1
|
Sims NA, Lévesque JP. Oncostatin M: Dual Regulator of the Skeletal and Hematopoietic Systems. Curr Osteoporos Rep 2024; 22:80-95. [PMID: 38198032 PMCID: PMC10912291 DOI: 10.1007/s11914-023-00837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF THE REVIEW The bone and hematopoietic tissues coemerge during development and are functionally intertwined throughout mammalian life. Oncostatin M (OSM) is an inflammatory cytokine of the interleukin-6 family produced by osteoblasts, bone marrow macrophages, and neutrophils. OSM acts via two heterodimeric receptors comprising GP130 with either an OSM receptor (OSMR) or a leukemia inhibitory factor receptor (LIFR). OSMR is expressed on osteoblasts, mesenchymal, and endothelial cells and mice deficient for the Osm or Osmr genes have both bone and blood phenotypes illustrating the importance of OSM and OSMR in regulating these two intertwined tissues. RECENT FINDINGS OSM regulates bone mass through signaling via OSMR, adaptor protein SHC1, and transducer STAT3 to both stimulate osteoclast formation and promote osteoblast commitment; the effect on bone formation is also supported by action through LIFR. OSM produced by macrophages is an important inducer of neurogenic heterotopic ossifications in peri-articular muscles following spinal cord injury. OSM produced by neutrophils in the bone marrow induces hematopoietic stem and progenitor cell proliferation in an indirect manner via OSMR expressed by bone marrow stromal and endothelial cells that form hematopoietic stem cell niches. OSM acts as a brake to therapeutic hematopoietic stem cell mobilization in response to G-CSF and CXCR4 antagonist plerixafor. Excessive OSM production by macrophages in the bone marrow is a key contributor to poor hematopoietic stem cell mobilization (mobilopathy) in people with diabetes. OSM and OSMR may also play important roles in the progression of several cancers. It is increasingly clear that OSM plays unique roles in regulating the maintenance and regeneration of bone, hematopoietic stem and progenitor cells, inflammation, and skeletal muscles. Dysregulated OSM production can lead to bone pathologies, defective muscle repair and formation of heterotopic ossifications in injured muscles, suboptimal mobilization of hematopoietic stem cells, exacerbated inflammatory responses, and anti-tumoral immunity. Ongoing research will establish whether neutralizing antibodies or cytokine traps may be useful to correct pathologies associated with excessive OSM production.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, Australia
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Jean-Pierre Lévesque
- Translational Research Institute, Mater Research Institute - The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
2
|
Ciliary Neurotrophic Factor (CNTF) and Its Receptors Signal Regulate Cementoblasts Apoptosis through a Mechanism of ERK1/2 and Caspases Signaling. Int J Mol Sci 2022; 23:ijms23158335. [PMID: 35955469 PMCID: PMC9369201 DOI: 10.3390/ijms23158335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) was identified as a survival factor in various types of peripheral and central neurons, glia and non-neural cells. At present, there is no available data on the expression and localization of CNTF-receptors in cementoblasts as well as on the role of exogenous CNTF on this cell line. The purpose of this study was to determine if cementoblasts express CNTF-receptors and analyze the mechanism of its apoptotic regulation effects on cementoblasts. OCCM-30 cementoblasts were cultivated and stimulated kinetically using CNTF protein (NBP2-35168, Novus Biologicals). Quantified transcriptional (RT-qPCR) and translational (WB) products of CNTFRα, IL-6Rα (CD126), LIFR, p-GP130, GP130, p-ERK1/2, ERK1/2, Caspase-8, -9, -3 and cleaved-caspase-3 were evaluated. Immunofluorescence (IF) staining was applied to visualize the localization of the CNTF-receptors within cells. The apoptosis ratio was measured with an Annexin-V FITC/PI kit. The ERK1/2 antagonist (FR180204, Calbiochem) was added for further investigation by flow cytometry analysis. The CNTF-receptor complex (CNTFRα, LIFR, GP130) was functionally up-regulated in cementoblasts while cultivated with exogenous CNTF. CNTF significantly attenuated cell viability and proliferation for long-term stimulation. Flow cytometry analysis shows that CNTF enhanced the apoptosis after prolonged duration. However, after only a short-term period, CNTF halts the apoptosis of cementoblasts. Further studies revealed that CNTF activated phosphorylated GP130 and the anti-apoptotic molecule ERK1/2 signaling to participate in the regulation of the apoptosis ratio of cementoblasts. In conclusion, CNTF elicited the cellular functions through a notable induction of its receptor complex in cementoblasts. CNTF has an inhibitory effect on the cementoblast homeostasis. These data also elucidate a cellular mechanism for an exogenous CNTF-triggered apoptosis regulation in a mechanism of ERK1/2 and caspase signaling and provides insight into the complex cellular responses induced by CNTF in cementoblasts.
Collapse
|
3
|
Borggaard XG, Nielsen MH, Delaisse JM, Andreasen CM, Andersen TL. Spatial Organization of Osteoclastic Coupling Factors and Their Receptors at Human Bone Remodeling Sites. Front Mol Biosci 2022; 9:896841. [PMID: 35775083 PMCID: PMC9239410 DOI: 10.3389/fmolb.2022.896841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
The strictly regulated bone remodeling process ensures that osteoblastic bone formation is coupled to osteoclastic bone resorption. This coupling is regulated by a panel of coupling factors, including clastokines promoting the recruitment, expansion, and differentiation of osteoprogenitor cells within the eroded cavity. The osteoprogenitor cells on eroded surfaces are called reversal cells. They are intermixed with osteoclasts and become bone-forming osteoblast when reaching a critical density and maturity. Several coupling factors have been proposed in the literature, but their effects and expression pattern vary between studies depending on species and experimental setup. In this study, we investigated the mRNA levels of proposed secreted and membrane-bound coupling factors and their receptors in cortical bone remodeling events within the femur of healthy adolescent human controls using high-sensitivity RNA in situ hybridization. Of the proposed coupling factors, human osteoclasts showed mRNA-presence of LIF, PDGFB, SEMA4D, but no presence of EFNB2, and OSM. On the other hand, the osteoblastic reversal cells proximate to osteoclasts presented with LIFR, PDGFRA and PLXNB1, but not PDGFRB, which are all known receptors of the proposed coupling factors. Although EFNB2 was not present in mature osteoclasts, the mRNA of the ligand-receptor pair EFNB2:EPHB4 were abundant near the central blood vessels within intracortical pores with active remodeling. EPHB4 and SEMA4D were also abundant in mature bone-forming osteoblasts. This study highlights that especially LIF:LIFR, PDGFB:PDGFRA, SEMA4D:PLXNB1 may play a critical role in the osteoclast-osteoblast coupling in human remodeling events, as they are expressed within the critical cells.
Collapse
Affiliation(s)
- Xenia G. Borggaard
- Research Unit of Pathology, Department of Clinical Research and Department of Molecular Medicine, Molecular Bone Histology Team, Clinical Cell Biology, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
- *Correspondence: Xenia G. Borggaard, orcid.org/0000-0002-4922-2478 Thomas L. Andersen,
| | - Malene H. Nielsen
- Research Unit of Pathology, Department of Clinical Research and Department of Molecular Medicine, Molecular Bone Histology Team, Clinical Cell Biology, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Jean-Marie Delaisse
- Research Unit of Pathology, Department of Clinical Research and Department of Molecular Medicine, Molecular Bone Histology Team, Clinical Cell Biology, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Christina M. Andreasen
- Research Unit of Pathology, Department of Clinical Research and Department of Molecular Medicine, Molecular Bone Histology Team, Clinical Cell Biology, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Thomas L. Andersen
- Research Unit of Pathology, Department of Clinical Research and Department of Molecular Medicine, Molecular Bone Histology Team, Clinical Cell Biology, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Xenia G. Borggaard, orcid.org/0000-0002-4922-2478 Thomas L. Andersen,
| |
Collapse
|
4
|
de Souza PPC, Henning P, Lerner UH. Stimulation of Osteoclast Formation by Oncostatin M and the Role of WNT16 as a Negative Feedback Regulator. Int J Mol Sci 2022; 23:3287. [PMID: 35328707 PMCID: PMC8953253 DOI: 10.3390/ijms23063287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Oncostatin M (OSM), which belongs to the IL-6 family of cytokines, is the most potent and effective stimulator of osteoclast formation in this family, as assessed by different in vitro assays. Osteoclastogenesis induced by the IL-6 type of cytokines is mediated by the induction and paracrine stimulation of the osteoclastogenic cytokine receptor activator of nuclear factor κ-B ligand (RANKL), expressed on osteoblast cell membranes and targeting the receptor activator of nuclear factor κ-B (RANK) on osteoclast progenitor cells. The potent effect of OSM on osteoclastogenesis is due to an unusually robust induction of RANKL in osteoblasts through the OSM receptor (OSMR), mediated by a JAK-STAT/MAPK signaling pathway and by unique recruitment of the adapter protein Shc1 to the OSMR. Gene deletion of Osmr in mice results in decreased numbers of osteoclasts and enhanced trabecular bone caused by increased trabecular thickness, indicating that OSM may play a role in physiological regulation of bone remodeling. However, increased amounts of OSM, either through administration of recombinant protein or of adenoviral vectors expressing Osm, results in enhanced bone mass due to increased bone formation without any clear sign of increased osteoclast numbers, a finding which can be reconciled by cell culture experiments demonstrating that OSM can induce osteoblast differentiation and stimulate mineralization of bone nodules in such cultures. Thus, in vitro studies and gene deletion experiments show that OSM is a stimulator of osteoclast formation, whereas administration of OSM to mice shows that OSM is not a strong stimulator of osteoclastogenesis in vivo when administered to adult animals. These observations could be explained by our recent finding showing that OSM is a potent stimulator of the osteoclastogenesis inhibitor WNT16, acting in a negative feedback loop to reduce OSM-induced osteoclast formation.
