1
|
Zolotareva K, Dotsenko PA, Podkolodnyy N, Ivanov R, Makarova AL, Chadaeva I, Bogomolov A, Demenkov PS, Ivanisenko V, Oshchepkov D, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:12802. [PMID: 39684516 DOI: 10.3390/ijms252312802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG. By contrast, moderate-intensity aerobic exercise and the Mediterranean diet can alleviate POAG. In this work, we for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related human genes in the NCBI Gene Database. This allowed us to separate them into two groups: POAG-related genes that appeared before and after the phylum Chordata, that is, ophthalmologically speaking, before and after the camera-type eye evolved. Next, in the POAG-related genes' promoters, we in silico predicted all 3835 candidate SNP markers that significantly change the TATA-binding protein (TBP) affinity for these promoters and, through this molecular mechanism, the expression levels of these genes. Finally, we verified our results against five independent web services-PANTHER, DAVID, STRING, MetaScape, and GeneMANIA-as well as the ClinVar database. It was concluded that POAG is likely to be a symptom of the human self-domestication syndrome, a downside of being civilized.
Collapse
Affiliation(s)
- Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Polina A Dotsenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk 630090, Russia
| | - Roman Ivanov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Aelita-Luiza Makarova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel S Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Yang Z, Huang T, Sheng C, Wang K, Li Y, Feng Y, Huo D, Duan F. Prognostic value of lncRNA AFAP1-AS1 in breast cancer: a meta-analysis and validated study in Chinese population. Cancer Rep (Hoboken) 2024; 7:e1923. [PMID: 37916733 PMCID: PMC10809272 DOI: 10.1002/cnr2.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Long non encoding RNA (lncRNA) plays a crucial role in breast cancer. However, the prognostic role of AFAP1-AS1 in breast cancer remains unclear. AIMS To investigate the relationship between the expression of long non-coding RNA actin filament-associated protein1 antisense RNA1 (AFAP1-AS1) and prognosis of breast cancer. METHODS AND RESULTS Meta-analysis was performed to explore the correlation between AFAP1-AS1 and breast cancer. The AFAP1-AS1expression in patients with breast cancer tissue and adjacent normal tissue from 153 patients was determined by qRT-PCR. Bioinformatics and Cox proportional-hazards risk model were used to explore the relationship between expression of AFAP1-AS1 and prognosis. The combined analysis revealed a significant correlation between AFAP1-AS1 expression and both overall survival (hazard ratios, HR = 2.33, 95%Cl: 1.94-2.81, p < 0.001) as well as disease-free survival/progression-free survival (HR = 2.94, 95%CI: 2.35-3.67, p < 0.001). The relation between expression of AFAP1-AS1 and breast cancer was determined in 153 breast cancer and adjacent normal tissues. The findings revealed a significantly higher AFAP1-AS1expression levels in breast cancer tissues compared to adjacent normal tissues (p < 0.001). Additionally, patients exhibiting heightened levels of AFAP1-AS1 expression were correlated with an unfavorable prognosis (HR = 2.35, 95%CI: 1.47-3.74, p < 0.001), which aligns consistently with the findings of the pooled analysis. The subgroup analysis of clinical characteristics revealed a significant association between high expression of AFAP1-AS1 and TNM stage (HR = 1.72, 95%CI: 1.11-2.65, p = 0.015). CONCLUSION This study demonstrated that AFAP1-AS1 acts as an oncogene and may serve as a novel prognostic marker for breast cancer, particularly in the Chinese population.
Collapse
Affiliation(s)
- Zhenxing Yang
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Tao Huang
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Chong Sheng
- College of Public HealthZhengzhou UniversityZhengzhouChina
| | - Kaijuan Wang
- College of Public HealthZhengzhou UniversityZhengzhouChina
| | - Yilin Li
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Yajing Feng
- Department of Hospital Infection Managementthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dandan Huo
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Fujiao Duan
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| |
Collapse
|
3
|
The Journey of Cancer Cells to the Brain: Challenges and Opportunities. Int J Mol Sci 2023; 24:ijms24043854. [PMID: 36835266 PMCID: PMC9967224 DOI: 10.3390/ijms24043854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer metastases into the brain constitute one of the most severe, but not uncommon, manifestations of cancer progression. Several factors control how cancer cells interact with the brain to establish metastasis. These factors include mediators of signaling pathways participating in migration, infiltration of the blood-brain barrier, interaction with host cells (e.g., neurons, astrocytes), and the immune system. Development of novel therapies offers a glimpse of hope for increasing the diminutive life expectancy currently forecasted for patients suffering from brain metastasis. However, applying these treatment strategies has not been sufficiently effective. Therefore, there is a need for a better understanding of the metastasis process to uncover novel therapeutic targets. In this review, we follow the journey of various cancer cells from their primary location through the diverse processes that they undergo to colonize the brain. These processes include EMT, intravasation, extravasation, and infiltration of the blood-brain barrier, ending up with colonization and angiogenesis. In each phase, we focus on the pathways engaging molecules that potentially could be drug target candidates.
Collapse
|
4
|
Hill RA, Gibbons A, Han U, Suwakulsiri W, Taseska A, Hammet F, Southey M, Malhotra A, Fahey M, Palmer KR, Hunt RW, Lim I, Newman-Morris V, Sundram S. Maternal SARS-CoV-2 exposure alters infant DNA methylation. Brain Behav Immun Health 2023; 27:100572. [PMID: 36570792 PMCID: PMC9758784 DOI: 10.1016/j.bbih.2022.100572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Background Infection during pregnancy can increase the risk of neurodevelopmental disorders in offspring. The impact of maternal SARS-CoV-2 infection on infant neurodevelopment is poorly understood. The maternal immune response to infection may be mimicked in rodent models of maternal immune activation which recapitulate altered neurodevelopment and behavioural disturbances in the offspring. In these models, epigenetic mechanisms, in particular DNA methylation, are one pathway through which this risk is conferred in utero to offspring. We hypothesised that in utero exposure to SARS-CoV-2 in humans may alter infant DNA methylation, particularly in genes associated with neurodevelopment. We aimed to test this hypothesis in a pilot sample of children in Victoria, Australia, who were exposed in utero to SARS-CoV-2. Methods DNA was extracted from buccal swab specimens from (n = 4) SARS-CoV-2 in utero exposed and (n = 4) non-exposed infants and methylation status assessed across 850,000 methylation sites using an Illumina EPIC BeadChip. We also conducted an exploratory enrichment analysis using Gene Ontology annotations. Results 1962 hypermethylated CpG sites were identified with an unadjusted p-value of 0.05, where 1133 CpGs mapped to 959 unique protein coding genes, and 716 hypomethylated CpG sites mapped to 559 unique protein coding genes in SARS-CoV-2 exposed infants compared to non-exposed. One differentially methylated position (cg06758191), located in the gene body of AFAP1 that was hypomethylated in the SARS-CoV-2 exposed cohort was significant after correction for multiple testing (FDR-adjusted p-value <0.00083). Two significant differentially methylated regions were identified; a hypomethylated intergenic region located in chromosome 6p proximal to the genes ZP57 and HLA-F (fwer <0.004), and a hypomethylated region in the promoter and body of the gene GAREM2 (fwer <0.036). Gene network enrichment analysis revealed differential methylation in genes corresponding to pathways relevant to neurodevelopment, including the ERBB pathway. Conclusion These pilot data suggest that exposure to SARS-CoV-2 in utero differentially alters methylation of genes in pathways that play a role in human neurodevelopment.
Collapse
Affiliation(s)
- Rachel A. Hill
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Gibbons
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | - Uni Han
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | | | - Angela Taseska
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | - Fleur Hammet
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Melissa Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
- Monash Children's Hospital, Clayton, Victoria, Australia
| | - Michael Fahey
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
- Monash Children's Hospital, Clayton, Victoria, Australia
| | - Kirsten R. Palmer
- Monash Women's, Monash Health, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Rod W. Hunt
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
- Monash Children's Hospital, Clayton, Victoria, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Izaak Lim
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
- Early in Life Mental Health Service, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia
| | - Vesna Newman-Morris
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
- Early in Life Mental Health Service, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
- Mental Health Program, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Lu Q, Lai Y, Zhang H, Ren K, Liu W, An Y, Yao J, Fan H. Hesperetin Inhibits TGF-β1-Induced Migration and Invasion of Triple Negative Breast Cancer MDA-MB-231 Cells via Suppressing Fyn/Paxillin/RhoA Pathway. Integr Cancer Ther 2022; 21:15347354221086900. [PMID: 35297710 PMCID: PMC8943303 DOI: 10.1177/15347354221086900] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Triple-negative breast cancer is an aggressive subtype of breast cancer with poor clinical outcomes and poor prognosis. Hesperetin is an active component extracted from Citrus fruits and Traditional Chinese Medicine has a wide range of pharmacological effects. Here, we assessed the anti-migration and anti-invasive effects and explored inhibitory mechanisms of hesperetin on metastasis of human triple negative breast cancer MDA-MB-231 cells. Cell viability experiments revealed that 200 μM hesperetin has a clear inhibitory effect on MDA-MB-231 cells. TGF-β1 treatment induces apparent tumor progression in MDA-MB-231 cells including aberrant wound-healing and invasion ability, which is effectively suppressed by hesperetin co-treatment. Additionally, hesperetin inhibited the TGF-β1-mediated actin stress fiber formation. Western blot results showed that hesperetin suppressed the TGF-β1-mediated (i) activation of Fyn, (ii) phosphorylation of paxillin at Y31, Y88, and Y118 sites, (iii) the increased expression of RhoA, and (iv) activation of Rho-kinase. We demonstrated the increased interaction of Fyn with paxillin and RhoA protein in the TGF-β1-induced metastasis of MDA-MB-231 cells. Small interfering RNA Fyn inhibited phosphorylation of paxillin (Y31) and activation of Rho-kinase induced by TGF-β1. In conclusion, hesperetin has a significant inhibitory effect on migration and invasion of MDA-MB-231 cells induced by TGF-β1, which might be attributed to inhibiting the Fyn/paxillin/RhoA pathway.
