid microcarcinoma (PTMC) is a subset of PTC defined as PTC measuring≤1 cm in size, which comprises nearly one-half of all the cases of PTCs. Actually, the rapidly increasing global incidence of PTC is mainly attributed to the corresponding increase in the diagnosis of PTMC. Scholars have figuratively compared the increase of PTMC to the "tsunami". The treatment scheme for PTMC is still not uniform, and the controversy is mainly focused on the necessity of surgery treatment. PTMCs often have an indolent course in the absence of evidence of metastatic cervical lymph nodes, distant metastases and extrathyroidal extension. Therefore, it is important for us to reliably differentiate the small number of PTMC patients developing significant metastases progression from the larger population of patients that harbor indolent PTMCs. The present study aimed to investigate the overall changes in proteomes of PTMC, and evaluate the potential of biomarkers to predict lymph node metastasis. Tandem mass tags (TMT) combined with multidimensional liquid chromatography and mass spectrometry analyses were used aiming to screen the proteomic profiles of fine-needle aspiration biopsy (FNAB) samples. Quantitative proteomic analysis, significant pathway and functional categories were investigated. Our results showed that some differential expression proteins were likely to be important resources for finding new diagnostic biomarkers.
Collapse
Affiliation(s)
- Peng Lin
- Department of Endocrine, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong, PR China
| | - Zhina Yao
- Hospital for Reproductive Medicine Affiliated to Shandong University, Ji'nan 250012, Shandong, PR China
| | - Yu Sun
- Department of Endocrine, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong, PR China
| | - Wenjuan Li
- Department of Endocrine, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong, PR China
| | - Yan Liu
- Department of Endocrine, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong, PR China
| | - Kai Liang
- Department of Endocrine, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong, PR China
| | - Yuan Liu
- Department of Endocrine, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong, PR China
| | - Jun Qin
- Department of Endocrine, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong, PR China
| | - Xinguo Hou
- Department of Endocrine, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong, PR China
| | - Li Chen
- Department of Endocrine, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong, PR China.
| |
Collapse
|
19
|
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) plays essential roles in tumorigenesis and tumor progression. Pyk2 serves as a non-receptor tyrosine kinase regulating tumor cell survival, proliferation, migration, invasion, metastasis, and chemo-resistance, and is associated with poor prognosis and shortened survival in various cancer types. Thus, Pyk2 has been traditionally regarded as an oncogene and potential therapeutic target for cancers. However, a few studies have also demonstrated that Pyk2 exerts tumor-suppressive effects in some cancers, and anti-cancer treatment of Pyk2 inhibitors may only achieve marginal benefits in these cancers. Therefore, more detailed knowledge of the contradictory functions of Pyk2 is needed. In this review, we summarized the tissue distribution, expression, interactive molecules of Pyk2 in the signaling pathway, and roles of Pyk2 in cancers, and focused on regulation of the interconnectivity between Pyk2 and its downstream targets. The potential use of inhibitors of Pyk2 and its related pathways in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Ting Shen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China (mainland).,Department of Gastroenterology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Qiang Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China (mainland).,Department of Gastroenterology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
20
|
Hirschler-Laszkiewicz I, Chen SJ, Bao L, Wang J, Zhang XQ, Shanmughapriya S, Keefer K, Madesh M, Cheung JY, Miller BA. The human ion channel TRPM2 modulates neuroblastoma cell survival and mitochondrial function through Pyk2, CREB, and MCU activation. Am J Physiol Cell Physiol 2018; 315:C571-C586. [PMID: 30020827 PMCID: PMC6230687 DOI: 10.1152/ajpcell.00098.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transient receptor potential melastatin channel subfamily member 2 (TRPM2) has an essential function in cell survival and is highly expressed in many cancers. Inhibition of TRPM2 in neuroblastoma by depletion with CRISPR technology or expression of dominant negative TRPM2-S has been shown to significantly reduce cell viability. Here, the role of proline-rich tyrosine kinase 2 (Pyk2) in TRPM2 modulation of neuroblastoma viability was explored. In TRPM2-depleted cells, phosphorylation and expression of Pyk2 and cAMP-responsive element-binding protein (CREB), a downstream target, were significantly reduced after application of the chemotherapeutic agent doxorubicin. Overexpression of wild-type Pyk2 rescued cell viability. Reduction of Pyk2 expression with shRNA decreased cell viability and CREB phosphorylation and expression, demonstrating Pyk2 modulates CREB activation. TRPM2 depletion impaired phosphorylation of Src, an activator of Pyk2, and this may be a mechanism to reduce Pyk2 phosphorylation. TRPM2 inhibition was previously demonstrated to decrease mitochondrial function. Here, CREB, Pyk2, and phosphorylated Src were reduced in mitochondria of TRPM2-depleted cells, consistent with their role in modulating expression and activation of mitochondrial proteins. Phosphorylated Src and phosphorylated and total CREB were reduced in TRPM2-depleted nuclei. Expression and function of mitochondrial calcium uniporter (MCU), a target of phosphorylated Pyk2 and CREB, were significantly reduced. Wild-type TRPM2 but not Ca2+-impermeable mutant E960D reconstituted phosphorylation and expression of Pyk2 and CREB in TRPM2-depleted cells exposed to doxorubicin. Results demonstrate that TRPM2 expression protects the viability of neuroblastoma through Src, Pyk2, CREB, and MCU activation, which play key roles in maintaining mitochondrial function and cellular bioenergetics.