Collapse
Affiliation(s)
- Pedro P. C. de Souza
- The Innovation in Biomaterials Laboratory, School of Dentistry, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
| | - Ulf H. Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
| |
Collapse
|
5
|
Omokehinde T, Jotte A, Johnson RW. gp130 Cytokines Activate Novel Signaling Pathways and Alter Bone Dissemination in ER+ Breast Cancer Cells. J Bone Miner Res 2022; 37:185-201. [PMID: 34477239 PMCID: PMC8828687 DOI: 10.1002/jbmr.4430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/09/2021] [Accepted: 08/29/2021] [Indexed: 02/03/2023]
Abstract
Breast cancer cells frequently home to the bone marrow, where they encounter signals that promote survival and quiescence or stimulate their proliferation. The interleukin-6 (IL-6) cytokines signal through the co-receptor glycoprotein130 (gp130) and are abundantly secreted within the bone microenvironment. Breast cancer cell expression of leukemia inhibitory factor (LIF) receptor (LIFR)/STAT3 signaling promotes tumor dormancy in the bone, but it is unclear which, if any of the cytokines that signal through LIFR, including LIF, oncostatin M (OSM), and ciliary neurotrophic factor (CNTF), promote tumor dormancy and which signaling pathways are induced. We first confirmed that LIF, OSM, and CNTF and their receptor components were expressed across a panel of breast cancer cell lines, although expression was lower in estrogen receptor-negative (ER- ) bone metastatic clones compared with parental cell lines. In estrogen receptor-positive (ER+ ) cells, OSM robustly stimulated phosphorylation of known gp130 signaling targets STAT3, ERK, and AKT, while CNTF activated STAT3 signaling. In ER- breast cancer cells, OSM alone stimulated AKT and ERK signaling. Overexpression of OSM, but not CNTF, reduced dormancy gene expression and increased ER+ breast cancer bone dissemination. Reverse-phase protein array revealed distinct and overlapping pathways stimulated by OSM, LIF, and CNTF with known roles in breast cancer progression and metastasis. In breast cancer patients, downregulation of the cytokines or receptors was associated with reduced relapse-free survival, but OSM was significantly elevated in patients with invasive disease and distant metastasis. Together these data indicate that the gp130 cytokines induce multiple signaling cascades in breast cancer cells, with a potential pro-tumorigenic role for OSM and pro-dormancy role for CNTF. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tolu Omokehinde
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alec Jotte
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Rachelle W Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Gabet Y, Neumann D, Levaot N, Elson A, Sims NA. Editorial: Developmental Biology and Regulation of Osteoclasts. Front Cell Dev Biol 2021; 9:769320. [PMID: 34746157 PMCID: PMC8570260 DOI: 10.3389/fcell.2021.769320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Influences of the IL-6 cytokine family on bone structure and function. Cytokine 2021; 146:155655. [PMID: 34332274 DOI: 10.1016/j.cyto.2021.155655] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
The IL-6 family of cytokines comprises a large group of cytokines that all act via the formation of a signaling complex that includes the glycoprotein 130 (gp130) receptor. Despite this, many of these cytokines have unique roles that regulate the activity of bone forming osteoblasts, bone resorbing osteoclasts, bone-resident osteocytes, and cartilage cells (chondrocytes). These include specific functions in craniofacial development, longitudinal bone growth, and the maintenance of trabecular and cortical bone structure, and have been implicated in musculoskeletal pathologies such as craniosynostosis, osteoporosis, rheumatoid arthritis, osteoarthritis, and heterotopic ossifications. This review will work systematically through each member of this family and provide an overview and an update on the expression patterns and functions of each of these cytokines in the skeleton, as well as their negative feedback pathways, particularly suppressor of cytokine signaling 3 (SOCS3). The specific cytokines described are interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM), leukemia inhibitory factor (LIF), cardiotrophin 1 (CT-1), ciliary neurotrophic factor (CNTF), cardiotrophin-like cytokine factor 1 (CLCF1), neuropoietin, humanin and interleukin 27 (IL-27).
Collapse
|
8
|
Du J, Yang J, He Z, Cui J, Yang Y, Xu M, Qu X, Zhao N, Yan M, Li H, Yu Z. Osteoblast and Osteoclast Activity Affect Bone Remodeling Upon Regulation by Mechanical Loading-Induced Leukemia Inhibitory Factor Expression in Osteocytes. Front Mol Biosci 2020; 7:585056. [PMID: 33324677 PMCID: PMC7726425 DOI: 10.3389/fmolb.2020.585056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Bone remodeling is affected by mechanical stimulation. Osteocytes are the primary mechanical load-sensing cells in the bone, and can regulate osteoblast and osteoclast activity, thus playing a key role in bone remodeling. Further, bone mass during exercise is also regulated by Leukemia inhibitory factor (LIF). This study aimed to investigate the role of LIF in the mechanical response of the bone, in vivo and in vitro, and to elucidate the mechanism by which osteocytes secrete LIF to regulate osteoblasts and osteoclasts. Methods A tail-suspension (TS) mouse model was used in this study to mimic muscular disuse. ELISA and immunohistochemistry were performed to detect bone and serum LIF levels. Micro-computed tomography (CT) of the mouse femurs was performed to measure three-dimensional bone structure parameters. Fluid shear stress (FSS) and microgravity simulation experiments were performed to study mechanical stress-induced LIF secretion and its resultant effects. Bone marrow macrophages (BMMs) and bone mesenchymal stem cells (BMSCs) were cultured to induce in vitro osteoclastogenesis and osteogenesis, respectively. Results Micro-CT results showed that TS mice exhibited deteriorated bone microstructure and lower serum LIF expression. LIF secretion by osteocytes was promoted by FSS and was repressed in a microgravity environment. Further experiments showed that LIF could elevate the tartrate-resistant acid phosphatase activity in BMM-derived osteoclasts through the STAT3 signaling pathway. LIF also enhanced alkaline phosphatase staining and osteogenesis-related gene expression during the osteogenic differentiation of BMSCs. Conclusion Mechanical loading affected LIF expression levels in osteocytes, thereby altering the balance between osteoclastogenesis and osteogenesis.
Collapse
Affiliation(s)
- Jingke Du
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiancheng Yang
- Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Zihao He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqi Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingming Xu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Zhao
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengning Yan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Omokehinde T, Johnson RW. GP130 Cytokines in Breast Cancer and Bone. Cancers (Basel) 2020; 12:cancers12020326. [PMID: 32023849 PMCID: PMC7072680 DOI: 10.3390/cancers12020326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells have a high predilection for skeletal homing, where they may either induce osteolytic bone destruction or enter a latency period in which they remain quiescent. Breast cancer cells produce and encounter autocrine and paracrine cytokine signals in the bone microenvironment, which can influence their behavior in multiple ways. For example, these signals can promote the survival and dormancy of bone-disseminated cancer cells or stimulate proliferation. The interleukin-6 (IL-6) cytokine family, defined by its use of the glycoprotein 130 (gp130) co-receptor, includes interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), among others. These cytokines are known to have overlapping pleiotropic functions in different cell types and are important for cross-talk between bone-resident cells. IL-6 cytokines have also been implicated in the progression and metastasis of breast, prostate, lung, and cervical cancer, highlighting the importance of these cytokines in the tumor–bone microenvironment. This review will describe the role of these cytokines in skeletal remodeling and cancer progression both within and outside of the bone microenvironment.
Collapse
Affiliation(s)
- Tolu Omokehinde
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-875-8965
| |
Collapse
|
10
|
Buenrostro D, Kwakwa KA, Putnam NE, Merkel AR, Johnson JR, Cassat JE, Sterling JA. Early TGF-β inhibition in mice reduces the incidence of breast cancer induced bone disease in a myeloid dependent manner. Bone 2018; 113:77-88. [PMID: 29753718 PMCID: PMC6118216 DOI: 10.1016/j.bone.2018.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/02/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
The tumor-cell microenvironment is recognized as a dynamic place where critical cell interactions occur and play an important role in altering tumorigenesis. While many studies have investigated the effects of cellular cross-talk within distinct tumor microenvironments, these interactions have yet to be fully examined in bone. It is well-established that many common cancers metastasize to bone, resulting in the development of tumor-induced bone disease (TIBD), a multi-facetted illness that is driven by complex cell interactions within the bone marrow. Our group has previously published that myeloid progenitor cells expand in the presence of tumors in bone, aligning with the notion that myeloid cells can act as tumor promotors. Several groups, including ours, have established that transforming growth factor β (TGF-β), an abundant growth factor in bone, can regulate both TIBD and myeloid expansion. TGF-β inhibitors have been shown to increase bone volume, decrease bone destruction, and reduce but not eliminate tumor. Therefore, we hypothesize that inhibiting TGF-β will reduce myeloid expansion leading to a reduction of tumor burden in bone and osteoclast-mediated bone loss, causing to an overall reduction in TIBD. To address this hypothesis, two different mouse models of breast cancer bone colonization were pre-treated with the TGF-β neutralizing antibody, 1D11, prior to tumor inoculation (athymic: MDA-MB-231, BALB/c: 4T1) and continuously treated until sacrifice. Additionally, a genetically modified mouse model with a myeloid specific deletion of transforming growth factor beta receptor II (TGF-βRII) (TGF-βRIIMyeKO) was utilized in our studies. Systemic inhibition of TGF-β lead to fewer osteolytic lesions, and reduced tumor burden in bone as expected from previous studies. Additionally, early TGF-β inhibition affected expansion of distinct myeloid populations and shifted the cytokine profile of pro-tumorigenic factors in bone, 4T1 tumor cells, and bone-marrow derived macrophages. Similar observations were seen in tumor-bearing TGF-βRIIMyeKO mice, where these mice contained fewer bone lesions and significantly less tumor burden in bone, suggesting that TGF-β inhibition regulates myeloid expansion leading to a significant reduction in TIBD.