Collapse
Affiliation(s)
- Qian Lu
- Jilin Medical University, Jilin, China
| | | | | | - Kuang Ren
- Jilin Medical University, Jilin, China
| | - Wei Liu
- Jilin Medical University, Jilin, China
| | - Ying An
- Jilin Medical University, Jilin, China
| | | | | |
Collapse
|
6
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Mokhtari M. A Review on the Role of AFAP1-AS1 in the Pathoetiology of Cancer. Front Oncol 2021; 11:777849. [PMID: 34912717 PMCID: PMC8666534 DOI: 10.3389/fonc.2021.777849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
AFAP1-AS1 is a long non-coding RNA which partakes in the pathoetiology of several cancers. The sense protein coding gene from this locus partakes in the regulation of cytophagy, cell motility, invasive characteristics of cells and metastatic ability. In addition to acting in concert with AFAP1, AFAP1-AS1 can sequester a number of cancer-related miRNAs, thus affecting activity of signaling pathways involved in cancer progression. Most of animal studies have confirmed that AFAP1-AS1 silencing can reduce tumor volume and invasive behavior of tumor cells in the xenograft models. Moreover, statistical analyses in the human subjects have shown strong correlation between expression levels of this lncRNA and clinical outcomes. In the present work, we review the impact of AFAP1-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayybeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Kovács T, Mikó E, Ujlaki G, Yousef H, Csontos V, Uray K, Bai P. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev 2021; 40:1223-1249. [PMID: 34967927 PMCID: PMC8825384 DOI: 10.1007/s10555-021-10013-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer, the most frequent cancer in women, is characterized by pathological changes to the microbiome of breast tissue, the tumor, the gut, and the urinary tract. Changes to the microbiome are determined by the stage, grade, origin (NST/lobular), and receptor status of the tumor. This year is the 50th anniversary of when Hill and colleagues first showed that changes to the gut microbiome can support breast cancer growth, namely that the oncobiome can reactivate excreted estrogens. The currently available human and murine data suggest that oncobiosis is not a cause of breast cancer, but can support its growth. Furthermore, preexisting dysbiosis and the predisposition to cancer are transplantable. The breast's and breast cancer's inherent microbiome and the gut microbiome promote breast cancer growth by reactivating estrogens, rearranging cancer cell metabolism, bringing about a more inflammatory microenvironment, and reducing the number of tumor-infiltrating lymphocytes. Furthermore, the gut microbiome can produce cytostatic metabolites, the production of which decreases or blunts breast cancer. The role of oncobiosis in the urinary tract is largely uncharted. Oncobiosis in breast cancer supports invasion, metastasis, and recurrence by supporting cellular movement, epithelial-to-mesenchymal transition, cancer stem cell function, and diapedesis. Finally, the oncobiome can modify the pharmacokinetics of chemotherapeutic drugs. The microbiome provides novel leverage on breast cancer that should be exploited for better management of the disease.
Collapse
Affiliation(s)
- Tünde Kovács
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Heba Yousef
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Viktória Csontos
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
8
|
Dang Y, Ouyang X, Ren W, Wang L, Huang Q. LncRNA AFAP1-AS1 Modulates the Proliferation and Invasion of Gastric Cancer Cells by Regulating AFAP1 via miR-205-5p. Cancer Manag Res 2021; 13:5163-5175. [PMID: 34234560 PMCID: PMC8255651 DOI: 10.2147/cmar.s307424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose The present study investigated the expression and function of the long noncoding RNA (lncRNA) actin filament associated protein 1 antisense RNA1 (AFAP1-AS1) related to gastric cancer (GC), based on previous results from a microarray analysis. Methods Real-time quantitative polymerase chain reaction (qPCR) was used to verify the expression of AFAP1-AS1 in 97 fresh GC tissues and paired non-GC tissues, as well as in six different GC cell lines (BGC-823, SGC-7901, MGC-803, AGS, MKN-45, and MKN-28). The expression levels were subsequently correlated with the clinicopathological features of patients. siRNA against AFAP1-AS1 was transfected into GC cell lines, and cell proliferation, migration, and invasion were detected before and after silencing of AFAP1-AS1 expression. Luciferase reporter gene analysis was used to confirm the target gene of microRNA-205-5p (miR-205-5p) in 293T cells. The potential mechanism was subsequently investigated. Results qPCR results showed that AFAP1-AS1 was significantly overexpressed in GC tumor tissues and also GC cell lines, comparing to their paired non-GC tissues. Furthermore, statistical analysis revealed that the overexpression of AFAP1-AS1 was significantly correlated with tumor size (p=0.018) and grade of differentiation (p=0.042). Subsequently, artificially decreasing the expression of AFAP1-AS1 with its specific siRNA dramatically inhibited the proliferation, migration and invasion of GC cell lines (SGC-7901 and BGC-823 cells). Mechanical analysis suggested that AFAP1-AS1 is involved in regulation of its maternal gene, AFAP1, at both mRNA level and protein level. Luciferase reporter gene assay indicated that lncRNA AFAP1-AS1, as a ceRNA, is able to sponge miR-205-5p. Moreover, miR-205-5p has been well demonstrated to participate in the regulation of AFAP1 expression and the phenotypes of GC cells, including proliferation, migration and invasion. Conclusion AFAP1-AS1, as a novel biomarker of GC, promotes the proliferation migration and invasion of GC cells and function as ceRNA to target AFAP1 by sponging miR-205-5p.
Collapse
Affiliation(s)
- Yuan Dang
- Laboratory of Basic Medicine, 900 Hospital of the Joint Logistics Team (Dongfang Hospital)(Former Fuzhou General Hospital), Xiamen University Medical College, Fuzhou, 350025, Fujian, People's Republic of China
| | - Xiaojuan Ouyang
- Department of Department of Pathology, 900 Hospital of the Joint Logistics Team (Dongfang Hospital) (Former Fuzhou General Hospital), Fuzhou, 350025, Fujian, People's Republic of China
| | - Wenjun Ren
- Department of General Surgery, 900 Hospital of the Joint Logistics Team (Dongfang Hospital) (Former Fuzhou General Hospital), Fuzhou, 350025, Fujian, People's Republic of China
| | - Lie Wang
- Department of General Surgery, 900 Hospital of the Joint Logistics Team (Dongfang Hospital) (Former Fuzhou General Hospital), Fuzhou, 350025, Fujian, People's Republic of China
| | - Qiaojia Huang
- Laboratory of Basic Medicine, 900 Hospital of the Joint Logistics Team (Dongfang Hospital)(Former Fuzhou General Hospital), Xiamen University Medical College, Fuzhou, 350025, Fujian, People's Republic of China
| |
Collapse
|
9
|
Mir SS, Bhat HF, Bhat ZF. Dynamic actin remodeling in response to lysophosphatidic acid. J Biomol Struct Dyn 2020; 38:5253-5265. [PMID: 31920158 DOI: 10.1080/07391102.2019.1696230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a multifunctional regulator of actin cytoskeleton that exerts a dramatic impact on the actin cytoskeleton to build a platform for diverse cellular processes including growth cone guidance, neurite retraction and cell motility. It has been implicated in the formation and dissociation of complexes between actin and actin binding proteins, supporting its role in actin remodeling. Several studies point towards its ability to facilitate formation of special cellular structures including focal adhesions and actin stress fibres by phosphoregulation of several actin associated proteins and their multiple regulatory kinases and phosphatases. In addition, multiple levels of crosstalk among the signaling cascades activated by LPA, affect actin cytoskeleton-mediated cell migration and chemotaxis which in turn play a crucial role in cancer metastasis. In the current review, we have attempted to highlight the role of LPA as an actin modulator which functions by controlling activities of specific cellular proteins that underlie mechanisms employed in cytoskeletal and pathophysiological events within the cell. Further studies on the actin affecting/remodeling activity of LPA in different cell types will no doubt throw up many surprises essential to gain a full understanding of its contribution in physiological processes as well as in diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saima S Mir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu And Kashmir, India.,Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Hina F Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Zuhaib F Bhat
- Department of Wine, Food & Molecular Biosciences, Lincoln University, Lincoln, New Zealand.,Division of Livestock Products and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), R.S. Pora, Jammu And Kashmir, India
| |
Collapse
|
10
|
Esfandi F, Taheri M, Namvar A, Oskooei VK, Ghafouri-Fard S. AFAP1 and its naturally occurring antisense RNA are downregulated in gastric cancer samples. Biomed Rep 2019; 10:296-302. [PMID: 31086663 PMCID: PMC6489532 DOI: 10.3892/br.2019.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/14/2019] [Indexed: 12/18/2022] Open
Abstract
Actin filament-associated protein 1 (AFAP1) encodes a protein which is an SRC proto-oncogene, non-receptor tyrosine kinase binding partner. This protein alters actin filament integrity in reaction to cellular signals. A long non-coding RNA, namely AFAP1-antisense RNA 1 (AS1), is transcribed from the antisense strand of this gene and potentially regulates its expression. In the present study, the expression levels of these two genes were evaluated in 30 gastric cancer samples and adjacent non-cancerous tissues (ANCTs) to identify their importance in this type of human malignancy. These two genes were significantly downregulated in gastric tumor samples compared with ANCTs (expression ratio 0.26 and 0.36, P=0.001 and P=0.04 for AFAP1 and AFAP1-AS1, respectively). Relative expressions of these two genes were associated with the location of primary tumor, in that AFAP1 and AFAP1-AS1 were significantly downregulated in all cardia tumor types compared with their paired ANCTs (P=0.04 and P=0.001, respectively). There were indications of a significant association between the expression levels of AFAP1 and peritoneal invasion and smoking history (P=0.05). Additionally, a lower expression level of AFAP1 was detected in younger patients and in high grade tumor types compared with olders and low grade tumors respectively (P=0.01 and P=0.04, respectively) and significantly higher expression levels of AFAP1-AS1 in patients with lymphatic/vascular invasion compared with those without lymphatic/vascular invasion (P=0.01). Furthermore, significant pairwise correlations were identified between the transcript levels of these genes in tumoral tissues and ANCTs (P values<0.05). The diagnostic power of AFAP1 and AFAP1-AS1 in gastric cancer was calculated as area under the curve (AUC) 0.75 and 0.67, respectively. The combination of the transcript levels of these two genes significantly enhanced the diagnostic power compared with diagnostic power of each gene (AUC, 0.76; P<0.001). The present study demonstrates the dysregulation of AFAP1 and AFAP1-AS1 in gastric cancer tissues in association with the clinicopathological data of patients and demonstrates the potential of these genes as diagnostic biomarkers.