Collapse
Affiliation(s)
| | - Shu-Jen Chen
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Lei Bao
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - JuFang Wang
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Santhanam Shanmughapriya
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania.,Department of Biochemistry, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Kerry Keefer
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Muniswamy Madesh
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania.,Department of Biochemistry, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Joseph Y Cheung
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania.,Department of Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Barbara A Miller
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
21
|
Liu P, Liang Y, Jiang L, Wang H, Wang S, Dong J. CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway. Int J Oncol 2018; 53:1544-1556. [PMID: 30066854 PMCID: PMC6086625 DOI: 10.3892/ijo.2018.4487] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Chemokines serve important roles in the development of cancer. C-X3-C motif chemokine ligand 1 (CX3CL1) has been demonstrated to promote metastases in different types of tumors. The authors' previous studies demonstrated that the CX3CL1 (also termed fractalkine)/steroid receptor coactivator (Src)/focal adhesion kinase (FAK) signaling pathway is associated with spinal metastasis. In the present study, it was observed that CX3CL1/C-X3-C motif chemokine receptor 1 (CX3CR1) was overexpressed in prostate cancer tissues with spinal metastasis compared with primary tumors. Overexpression of CX3CR1 induced cell proliferation, migration and invasion, and inhibited cellular apoptosis. However, repression of CX3CR1 reduced cell proliferation, migration and invasion, and increased cellular apoptosis. In addition, the Src/FAK pathway was activated by CX3CL1, which depends on the Tyr992 residue of epidermal growth factor receptor (EGFR) for phosphorylation. The inhibitors of these kinases repressed the cell migration induced by CX3CL1 or CX3CR1 overexpression. Furthermore, overexpression of CX3CR1 induced the spinal metastasis of prostate cancer in an in vivo mouse model. Therefore, CX3CL1 and its regulation of the EGFR, Src and FAK pathways may be potential targets for the early prevention of spinal metastasis in prostate cancer.
Collapse
Affiliation(s)
- Peng Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yun Liang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Houlei Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shengxing Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Zou Y, Li L. Identification of six serum antigens and autoantibodies for the detection of early stage epithelial ovarian carcinoma by bioinformatics analysis and liquid chip analysis. Oncol Lett 2018; 16:3231-3240. [PMID: 30127919 DOI: 10.3892/ol.2018.9027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 06/19/2018] [Indexed: 01/22/2023] Open
Abstract
The early detection of ovarian cancer is critical for improving the prognosis of patients, but there are currently insufficient tumor biomarkers for early detection owing to their low diagnostic sensitivity and specificity. The aim of the present study was to investigate the use of the serum antigens C-C motif chemokine ligand 18 and C-X-C motif chemokine ligand 1, and autoantibodies C1D, transmembrane 4 L six family member 1, zinc finger protein 675 and fragile X mental retardation 1 autosomal homolog 1, for the early screening of epithelial ovarian cancer (EOC). The expression of these sex genes/proteins in ovarian cancer and normal ovarian tissue was examined, and the potential functions of the six genes/proteins in ovarian cancer were analyzed by bioinformatics. Finally, these data were verified in clinical samples, and the multi-analyte suspension array method was compared with the ELISA method. Taken together, these data indicated that these six genes/proteins may serve as potential biomarkers for the early detection of EOC.
Collapse
Affiliation(s)
- Yupeng Zou
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
23
|
Proline-Rich Protein Tyrosine Kinase 2 in Inflammation and Cancer. Cancers (Basel) 2018; 10:cancers10050139. [PMID: 29738483 PMCID: PMC5977112 DOI: 10.3390/cancers10050139] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023] Open
Abstract
Focal adhesion kinase (FAK) and its homologous FAK-related proline-rich tyrosine kinase 2 (Pyk2) contain the same domain, exhibit high sequence homology and are defined as a distinct family of non-receptor tyrosine kinases. This group of kinases plays critical roles in cytoskeletal dynamics and cell adhesion by regulating survival and growth signaling. This review summarizes the physiological and pathological functions of Pyk2 in inflammation and cancers. In particular, overexpression of Pyk2 in cancerous tissues is correlated with poor outcomes. Pyk2 stimulates multiple oncogenic signaling pathways, such as Wnt/β-catenin, PI3K/Akt, MAPK/ERK, and TGF-β/EGFR/VEGF, and facilitates carcinogenesis, migration, invasion, epithelial⁻mesenchymal transition and metastasis. Therefore, Pyk2 is a high-value therapeutic target and has clinical significance.
Collapse
|
24
|
Chenivesse C, Tsicopoulos A. CCL18 - Beyond chemotaxis. Cytokine 2018; 109:52-56. [PMID: 29402725 DOI: 10.1016/j.cyto.2018.01.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/06/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
The chemokine CCL18 is constitutively expressed in human lung and serum, and is further elevated during pathologic conditions such as allergy, fibrosis and cancer, suggesting that it may participate in both homeostatic and inflammatory processes. Under steady state conditions, CCL18 has chemotactic activity, albeit modest, toward naïve T cells and as such, may be involved in the initiation of the adaptive response. Its chemotactic effect on inflammatory cells is ambiguous as it attracts both regulatory and inflammatory immune cells. CCL18 can also modulate tissue inflammation by inhibiting cell recruitment through binding to glycosaminoglycans with high affinity, thereby displacing other chemokines bound to the endothelial surface. CCL18 induces regulatory phenotype and function of immune cells through direct activation and plays a major role in fibrotic processes, particularly in the lung. Finally, CCL18 is involved in cancer cell activation and migration and also participates in immune tolerance toward cancer. Its high constitutive expression levels and its further up-regulation in many diseases, together with its moderate chemoattractant properties support the fact that this chemokine has activities beyond cell recruitment.