Collapse
Affiliation(s)
- Denise Buenrostro
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristin A Kwakwa
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicole E Putnam
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Alyssa R Merkel
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua R Johnson
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Cassat
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA; Departments of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN, USA
| | - Julie A Sterling
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN, USA.
| |
Collapse
|
11
|
Cho DC, Brennan HJ, Johnson RW, Poulton IJ, Gooi JH, Tonkin BA, McGregor NE, Walker EC, Handelsman DJ, Martin TJ, Sims NA. Bone corticalization requires local SOCS3 activity and is promoted by androgen action via interleukin-6. Nat Commun 2017; 8:806. [PMID: 28993616 PMCID: PMC5634449 DOI: 10.1038/s41467-017-00920-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/07/2017] [Indexed: 01/12/2023] Open
Abstract
Long bone strength is determined by its outer shell (cortical bone), which forms by coalescence of thin trabeculae at the metaphysis (corticalization), but the factors that control this process are unknown. Here we show that SOCS3-dependent cytokine expression regulates bone corticalization. Young male and female Dmp1Cre.Socs3 f/f mice, in which SOCS3 has been ablated in osteocytes, have high trabecular bone volume and poorly defined metaphyseal cortices. After puberty, male mice recover, but female corticalization is still impaired, leading to a lasting defect in bone strength. The phenotype depends on sex-steroid hormones: dihydrotestosterone treatment of gonadectomized female Dmp1Cre.Socs3 f/f mice restores normal cortical morphology, whereas in males, estradiol treatment, or IL-6 deletion, recapitulates the female phenotype. This suggests that androgen action promotes metaphyseal corticalization, at least in part, via IL-6 signaling.The strength of long bones is determined by coalescence of trabeculae during corticalization. Here the authors show that this process is regulated by SOCS3 via a mechanism dependent on IL-6 and expression of sex hormones.
Collapse
Affiliation(s)
- Dae-Chul Cho
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Neurosurgery, Kyungpook National University Hospital, 130 Dongdukro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Holly J Brennan
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine at St. Vincent's Hospital, University of Melbourne, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Rachelle W Johnson
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Division of Clinical Pharmacology, Vanderbilt University, 2215 Garland Avenue, 1255B MRB IV, Nashville, TN, 37212, USA
| | - Ingrid J Poulton
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Jonathan H Gooi
- Department of Medicine at St. Vincent's Hospital, University of Melbourne, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Brett A Tonkin
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Narelle E McGregor
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Emma C Walker
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - David J Handelsman
- Department of Andrology, ANZAC Research Institute, University of Sydney, 3 Hospital Road, Concord, NSW, 2139, Australia
| | - T J Martin
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine at St. Vincent's Hospital, University of Melbourne, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia. .,Department of Medicine at St. Vincent's Hospital, University of Melbourne, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
12
|
Johnson RW, Finger EC, Olcina MM, Vilalta M, Aguilera T, Miao Y, Merkel AR, Johnson JR, Sterling JA, Wu JY, Giaccia AJ. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol 2016; 18:1078-1089. [PMID: 27642788 PMCID: PMC5357601 DOI: 10.1038/ncb3408] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 08/11/2016] [Indexed: 12/20/2022]
Abstract
Breast cancer cells frequently home to the bone marrow, where they may enter a dormant state before forming a bone metastasis. Several members of the interleukin-6 (IL-6) cytokine family are implicated in breast cancer bone colonization, but the role for the IL-6 cytokine leukaemia inhibitory factor (LIF) in this process is unknown. We tested the hypothesis that LIF provides a pro-dormancy signal to breast cancer cells in the bone. In breast cancer patients, LIF receptor (LIFR) levels are lower with bone metastases and are significantly and inversely correlated with patient outcome and hypoxia gene activity. Hypoxia also reduces the LIFR:STAT3:SOCS3 signalling pathway in breast cancer cells. Loss of the LIFR or STAT3 enables otherwise dormant breast cancer cells to downregulate dormancy-, quiescence- and cancer stem cell-associated genes, and to proliferate in and specifically colonize the bone, suggesting that LIFR:STAT3 signalling confers a dormancy phenotype in breast cancer cells disseminated to bone.
Collapse
Affiliation(s)
- Rachelle W. Johnson
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| | - Elizabeth C. Finger
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| | - Monica M. Olcina
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| | - Marta Vilalta
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| | - Todd Aguilera
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| | - Yu Miao
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| | - Alyssa R. Merkel
- Department of Veterans Affairs: Tennessee Valley Healthcare System (VISN 9), Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Nashville, TN, USA
| | - Joshua R. Johnson
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford CA, USA
| | - Julie A. Sterling
- Department of Veterans Affairs: Tennessee Valley Healthcare System (VISN 9), Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Nashville, TN, USA
| | - Joy Y. Wu
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford CA, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Oxford AE, Jorcyk CL, Oxford JT. Neuropathies of Stüve-Wiedemann Syndrome due to mutations in leukemia inhibitory factor receptor (LIFR) gene. ACTA ACUST UNITED AC 2016; 1:37-44. [PMID: 28058407 DOI: 10.29245/2572.942x/2016/7.1068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stüve-Wiedemann syndrome (STWS; OMIM #610559) is a rare disease that results in dysfunction of the autonomic nervous system, which controls involuntary processes such as breathing rate and body temperature. In infants, this can result in respiratory distress, feeding and swallowing difficulties, and hyperthermic episodes. Individuals may sweat excessively when body temperature is not elevated. Additionally, individuals have reduced ability to feel pain and may lose reflexes such as the corneal reflex that normally causes one to blink, and the patellar reflex resulting in the knee-jerk. STWS usually results in infant mortality, yet some STWS patients survive into early adulthood. STWS is caused by a mutation in the leukemia inhibitory factor receptor (LIFR) gene, which is inherited in an autosomal-recessive pattern. Most LIFR mutations resulting in STWS cause instability of the mRNA due to frameshift mutations leading to premature stop codons, which prevent the formation of LIFR protein. STWS is managed on a symptomatic basis as no treatment is currently available.
Collapse
Affiliation(s)
- Alexandra E Oxford
- Boise State University, Department of Biological Sciences, Biomolecular Research Center, 1910 University Drive, Boise State University, Boise, ID 83725
| | - Cheryl L Jorcyk
- Boise State University, Department of Biological Sciences, Biomolecular Research Center, 1910 University Drive, Boise State University, Boise, ID 83725
| | - Julia Thom Oxford
- Boise State University, Department of Biological Sciences, Biomolecular Research Center, 1910 University Drive, Boise State University, Boise, ID 83725
| |
Collapse
|
14
|
Sims NA. Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. Int J Biochem Cell Biol 2016; 79:14-23. [PMID: 27497989 DOI: 10.1016/j.biocel.2016.08.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/27/2022]
Abstract
Bone renews itself and changes shape throughout life to account for the changing needs of the body; this requires co-ordinated activities of bone resorbing cells (osteoclasts), bone forming cells (osteoblasts) and bone's internal cellular network (osteocytes). This review focuses on paracrine signaling by the IL-6 family of cytokines between bone cells, bone marrow, and skeletal muscle in normal physiology and in pathological states where their levels may be locally or systemically elevated. These functions include the support of osteoclast formation by osteoblast lineage cells in response to interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM) and cardiotrophin 1 (CT-1). In addition it will discuss how bone-resorbing osteoclasts promote osteoblast activity by secreting CT-1, which acts as a "coupling factor" on osteocytes, osteoblasts, and their precursors to promote bone formation. OSM, produced by osteoblast lineage cells and macrophages, stimulates bone formation via osteocytes. IL-6 family cytokines also mediate actions of other bone formation stimuli like parathyroid hormone (PTH) and mechanical loading. CT-1, OSM and LIF suppress marrow adipogenesis by shifting commitment of pluripotent precursors towards osteoblast differentiation. Ciliary neurotrophic factor (CNTF) is released as a myokine from skeletal muscle and suppresses osteoblast differentiation and bone formation on the periosteum (outer bone surface in apposition to muscle). Finally, IL-6 acts directly on marrow-derived osteoclasts to stimulate release of "osteotransmitters" that act through the cortical osteocyte network to stimulate bone formation on the periosteum. Each will be discussed as illustrations of how the extended family of IL-6 cytokines acts within the skeleton in physiology and may be altered in pathological conditions or by targeted therapies.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia.
| |
Collapse
|
15
|
Johnson RW, McGregor NE, Brennan HJ, Crimeen-Irwin B, Poulton IJ, Martin TJ, Sims NA. Glycoprotein130 (Gp130)/interleukin-6 (IL-6) signalling in osteoclasts promotes bone formation in periosteal and trabecular bone. Bone 2015; 81:343-351. [PMID: 26255596 DOI: 10.1016/j.bone.2015.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022]
Abstract
Interleukin-6 (IL-6) and interleukin-11 (IL-11) receptors (IL-6R and IL-11R, respectively) are both expressed in osteoclasts and transduce signal via the glycoprotein130 (gp130) co-receptor, but the physiological role of this pathway is unclear. To determine the critical roles of gp130 signalling in the osteoclast, we generated mice using cathepsin K Cre (CtskCre) to disrupt gp130 signalling in osteoclasts. Bone marrow macrophages from CtskCre.gp130(f/f) mice generated more osteoclasts in vitro than cells from CtskCre.gp130(w/w) mice; these osteoclasts were also larger and had more nuclei than controls. While no increase in osteoclast numbers was observed in vivo, osteoclasts on trabecular bone surfaces of CtskCre.gp130(f/f) mice were more spread out than in control mice, but had no functional defect detectable by serum CTX1 levels or trabecular bone cartilage remnants. However, trabecular osteoblast number and mineralising surfaces were significantly lower in male CtskCre.gp130(f/f) mice compared to controls, and this was associated with a significantly lower trabecular bone volume at 12 weeks of age. Furthermore, CtskCre.gp130(f/f) mice exhibited greatly suppressed periosteal bone formation at this age, indicated by significant reductions in both double-labelled surface and mineral apposition rate. By 26 weeks of age, CtskCre.gp130(f/f) mice exhibited narrower femora, with lower periosteal and endocortical perimeters than CtskCre.gp130(w/w) controls. Since IL-6 and IL-11R global knockout mice exhibited a similar reduction in femoral width, we also assessed periosteal bone formation in those strains, and found bone forming surfaces were also reduced in male IL-6 null mice. These data suggest that IL-6/gp130 signalling in the osteoclast is not essential for normal bone resorption in vivo, but maintains both trabecular and periosteal bone formation in male mice by promoting osteoblast activity through the stimulation of osteoclast-derived "coupling factors" and "osteotransmitters", respectively.