Collapse
Affiliation(s)
- Farbod Esfandi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Amir Namvar
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Vahid Kholghi Oskooei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| |
Collapse
|
11
|
Wang M, Han X, Sun W, Li X, Jing G, Zhang X. Actin Filament-Associated Protein 1-Like 1 Mediates Proliferation and Survival in Non-Small Cell Lung Cancer Cells. Med Sci Monit 2018; 24:215-224. [PMID: 29323101 PMCID: PMC5772338 DOI: 10.12659/msm.905900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The actin filament-associated protein (AFAP) family consists of 3 novel adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. Although evidence shows that AFAP1 and AFAP1L2 play an oncogenic role, the effect of AFAP1L1 on tumor cell behavior has not been fully elucidated, and it remains unknown whether AFAP1L1 could be a prognostic marker and/or therapeutic target of lung cancer. MATERIAL AND METHODS Human A549 non-small cell lung cancer (NSCLC) cells were used in this study. AFAP1L1 gene was knocked down by AFAP1L1 short hairpin RNA (shRNA) transfection. Cell proliferation was analyzed using Celigo image cytometry and MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay, cell cycle progression was assessed with flow cytometry, and cell apoptosis was determined by flow cytometry after annexin-n staining. The PathScan intracellular signaling array was used to investigate cancer-related signaling proteins influenced by knocking down AFAP1L1 in A549. RESULTS AFAP1L1 gene expression was successfully inhibited by the AFAP1L1-shRNA transfection. Cell proliferation was inhibited and cell proportions in G1 and G2/M phases were increased, and cell apoptosis was increased in the AFAP1L1-shRNA transfected cells as compared with negative control shRNA transfected cells. Using the PathScan intracellular signaling array, we found that downregulation of AFAP1L1 significantly activated P38 and caspase 3, and inhibited PRAS40 activation. CONCLUSIONS Our data show that AFAP1L1 promotes cell proliferation, accelerates cell cycle progression, and prevents cell apoptosis in lung cancer cells. Therefore, AFAP1L1 might play an oncogenic role in NSCLC.
Collapse
Affiliation(s)
- Meng Wang
- Graduate School, Tianjin Medical University, Tianjin, China (mainland).,Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Xingpeng Han
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Wei Sun
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Xin Li
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Guohui Jing
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Xun Zhang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| |
Collapse
|
12
|
Teixeira SC, Lopes DS, Gimenes SNC, Teixeira TL, da Silva MS, Brígido RTES, da Luz FAC, da Silva AA, Silva MA, Florentino PV, Tavares PCB, dos Santos MA, Ávila VDMR, Silva MJB, Elias MC, Mortara RA, da Silva CV. Mechanistic Insights into the Anti-angiogenic Activity of Trypanosoma cruzi Protein 21 and its Potential Impact on the Onset of Chagasic Cardiomyopathy. Sci Rep 2017; 7:44978. [PMID: 28322302 PMCID: PMC5359584 DOI: 10.1038/srep44978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/17/2017] [Indexed: 12/31/2022] Open
Abstract
Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruzi; it is estimated that 10-30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a recombinant protein from T. cruzi named P21 (rP21) and the potential impact of the native protein on CCC. Our data suggest that the anti-angiogenic activity of rP21 depends on the protein's direct interaction with the CXCR4 receptor. This capacity is likely related to the modulation of the expression of actin and angiogenesis-associated genes. Thus, our results indicate that T. cruzi P21 is an attractive target for the development of innovative therapeutic agents against CCC.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Daiana Silva Lopes
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, MG, Brasil
| | - Sarah Natalie Cirilo Gimenes
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, MG, Brasil
| | - Thaise Lara Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Marcelo Santos da Silva
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Rebecca Tavares e Silva Brígido
- Laboratório de Patologia Molecular e Biotecnologia do Centro de Referência Nacional em Dermatologia Sanitária/Hanseníase, Faculdade de Medicina, Universidade Federal de Uberlândia, MG, Brasil
| | - Felipe Andrés Cordero da Luz
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Aline Alves da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Makswell Almeida Silva
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, MG, Brasil
| | - Pilar Veras Florentino
- Departamento de Microbiologia Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brasil
| | - Paula Cristina Brígido Tavares
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Marlus Alves dos Santos
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | | | - Marcelo José Barbosa Silva
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Maria Carolina Elias
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Renato Arruda Mortara
- Departamento de Microbiologia Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brasil
| | - Claudio Vieira da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| |
Collapse
|
13
|
Hoshi Y, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Actin filament-associated protein 1 (AFAP-1) is a key mediator in inflammatory signaling-induced rapid attenuation of intrinsic P-gp function in human brain capillary endothelial cells. J Neurochem 2017; 141:247-262. [PMID: 28112407 DOI: 10.1111/jnc.13960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to identify regulatory molecule(s) involved in the inflammatory signaling-induced decrease in P-glycoprotein (P-gp) efflux function at the blood-brain barrier (BBB) that may occur in brain diseases. We confirmed that in vivo P-gp efflux activity at the BBB was decreased without any change in P-gp protein expression level in a mouse model of acute inflammation induced by 3 mg/kg lipopolysaccharide. In a human BBB model cell line (human brain capillary endothelial cells; hCMEC/D3), 1-h treatment with 10 ng/mL tumor necrosis factor-α (TNF-α; an inflammatory mediator) rapidly reduced P-gp efflux activity, but had no effect on P-gp protein expression level. To clarify the non-transcriptional mechanism that causes the decrease in intrinsic efflux activity of P-gp in acute inflammation, we applied comprehensive quantitative phosphoproteomics to compare hCMEC/D3 cells treated with TNF-α and vehicle (control). Actin filament-associated protein-1 (AFAP-1), MAPK1, and transcription factor AP-1 (AP-1) were significantly phosphorylated in TNF-α-treated cells, and were selected as candidate proteins. In validation experiments, knockdown of AFAP-1 expression blocked the reduction in P-gp efflux activity by TNF-α treatment, whereas inhibition of MAPK function or knockdown of AP-1 expression did not. Quantitative targeted absolute proteomics revealed that the reduction in P-gp activity by TNF-α did not require any change in P-gp protein expression levels in the plasma membrane. Our results demonstrate that AFAP-1 is a key mediator in the inflammatory signaling-induced, translocation-independent rapid attenuation of P-gp efflux activity in human brain capillary endothelial cells.