Collapse
Affiliation(s)
- Cecile Chenivesse
- Institut National de la Santé Et de la Recherche Médicale, U1019, F-59000 Lille, France; CNRS UMR 8204, Center for Infection and Immunity of Lille, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France; Univ Lille, F-59000 Lille, France; CHU Lille, Service de Pneumologie et Immuno-Allergologie, Clinique des Maladies Respiratoires et, F-59000 Lille, France.
| | - Anne Tsicopoulos
- Institut National de la Santé Et de la Recherche Médicale, U1019, F-59000 Lille, France; CNRS UMR 8204, Center for Infection and Immunity of Lille, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France; Univ Lille, F-59000 Lille, France; CHU Lille, Service de Pneumologie et Immuno-Allergologie, Clinique des Maladies Respiratoires et, F-59000 Lille, France
| |
Collapse
|
25
|
Xie X, Zhu T, Chen L, Ding S, Chu H, Wang J, Yao H, Chao J. MCPIP1-induced autophagy mediates ischemia/reperfusion injury in endothelial cells via HMGB1 and CaSR. Sci Rep 2018; 8:1735. [PMID: 29379093 PMCID: PMC5788920 DOI: 10.1038/s41598-018-20195-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/16/2018] [Indexed: 11/25/2022] Open
Abstract
Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) plays a important role in ischemia/reperfusion (I/R) injury. Autophagy is involved in activating endothelial cells in response to I/R. However, researchers have not clearly determined whether MCPIP1 mediates I/R injury in endothelial cells via autophagy, and its downstream mechanism remains unclear. Western blotting analyses and immunocytochemistry were applied to detect protein levels were detected in HUVECs. An in vitro scratch assay was used to detect cell migration. Cells were transfected with siRNAs to knockdown MCPIP1 and high mobility group box 1 (HMGB1) expression. The pharmacological activator of autophagy rapamycin and the specific calcium-sensing receptor (CaSR) inhibitor NPS-2143 were used to confirm the roles of autophagy and CaSR in I/R injury. I/R induced HMGB1 and CaSR expression, which subsequently upreguated the migration and apoptosis of HUVECs and coincided with the increase of autophagy. HMGB1 was involved in cell migration, whereas CaSR specifically participated in I/R-induced HUVEC apoptosis. Based on these findings, I/R-induced MCPIP1 expression regulates the migration and apoptosis of HUVECs via HMGB1 and CaSR, respectively, suggesting a new therapeutic targetof I/R injury.
Collapse
Affiliation(s)
- Xiaolong Xie
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Tiebing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China. .,Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Lulu Chen
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Shuang Ding
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Han Chu
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jing Wang
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.,Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Jie Chao
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, China. .,Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu, 210096, China. .,Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
26
|
Kowalski-Chauvel A, Teissier G, Toulas C, Cohen-Jonathan-Moyal E, Seva C. By modulating α2β1 integrin signalling, gastrin increases adhesion oF AGS-GR gastric cancer cells. Exp Cell Res 2018; 362:498-503. [PMID: 29253536 DOI: 10.1016/j.yexcr.2017.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023]
Abstract
Peritoneal metastasis is a major cause of recurrence of gastric cancer and integrins are key molecules involved in gastric cancer cells attachment to the peritoneum. The peptide hormone, gastrin, initially identified for its role in gastric acid secretion is also a growth factor for gastric mucosa. Gastrin has also been shown to contribute to gastric cancers progression. Here, we provide the first evidence that gastrin increases the adhesion of gastric cancer cells. Gastrin treatment induces the expression of α2 integrin subunit through a mechanism that involves the ERK pathway. We also observed in response to gastrin an increase in the amount of α2 integrin associated with β1subunit. In addition, gastrin-stimulated cell adhesion was blocked with an anti-α2β1 integrin neutralizing antibody. We also show that gastrin activates the integrin pathway via the phosphorylation of β1 integrin by a Src family kinase. This mechanism may contribute to the enhancement of cell adhesion observed in response to gastrin since we found an inhibition of gastrin-mediated cell adhesion when cells were treated with a Src inhibitor. By regulating one of the key step of the metastatic process gastrin might contribute to increase the aggressive behaviour of human gastric tumours.
Collapse
Affiliation(s)
- Aline Kowalski-Chauvel
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, team 11, Oncopole 2 Avenue Hubert Curien, CS 53717, 31037 Toulouse, France
| | - Guy Teissier
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, team 11, Oncopole 2 Avenue Hubert Curien, CS 53717, 31037 Toulouse, France
| | - Christine Toulas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, team 11, Oncopole 2 Avenue Hubert Curien, CS 53717, 31037 Toulouse, France; IUCT-oncopole Toulouse, France
| | - Elizabeth Cohen-Jonathan-Moyal
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, team 11, Oncopole 2 Avenue Hubert Curien, CS 53717, 31037 Toulouse, France; IUCT-oncopole Toulouse, France
| | - Catherine Seva
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, team 11, Oncopole 2 Avenue Hubert Curien, CS 53717, 31037 Toulouse, France.