Collapse
Affiliation(s)
| | | | - Holly J Brennan
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | | | - Ingrid J Poulton
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, VIC, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, VIC, Australia.
| |
Collapse
|
16
|
Matsumura H, Nakayama Y, Takai H, Ogata Y. Effects of interleukin-11 on the expression of human bone sialoprotein gene. J Bone Miner Metab 2015; 33:142-53. [PMID: 24633490 DOI: 10.1007/s00774-014-0576-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Interleukin-11 (IL-11) is a bone marrow stromal fibroblast-derived cytokine with a wide spectrum of activities in different biological systems. IL-11 and IL-6 are two cytokines known to rely on osteoblast-osteoclast communication for their effects on osteoclast differentiation. Bone sialoprotein (BSP) is a mineralized connective tissue-specific protein expressed in differentiated osteoblasts, odontoblasts, and cementoblasts. To determine the molecular basis of the transcriptional regulation of the human BSP gene by IL-11, we conducted real-time polymerase chain reactions (PCR), transient transfection analyses with chimeric constructs of the human BSP gene promoter linked to a luciferase reporter gene, gel mobility shift assays, and a chromatin immunoprecipitation assay using human osteoblast-like Saos2 cells. IL-11 (20 ng/ml) increased BSP, Runx2, and Osterix mRNA levels at 6 h and the alkaline phosphatase (ALP) mRNA level at 12 h in osteoblast-like Saos2 cells. In a transient transfection assay, IL-11 (20 ng/ml, 12 h) increased luciferase activities of constructs between -60LUC and -868LUC including the human BSP gene promoter. Transcriptional stimulations by IL-11 were partially inhibited in the constructs that included 2-bp mutations in the cAMP response element 1 (CRE1, -72 to -79) and CRE2 (-667 to -674). When mutations were made in pairs of CRE1 and CRE2 in -868LUC, the effect of IL-11 on luciferase activity was almost totally abrogated. Transcriptional activities induced by IL-11 were inhibited by protein kinase A, tyrosine kinase, ERK1/2, and PI3-kinase inhibitors. Gel mobility shift analyses showed that IL-11 increased nuclear proteins binding to CRE1 and CRE2. CREB1, phospho-CREB1, c-Fos, and c-Jun antibodies disrupted the formation of CRE1 and CRE2 protein complexes. These data demonstrate that IL-11 stimulates BSP gene transcription via CRE1 and CRE2 elements in the human BSP gene promoter.
Collapse
Affiliation(s)
- Hiroyoshi Matsumura
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| | | | | | | |
Collapse
|
17
|
Mikelonis D, Jorcyk CL, Tawara K, Oxford JT. Stüve-Wiedemann syndrome: LIFR and associated cytokines in clinical course and etiology. Orphanet J Rare Dis 2014; 9:34. [PMID: 24618404 PMCID: PMC3995696 DOI: 10.1186/1750-1172-9-34] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/06/2014] [Indexed: 12/14/2022] Open
Abstract
Stüve-Wiedemann syndrome (STWS; OMIM #610559) is a rare bent-bone dysplasia that includes radiologic bone anomalies, respiratory distress, feeding difficulties, and hyperthermic episodes. STWS usually results in infant mortality, yet some STWS patients survive into and, in some cases, beyond adolescence. STWS is caused by a mutation in the leukemia inhibitory factor receptor (LIFR) gene, which is inherited in an autosomally recessive pattern. Most LIFR mutations resulting in STWS are null mutations which cause instability of the mRNA and prevent the formation of LIFR, impairing the signaling pathway. LIFR signaling usually follows the JAK/STAT3 pathway, and is initiated by several interleukin-6-type cytokines. STWS is managed on a symptomatic basis since there is no treatment currently available.
Collapse
Affiliation(s)
| | | | | | - Julia Thom Oxford
- Boise State University, Department of Biological Sciences, Biomolecular Research Center, 1910 University Drive, Boise State University, Boise ID 83725, USA.
| |
Collapse
|
18
|
|
19
|
Abstract
Leukemia inhibitory factor (LIF) is a soluble interleukin-6 family cytokine that regulates a number of physiologic functions, including normal skeletal remodeling. LIF signals through the cytokine co-receptor glycoprotein-130 in complex with its cytokine-specific receptor [LIF receptor (LIFR)] to activate signaling cascades in cells of the skeletal system, including stromal cells, chondrocytes, osteoblasts, osteocytes, adipocytes, and synovial fibroblasts. LIF action on skeletal cells is cell-type specific, and frequently dependent on the state of cell differentiation. This review describes the expression patterns of LIF and LIFR in bone, their regulation by physiological and inflammatory agents, as well as cell-specific influences of LIF on osteoblast, osteoclast, chondrocyte, and adipocyte differentiation. The actions of LIF in normal skeletal growth and maintenance, in pathological states (e.g. autocrine tumor cell signaling and growth in bone) and inflammatory conditions (e.g. arthritis) will be discussed, as well as the signaling pathways activated by LIF and their importance in bone formation and resorption.
Collapse
Affiliation(s)
- Natalie A Sims
- St Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia.
| | | |
Collapse
|
20
|
Poulton IJ, McGregor NE, Pompolo S, Walker EC, Sims NA. Contrasting roles of leukemia inhibitory factor in murine bone development and remodeling involve region-specific changes in vascularization. J Bone Miner Res 2012; 27:586-95. [PMID: 22143976 DOI: 10.1002/jbmr.1485] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We describe here distinct functions of leukemia inhibitory factor (LIF) in bone development/growth and adult skeletal homeostasis. In the growth plate and developing neonate bones, LIF deficiency enhanced vascular endothelial growth factor (VEGF) levels, enlarged blood vessel formation, and increased the formation of "giant" osteoclasts/chondroclasts that rapidly destroyed the mineralized regions of the growth plate and developing neonatal bone. Below this region, osteoblasts formed large quantities of woven bone. In contrast, in adult bone undergoing remodeling osteoclast formation was unaffected by LIF deficiency, whereas osteoblast formation and function were both significantly impaired, resulting in osteopenia. Consistent with LIF promoting osteoblast commitment, enhanced marrow adipocyte formation was also observed in adult LIF null mice, and adipocytic differentiation of murine stromal cells was delayed by LIF treatment. LIF, therefore, controls vascular size and osteoclast differentiation during the transition of cartilage to bone, whereas an anatomically separate LIF-dependent pathway regulates osteoblast and adipocyte commitment in bone remodeling.
Collapse
Affiliation(s)
- Ingrid J Poulton
- St Vincent's Institute, 9 Princes St, Fitzroy, Victoria 3065, Australia
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Effects of Leukemia Inhibitory Factor on Proliferation and Odontoblastic Differentiation of Human Dental Pulp Cells. J Endod 2011; 37:819-24. [DOI: 10.1016/j.joen.2011.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/18/2011] [Accepted: 02/23/2011] [Indexed: 01/09/2023]
|
23
|
Liang Y, Zhou Y, Jiang T, Zhang Z, Wang S, Wang Y. Expression of LIF and LIFR in periodontal tissue during orthodontic tooth movement. Angle Orthod 2011; 81:600-8. [PMID: 21446866 DOI: 10.2319/102510-622.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To test the hypothesis that leukemia inhibitor factor (LIF) and LIF receptor (LIFR) are expressed in periodontal tissue and that their expression may be upregulated during orthodontic tooth movement. MATERIALS AND METHODS Forces of 0.3 N were applied to move the upper left first molars mesially in 24 rats. These forces were kept constant for 3, 7, and 14 days and followed by animal sacrifice. The contralateral molars served as control. The rate of tooth movement was measured by Image J software. Paraffin-embedded sections of the upper jaws were prepared for histological and immunohistochemical analysis to test the LIF and LIFR expression. RESULTS Loaded teeth showed a significantly higher rate of tooth movement. The periodontium of the moved teeth experienced tissue remodeling, while there was no obvious change in the contralateral controls. Furthermore, LIF and LIFR were expressed in the periodontal tissue, and there were statistically significant differences between the loaded and unloaded teeth at 3 and 14 days. LIF presented significantly higher expression on the tension side compared with the pressure side at 3 days. CONCLUSION Both LIF and LIFR exist in the periodontal tissue, and continuous orthodontic forces induce the upregulation of LIF/LIFR production, suggesting that LIF/LIFR may play important roles in periodontium remodeling.
Collapse
Affiliation(s)
- Youde Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Hospital and School of Stomatology, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
24
|
Wang S, Sasaki Y, Zhou L, Matsumura H, Araki S, Mezawa M, Takai H, Chen Z, Ogata Y. Transcriptional regulation of bone sialoprotein gene by interleukin-11. Gene 2011; 476:46-55. [PMID: 21276840 DOI: 10.1016/j.gene.2011.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/30/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
Interleukin-11 (IL-11) is a stromal cell-derived cytokine that belongs to the interleukin-6 family of cytokines. IL-11 has many biological activities and has roles in hematopoiesis, immune responses, the nervous system and bone metabolism. Bone sialoprotein (BSP) is a mineralized tissue-specific protein expressed in differentiated osteoblasts that appears to function in the initial mineralization of bone. IL-11 (20 ng/ml) increased BSP mRNA and protein levels at 12h in osteoblast-like ROS 17/2.8 cells. In a transient transfection assay, IL-11 (20 ng/ml) increased luciferase activity of the construct (-116 to +60) in ROS 17/2.8 cells and rat bone marrow stromal cells. Introduction of 2 bp mutations to the luciferase constructs showed that the effects of IL-11 were mediated by a cAMP response element (CRE), a fibroblast growth factor 2 response element (FRE) and a homeodomain protein-binding site (HOX). Luciferase activities induced by IL-11 were blocked by protein kinase A inhibitor, tyrosine kinase inhibitor and ERK1/2 inhibitor. Gel shift analyses showed that IL-11 (20 ng/ml) increased nuclear protein binding to CRE, FRE and HOX. CREB1, phospho-CREB1, c-Fos, c-Jun, JunD and Fra2 antibodies disrupted the formation of CRE-protein complexes. Dlx5, Msx2, Runx2 and Smad1 antibodies disrupted FRE- and HOX-protein complex formations. These studies demonstrate that IL-11 stimulates BSP transcription by targeting CRE, FRE and HOX sites in the proximal promoter of the rat BSP gene. Moreover, phospho-CREB1, c-Fos, c-Jun, JunD, Fra2, Dlx5, Msx2, Runx2 and Smadl transcription factors appear to be key regulators of IL-11 effects on BSP transcription.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Cytokines that bind to and signal through the gp130 co-receptor subunit include interleukin (IL)-6, IL-11, oncostatin M (OSM), leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), and ciliary neutrophic factor (CNTF). Apart from contributing to inflammation, gp130 signalling cytokines also function in the maintenance of bone homeostasis. Expression of each of these cytokines and their ligand-specific receptors is observed in bone and joint cells, and bone-active hormones and inflammatory cytokines regulate their expression. gp130 signalling cytokines have been shown to regulate the differentiation and activity of osteoblasts, osteoclasts and chondrocytes. Furthermore, cytokine and receptor specific gene-knockout mouse models have identified distinct roles for each of these cytokines in regulating bone resorption, bone formation and bone growth. This review will discuss the current models of paracrine and endocrine actions of gp130-signalling cytokines in bone remodelling and growth, as well as their impact in pathologic bone remodelling evident in periodontal disease, rheumatoid arthritis, spondylarthropathies and osteoarthritis.