Collapse
Affiliation(s)
- Yutaro Hoshi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masanori Tachikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sumio Ohtsuki
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Japan Agency for Medical Research and Development (AMED) CREST, Tokyo, Japan
| | - Tetsuya Terasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Xu JX, Xiong W, Zeng Z, Tang Y, Wang YL, Xiao M, Li M, Li QS, Song GL, Kuang J. Effect of ART1 on the proliferation and migration of mouse colon carcinoma CT26 cells in vivo. Mol Med Rep 2017; 15:1222-1228. [PMID: 28138708 PMCID: PMC5367323 DOI: 10.3892/mmr.2017.6152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 11/17/2016] [Indexed: 01/11/2023] Open
Abstract
Arginine-specific mono-ADP-ribosyltransferase 1 (ART1) is an important enzyme that catalyzes arginine-specific mono-ADP-ribosylation. There is evidence that arginine-specific mono-ADP-ribosylation may affect the proliferation of smooth muscle cells via the Rho-dependent signaling pathway. Previous studies have demonstrated that ART1 may have a role in the proliferation, invasion and apoptosis of colon carcinoma in vitro. However, the effect of ART1 on the proliferation and invasion of colon carcinoma in vivo has yet to be elucidated. In the present study, mouse colon carcinoma CT26 cells were infected with a lentivirus to produce ART1 gene silencing or overexpression, and were then subcutaneously transplanted. To observe the effect of ART1 on tumor growth or liver metastasis in vivo, a spleen transplant tumor model of CT26 cells in BALB/c mice was successfully constructed. Expression levels of focal adhesion kinase (FAK), Ras homolog gene family member A (RhoA) and the downstream factors, c-myc, c-fos and cyclooxygenase-2 (COX-2) proteins, were measured in vivo. The results demonstrated that ART1 gene silencing inhibited the growth of the spleen transplanted tumor and its ability to spread to the liver via metastasis. There was also an accompanying increase in expression of FAK, RhoA, c-myc, c-fos and COX-2, whereas CT26 cells with ART1 overexpression demonstrated the opposite effect. These results suggest a potential role for ART1 in the proliferation and invasion of CT26 cells and a possible mechanism in vivo.
Collapse
Affiliation(s)
- Jian-Xia Xu
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Xiong
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhen Zeng
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing Shu Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guang-Lin Song
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Kuang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
15
|
Chen Y, Liu Y, Guo J, Tang T, Gao J, Huang T, Wang B, Liu S. Preparation and Characterization of a Polyclonal Antibody against Human Actin Filament-Associated Protein-120 kD. Int J Mol Sci 2016; 17:ijms17060942. [PMID: 27322249 PMCID: PMC4926475 DOI: 10.3390/ijms17060942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 12/17/2022] Open
Abstract
Actin filament-associated protein-120kD (AFAP-120) is an alternatively spliced isoform of actin filament-associated protein-110kD (AFAP-110) and contains an additional neuronal insert (NINS) fragment in addition to identical domains to the AFAP-110. Unlike AFAP-110 widely expressed in tissues, AFAP-120 is specifically expressed in the nervous system and plays a role in organizing dynamic actin structures during neuronal differentiation. However, anti-AFAP-120 antibody is still commercially unavailable, and this may hinder the function research for AFAP-120. In this study, we simultaneously used the ABCpred online server and the BepiPred 1.0 server to predict B-cell epitopes in the exclusive NINS sequence of human AFAP-120 protein, and found that a 16aa-peptide sequence was the consensus epitope predicted by both tools. This peptide was chemically synthesized and used as an immunogen to develop polyclonal antibody against AFAP-120 (anti-AFAP-120). The sensitivity and specificity of anti-AFAP-120 were analyzed with immunoblotting, immunoprecipitation, and immunofluorescence assays. Our results indicated that anti-AFAP-120 could react with over-expressed and endogenous human AFAP-120 protein under denatured condition, but not with human AFAP-110 protein. Moreover, native human AFAP-120 protein could also be recognized by the anti-AFAP-120 antibody. These results suggested that the prepared anit-AFAP-120 antibody would be a useful tool for studying the biochemical and biological functions of AFAP-120.
Collapse
Affiliation(s)
- Yujian Chen
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Yong Liu
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Jiayu Guo
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Tao Tang
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Jian Gao
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Tao Huang
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Bin Wang
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Shaojun Liu
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
16
|
AFAP1 Is a Novel Downstream Mediator of TGF-β1 for CCN2 Induction in Osteoblasts. PLoS One 2015; 10:e0136712. [PMID: 26340021 PMCID: PMC4560384 DOI: 10.1371/journal.pone.0136712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 08/07/2015] [Indexed: 02/06/2023] Open
Abstract
Background CCN2 acts as an anabolic growth factor to regulate osteoblast differentiation and function. CCN2 is induced by TGF-β1 and acts as a mediator of TGF-β1 induced matrix production in osteoblasts and Src is required for CCN2 induction by TGF-β1; however, the molecular mechanisms that control CCN2 induction in osteoblasts are poorly understood. AFAP1 binds activated forms of Src and can direct the activation of Src in certain cell types, however a role for AFAP1 downstream of TGF-β1 or in osteoblats is undefined. In this study, we investigated the role of AFAP1 for CCN2 induction by TGF-β1 in primary osteoblasts. Results We demonstrated that AFAP1 expression in osteoblasts occurs in a biphasic pattern with maximal expression levels occurring during osteoblast proliferation (~day 3), reduced expression during matrix production/maturation (~day 14–21), an a further increase in expression during mineralization (~day 21). AFAP1 expression is induced by TGF-β1 treatment in osteoblasts during days 7, 14 and 21. In osteoblasts, AFAP1 binds to Src and is required for Src activation by TGF-β1 and CCN2 promoter activity and protein induction by TGF-β1 treatment was impaired using AFAP1 siRNA, indicating the requirement of AFAP1 for CCN2 induction by TGF-β1. We also demonstrated that TGF-β1 induction of extracellular matrix protein collagen XIIa occurs in an AFAP1 dependent fashion. Conclusions This study demonstrates that AFAP1 is an essential downstream signaling component of TGF-β1 for Src activation, CCN2 induction and collagen XIIa in osteoblasts.
Collapse
|
17
|
Zeng Z, Bo H, Gong Z, Lian Y, Li X, Li X, Zhang W, Deng H, Zhou M, Peng S, Li G, Xiong W. AFAP1-AS1, a long noncoding RNA upregulated in lung cancer and promotes invasion and metastasis. Tumour Biol 2015; 37:729-37. [PMID: 26245991 DOI: 10.1007/s13277-015-3860-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as a major regulator of cancer. Significant fraction of lncRNAs is represented on widely used microarray platforms; however, many of which have no known function. To discover novel lung cancer-related lncRNAs, we analyzed the lncRNA expression patterns in five sets of previously published lung cancer gene expression profile data that were represented on Affymetrix HG-U133 Plus 2.0 array, and identified dysregulated lncRNAs in lung cancer. One lncRNA, actin filament associated protein 1 antisense RNA1 (AFAP1-AS1), was the most significantly upregulated in lung cancer and associated with poor prognosis. In vitro experiments demonstrated that AFAP1-AS1 knockdown significantly inhibited the cell invasive and migration capability in lung cancer cells. AFAP1-AS1 knockdown also increased the expression of its antisense protein coding gene, actin filament associated protein 1 (AFAP1), and affected the expression levels of several small GTPase family members and molecules in the actin cytokeratin signaling pathway, which suggested that AFAP1-AS1 promoted cancer cell metastasis via regulation of actin filament integrity. Our findings extend the number of noncoding RNAs functionally implicated in lung cancer progression and highlight the role of AFAP1-AS1 as potential prognostic biomarker and therapeutic target of lung cancer.
Collapse
Affiliation(s)
- Zhaoyang Zeng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Bo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Lian
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuping Peng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Ye Y, Chen J, Zhou Y, Fu Z, Zhou Q, Wang Y, Gao W, Zheng S, Zhao X, Chen T, Chen R. High expression of AFAP1-AS1 is associated with poor survival and short-term recurrence in pancreatic ductal adenocarcinoma. J Transl Med 2015; 13:137. [PMID: 25925763 PMCID: PMC4458022 DOI: 10.1186/s12967-015-0490-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/14/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is still a lethal malignancy. Long noncoding RNAs (lncRNAs) have been shown to play a critical role in cancer development and progression. Here we identified overexpression of the lncRNA AFAP1-AS1 in PDAC patients and evaluated its prognostic and functional relevance. METHODS The global lncRNA expression profile in PDAC was measured by lncRNA microarray. Expression of AFAP1-AS1 was evaluated by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) in 90 PDAC tissue samples and adjacent normal tissues. The impact of AFAP1-AS1 expression on cell proliferation, migration, and invasion were evaluated in vitro using knockdown and ectopic expression strategies. RESULTS Microarray analysis revealed that up-regulation of AFAP1-AS1 expression in PDAC tissues compared with normal adjacent tissues, which was confirmed by RT-qPCR in 69/90 cases (76.7%). Its overexpression was associated with lymph node metastasis, perineural invasion, and poor survival. When using AFAP1-AS1 as a prognostic marker, the areas under ROC curves were 0.8669 and 0.9370 for predicting tumor progression within 6 months and 1 year, respectively. In vitro functional experiments involving knockdown of AFAP1-AS1 resulted in attenuated PDAC cell proliferation, migration, and invasion. Ectopic expression of AFAP1-AS1 promoted cell proliferation, migration, and invasion. CONCLUSIONS AFAP1-AS1 is a potential novel prognostic marker to predict the clinical outcome of PDAC patients after surgery and may be a rational target for therapy.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adenocarcinoma/surgery
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/surgery
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Male
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/surgery
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/surgery
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Survival Analysis
- Time Factors
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Yibiao Ye
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jie Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yu Zhou
- Department of Pancreaticobiliary Surgery, Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Present Address: Department of General Surgery, Guangdong General Hospital, Guangzhou, China.