| |
Collapse
|
27
|
Jiang X, Wang J, Chen X, Hong Y, Wu T, Chen X, Xia J, Cheng B. Elevated autocrine chemokine ligand 18 expression promotes oral cancer cell growth and invasion via Akt activation. Oncotarget 2017; 7:16262-72. [PMID: 26919103 PMCID: PMC4941312 DOI: 10.18632/oncotarget.7585] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/05/2016] [Indexed: 11/29/2022] Open
Abstract
Chemokine (C-C motif) ligand 18 (CCL18) has been implicated in the pathogenesis and progression of various cancers; however, in oral squamous cell carcinoma (OSCC), the role of CCL18 is unknown. In this study, we found that CCL18 was overexpressed in primary OSCC tissues and was associated with an advanced clinical stage. CCL18 was found in both the cytoplasm and cell membrane of OSCC cells and was predominantly produced by cancer epithelial cells, as opposed to tumor-infiltrating macrophages. In vitro studies indicated that the effects of endogenous CCL18 on OSCC cell growth, migration, and invasion could be blocked by treatment with a neutralizing anti-CCL18 antibody or CCL18 knockdown, while exogenous recombinant CCL18 (rCCL18) rescued those effects. Akt was activated in rCCL18-treated OSCC cells, while LY294002, a pan-PI3K inhibitor, abolished both endogenous and exogenous CCL18-induced OSCC cell invasion. In vivo, LY294002 treatment attenuated rCCL18-induced OSCC cell growth. Our results indicate that CCL18 acts in an autocrine manner via Akt activation to stimulate OSCC cell growth and invasion during OSCC progression. They also provide a potential therapeutic target for the treatment of oral cancer.
Collapse
Affiliation(s)
- Xiao Jiang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.,Guangdong Provincial Stomatological Hospital, Guangzhou, Guangdong 510280, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Xijuan Chen
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yun Hong
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Xiaobing Chen
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Juan Xia
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| |
Collapse
|
28
|
Li H, Zhang D, Yu J, Liu H, Chen Z, Zhong H, Wan Y. CCL18-dependent translocation of AMAP1 is critical for epithelial to mesenchymal transition in breast cancer. J Cell Physiol 2017; 233:3207-3217. [PMID: 28834540 DOI: 10.1002/jcp.26164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Haiyan Li
- Department of Breast and Thyroid Surgery; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Dawei Zhang
- Department of Hepatobiliary Surgery; The Second Affiliated Hospital of Guangzhou Medical University; Guangzhou People's Republic of China
| | - Jiandong Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Hailing Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Zhiping Chen
- Department of Breast and Thyroid Surgery; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Haifeng Zhong
- Department of Breast and Thyroid Surgery; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Yunle Wan
- Department of Breast and Thyroid Surgery; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
| |
Collapse
|
29
|
Wang H, Luo J, Carlton C, McGinnis LK, Kinsey WH. Sperm-oocyte contact induces outside-in signaling via PYK2 activation. Dev Biol 2017; 428:52-62. [PMID: 28527703 PMCID: PMC5539980 DOI: 10.1016/j.ydbio.2017.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/20/2023]
Abstract
Fertilization is a multi-step process that begins with plasma membrane interactions that enable sperm - oocyte binding followed by fusion of the sperm and oocyte plasma membranes. Once membrane fusion has occurred, sperm incorporation involves actin remodeling events within the oocyte cortex that allow the sperm head to penetrate the cortical actin layer and gain access to the ooplasm. Despite the significance for reproduction, the control mechanisms involved in gamete binding, fusion, and sperm incorporation are poorly understood. While it is known that proline - rich tyrosine kinase 2 (PYK2 or PTK2b) kinase activity plays an important role in fertilization, its specific function has not been addressed. The present study made use of a zona-free mouse oocyte fertilization assay to investigate the relationship between PYK2 activity and sperm - oocyte binding and fusion, as well as localized changes in actin polymerization and sperm incorporation. In this assay, the majority of bound sperm had no apparent effect on the oocyte and only a few became incorporated into the ooplasm. However, a subset of bound sperm were associated with a localized response in which PYK2 was recruited to the oocyte cortex where it frequently co-localized with a ring or disk of f-actin. The frequency of sperm-oocyte binding sites that exhibited this actin response was reduced in pyk2-/- oocytes and the pyk2-/- oocytes proved less efficient at incorporating sperm, indicating that this protein kinase may have an important role in sperm incorporation. The response of PYK2 to sperm-oocyte interaction appeared unrelated to gamete fusion since PYK2 was recruited to sperm - binding sites under conditions where sperm - oocyte fusion was prevented and since PYK2 suppression or ablation did not prevent sperm - oocyte fusion. While a direct correlation between the PYK2 response in the oocyte and the successful incorporation of individual bound sperm remains to be established, these findings suggest a model in which the oocyte is not a passive participant in fertilization, but instead responds to sperm contact by localized PYK2 signaling that promotes actin remodeling events required to physically incorporate the sperm head into the ooplasm.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jinping Luo
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA; Applied StemCell Inc., Milpitas, CA 95035, USA
| | - Carol Carlton
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lynda K McGinnis