Collapse
Affiliation(s)
- Natalie A Sims
- St Vincent's Institute, 9 Princes St, Fitzroy, Victoria 3065, Australia.
| | | |
Collapse
|
26
|
Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ, Constable MJ, Nicholson GC, Zhang JG, Nicola NA, Gillespie MT, Martin TJ, Sims NA. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 2010; 120:582-92. [PMID: 20051625 DOI: 10.1172/jci40568] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/11/2009] [Indexed: 11/17/2022] Open
Abstract
Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr-/- osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer.
Collapse
|
27
|
Sims NA. gp130 signaling in bone cell biology: multiple roles revealed by analysis of genetically altered mice. Mol Cell Endocrinol 2009; 310:30-9. [PMID: 18805458 DOI: 10.1016/j.mce.2008.08.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 08/20/2008] [Accepted: 08/21/2008] [Indexed: 12/18/2022]
Abstract
The receptor subunit gp130 is utilized by a wide range of cytokines, many of which have critical functions in regulating the actions of osteoclasts and osteoblasts. In vitro studies have revealed remarkably consistent effects of many of these family members, specifically, actions on receptors in the osteoblast lineage that stimulate osteoblast differentiation and stimulate production of RANKL, thereby increasing the formation of osteoclasts. In contrast to this simple model of gp130 action on bone, deletion of cytokines or receptors that interact with gp130 reveal a range of bone phenotypes implicating critical roles for gp130 signaling in longitudinal bone growth, bone resorption and bone formation. In most cases, deletion of gp130, ligands or ligand-specific receptors interacting with gp130 causes a low level of bone formation; a high level of bone formation was only observed in gp130(Y757F/Y757F) mice, gp130 signaling mutants, where it is caused by a cell-lineage autonomous increase in osteoclast formation and an IL-6-dependent coupling pathway. On the other hand, the range of gene knockouts may cause either a reduction or an increase in osteoclast formation, and in many cases alterations in osteoclast size and ability to resorb bone. Since some knockouts are neonatal lethal, interpretation of ex vivo analyses and the contribution of each component to bone remodeling are not clearly defined, and there is still much work to be done before these questions can be resolved. Taken together these results indicate multiple roles for gp130 cytokines in controlling osteoblasts and osteoclast function, including paracrine roles to mediate signaling between these two cell types.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute, Fitzroy, Melbourne, Victoria, Australia.
| |
Collapse
|
28
|
Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res 2008; 23:2025-32. [PMID: 18665789 DOI: 10.1359/jbmr.080706] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cardiotrophin (CT-1) signals through gp130 and the LIF receptor (LIFR) and plays a major role in cardiac, neurological, and liver biology. We report here that CT-1 is also expressed within bone in osteoclasts and that CT-1 is capable of increasing osteoblast activity and mineralization both in vitro and in vivo. Furthermore, CT-1 stimulated CAAT/enhancer-binding protein-delta (C/EBP delta) expression and runt-related transcription factor 2 (runx2) activation. In neonate CT-1(-/-) mice, we detected low bone mass associated with reduced osteoblasts and many large osteoclasts, but increased cartilage remnants within the bone, suggesting impaired resorption. Cultured bone marrow (BM) from CT-1(-/-) mice generated many oversized osteoclasts and mineralized poorly compared with wildtype BM. As the CT-1(-/-) mice aged, the reduced osteoblast surface (ObS/BS) was no longer detected, but impaired bone resorption continued resulting in an osteopetrotic phenotype in adult bone. CT-1 may now be classed as an essential osteoclast-derived stimulus of both bone formation and resorption.
Collapse
|
29
|
Hilton DJ, Nicola NA, Metcalf D. Distribution and binding properties of receptors for leukaemia inhibitory factor. CIBA FOUNDATION SYMPOSIUM 2007; 167:227-39; discussion 239-44. [PMID: 1425015 DOI: 10.1002/9780470514269.ch14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pleiotropic biological actions of leukaemia inhibitory factor (LIF) on haemopoietic cells (macrophages and megakaryocytes), hepatocytes, osteoblasts, pre-adipocytes, embryonic stem cells, myoblasts and neuronal cells must be mediated through the interactions of LIF with specific cellular receptors. The demonstration by equilibrium binding analysis and autoradiography of LIF receptors on all of the above cells and cell lines suggests that each of these pleiotropic effects of LIF is mediated by direct interactions with the responding cells rather than by the indirect release of secondary cytokines. Despite the differing biological effects of LIF on these cells, equilibrium binding, kinetic analyses and receptor internalization studies have all suggested that these cells display essentially identical high affinity LIF receptors. Nevertheless, there is evidence on some cell types (granulocyte-macrophage colony-stimulating factor [GM-CSF] transgenic peritoneal cells and F9 embryonal carcinoma cells) for a second class of low affinity LIF receptors (Kd = 1.5 nM versus Kd = 30 pM for high affinity receptors) which, LIF receptors (Kd = 1.5 nM versus Kd = 30 pM for high affinity receptors) which differ from the high affinity receptors only in kinetic dissociation rate. Moreover, the evidence suggests that low and high affinity receptors are structurally related and interconvertible, because detergent solubilization of LIF receptors from any cell type results in the quantitative conversion of high affinity receptors into low affinity receptors. As is the case for other related cytokine receptors, these data suggest that high affinity LIF receptors may be composed of two protein subunits--one responsible for LIF-specific low affinity binding and the other responsible for affinity conversion and cell signalling by the receptor. Such a model provides a possible explanation for the pleiotropy of LIF's biological actions.
Collapse
Affiliation(s)
- D J Hilton
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | |
Collapse
|
30
|
Martin TJ, Allan EH, Evely RS, Reid IR. Leukaemia inhibitory factor and bone cell function. CIBA FOUNDATION SYMPOSIUM 2007; 167:141-50; discussion 150-5. [PMID: 1425010 DOI: 10.1002/9780470514269.ch9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A bone-resorbing product of mouse spleen cells found to have differentiation-inducing activity was most probably leukaemia inhibitory factor (LIF). This revealed that LIF is a cytokine active on bone, in addition to its several other sites of action. In organ culture of newborn mouse bone, recombinant LIF promoted bone resorption by a prostaglandin-dependent process. Resorption by isolated rat osteoclasts was also promoted by LIF through an initial action on osteoblasts which was receptor-mediated. Incorporation of [3H]thymidine into DNA was increased by LIF in cells (most probably osteoblasts) of the newborn mouse bones. Osteoblasts have been shown to produce LIF, and the amount is increased by treatment with retinoic acid or TNF-alpha. LIF also acts directly on osteoblasts to inhibit plasminogen activator activity, by stimulating the synthesis of plasminogen activator inhibitor 1 mRNA and protein. The latter actions are very similar to those of TGF-beta. Again like TGF-beta, LIF was ineffective in promoting bone resorption in vitro in fetal rat long bones. These results, together with the in vivo data showing that high circulating levels of LIF in the mouse are accompanied by a substantial increase in trabecular bone mass, indicate that LIF is another cytokine with potent actions on bone and potentially important interactions with other osteotrophic factors.
Collapse
Affiliation(s)
- T J Martin
- Department of Medicine, University of Melbourne, Australia
| | | | | | | |
Collapse
|
31
|
Falconi D, Oizumi K, Aubin JE. Leukemia inhibitory factor influences the fate choice of mesenchymal progenitor cells. Stem Cells 2007; 25:305-12. [PMID: 17284649 DOI: 10.1634/stemcells.2006-0417] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Osteoblasts and adipocytes derive from a common mesenchymal precursor, and in at least some circumstances, differentiation along these two lineages is inversely related. For example, we have recently observed that concomitant with inhibition of osteoblast differentiation and bone nodule formation, leukemia inhibitory factor (LIF) induces genes regulating lipid metabolism in fetal rat calvaria (RC) cell cultures. In this study, we further investigated the adipogenic capacity of LIF-treated RC cells. Quantitative analyses revealed that LIF increased the adipocyte differentiation induced by the peroxisome proliferator-activated receptor gamma agonist BRL49653 (BRL) in RC cell populations. Gene expression profiling of individual RC cell colonies in untreated cells or cells treated with LIF, BRL, or combined LIF-BRL suggested that some adipocytes arose from bipotential or other primitive precursors, including osteoprogenitors, since many colonies co-expressed osteoblast and adipocyte differentiation markers, whereas some arose from other cell pools, most likely committed preadipocytes present in the population. These analyses further suggested that LIF and BRL do not act at the same stages of the mesenchymal hierarchy, but rather that LIF modifies differentiation of precursor cells, whereas BRL acts later to favor adipocyte differentiation. Taken together, our data suggest that LIF increased adipocyte differentiation at least in part by altering the fate of osteoblastic cells and their precursors.