| | - Zhiqiang Fu
- Department of Pancreaticobiliary Surgery, Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Quanbo Zhou
- Department of Pancreaticobiliary Surgery, Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - YingXue Wang
- Department of Pancreaticobiliary Surgery, Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Wenchao Gao
- Department of Pancreaticobiliary Surgery, Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - ShangYou Zheng
- Department of Pancreaticobiliary Surgery, Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaohui Zhao
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Tao Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Rufu Chen
- Department of Pancreaticobiliary Surgery, Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Department of General Surgery, The Second Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China.
| |
Collapse
|
19
|
Cunnick JM, Kim S, Hadsell J, Collins S, Cerra C, Reiser P, Flynn DC, Cho Y. Actin filament-associated protein 1 is required for cSrc activity and secretory activation in the lactating mammary gland. Oncogene 2014; 34:2640-9. [PMID: 25043309 PMCID: PMC4302073 DOI: 10.1038/onc.2014.205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/25/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022]
Abstract
Actin filament-associated protein 1 (AFAP1) is an adaptor protein of cSrc that binds to filamentous actin and regulates the activity of this tyrosine kinase to affect changes to the organization of the actin cytoskeleton. In breast and prostate cancer cells, AFAP1 has been shown to regulate cellular responses requiring actin cytoskeletal changes such as adhesion, invadopodia formation and invasion. However, a normal physiologic role for AFAP1 has remained elusive. In this study, we generated an AFAP1 knockout mouse model that establishes a novel physiologic role for AFAP1 in lactation. Specifically, these animals displayed a defect in lactation that resulted in an inability to nurse efficiently. Histologically, the mammary glands of the lactating knockout mice were distinguished by the accumulation of large cytoplasmic lipid droplets in the alveolar epithelial cells. There was a reduction in lipid synthesis and the expression of lipogenic genes without a corresponding reduction in the production of β-casein, a milk protein. Furthermore, these defects were associated with histologic and biochemical signs of precocious involution. This study also demonstrated that AFAP1 responds to prolactin, a lactogenic hormone, by forming a complex with cSrc and becoming tyrosine phosphorylated. Taken together, these observations pointed to a defect in secretory activation. Certain characteristics of this phenotype mirrored the defect in secretory activation in the cSrc knockout mouse, but most importantly, the activity of cSrc in the mammary gland was reduced during early lactation in the AFAP1-null mouse and the localization of active cSrc at the apical surface of luminal epithelial cells during lactation was selectively lost in the absence of AFAP1. These data define, for the first time, the requirement of AFAP1 for the spatial and temporal regulation of cSrc activity in the normal breast, specifically for milk production.
Collapse
Affiliation(s)
- J M Cunnick
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - S Kim
- Graduate School of Medicine, The Commonwealth Medical College, Scranton, PA, USA
| | - J Hadsell
- Fortis Institute Scranton, Scranton, PA, USA
| | - S Collins
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - C Cerra
- Department of Pathology, Pocono Health System, East Stroudsburg, PA, USA
| | - P Reiser
- Department of Pathology, Pocono Health System, East Stroudsburg, PA, USA
| | - D C Flynn
- College of Health Science, University of Delaware, Newark, DE, USA
| | - Y Cho
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| |
Collapse
|
20
|
Bai XH, Cho HR, Moodley S, Liu M. XB130-A Novel Adaptor Protein: Gene, Function, and Roles in Tumorigenesis. SCIENTIFICA 2014; 2014:903014. [PMID: 24995146 PMCID: PMC4068053 DOI: 10.1155/2014/903014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Several adaptor proteins have previously been shown to play an important role in the promotion of tumourigenesis. XB130 (AFAP1L2) is an adaptor protein involved in many cellular functions, such as cell survival, cell proliferation, migration, and gene and miRNA expression. XB130's functional domains and motifs enable its interaction with a multitude of proteins involved in several different signaling pathways. As a tyrosine kinase substrate, tyrosine phosphorylated XB130 associates with the p85 α regulatory subunit of phosphoinositol-3-kinase (PI3K) and subsequently affects Akt activity and its downstream signalling. Tumourigenesis studies show that downregulation of XB130 expression by RNAi inhibits tumor growth in mouse xenograft models. Furthermore, XB130 affects tumor oncogenicity by regulating the expression of specific tumour suppressing miRNAs. The expression level and pattern of XB130 has been studied in various human tumors, such as thyroid, esophageal, and gastric cancers, as well as, soft tissue tumors. Studies show the significant effects of XB130 in tumourigenesis and suggest its potential as a diagnostic biomarker and therapeutic target for cancer treatments.
Collapse
Affiliation(s)
- Xiao-Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7 ; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | - Serisha Moodley
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7 ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7 ; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 ; Department of Surgery, Faculty of Medicine, University of Toronto, 149 College Street, Toronto, ON, Canada M5T 1P5
| |
Collapse
|
21
|
Shi M, Zheng D, Sun L, Wang L, Lin L, Wu Y, Zhou M, Liao W, Liao Y, Zuo Q, Liao W. XB130 promotes proliferation and invasion of gastric cancer cells. J Transl Med 2014; 12:1. [PMID: 24387290 PMCID: PMC3882781 DOI: 10.1186/1479-5876-12-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/27/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND XB130 has been reported to be expressed by various types of cells such as thyroid cancer and esophageal cancer cells, and it promotes the proliferation and invasion of thyroid cancer cells. Our previous study demonstrated that XB130 is also expressed in gastric cancer (GC), and that its expression is associated with the prognosis, but the role of XB130 in GC has not been well characterized. METHODS In this study, we investigated the influence of XB130 on gastric tumorigenesis and metastasis in vivo and in vitro using the MTT assay, clonogenic assay, BrdU incorporation assay, 3D culture, immunohistochemistry and immunofluorescence. Western blot analysis was also performed to identify the potential mechanisms involved. RESULTS The proliferation, migration, and invasion of SGC7901 and MNK45 gastric adenocarcinoma cell lines were all significantly inhibited by knockdown of XB130 using small hairpin RNA. In a xenograft model, tumor growth was markedly inhibited after shXB130-transfected GC cells were implanted into nude mice. After XB130 knockdown, GC cells showed a more epithelial-like phenotype, suggesting an inhibition of the epithelial-mesenchymal transition (EMT) process. In addition, silencing of XB130 reduced the expression of p-Akt/Akt, upregulated expression of epithelial markers including E-cadherin, α-catenin and β-catenin, and downregulated mesenchymal markers including fibronectin and vimentin. Expression of oncoproteins related to tumor metastasis, such as MMP2, MMP9, and CD44, was also significantly reduced. CONCLUSIONS These findings indicate that XB130 enhances cell motility and invasiveness by modulating the EMT-like process, while silencing XB130 in GC suppresses tumorigenesis and metastasis, suggesting that it may be a potential therapeutic target.
Collapse
Affiliation(s)
- Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Dayong Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Lin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Yajun Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Minyu Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Wenjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| |
Collapse
|
22
|
Xie Z, Nagarajan V, Sturdevant DE, Iwaki S, Chan E, Wisch L, Young M, Nelson CM, Porcella SF, Druey KM. Genome-wide SNP analysis of the Systemic Capillary Leak Syndrome (Clarkson disease). Rare Dis 2013; 1:e27445. [PMID: 24808988 PMCID: PMC4009617 DOI: 10.4161/rdis.27445] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/21/2013] [Accepted: 12/05/2013] [Indexed: 12/14/2022] Open
Abstract
The Systemic Capillary Leak Syndrome (SCLS) is an extremely rare, orphan disease that resembles, and is frequently erroneously diagnosed as, systemic anaphylaxis. The disorder is characterized by repeated, transient, and seemingly unprovoked episodes of hypotensive shock and peripheral edema due to transient endothelial hyperpermeability. SCLS is often accompanied by a monoclonal gammopathy of unknown significance (MGUS). Using Affymetrix Single Nucleotide Polymorphism (SNP) microarrays, we performed the first genome-wide SNP analysis of SCLS in a cohort of 12 disease subjects and 18 controls. Exome capture sequencing was performed on genomic DNA from nine of these patients as validation for the SNP-chip discoveries and de novo data generation. We identified candidate susceptibility loci for SCLS, which included a region flanking CAV3 (3p25.3) as well as SNP clusters in PON1 (7q21.3), PSORS1C1 (6p21.3), and CHCHD3 (7q33). Among the most highly ranked discoveries were gene-associated SNPs in the uncharacterized LOC100130480 gene (rs6417039, rs2004296). Top case-associated SNPs were observed in BTRC (rs12355803, 3rs4436485), ARHGEF18 (rs11668246), CDH13 (rs4782779), and EDG2 (rs12552348), which encode proteins with known or suspected roles in B cell function and/or vascular integrity. 61 SNPs that were significantly associated with SCLS by microarray analysis were also detected and validated by exome deep sequencing. Functional annotation of highly ranked SNPs revealed enrichment of cell projections, cell junctions and adhesion, and molecules containing pleckstrin homology, Ras/Rho regulatory, and immunoglobulin Ig-like C2/fibronectin type III domains, all of which involve mechanistic functions that correlate with the SCLS phenotype. These results highlight SNPs with potential relevance to SCLS.