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA 90033, USA
| | - William H Kinsey
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
30
|
Wang H, Liang X, Li M, Tao X, Tai S, Fan Z, Wang Z, Cheng B, Xia J. Chemokine (CC motif) ligand 18 upregulates Slug expression to promote stem-cell like features by activating the mammalian target of rapamycin pathway in oral squamous cell carcinoma. Cancer Sci 2017; 108:1584-1593. [PMID: 28574664 PMCID: PMC5543498 DOI: 10.1111/cas.13289] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
Chemokine (CC motif) ligand 18 (CCL18) is involved in remodeling of the tumor microenvironment and plays critical roles in oncogenesis, invasiveness, and metastasis. We previously investigated the overexpression of CCL18 in primary oral squamous cell carcinoma (OSCC) tissues and its association with advanced clinical stage in OSCC patients. However, the underlying mechanisms of this CCL18‐derived activity remains unidentified. This study showed exogenous CCL18 increased cell migration and invasion and induced cell epithelial–mesenchymal transition (EMT), and that E‐cadherin, an epithelial marker, decreased and N‐cadherin, a mesenchymal marker, increased, compared to negative control in OSCC cells. Furthermore, we detected that CCL18 induced the acquisition of cancer stem(‐like) cell characteristics in oral cancer cells, but also found a significantly positive correlation between the expression of CCL18 and Bmi‐1 (P < 0.001) in OSCC surgical specimens by immunohistochemistry analysis. The expression of octamer‐binding transcription factor 4 and Bmi‐1 were significantly upregulated, and proportions of aldehyde dehydrogenasehigh+ cells and CD133+ cells were markedly increased in CCL18‐treated cells compared to untreated cells. Sphere formation ability was observably enhanced when cells were continually exposed to high levels of CCL18. Moreover, CCL18 upregulated Slug expression by stimulating the mammalian target of rapamycin (mTOR) signaling pathway in OSCC cell lines. Inhibition of the mTOR pathway by INK128, or Slug knockdown by RNA interference, reversed CCL18‐induced EMT and the stemness response at both molecular and functional levels. In conclusion, our data suggested that CCL18 upregulated Slug expression to promote EMT and stem cell‐like features by activating the mTOR pathway in oral cancer. These findings provide new potential targets for the early diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Hongfei Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xueyi Liang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mianxiang Li
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoan Tao
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanshan Tai
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaona Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juan Xia
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Bulanova DR, Akimov YA, Rokka A, Laajala TD, Aittokallio T, Kouvonen P, Pellinen T, Kuznetsov SG. Orphan G protein-coupled receptor GPRC5A modulates integrin β1-mediated epithelial cell adhesion. Cell Adh Migr 2017; 11:434-446. [PMID: 27715394 PMCID: PMC5810789 DOI: 10.1080/19336918.2016.1245264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
G-Protein Coupled Receptor (GPCR), Class C, Group 5, Member A (GPRC5A) has been implicated in several malignancies. The underlying mechanisms, however, remain poorly understood. Using a panel of human cell lines, we demonstrate that CRISPR/Cas9-mediated knockout and RNAi-mediated depletion of GPRC5A impairs cell adhesion to integrin substrates: collagens I and IV, fibronectin, as well as to extracellular matrix proteins derived from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma (Matrigel). Consistent with the phenotype, knock-out of GPRC5A correlated with a reduced integrin β1 (ITGB1) protein expression, impaired phosphorylation of the focal adhesion kinase (FAK), and lower activity of small GTPases RhoA and Rac1. Furthermore, we provide the first evidence for a direct interaction between GPRC5A and a receptor tyrosine kinase EphA2, an upstream regulator of FAK, although its contribution to the observed adhesion phenotype is unclear. Our findings reveal an unprecedented role for GPRC5A in regulation of the ITGB1-mediated cell adhesion and it's downstream signaling, thus indicating a potential novel role for GPRC5A in human epithelial cancers.
Collapse
Affiliation(s)
- Daria R Bulanova
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| | - Yevhen A Akimov
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| | - Anne Rokka
- c Turku Centre for Biotechnology , University of Turku and Abo Academy , Turku , Finland
| | - Teemu D Laajala
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland.,b Department of Mathematics and Statistics , University of Turku , Turku , Finland
| | - Tero Aittokallio
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland.,b Department of Mathematics and Statistics , University of Turku , Turku , Finland
| | - Petri Kouvonen
- c Turku Centre for Biotechnology , University of Turku and Abo Academy , Turku , Finland
| | - Teijo Pellinen
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| | - Sergey G Kuznetsov
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| |
Collapse
|
32
|
Tumor Associated Macrophages as Therapeutic Targets for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:331-370. [PMID: 29282692 DOI: 10.1007/978-981-10-6020-5_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant inflammatory infiltrates in the tumor stroma. TAMs promote tumor growth by suppressing immunocompetent cells, including neovascularization and supporting cancer stem cells. In the chapter, we discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and developing potential strategies to increase the efficacy of breast cancer treatment.