Collapse
Affiliation(s)
- Dominic Falconi
- Department of Molecular and Medical Genetics, University of Toronto, Medical Sciences Building, Room 6233, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
32
|
Kartsogiannis V, Ng KW. Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol 2004; 228:79-102. [PMID: 15541574 DOI: 10.1016/j.mce.2003.06.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 06/12/2003] [Indexed: 12/13/2022]
Abstract
Bone is a metabolically active and highly organized tissue consisting of a mineral phase of hydroxyapatite and amorphous calcium phosphate crystals deposited in an organic matrix. Bone has two main functions. It forms a rigid skeleton and has a central role in calcium and phosphate homeostasis. The major cell types of bone are osteoblasts, osteoclasts and chondrocytes. In the laboratory, primary cultures or cell lines established from each of these different cell types provide valuable information about the processes of skeletal development, bone formation and bone resorption, leading ultimately, to the formulation of new forms of treatment for common bone diseases such as osteoporosis.
Collapse
|
33
|
Kondera-Anasz Z, Sikora J, Mielczarek-Palacz A. Leukemia Inhibitory Factor: An Important Regulator of Endometrial Function. Am J Reprod Immunol 2004; 52:97-105. [PMID: 15274648 DOI: 10.1111/j.1600-0897.2004.00204.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PROBLEM Leukemia inhibitory factor (LIF) is multifunctional cytokine that displays biological activities in different cells, including endometrial cells. The aim of this study is to describe implications of LIF on a physiological function of endometrium. METHOD OF STUDY The role of LIF in the endometrial function is reviewed and summarized from the available literature. RESULTS LIF plays an important role in a physiological function of endometrium. In human endometrial LIF expression depends on cellular localizations, steroid hormones, menstrual stages and a local cytokine network. Stronger LIF expression exists in an endometrial epithelium during a luteal phase of the menstrual cycle, which coincides with the time of an implantation. The impairments of the endometrial LIF expression may play a significant role in the pathological processes involving implantation and the infertility. CONCLUSIONS There is a substantial evidence that LIF is a potential regulator of the endometrial function and might be one of the factors that play a key role in human reproduction.
Collapse
|
34
|
Dagoneau N, Scheffer D, Huber C, Al-Gazali LI, Di Rocco M, Godard A, Martinovic J, Raas-Rothschild A, Sigaudy S, Unger S, Nicole S, Fontaine B, Taupin JL, Moreau JF, Superti-Furga A, Le Merrer M, Bonaventure J, Munnich A, Legeai-Mallet L, Cormier-Daire V. Null leukemia inhibitory factor receptor (LIFR) mutations in Stuve-Wiedemann/Schwartz-Jampel type 2 syndrome. Am J Hum Genet 2004; 74:298-305. [PMID: 14740318 PMCID: PMC1181927 DOI: 10.1086/381715] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 11/11/2003] [Indexed: 11/03/2022] Open
Abstract
Stuve-Wiedemann syndrome (SWS) is a severe autosomal recessive condition characterized by bowing of the long bones, with cortical thickening, flared metaphyses with coarsened trabecular pattern, camptodactyly, respiratory distress, feeding difficulties, and hyperthermic episodes responsible for early lethality. Clinical overlap with Schwartz-Jampel type 2 syndrome (SJS2) has suggested that SWS and SJS2 could be allelic disorders. Through studying a series of 19 families with SWS/SJS2, we have mapped the disease gene to chromosome 5p13.1 at locus D5S418 (Zmax=10.66 at theta =0) and have identified null mutations in the leukemia inhibitory factor receptor (LIFR or gp190 chain) gene. A total of 14 distinct mutations were identified in the 19 families. An identical frameshift insertion (653_654insT) was identified in families from the United Arab Emirates, suggesting a founder effect in that region. It is interesting that 12/14 mutations predicted premature termination of translation. Functional studies indicated that these mutations alter the stability of LIFR messenger RNA transcripts, resulting in the absence of the LIFR protein and in the impairment of the JAK/STAT3 signaling pathway in patient cells. We conclude, therefore, that SWS and SJS2 represent a single clinically and genetically homogeneous condition due to null mutations in the LIFR gene on chromosome 5p13.
Collapse
Affiliation(s)
- Nathalie Dagoneau
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Deborah Scheffer
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Céline Huber
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Lihadh I. Al-Gazali
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Maja Di Rocco
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Anne Godard
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Jelena Martinovic
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Annick Raas-Rothschild
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Sabine Sigaudy
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Sheila Unger
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Sophie Nicole
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Bertrand Fontaine
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Jean-Luc Taupin
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Jean-François Moreau
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Andrea Superti-Furga
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Martine Le Merrer
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Jacky Bonaventure
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Arnold Munnich
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Laurence Legeai-Mallet
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| | - Valérie Cormier-Daire
- Department of Medical Genetics and INSERM U393, Hôpital Necker-Enfants Malades, and INSERM U546, Faculté de Médecine Pitié-Salpêtrière, Paris; Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain; Second Unit of Pediatrics, Istituto G. Gaslini, Genoa; INSERM U463, Institut de Biologie, Nantes, France; Department of Genetics, Hadassah University Medical Center, Jerusalem; Hôpital d’Enfants de La Timone, Marseille; Division of Clinical and Genetic Metabolics, University of Toronto, Toronto; CNRS UMR 5540, Université Bordeaux 2, Bordeaux; and Department of Pediatrics, University of Lausanne, Lausanne
| |
Collapse
|
35
|
Pichel JG, Fernández-Moreno C, Vicario-Abejón C, Testillano PS, Patterson PH, de Pablo F. Developmental cooperation of leukemia inhibitory factor and insulin-like growth factor I in mice is tissue-specific and essential for lung maturation involving the transcription factors Sp3 and TTF-1. Mech Dev 2003; 120:349-61. [PMID: 12591604 DOI: 10.1016/s0925-4773(02)00449-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The multifunctional proteins leukemia inhibitory factor (LIF) and insulin-like growth factor I (IGF-I) are expressed in overlapping patterns during development and, therefore, may act cooperatively. We show that mice doubly deficient in LIF and IGF-I all died at birth of apparent respiratory failure. Growth retardation, muscle hypoplasia and delayed ossification in IGF-I-deficient E18.5 mice were exacerbated by the absence of LIF. The transcription factor Sp3 was decreased in the skeleton of the double null mice. Pronounced depletion of olfactory bulb neurons, in contrast, was only IGF-I-dependent. The lungs displayed reduced air space in the IGF-I-deficient embryos and neonates, phenotype exacerbated in the double nulls, which showed abnormal epithelial cells and decreased Sp3 expression. In addition, the transcription factor TTF-1 and the surfactant protein B were lower in the lung of the double null neonates than in all other genotypes. LIF and IGF-I, thus, have cooperative and distinct tissue functions during development. Their essential role in bone ossification apparently involves Sp3, and in lung maturation Sp3 together with TTF-1.
Collapse
Affiliation(s)
- Jose G Pichel
- Group of Growth Factors in Vertebrate Development, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Lindberg MK, Movérare S, Eriksson AL, Skrtic S, Gao H, Dahlman-Wright K, Gustafsson JA, Ohlsson C. Identification of estrogen-regulated genes of potential importance for the regulation of trabecular bone mineral density. J Bone Miner Res 2002; 17:2183-95. [PMID: 12469912 DOI: 10.1359/jbmr.2002.17.12.2183] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Estrogen is of importance for the regulation of trabecular bone mineral density (BMD). The aim of this study was to search for possible mechanisms of action of estrogen on bone. Ovariectomized (OVX) mice were treated with 17beta-estradiol. Possible effects of estrogen on the expression of 125 different bone-related genes in humerus were analyzed using the microarray technique. Estrogen regulated 12 of these genes, namely, two growth factor-related genes, 8 cytokines, and 2 bone matrix-related genes. Five of the 12 genes are known to be estrogen-regulated, and the remaining 7 genes are novel estrogen-regulated genes. Seven genes, including interleukin-1 receptor antagonist (IL-1ra), IL-1receptor type II (IL-1RII), insulin-like growth factor-binding protein 4 (IGFBP-4), transforming growth factor beta (TGF-beta), granulocyte colony-stimulating factor receptor (G-CSFR), leukemia inhibitory factor receptor (LIFR), and soluble IL-4 receptor (sIL-4R) were selected as probable candidate genes for the trabecular bone-sparing effect of estrogen, as the mRNA levels of these genes were highly correlated (r2 > 0.65) to the trabecular BMD. The regulation of most of these seven genes was predominantly estrogen receptor alpha (ER-alpha)-mediated (5/7) while some genes (2/7) were regulated both via ER-alpha and ER-beta. In conclusion, by using the microarray technique, we have identified four previously known and three novel estrogen-regulated genes of potential importance for the trabecular bone-sparing effect of estrogen.
Collapse
Affiliation(s)
- Marie K Lindberg
- Center for Bone Research at the Sahlgrenska Academy, Division of Endocrinology, Department of Internal Medicine, Göteborgs Universitet. Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Shaughnessy SG, Walton KJ, Deschamps P, Butcher M, Beaudin SM. Neutralization of interleukin-11 activity decreases osteoclast formation and increases cancellous bone volume in ovariectomized mice. Cytokine 2002; 20:78-85. [PMID: 12445802 DOI: 10.1006/cyto.2002.1981] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The issue of whether interleukin-11 (IL-11) contributes to bone loss during states of estrogen deficiency has not been previously determined. We therefore randomized ovariectomized (OVX) mice to once daily interperitoneal injections of either sheep anti-murine IL-11 Ab or normal sheep IgG (NSIgG) for 21 days, and then determined the effects on bone using bone histomorphometry. Here we report that treatment of OVX mice with anti-IL-11 Ab significantly increases both trabecular width and cancellous bone volume. Osteoblast activity, as measured by the percentage of trabecular surface covered by osteoid and rates of bone formation, were also significantly increased following treatment with anti-IL-11 Ab. In contrast, treatment of OVX mice with anti-IL-11 Ab significantly decreased both osteoclast number and activity. Ex-vivo assays of osteoclast formation and activity confirmed the histomorphometric data. Thus, bone marrow cells isolated from anti-IL-11 Ab treated OVX mice formed fewer osteoclasts and resorbed less bone in culture than did marrow cells isolated from either untreated or NSIgG-treated OVX mice. Based on these results we conclude that IL-11 contributes to the bone loss which is observed during states of estrogen deficiency.