Collapse
Affiliation(s)
- Zhihui Xie
- Molecular Signal Transduction Section; NIAID/NIH; Bethesda, MD USA
| | - Vijayaraj Nagarajan
- Computational Biology Section; Bioinformatics and Computational Biosciences Branch; OCICB; NIAID/NIH; Bethesda, MD USA
| | - Daniel E Sturdevant
- Genomics Unit, Research Technologies Section; Rocky Mountain Laboratories; NIAID/NIH, Hamilton, MT USA
| | - Shoko Iwaki
- Molecular Signal Transduction Section; NIAID/NIH; Bethesda, MD USA
| | - Eunice Chan
- Molecular Signal Transduction Section; NIAID/NIH; Bethesda, MD USA
| | - Laura Wisch
- Molecular Signal Transduction Section; NIAID/NIH; Bethesda, MD USA
| | - Michael Young
- Clinical Research Directorate/CMRP; SAIC-Frederick, Inc; Frederick National Laboratory for Clinical Research; Frederick, MD USA
| | - Celeste M Nelson
- Molecular Signal Transduction Section; NIAID/NIH; Bethesda, MD USA
| | - Stephen F Porcella
- Genomics Unit, Research Technologies Section; Rocky Mountain Laboratories; NIAID/NIH, Hamilton, MT USA
| | - Kirk M Druey
- Molecular Signal Transduction Section; NIAID/NIH; Bethesda, MD USA
| |
Collapse
|
23
|
Wu W, Bhagat TD, Yang X, Song JH, Cheng Y, Agarwal R, Abraham JM, Ibrahim S, Bartenstein M, Hussain Z, Suzuki M, Yu Y, Chen W, Eng C, Greally J, Verma A, Meltzer SJ. Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett's esophagus and esophageal adenocarcinoma. Gastroenterology 2013; 144:956-966.e4. [PMID: 23333711 PMCID: PMC3739703 DOI: 10.1053/j.gastro.2013.01.019] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 12/27/2012] [Accepted: 01/13/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Alterations in methylation of protein-coding genes are associated with Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Dysregulation of noncoding RNAs occurs during carcinogenesis but has never been studied in BE or EAC. We applied high-resolution methylome analysis to identify changes at genomic regions that encode noncoding RNAs in BE and EAC. METHODS We analyzed methylation of 1.8 million CpG sites using massively parallel sequencing-based HELP tagging in matched EAC, BE, and normal esophageal tissues. We also analyzed human EAC (OE33, SKGT4, and FLO-1) and normal (HEEpic) esophageal cells. RESULTS BE and EAC exhibited genome-wide hypomethylation, significantly affecting intragenic and repetitive genomic elements as well as noncoding regions. These methylation changes targeted small and long noncoding regions, discriminating normal from matched BE or EAC tissues. One long noncoding RNA, AFAP1-AS1, was extremely hypomethylated and overexpressed in BE and EAC tissues and EAC cells. Its silencing by small interfering RNA inhibited proliferation and colony-forming ability, induced apoptosis, and reduced EAC cell migration and invasion without altering the expression of its protein-coding counterpart, AFAP1. CONCLUSIONS BE and EAC exhibit reduced methylation that includes noncoding regions. Methylation of the long noncoding RNA AFAP1-AS1 is reduced in BE and EAC, and its expression inhibits cancer-related biologic functions of EAC cells.
Collapse
Affiliation(s)
- Wenjing Wu
- Center for Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Xue Yang
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jee Hoon Song
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yulan Cheng
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rachana Agarwal
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John M. Abraham
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sariat Ibrahim
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | - Masako Suzuki
- Albert Einstein College of Medicine, Bronx, New York
| | - Yiting Yu
- Albert Einstein College of Medicine, Bronx, New York
| | - Wei Chen
- Center for Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | | | - John Greally
- Albert Einstein College of Medicine, Bronx, New York
| | - Amit Verma
- Albert Einstein College of Medicine, Bronx, New York
| | - Stephen J. Meltzer
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
XB130, a new adaptor protein, regulates expression of tumor suppressive microRNAs in cancer cells. PLoS One 2013; 8:e59057. [PMID: 23527086 PMCID: PMC3602428 DOI: 10.1371/journal.pone.0059057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 02/11/2013] [Indexed: 12/16/2022] Open
Abstract
XB130, a novel adaptor protein, promotes cell growth by controlling expression of many related genes. MicroRNAs (miRNAs), which are frequently mis-expressed in cancer cells, regulate expression of targeted genes. In this present study, we aimed to explore the oncogenic mechanism of XB130 through miRNAs regulation. We analyzed miRNA expression in XB130 short hairpin RNA (shRNA) stably transfected WRO thyroid cancer cells by a miRNA array assay, and 16 miRNAs were up-regulated and 22 miRNAs were down-regulated significantly in these cells, in comparison with non-transfected or negative control shRNA transfected cells. We chose three of the up-regulated miRNAs (miR-33a, miR-149 and miR-193a-3p) and validated them by real-time qRT-PCR. Ectopic overexpression of XB130 suppressed these 3 miRNAs in MRO cells, a cell line with very low expression of XB130. Furthermore, we transfected miR mimics of these 3 miRNAs into WRO cells. They negatively regulated expression of oncogenes (miR-33a: MYC, miR-149: FOSL1, miR-193a-3p: SLC7A5), by targeting their 3′ untranslated region, and reduced cell growth. Our results suggest that XB130 could promote growth of cancer cells by regulating expression of tumor suppressive miRNAs and their targeted genes.
Collapse
|
25
|
Alemayehu M, Dragan M, Pape C, Siddiqui I, Sacks DB, Di Guglielmo GM, Babwah AV, Bhattacharya M. β-Arrestin2 regulates lysophosphatidic acid-induced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PLoS One 2013; 8:e56174. [PMID: 23405264 PMCID: PMC3566084 DOI: 10.1371/journal.pone.0056174] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/07/2013] [Indexed: 12/29/2022] Open
Abstract
β-Arrestins play critical roles in chemotaxis and cytoskeletal reorganization downstream of several receptor types, including G protein-coupled receptors (GPCRs), which are targets for greater than 50% of all pharmaceuticals. Among them, receptors for lysophosphatidic acid (LPA), namely LPA(1) are overexpressed in breast cancer and promote metastatic spread. We have recently reported that β-arrestin2 regulates LPA(1)-mediated breast cancer cell migration and invasion, although the underlying molecular mechanisms are not clearly understood. We show here that LPA induces activity of the small G protein, Rap1 in breast cancer cells in a β-arrestin2-dependent manner, but fails to activate Rap1 in non-malignant mammary epithelial cells. We found that Rap1A mRNA levels are higher in human breast tumors compared to healthy patient samples and Rap1A is robustly expressed in human ductal carcinoma in situ and invasive tumors, in contrast to the normal mammary ducts. Rap1A protein expression is also higher in aggressive breast cancer cells (MDA-MB-231 and Hs578t) relative to the weakly invasive MCF-7 cells or non-malignant MCF10A mammary cells. Depletion of Rap1A expression significantly impaired LPA-stimulated migration of breast cancer cells and invasiveness in three-dimensional Matrigel cultures. Furthermore, we found that β-arrestin2 associates with the actin binding protein IQGAP1 in breast cancer cells, and is necessary for the recruitment of IQGAP1 to the leading edge of migratory cells. Depletion of IQGAP1 blocked LPA-stimulated breast cancer cell invasion. Finally, we have identified that LPA enhances the binding of endogenous Rap1A to β-arrestin2, and also stimulates Rap1A and IQGAP1 to associate with LPA(1). Thus our data establish novel roles for Rap1A and IQGAP1 as critical regulators of LPA-induced breast cancer cell migration and invasion.
Collapse
MESH Headings
- Apoptosis/drug effects
- Arrestins/genetics
- Arrestins/metabolism
- Blotting, Western
- Breast/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Adhesion/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chemotaxis/drug effects
- Female
- Humans
- Immunoenzyme Techniques
- Lysophospholipids/pharmacology
- Neoplasm Invasiveness
- Neoplasm Staging
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Shelterin Complex
- Signal Transduction/drug effects
- Telomere-Binding Proteins/genetics
- Telomere-Binding Proteins/metabolism
- beta-Arrestins
- ras GTPase-Activating Proteins/antagonists & inhibitors
- ras GTPase-Activating Proteins/genetics
- ras GTPase-Activating Proteins/metabolism
Collapse
Affiliation(s)
- Mistre Alemayehu
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Magdalena Dragan
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Cynthia Pape
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Iram Siddiqui
- Department of Pathology, Western University, London, Ontario, Canada
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Andy V. Babwah
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- The Children’s Health Research Institute, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
- Department of Obstetrics and Gynecology, Western University, London, Ontario, Canada
| | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
26
|
Junctional adhesion molecules 2 and 3 may potentially be involved in progression of gastric adenocarcinoma tumors. Med Oncol 2013; 30:380. [PMID: 23277282 DOI: 10.1007/s12032-012-0380-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/03/2012] [Indexed: 12/13/2022]
Abstract
Tight junctions (TJs) of epithelia are responsible for integrity of polarized epithelial cells. It is now well established that the deregulation of their functions and expressions contribute to initiation and progression of cancer through activation of cytoskeleton machinery. The aim of this study was to examine the expression level of two genes encoding tight junction-associated proteins of Jam2 and Jam3 in gastric adenocarcinoma and compare with normal gastric tissues dissected from same patients. Significant difference of expression level for these genes was observed between tumor and adjacent normal tissues. Also, we analyzed the expression level of actin filament-associated protein gene that appears to be a downstream factor of JAM2 and JAM3. The expression level of this gene was significantly higher in tumor tissues. Some correlations between the expression level of these genes with each other and with pathological features were observed. These data brought new evidences for the role of these three genes in progression of gastric adenocarcinoma.