Collapse
|
33
|
Shi L, Zhang B, Sun X, Zhang X, Lv S, Li H, Wang X, Zhao C, Zhang H, Xie X, Wang Y, Zhang P. CC chemokine ligand 18(CCL18) promotes migration and invasion of lung cancer cells by binding to Nir1 through Nir1-ELMO1/DOC180 signaling pathway. Mol Carcinog 2016; 55:2051-2062. [PMID: 26756176 DOI: 10.1002/mc.22450] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022]
Abstract
Non-small cell lung cancer (NSCLC) comprises nearly 80% of lung cancers and the poor prognosis is due to its high invasiveness and metastasis. CC chemokine ligand 18 (CCL18) is predominantly secreted by M2-tumor associated macrophages (TAMs) and promotes malignant behaviors of various human cancer types. In this study, we report that the high expression of CCL18 in TAMs of NSCLC tissues and increased expression of CCL18 in TAMs is correlated with the lymph node metastasis, distant metastasis, and poor prognosis NSCLC patients. CCL18 can increase the invasive ability of NSCLC cells by binding to its receptor Nir1. In addition, CCL18 is capable of modulating cell migration and invasion by regulating the activation of RAC1 which resulted in cytoskeleton reorganization in an ELMO1 dependent manner. Furthermore, we found that CCL18 could enhance adhesion of NSCLC cells via activating ELMO1-integrin β1 signaling. Thus, CCL18 and its downstream molecules may be used as targets to develop novel NSCLC therapy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lihong Shi
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Baogang Zhang
- Department of Pathology, Weifang Medical University, Weifang, P. R. China
| | - Xiuning Sun
- Department of Microbilology, Weifang Medical University, Weifang, P. R. China
| | - Xiurong Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Shijun Lv
- Department of Pathology, Weifang Medical University, Weifang, P. R. China
| | - Hongli Li
- Department of Medicine Research Center, Weifang Medical University, Weifang, P. R. China
| | - Xuejian Wang
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Chunzhen Zhao
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Heng Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Xinpeng Xie
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Ying Wang
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Peng Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| |
Collapse
|
34
|
Wang Q, Tang Y, Yu H, Yin Q, Li M, Shi L, Zhang W, Li D, Li L. CCL18 from tumor-cells promotes epithelial ovarian cancer metastasis via mTOR signaling pathway. Mol Carcinog 2016; 55:1688-1699. [PMID: 26457987 PMCID: PMC5057350 DOI: 10.1002/mc.22419] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/08/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
CCL18 is a chemotactic cytokine involved in the pathogenesis and progression of various disorders, including cancer. Previously, our results showed high levels of CCL18 in the serum of epithelial ovarian carcinoma patients suggesting its potential as a circulating biomarker. In this study, we determined that CCL18 expression was up-regulated in ovarian carcinoma compared with adjacent tissue and was expressed in carcinoma cells in the tumor and not in normal ovarian epithelial cells by laser capture microdissection coupled with real-time RT-PCR. Moreover, correlation analysis showed that the CCL18 level was positively correlated with the metastasis of patients with ovarian cancer. Survival analysis also revealed that an increased level of CCL18 was associated with worse survival time in ovarian cancer patients. Over-expression of CCL18 led to enhanced migration and invasion of the Skov3 ovarian cancer cell line in vitro and in vivo. Finally, proteomics analysis demonstrated that CCL18-mediated ovarian cancer invasiveness was strongly correlated with the mTORC2 pathway. These findings suggest that the CCL18 chemokine has an important role in chemokine-mediated tumor metastasis, and may serve as a potential predictor for poor survival outcomes for ovarian cancer. © 2015 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qi Wang
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Yong Tang
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Hongjing Yu
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Qiaoyun Yin
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Mengdi Li
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Lijun Shi
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Wei Zhang
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Danrong Li
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Li Li
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China.
| |
Collapse
|
35
|
Lane D, Matte I, Laplante C, Garde-Granger P, Carignan A, Bessette P, Rancourt C, Piché A. CCL18 from ascites promotes ovarian cancer cell migration through proline-rich tyrosine kinase 2 signaling. Mol Cancer 2016; 15:58. [PMID: 27613122 PMCID: PMC5017134 DOI: 10.1186/s12943-016-0542-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022] Open
Abstract
Background Ovarian cancer (OC) ascites consist in a proinflammatory tumor environment that is characterized by the presence of various cytokines, chemokines and growth factors. The presence of these inflammatory-related factors in ascites is associated with a more aggressive tumor phenotype. CCL18 is a member of CCL chemokines and its expression has been associated with poor prognosis in some cancers. However, its role in OC progression has not been established. Therefore, the aim of the current study was to elucidate the role of ascites CCL18 in OC progression. Methods ELISA and tissue microarrays were used to assess CCL18 in ascites and phospho-Pyk2 expression in cancer tissues respectively. Cell migration was assessed using Boyden chambers. CCL18 and ascites signaling was examined in ovarian cancer cells utilizing siRNA and exogenous gene expression. Results Here, we show that CCL18 levels are markedly increased in advanced serous OC ascites relative to peritoneal effusions from women with