Collapse
Affiliation(s)
- Stephen G Shaughnessy
- Department of Pathology and Molecular Medicine, McMaster University and the Hamilton Civic Hospitals Research Centre, Hamilton, Ontario, Canada.
| | | | | | | | | |
Collapse
|
38
|
Kozawa O, Otsuka T, Uematsu T. Leukemia inhibitory factor enhances bFGF-induced IL-6 synthesis in osteoblasts: involvement of JAK2/STAT3. Cell Signal 2002; 14:311-5. [PMID: 11858938 DOI: 10.1016/s0898-6568(01)00248-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We previously showed that basic fibroblast growth factor (bFGF) stimulates release of vascular endothelial growth factor (VEGF) and synthesis of interleukin-6 (IL-6) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effects of leukemia inhibitory factor (LIF) on the release of VEGF and IL-6 in these cells. LIF did not affect the bFGF-stimulated VEGF release. On the contrary, LIF, which alone had little effect on IL-6 release, significantly enhanced the bFGF-stimulated IL-6 release. The amplifying effect of LIF on the IL-6 release was dose dependent in the range between 0.01 and 10 ng/ml. AG490, an inhibitor of JAK2, suppressed the amplifying effect of LIF. LIF induced the phosphorylation of STAT3. AG490 inhibited the LIF-induced STAT3 phosphorylation. Taken together, our results strongly suggest that LIF enhances bFGF-stimulated IL-6 synthesis via JAK2/STAT3 pathway in osteoblasts.
Collapse
Affiliation(s)
- Osamu Kozawa
- Department of Pharmacology, Gifu University School of Medicine, 500-8705, Gifu, Japan.
| | | | | |
Collapse
|
39
|
Yeh LC, Mikhailov V, Lee JC. Regulation of expression of plasminogen activator inhibitor-1 in cultured rat osteoblastic cells by osteogenic protein-1 (BMP-7). JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 2001; Suppl 36:46-54. [PMID: 11455569 DOI: 10.1002/jcb.1071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Osteogenic Protein-1 (OP-1), a member of the bone morphogenetic protein (BMP) family that belongs to the TGF-beta superfamily, induces bone formation in vivo and stimulates the synthesis of biochemical markers characteristic of osteoblast phenotypes in vitro. In the present study, effects of OP-1 on the expression of the plasminogen activator inhibitor-1 (PAI-1) in fetal rat calvaria (FRC) cells were examined. The PAI-1 protein levels in conditioned media of FRC cells treated with OP-1 or solvent control were determined by quantitative 2-dimensional polyacrylamide gel electrophoresis. The identity of PAI-1 was confirmed by mass spectroscopy. OP-1 increased the PAI-1 protein level by about 5-fold after 48 h. Northern blot analysis showed that the PAI-1 mRNA level was elevated by OP-1 by about 25% compared to the control. The observed increase in the PAI-1 mRNA and protein level was regulated post-transcriptionally as supported by the following observations: (a) OP-1 did not stimulate the cloned PAI-1 promoter-reporter gene activity in transient transfection studies, (b) inhibition of transcription by actinomycin D did not change the PAI-1 mRNA level in the OP-1-treated FRC cells, and (c) the stability of the PAI-1 mRNA in FRC cells treated with OP-1 was increased by about 28% compared to that in the control cells. Hence, the present study shows that primary cultures of rat osteoblastic cells synthesize and secrete PAI-1 protein and that OP-1 elevates the PAI-1 protein level. At least, one of the regulatory mechanism is by stabilizing the PAI-1 mRNA. J. Cell. Biochem. Suppl. 36: 46-54, 2001.
Collapse
Affiliation(s)
- L C Yeh
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
40
|
Asmus SE, Tian H, Landis SC. Induction of cholinergic function in cultured sympathetic neurons by periosteal cells: cellular mechanisms. Dev Biol 2001; 235:1-11. [PMID: 11412023 DOI: 10.1006/dbio.2001.0282] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Periosteum, the connective tissue surrounding bone, alters the transmitter properties of its sympathetic innervation during development in vivo and after transplantation. Initial noradrenergic properties are downregulated and the innervation acquires cholinergic and peptidergic properties. To elucidate the cellular mechanisms responsible, sympathetic neurons were cultured with primary periosteal cells or osteoblast cell lines. Both primary cells and an immature osteoblast cell line, MC3T3-E1, induced choline acetyltransferase (ChAT) activity. In contrast, lines representing marrow stromal cells or mature osteoblasts did not increase ChAT. Growth of periosteal cells with sympathetic neurons in transwell cultures that prevent direct contact between the neurons and periosteal cells or addition of periosteal cell-conditioned medium to neuron cultures induced ChAT, indicating that periosteal cells release a soluble cholinergic inducing factor. Antibodies against LIFRbeta, a receptor subunit shared by neuropoietic cytokines, prevented ChAT induction in periosteal cell/neuron cocultures, suggesting that a member of this family is responsible. ChAT activity was increased in neurons grown with periosteal cells or conditioned medium from mice lacking either leukemia inhibitory factor (LIF) or LIF and ciliary neurotrophic factor (CNTF). These results provide evidence that periosteal cells influence sympathetic neuron phenotype by releasing a soluble cholinergic factor that is neither LIF nor CNTF but signals via LIFRbeta.
Collapse
Affiliation(s)
- S E Asmus
- Department of Biochemistry and Molecular Biology, Centre College, Danville, Kentucky 40422, USA
| | | | | |
Collapse
|
41
|
Ravandi F, Estrov Z. The Role of Leukemia Inhibitory Factor in Cancer and Cancer Metastasis. GROWTH FACTORS AND THEIR RECEPTORS IN CANCER METASTASIS 2001. [DOI: 10.1007/0-306-48399-8_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Abstract
Bone tissue is continually being remodelled according to physiological circumstances. Two main cell populations (osteoblasts and osteoclasts) are involved in this process, and cellular activities (including cell differentiation) are modulated by hormones, cytokines and growth factors. Within the last 20 years, many factors involved in bone tissue metabolism have been found to be closely related to the inflammatory process. More recently, a cytokine family sharing a common signal transducer (gp130) had been identified, which appears to be a key factor in bone remodelling. This family includes interleukin 6, interleukin 11, oncostatin M, leukaemia inhibitory factor, ciliary neurotrophic factor and cardiotrophin-1. This paper provides an exhaustive review of recent knowledge on the involvement of gp130 cytokine family in bone cell (osteoblast, osteoclast, etc.) differentiation/activation and in osteoarticular pathologies.
Collapse
Affiliation(s)
- D Heymann
- Faculté de Médecine, Laboratoire de Physiopathologie de la Résorption Osseuse, 1 rue Gaston Veil, Nantes cedex 1, 44035, France.
| | | |
Collapse
|
43
|
Abstract
Leukemia-inhibitory factor (LIF) is a pleiotropic cytokine expressed by multiple tissue types. The LIF receptor shares a common gp130 receptor subunit with the IL-6 cytokine superfamily. LIF signaling is mediated mainly by JAK-STAT (janus-kinase-signal transducer and activator of transcription) pathways and is abrogated by the SOCS (suppressor-of cytokine signaling) and PIAS (protein inhibitors of activated STAT) proteins. In addition to classic hematopoietic and neuronal actions, LIF plays a critical role in several endocrine functions including the utero-placental unit, the hypothalamo-pituitary-adrenal axis, bone cell metabolism, energy homeostasis, and hormonally responsive tumors. This paper reviews recent advances in our understanding of molecular mechanisms regulating LIF expression and action and also provides a systemic overview of LIF-mediated endocrine regulation. Local and systemic LIF serve to integrate multiple developmental and functional cell signals, culminating in maintaining appropriate hormonal and metabolic homeostasis. LIF thus functions as a critical molecular interface between the neuroimmune and endocrine systems.
Collapse
Affiliation(s)
- C J Auernhammer
- Academic Affairs, Cedars-Sinai Research Institute, University of California Los Angeles School of Medicine, 90048, USA
| | | |
Collapse
|
44
|
Hayashi SI, Yamane T, Miyamoto A, Hemmi H, Tagaya H, Tanio Y, Kanda H, Yamazaki H, Kunisada T. Commitment and differentiation of stem cells to the osteoclast lineage. Biochem Cell Biol 1998. [DOI: 10.1139/o98-099] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Osteoclasts are hematopoietic cells which play important roles in bone remodeling and resorption. They have phenotypic characteristics of the monocyte/macrophage lineages. In this review we first describe the phylogeny of osteoclasts. Osteoclast generation is closely linked to the presence of bone tissues. The formation of bone cavities in aquatic animals is underdeveloped, even though they have cells which have the potential to differentiate into osteoclasts. Next we describe recent advances in our understanding of osteoclastogenesis that have resulted from the identification of critical molecules and mutated genes of osteopetrotic mice. Reports that transcriptional factors PU.1 and c-Fos are essential for commitment and (or) differentiation into the osteoclast lineage and novel culture systems, which have clarified some characteristics of osteoclast precursors, are also described. We are now able to induce mature osteoclasts from hematopoietic stem cells and even from totipotent embryonic stem cells. Cell lines that differentiate into osteoclasts are also available. Using these culture systems and cell lines, the interactions of osteoclasts with osteoblastic stromal cells, which produce critical molecules for osteoclastogenesis, have been studied. Very recently, one of these critical molecules, osteoclast differentiation factor / osteoprotegerin-ligand, was cloned. The presence of this factor and macrophage-colony-stimulating factor is sufficient to induce osteoclast development in cultures inoculated only with an osteoclast precursor cell line. We review the present status and the remaining questions in osteoclast biology.Key words: osteoclast, stem cell, osteopetrosis, M-CSF, ODF/OPGL, hematopoiesis.