Collapse
|
27
|
Shiozaki A, Kosuga T, Ichikawa D, Komatsu S, Fujiwara H, Okamoto K, Iitaka D, Nakashima S, Shimizu H, Ishimoto T, Kitagawa M, Nakou Y, Kishimoto M, Liu M, Otsuji E. XB130 as an independent prognostic factor in human esophageal squamous cell carcinoma. Ann Surg Oncol 2012; 20:3140-50. [PMID: 22805860 DOI: 10.1245/s10434-012-2474-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adaptor proteins, with multimodular structures, can participate in the regulation of various cellular functions. A novel adaptor protein XB130 has been implicated as a substrate and regulator of tyrosine kinase-mediated signaling and in controlling cell proliferation and apoptosis in thyroid and lung cancer cells. However, its expression and role in gastrointestinal cancer have not been investigated. We sought to determine the role of XB130 in cell cycle progression of esophageal squamous cell carcinoma (ESCC) cells and to examine its expression and effects on the prognosis of patients with ESCC. METHODS Expression of XB130 in human ESCC cell lines was analyzed by Western blot testing and immunofluorescent staining. Knockdown experiments with XB130 small interfering RNA (siRNA) were conducted, and the effect on cell cycle progression was analyzed. Immunohistochemistry of XB130 for 52 primary tumor samples obtained from patients with ESCC undergoing esophagectomy was performed. RESULTS XB130 was highly expressed in TE2, TE5, and TE9 cells. In these cells, knockdown of XB130 with siRNA inhibited G1-S phase progression and increased the expression of p21, the cyclin-dependent kinase inhibitor. Immunohistochemistry showed that 71.2% of the patients expressed XB130 in the nuclei and/or cytoplasm of the ESCC cells. Further, nuclear expression of XB130 was an independent prognostic factor of postoperative survival. CONCLUSIONS These observations suggest that the expression of XB130 in ESCC cells may affect cell cycle progression and impact prognosis of patients with ESCC. A deeper understanding of XB130 as a mediator and/or biomarker in ESCC is needed.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bekele RT, Brindley DN. Role of autotaxin and lysophosphatidate in cancer progression and resistance to chemotherapy and radiotherapy. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.30] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Xiao H, Han B, Lodyga M, Bai XH, Wang Y, Liu M. The actin-binding domain of actin filament-associated protein (AFAP) is involved in the regulation of cytoskeletal structure. Cell Mol Life Sci 2012; 69:1137-51. [PMID: 21984596 PMCID: PMC11114525 DOI: 10.1007/s00018-011-0812-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/15/2011] [Accepted: 09/01/2011] [Indexed: 11/26/2022]
Abstract
Actin filament-associated protein (AFAP) plays a critical role in the regulation of actin filament integrity, formation and maintenance of the actin network, function of focal contacts, and cell migration. Here, we show that endogenous AFAP was present not only in the cytoskeletal but also in the cytosolic fraction. Depolymerization of actin filaments with cytochalasin D or latrunculin A increased AFAP in the cytosolic fraction. AFAP harbors an actin-binding domain (ABD) in its C-terminus. AFAPΔABD, an AFAP mutant with selective ABD deletion, was mainly in the cytosolic fraction when overexpressed in the cells, which was associated with a disorganized cytoskeleton with reduced stress fibers, accumulation of F-actin on cellular membrane, and formation of actin-rich small dots. Cortactin, a well-known podosome marker, was colocalized with AFAPΔABD in these small dots at the ventral surface of the cell, indicating that these small dots fulfill certain criteria of podosomes. However, these podosome-like small dots did not digest gelatin matrix. This may be due to the reduced interaction between AFAPΔABD and c-Src. When AFAPΔABD-transfected cells were stimulated with phorbol ester, they formed podosome-like structures with larger sizes, less numerous and longer life span, in comparison with wild-type AFAP-transfected cells. These results indicate that the association of AFAP with F-actin through ABD is crucial for AFAP to regulate cytoskeletal structures. The AFAPΔABD, as cytosolic proteins, may be more accessible to the cellular membrane, podosome-like structures, and thus be more interactive for the regulation of cellular functions.
Collapse
Affiliation(s)
- Helan Xiao
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Bing Han
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Monika Lodyga
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Xiao-Hui Bai
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Yingchun Wang
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Mingyao Liu
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Room TMDT 2-814, 101 College Street, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
30
|
Bourguignon LYW, Wong G, Earle CA, Xia W. Interaction of low molecular weight hyaluronan with CD44 and toll-like receptors promotes the actin filament-associated protein 110-actin binding and MyD88-NFκB signaling leading to proinflammatory cytokine/chemokine production and breast tumor invasion. Cytoskeleton (Hoboken) 2011; 68:671-93. [PMID: 22031535 DOI: 10.1002/cm.20544] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 09/30/2011] [Accepted: 10/12/2011] [Indexed: 12/23/2022]
Abstract
Both high and low molecular weight hyaluronan (HMW-HA vs. LMW-HA) exist in various tissues and cells. In this study, we investigated LMW-HA-mediated CD44 interaction with Toll-like receptors (TLRs), the actin filament-associated protein (AFAP-110), and a myeloid differentiation factor (MyD88) in breast tumor cells (MDA-MB-231 cells). Our data indicate that LMW-HA (but not HMW-HA) preferentially stimulates a physical association between CD44 and TLRs followed by a concomitant recruitment of AFAP-110 and MyD88 into receptor-containing complexes in breast tumor cells. LMW-HA-activated AFAP-110 then binds to filamentous actin (F-actin) resulting in MyD88/nuclear factor-κB (NF-κB) nuclear translocation, NF-κB-specific transcription, and target gene [interleukine 1β and interleukine-8 (IL-1β and IL-8)] expression. These signaling events lead to proinflammatory cytokine/chemokine production in the breast tumor cells. AFAP-110-F-actin (activated by LMW-HA) also promotes tumor cell invasion. Downregulation of AFAP-110 or MyD88 by transfecting breast tumor cells with AFAP-110 siRNA or MyD88 siRNA, respectively not only blocks the ability of LMW-HA to stimulate AFAP-110-actin function, but also impairs MyD88-NF-κB nuclear translocation and NF-κB transcriptional activation. Consequently, both IL-1β/IL-8 production and tumor cell invasion are impaired. Taken together, these findings suggest that LMW-HA plays an important role in CD44-TLR-associated AFAP-110-actin interaction and MyD88-NF-κB signaling required for tumor cell behaviors, which may contribute to the progression of breast cancer.