benign conditions. Ascites and CCL18 dose-dependently enhanced the migration of OC cell lines CaOV3 and OVCAR3. CCL18 levels in ascites positively correlated with the ability of ascites to promote cell migration. CCL18 blocking antibodies significantly attenuated ascites-induced cell migration. Ascites and CCL18 stimulated the phosphorylation of proline-rich tyrosine kinase 2 (Pyk2) in CaOV3 and OVCAR3 cells. Most importantly, the expression of phosphorylated Pyk2 in serous OC tumors was associated with shorter progression-free survival. Furthermore, enforced expression of Pyk2 promoted tumor cell migration while siRNA-mediated downregulation of Pyk2 attenuated cell migration. Downregulation of Pyk2 markedly inhibited ascites and CCL18-induced cell migration. Conclusions Taken together, our findings establish an important role for CCL18, as a component of ascites, in the migration of tumor cells and identify Pyk2 as prognostic factor and a critical downstream signaling pathway for ascites-induced OC cell migration. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0542-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denis Lane
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Isabelle Matte
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Claude Laplante
- Département de Pathologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada
| | - Perrine Garde-Granger
- Département de Pathologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada
| | - Alex Carignan
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Paul Bessette
- Service d'obstétrique et gynécologie, Département de Chirurgie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada
| | - Claudine Rancourt
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Alain Piché
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
36
|
Shang D, Zheng T, Zhang J, Tian Y, Liu Y. Profiling of mRNA and long non-coding RNA of urothelial cancer in recipients after renal transplantation. Tumour Biol 2016; 37:12673-12684. [PMID: 27448299 DOI: 10.1007/s13277-016-5148-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanism and signal transduction pathways involved in urothelial cancer (UC) after renal transplantation (RTx) remain unknown. In this study, we investigated the profiling of messenger RNA (mRNA) and long non-coding RNA (lncRNA) in RTx recipients with UC. The mRNA and lncRNA of six pairs of UC and corresponding normal urothelial tissues in RTx recipients were profiled using Arraystar Human lncRNA Microarray V3.0, which is designed for the global profiling of 26,109 coding transcripts and 30,586 lncRNAs. Quantitative real-time PCR (qRT-PCR) was used to validate the differentially expressed mRNAs and lncRNAs. Molecular function classification and biological process classification for the differentially expressed mRNAs were analyzed with Gene Ontology. The key pathways that were associated with UC after RTx were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Compared to normal urothelial tissues, 1597 mRNAs were upregulated and 1032 mRNAs were downregulated in UC; 2107 lncRNAs were upregulated and 1794 lncRNAs were downregulated (greater than twofold). Further qRT-PCR analysis of mRNA and lncRNA expression showed well consistency with the data of microarray analysis. The expression of matrix metalloprotease (MMP)-3, MMP-10, MMP-12, and MMP-13 was significantly increased, while the expression of CD36 was decreased in UC after RTx. Co-expression analysis of lncRNAs and their nearby coding genes showed that lncRNAs may play critical roles in regulating nearby genes in the carcinogenesis of UC. Our results also suggest that peroxisome proliferator-activated receptor (PPAR) signaling may be involved in UC after RTx. Moreover, several cytokines and their receptors were also significantly upregulated in UC after RTx, suggesting that cytokines might be modulated and participated in the carcinogenesis of UC after RTx. We analyzed the potential molecular mechanism and pathways involved in the UC of RTx recipients. Our results revealed that several key regulatory pathways and lncRNAs play critical roles in the carcinogenesis of UC, and suggest that UC in RTx recipients may be more likely to invade and metastasis. However, the detailed functional analysis of these mechanisms should be further performed in the future.
Collapse
Affiliation(s)
- Donghao Shang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Tie Zheng
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center for Vascular Prostheses, Beijing, 100029, China
| | - Jian Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuting Liu
- Department of Pathology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
37
|
Lin X, Chen L, Yao Y, Zhao R, Cui X, Chen J, Hou K, Zhang M, Su F, Chen J, Song E. CCL18-mediated down-regulation of miR98 and miR27b promotes breast cancer metastasis. Oncotarget 2016; 6:20485-99. [PMID: 26244871 PMCID: PMC4653020 DOI: 10.18632/oncotarget.4107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Our previous work has indicated that CCL18 secreted by tumor-associated macrophages (TAMs) promotes breast cancer metastasis, which is associated with poor patient prognosis. However, it remains unclear whether microRNAs (miRNAs), which may modulate multiple cellular pathways, are involved in the regulation of CCL18 signaling and the ensuing metastasis of breast cancer. In this study, we demonstrated that CCL18 reduces miR98 and miR27b expression via the N-Ras/ERK/PI3K/NFκB/Lin28b signaling pathway, while down-regulation of these mRNAs feedbacks to increase N-Ras and Lin28b levels. This cascade of events forms a positive feedback loop that sustains the activation of CCL18 signaling. More importantly, reduction in miR98 and miR27b enhances the epithelial-mesenchymal transition (EMT) of breast cancer cells, and thus promotes breast cancer metastasis. These findings suggest that down-regulation of miR98 and miR27b promotes CCL18-mediated invasion and migration of breast cancer cells.