Collapse
|
45
|
Bellido T, O'Brien CA, Roberson PK, Manolagas SC. Transcriptional activation of the p21(WAF1,CIP1,SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J Biol Chem 1998; 273:21137-44. [PMID: 9694869 DOI: 10.1074/jbc.273.33.21137] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p21(WAF1,CIP1,SDI1) plays a critical role in cell differentiation, and it has been shown to confer resistance to apoptosis. Based on this, and on evidence that activation of the gp130/signal transducer and activator of transcription (STAT) signal transduction pathway by interleukin (IL)-6 type cytokines promotes differentiation and prevents apoptosis in osteoblastic cells, we have investigated the possibility that p21 is a downstream effector of this signaling pathway in osteoblasts. We report that either oncostatin M (OSM) or IL-6 plus soluble IL-6 receptor increased the levels of p21 mRNA and protein in the osteoblast-like human osteosarcoma cell line MG63 and stimulated the activity of a 2.4-kilobase pair segment of the human p21 gene promoter. Further, nuclear extracts from cytokine-stimulated MG63 cells formed protein-DNA complexes with a 19-base pair nucleotide fragment of the p21 promoter containing a single STAT response element. The identity of the binding proteins as Stat3 and Stat1 was demonstrated with specific antibodies. In addition, and in support of a mediating role of STATs in the activation of the p21 promoter, overexpression of Stat3 potentiated the cytokine effect on the p21 promoter; whereas a dominant negative Stat3, or a mutation of the STAT response element on the promoter, significantly reduced the cytokine effect. Finally, antisense oligonucleotides complementary to p21 mRNA inhibited OSM-induced stimulation of alkaline phosphatase expression and antagonized the protective effect of OSM on anti-Fas-induced apoptosis. These results demonstrate that p21 is a downstream effector of gp130/Stat3 activation and a critical mediator of the pro-differentiating and anti-apoptotic effects of IL-6 type cytokines on human osteoblastic cells.
Collapse
Affiliation(s)
- T Bellido
- Division of Endocrinology and Metabolism, the Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
PROBLEM Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the interleukin-6 family and has different biological actions in various tissue systems. Although named for its ability to inhibit proliferation of a myeloid leukemic cell line by inducing differentiation, it also regulates the growth and differentiation of embryonic stem cells, primordial germ cells, peripheral neurons, osteoblasts, adipocytes, and endothelial cells. LIF is crucial for successful implantation of the embryo in mice. Currently, there is an accumulation of data about the role of LIF in human reproduction. METHOD OF STUDY This review of the literature and of our studies focuses on the expression, regulation, and effects of LIF in the human endometrium, fallopian tube, and ovarian follicle. RESULTS Human endometrium expresses LIF in a menstrual cycle-dependent manner. Maximal expression is observed between days 19 and 25 of the menstrual cycle, coinciding with the time of implantation. Various cytokines and growth factors induce endometrial LIF expression in vitro. LIF receptor is expressed in endometrial tissue throughout the menstrual cycle and on human blastocysts in a stage-dependent manner. Affecting the trophoblast differentiation pathway toward the adhesive phenotype, LIF plays a role in implantation. LIF is also expressed and secreted by the epithelial cells of the fallopian tube. Its increased expression in the tubal stromal cell cultures by the inflammatory cytokines suggests a link between salpingitis and ectopic implantation in the tube. The rising follicular fluid LIF level around the time of ovulation indicates that LIF may play a role in ovulatory events, early embryonic development, and implantation. CONCLUSIONS There is growing evidence that LIF may be one of the entities that plays a role in human reproduction.
Collapse
Affiliation(s)
- L M Senturk
- Yale University School of Medicine, Department of Obstetrics and Gynecology, New Haven, CT 06520-8063, USA
| | | |
Collapse
|
47
|
Matsumoto Y, Handa S, Taki T. gp49B1, an inhibitory signaling receptor gene of hematopoietic cells, is induced by leukemia inhibitory factor in the uterine endometrium just before implantation. Dev Growth Differ 1997; 39:591-7. [PMID: 9338594 DOI: 10.1046/j.1440-169x.1997.t01-4-00006.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Leukemia inhibitory factor (LIF) is a cytokine involved in hematopoiesis, neuropoiesis, and embryogenesis. Transcriptional activation of various genes occurs subsequent to LIF signal transduction in its target cells. Using the mRNA differential display method, a LIF-inducible gene was isolated from LIF-stimulated M1 murine myeloid leukemia cells. By DNA sequencing, this gene turned out to be gp49B1, which has been reported as an inhibitory signaling receptor to attenuate mast cell activation. Because gp49B1 expression was limited to the uterus of a pregnant mouse, its uterine expression was examined especially in relation to LIF expression during pregnancy. gp49B1 was expressed specifically on day 4.0 of pregnancy, as was LIF, and the site of the most abundant expression of LIF and gp49B1 mRNA was the luminal epithelium of the uterine endometrium. These findings suggest that the gp49B1 expression in the uterine endometrium is induced just before implantation by paracrine and/or autocrine effects of LIF. Considering its function as an inhibitory signaling receptor on mast cells, a possible role for gp49B1 on the surface of the uterine endometrium as an immunoreceptor that allows blastocyst attachment is proposed.
Collapse
Affiliation(s)
- Y Matsumoto
- Department of Biochemistry, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
48
|
Abstract
Leukemia inhibitory factor (LIF) regulates cell growth and is produced by a variety of tissues, including bone. Previously we have shown that recombinant human LIF induced an increase in osteoclast number, bone formation, and DNA synthesis. In the present study, we have defined the cells in intact bone at which the proliferative effects of LIF occur, using simultaneous enzyme histochemistry and autoradiographic techniques. The area of alkaline phosphatase-positive staining was increased twofold (p = 0.0008) and the number of [3H]thymidine-positive cells was increased twofold (p = 0.0024) in LIF-treated bones. The radiolabeled cells either colocalized with alkaline phosphatase or were in the osteoprogenitor region. They were not found in the acid phosphatase-positive staining osteoclasts. These results indicate that cells which have a mitogenic response to LIF are bone-forming rather than bone-resorbing cells.
Collapse
Affiliation(s)
- J Cornish
- Department of Medicine, University of Auckland, New Zealand.
| | | | | | | |
Collapse
|
49
|
Bellido T, Borba VZ, Roberson P, Manolagas SC. Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 1997; 138:3666-76. [PMID: 9275051 DOI: 10.1210/endo.138.9.5364] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously established that stromal/osteoblastic cells collectively express receptors for all members of the cytokine subfamily that share the gp130 signal transducer and that different receptor repertoires may be expressed at different stages of differentiation of this lineage. We have now used human (MG-63) and murine (MC3T3-E1) osteoblastic cell lines as well as primary murine calvaria cells to test the hypothesis that these receptors mediate effects of the cytokines on the biology of osteoblasts. We report that as in other cell types, all of the osteoblastic cell models responded to interleukin-6 (IL-6)-type cytokines with activation of both the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and the mitogen-activated protein kinase (MAPK) pathways. In addition, IL-6-type cytokines stimulated alkaline phosphatase activity and osteocalcin expression and inhibited (MG-63), stimulated (MC3T3-E1), or had no effect (calvaria cells) on the rate of cell proliferation. The ability of a given cell type to respond to a particular member of this family of cytokines was strictly dependent on the presence of the corresponding ligand-binding subunit (alpha) of the cytokine receptor, and the magnitude of all the effects was closely correlated with the concentration of this subunit. The relative contribution of the JAK/STAT and MAPK pathways to the biological effects of the cytokines was evaluated using kinase inhibitors. Cytokine-mediated modulation of cell proliferation as well as stimulation of alkaline phosphatase activity were abrogated by tyrosine kinase inhibitors as well as a threonine/serine kinase inhibitor, but were only minimally affected by a specific inhibitor of MAPK phosphorylation. These results demonstrate that IL-6-type cytokines, besides their osteoclastogenic properties, promote differentiation of committed osteoblastic cells toward a more mature phenotype and that this action is mediated primarily via the activation of the JAK/STAT pathway.
Collapse
Affiliation(s)
- T Bellido
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the McClellan Veterans Administration Medical Center, Little Rock 72205, USA.
| | | | | | | |
Collapse
|
50
|
Francis NJ, Asmus SE, Landis SC. CNTF and LIF are not required for the target-directed acquisition of cholinergic and peptidergic properties by sympathetic neurons in vivo. Dev Biol 1997; 182:76-87. [PMID: 9073449 DOI: 10.1006/dbio.1996.8464] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During development, the sympathetic innervation of two targets, sweat glands and periosteum, changes the neurotransmitters it expresses from noradrenaline to acetylcholine and vasoactive intestinal peptide (VIP). The target-derived molecules that induce, these changes have not been identified. Neuropoietic cytokines, including ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF), induce the same phenotypic changes in sympathetic neurons in vitro as sweat glands and periosteum do in vivo, raising the possibility that one of these factors mediates induction of cholinergic traits and VIP by these target tissues. Because CNTF and LIF have overlapping functions and signalling pathways, they could act interchangeably or in concert to influence neurotransmitter expression. To determine whether CNTF or CNTF and LIF together are responsible for the induction of cholinergic and peptidergic function in vivo, we analyzed the neurotransmitter properties of sweat gland innervation in mice lacking CNTF or CNTF and LIF. We find that, as in wild-type mice, gland innervation in mice lacking one or both molecules appropriately expresses cholinergic properties and VIP immunoreactivity. Furthermore, footpads of mice lacking one or both genes contain choline acetyltransferase activity comparable to that of wild-type mice, and CNTF- or CNTF/LIF-deficient mice possess the normal complement of active sweat glands. We analyzed the innervation of a second, recently identified cholinergic sympathetic target, the periosteum, which is the connective tissue surrounding bone. Periosteal innervation of mice lacking CNTF, LIF, or both, like that of wild-type mice, is immunoreactive for the vesicular acetylcholine transporter, a recently identified cholinergic marker, and VIP. These results provide evidence that neither CNTF, LIF, nor a combination of the two are required for the developmental change from noradrenergic to cholinergic function that occurs in sympathetic innervation of sweat glands and periosteum.
Collapse
Affiliation(s)
- N J Francis
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4975, USA
| | | | | |
Collapse
|