Collapse
Affiliation(s)
- Xiaorong Lin
- Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China.,Diagnosis and Treatment Center of Breast Diseases, Shantou Hospital, SunYat-Sen University, Shantou, Guangdong Province, People's Republic of China
| | - Lijun Chen
- Department of Medical Oncology, No. 2 Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yandang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Ruihua Zhao
- Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China.,Department of Oncology and Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Xiuying Cui
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Jun Chen
- Department of Breast Tumor, The Third Hospital of Nanchang, Nanchang City, Jiangxi Province, People's Republic of China
| | - Kailian Hou
- Department of Medical Oncology, No. 2 Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Mingxia Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Jingqi Chen
- Department of Medical Oncology, No. 2 Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
38
|
Lin CC, Yang CC, Cho RL, Wang CY, Hsiao LD, Yang CM. Sphingosine 1-Phosphate-Induced ICAM-1 Expression via NADPH Oxidase/ROS-Dependent NF-κB Cascade on Human Pulmonary Alveolar Epithelial Cells. Front Pharmacol 2016; 7:80. [PMID: 27065868 PMCID: PMC4815023 DOI: 10.3389/fphar.2016.00080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
The intercellular adhesion molecule-1 (ICAM-1) expression is frequently correlated with the lung inflammation. In lung injury, sphingosine-1-phosphate (S1P, bioactive sphingolipid metabolite), participate gene regulation of adhesion molecule in inflammation progression and aggravate tissue damage. To investigate the transduction mechanisms of the S1P in pulmonary epithelium, we demonstrated that exposure of HPAEpiCs (human pulmonary alveolar epithelial cells) to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCδ), PF431396 (PYK2), diphenyleneiodonium chloride (DPI), apocynin (NADPH oxidase), Edaravone (ROS), and Bay11-7082 (NF-κB). Consistently, knockdown with siRNA transfection of PKCδ, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A) and Gi/o-coupled receptor antagonist (GPA2) also blocked the upregulation of ICAM-1 protein and mRNA induced by S1P. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCδ-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-κB p65 phosphorylation and nuclear translocation in HPAEpiCs. Activated NF-κB was blocked by Rottlerin, PF431396, APO, DPI, or Edaravone. Besides, the results of monocyte adhesion assay indicated that S1P-induced ICAM-1 expression on HPAEpiCs can enhance the monocyte attachments. In the S1P-treated mice, we found that the levels of ICAM-1 protein and mRNA in the lung fractions, the pulmonary hematoma and leukocyte count in bronchoalveolar lavage fluid were enhanced through a PKCδ/PYK2/NADPH oxidase/ROS/NF-κB signaling pathway. We concluded that S1P-accelerated lung damage is due to the ICAM-1 induction associated with leukocyte recruitment.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan
| | - Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Chen-Yu Wang
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Chuen-Mao Yang
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and TechnologyTaoyuan, Taiwan
| |
Collapse
|
39
|
Liu K, He Q, Liao G, Han J. Identification of critical genes and gene interaction networks that mediate osteosarcoma metastasis to the lungs. Exp Ther Med 2015; 10:1796-1806. [PMID: 26640552 PMCID: PMC4665845 DOI: 10.3892/etm.2015.2767] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma (OS) is the most commonly diagnosed bone tumor in young adults under the age of 20. Metastasis is considered an important factor underlying cancer-associated morbidity and mortality, and, as a result, the survival rate of patients with metastatic OS is low. In spite of this, the mechanisms underlying metastasis in OS are currently not well understood. The present study compared gene expression levels between five non-metastatic and four metastatic OS tumor samples, using an Affymetrix microarray. A total of 282 genes were differentially expressed in the metastatic samples, as compared with the non-metastatic samples. Of these differentially expressed genes (DEGs), 212 were upregulated and 70 were downregulated. The following DEGs were associated with metastasis: Homeobox only protein; lysosomal-associated membrane protein-3; chemokine (C-C motif) ligand-18; carcinoembryonic antigen-related cell adhesion molecule-6; keratin-19; prostaglandin-endoperoxide synthase-2; clusterin; and nucleoside diphosphate kinase-1. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses were conducted, which identified 529 biological processes (P<0.01) and 10 KEGG pathways (P<0.05) that were significantly over-represented in the metastatic samples, as compared with the non-metastatic samples. Interaction networks for the DEGs were constructed using the corresponding GO terms and KEGG pathways, and these identified numerous genes that may contribute to OS metastasis. Among the enriched biological processes, four DEGs were consistently over-represented: Jun proto-oncogene, caveolin-1, nuclear factor-κB-inhibitor-α and integrin alpha-4; thus suggesting that they may have key roles in OS metastasis, and may be considered potential therapeutic targets in the treatment of patients with OS.
Collapse
Affiliation(s)
- Kegui Liu
- Department of Osteoarticular Surgery, Yantai Shan Hospital, Yantai, Shandong 264000, P.R. China
| | - Qunhui He
- Department of Anesthesiology, Yuhuang Ding Hospital, Yantai, Shandong 264000, P.R. China
| | - Guangjun Liao
- Department of Orthopedic Surgery, Yantai Shan Hospital, Yantai, Shandong 264000, P.R. China
| | - Jian Han
- Department of Orthopedic Surgery, Yantai Shan Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
40
|
SEMA6D Expression and Patient Survival in Breast Invasive Carcinoma. Int J Breast Cancer 2015; 2015:539721. [PMID: 25973277 PMCID: PMC4417987 DOI: 10.1155/2015/539721] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/26/2015] [Indexed: 12/27/2022] Open
Abstract
Breast cancer (BC) is the second most common cancer diagnosed in American women and is also the second leading cause of cancer death in women. Research has focused heavily on BC metastasis. Multiple signaling pathways have been implicated in regulating BC metastasis. Our knowledge of regulation of BC metastasis is, however, far from complete. Identification of new factors during metastasis is an essential step towards future therapy. Our labs have focused on Semaphorin 6D (SEMA6D), which was implicated in immune responses, heart development, and neurogenesis. It will be interesting to know SEMA6D-related genomic expression profile and its implications in clinical outcome. In this study, we examined the public datasets of breast invasive carcinoma from The Cancer Genome Atlas (TCGA). We analyzed the expression of SEMA6D along with its related genes, their functions, pathways, and potential as copredictors for BC patients' survival. We found 6-gene expression profile that can be used as such predictors. Our study provides evidences for the first time that breast invasive carcinoma may contain a subtype based on SEMA6D expression. The expression of SEMA6D gene may play an important role in promoting patient survival, especially among triple negative breast cancer patients.
Collapse
|