Collapse
|
31
|
Wang F, Li J, Sinn AL, Knabe WE, Khanna M, Jo I, Silver JM, Oh K, Li L, Sandusky GE, Sledge GW, Nakshatri H, Jones DR, Pollok KE, Meroueh SO. Virtual screening targeting the urokinase receptor, biochemical and cell-based studies, synthesis, pharmacokinetic characterization, and effect on breast tumor metastasis. J Med Chem 2011; 54:7193-205. [PMID: 21851064 DOI: 10.1021/jm200782y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Virtual screening targeting the urokinase receptor (uPAR) led to (±)-3-(benzo[d][1,3]dioxol-5-yl)-N-(benzo[d][1,3]dioxol-5-ylmethyl)-4-phenylbutan-1-amine 1 (IPR-1) and N-(3,5-dimethylphenyl)-1-(4-isopropylphenyl)-5-(piperidin-4-yl)-1H-pyrazole-4-carboxamide 3 (IPR-69). Synthesis of an analogue of 1, namely, 2 (IPR-9), and 3 led to breast MDA-MB-231 invasion, migration and adhesion assays with IC(50) near 30 μM. Both compounds blocked angiogenesis with IC(50) of 3 μM. Compounds 2 and 3 inhibited cell growth with IC(50) of 6 and 18 μM and induced apoptosis. Biochemical assays revealed leadlike properties for 3, but not 2. Compound 3 administered orally reached peak concentration of nearly 40 μM with a half-life of about 2 h. In NOD-SCID mice inoculated with breast TMD-231 cells in their mammary fat pads, compound 3 showed a 20% reduction in tumor volumes and less extensive metastasis was observed for the treated mice. The suitable pharmacokinetic properties of 3 and the encouraging preliminary results in metastasis make it an ideal starting point for next generation compounds.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 535 Barnhill Drive, Indianapolis, Indiana 46202, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Shiozaki A, Liu M. Roles of XB130, a novel adaptor protein, in cancer. J Clin Bioinforma 2011; 1:10. [PMID: 21884627 PMCID: PMC3164603 DOI: 10.1186/2043-9113-1-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/17/2011] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins, with multi-modular structures, can participate in the regulation of various cellular functions. During molecular cloning process of actin filament associated protein, we have discovered a novel adaptor protein, referred to as XB130. The human xb130 gene is localized on chromosome 10q25.3, and encodes an 818 amino acid protein. The N-terminal region of XB130 includes several tyrosine phosphorylation sites and a proline-rich sequence that might interact with Src homology 2 and 3 domain-containing proteins, respectively. Our studies have indeed implicated XB130 as a likely substrate and regulator of tyrosine kinase-mediated signaling. Down-regulation of endogenous XB130 with small interfering RNA reduced c-Src activity, IL-8 production and phosphorylation of Akt in human lung epithelial cells. Further, XB130 binds the p85α subunit of phosphatidyl-inositol-3-kinase and subsequently mediates signaling through RET/PTC in thyroid cancer cells. Knockdown of XB130 using small interfering RNA inhibited G1-S phase progression, induced spontaneous apoptosis and enhanced intrinsic and extrinsic apoptotic stimulus-induced cell death in human lung and thyroid cancer cells. Growth of tumors in nude mice formed from XB130 short hairpin RNA stably transfected human thyroid cancer cells were significantly reduced, with decreased cell proliferation and increased apoptosis. Further, XB130 has a high affinity to lamellipodial F-actin meshwork and is involved in the motility and invasiveness of cancer cells. Gene expression profiling identified 246 genes significantly changed in XB130 short hairpin RNA transfected thyroid cancer cells. Among them, 57 genes are related to cell proliferation or survival, including many transcription regulators. Pathway analysis showed that the top ranked disease related to XB130 is Cancer, and the top molecular and cellular functions are Cellular Growth and Proliferation, and Cell Cycle. These observations suggest that the expression of XB130 may affect cell proliferation, survival, motility and invasion in various cancer cells. A deeper understanding of these mechanisms may lead to the discovery of XB130 as an important mediator in tumor development and as a novel therapeutic target for cancer.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | | |
Collapse
|
34
|
Snyder BN, Cho Y, Qian Y, Coad JE, Flynn DC, Cunnick JM. AFAP1L1 is a novel adaptor protein of the AFAP family that interacts with cortactin and localizes to invadosomes. Eur J Cell Biol 2011; 90:376-89. [PMID: 21333378 DOI: 10.1016/j.ejcb.2010.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 11/26/2022] Open
Abstract
The actin-filament associated protein (AFAP) family of adaptor proteins consists of three members: AFAP1, AFAP1L1, and AFAP1L2/XB130 with AFAP1 being the best described as a cSrc binding partner and actin cross-linking protein. A homology search of AFAP1 recently identified AFAP1L1 which has a similar sequence, domain structure and cellular localization; however, based upon sequence variations, AFAP1L1 is hypothesized to have unique functions that are distinct from AFAP1. While AFAP1 has the ability to bind to the SH3 domain of the nonreceptor tyrosine kinase cSrc via an N-terminal SH3 binding motif, it was unable to bind cortactin. However, the SH3 binding motif of AFAP1L1 was more efficient at interacting with the SH3 domain of cortactin and not cSrc. AFAP1L1 was shown by fluorescence microscopy to decorate actin filaments and move to punctate actin structures and colocalize with cortactin, consistent with localization to invadosomes. Upon overexpression in A7r5 cells, AFAP1L1 had the ability to induce podosome formation and move to podosomes without stimulation. Immunohistochemical analysis of AFAP1L1 in human tissues shows differential expression when contrasted with AFAP1 with localization of AFAP1L1 to unique sites in muscle and the dentate nucleus of the brain where AFAP1 was not detectable. We hypothesize AFAP1L1 may play a similar role to AFAP1 in affecting changes in actin filaments and bridging interactions with binding partners, but we hypothesize that AFAP1L1 may forge unique protein interactions in which AFAP1 is less efficient, and these interactions may allow AFAP1L1 to affect invadosome formation.
Collapse
Affiliation(s)
- Brandi N Snyder
- The Mary Babb Randolph Cancer Center and the Department of Cancer Cell Biology, West Virginia University, Morgantown, WV 26505, USA
| | | | | | | | | | | |
Collapse
|
35
|
Han B, Xiao H, Xu J, Lodyga M, Bai XH, Jin T, Liu M. Actin filament associated protein mediates c-Src related SRE/AP-1 transcriptional activation. FEBS Lett 2011; 585:471-7. [PMID: 21236256 DOI: 10.1016/j.febslet.2011.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/26/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
AFAP is an adaptor protein involved in cytoskeletal organization and intracellular signaling. AFAP binds and activates c-Src; however, the downstream signals of this interaction remain unknown. Here we show that co-expression of AFAP and c-Src induce transcriptional activation of SRE and AP-1 in a c-Src activity dependent fashion. Structural-functional studies suggest that the proline-rich motif in the N-terminus of AFAP is critical for c-Src activation, and subsequent SRE/AP-1 transactivation and the actin-binding domain in the AFAP C-terminus is negatively involved in the regulation of AFAP/c-Src mediated SRE/AP-1 transactivation. Selective deletion of this domain enhances transactivation of SRE. We conclude that in addition to its role in the regulation of cytoskeletal structures, AFAP may also be involved in the c-Src related transcriptional activities.
Collapse
Affiliation(s)
- Bing Han
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Shiozaki A, Lodyga M, Bai XH, Nadesalingam J, Oyaizu T, Winer D, Asa SL, Keshavjee S, Liu M. XB130, a novel adaptor protein, promotes thyroid tumor growth. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:391-401. [PMID: 21224076 DOI: 10.1016/j.ajpath.2010.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 11/19/2022]
Abstract
Adaptor proteins with multimodular structures can participate in the regulation of various cellular functions. We have cloned a novel adaptor protein, XB130, which binds the p85α subunit of phosphatidyl inositol 3-kinase and subsequently mediates signaling through RET/PTC in TPC-1 thyroid cancer cells. In the present study, we sought to determine the role of XB130 in the tumorigenesis in vivo and in related molecular mechanisms. In WRO thyroid cancer cells, knockdown of XB130 using small interfering RNA inhibited G(1)-S phase progression, induced spontaneous apoptosis, and enhanced intrinsic and extrinsic apoptotic stimulus-induced cell death. Growth of tumors in nude mice formed from XB130 shRNA stably transfected WRO cells were significantly reduced, with decreased cell proliferation and increased apoptosis. Microarray analysis identified 246 genes significantly changed in XB130 shRNA transfected cells. Among them, 57 genes are related to cell proliferation or survival, including many transcription regulators. Ingenuity Pathway Analysis showed that the top-ranked disease related to XB130 is cancer, and the top molecular and cellular functions are cellular growth and proliferation and cell cycle. A human thyroid tissue microarray study identified expression of XB130 in normal thyroid tissue as well as in human thyroid carcinomas. These observations suggest that the expression of XB130 in these cancer cells may affect cell proliferation and survival by controlling the expression of multiple genes, especially transcription regulators.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lodyga M, Bai XH, Kapus A, Liu M. Adaptor protein XB130 is a Rac-controlled component of lamellipodia that regulates cell motility and invasion. J Cell Sci 2010; 123:4156-69. [DOI: 10.1242/jcs.071050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
XB130 is a newly described cytosolic adaptor protein and tyrosine kinase substrate, involved in Src- and RET/PTC-dependent signaling. Although XB130 has been cloned as a homologue of actin-filament-associated protein (AFAP-110), its potential regulation by the actin skeleton and its putative roles in cytoskeleton regulation have not been addressed. Here, we show that XB130 (in contrast to AFAP-110) exhibited robust translocation to the cell periphery in response to various stimuli (including epidermal growth factor, wounding and expression of constitutively active Rac) that elicit lamellipodium formation. In stimulated cells, XB130 localized to the lamellipodial F-actin meshwork. Genetic and pharmacological data suggest that the key trigger for XB130 recruitment is the formation of the branched F-actin itself. Structure-function analysis revealed that both the XB130 N-terminus (167 amino acids) and C-terminus (63 amino acids) harbor crucial regions for its translocation to lamellipodia, whereas the PH domains and Src-targeted tyrosines are dispensable. Importantly, in TPC1 thyroid papillary carcinoma cells, silencing endogenous XB130 decreased the rate of wound closure, inhibited matrigel invasion, reduced lamellipodial persistence and slowed down spreading. Thus, XB130 is a novel Rac- and cytoskeleton-regulated and cytoskeleton-regulating adaptor protein that exhibits high affinity to lamellipodial (branched) F-actin and impacts motility and invasiveness of tumor cells.
Collapse
Affiliation(s)
- Monika Lodyga
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Ontario M5G 1X8, Canada
| | - Xiao-hui Bai
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - András Kapus
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Ontario M5G 1X8, Canada
- Department of Surgery, University of Toronto, Ontario M5G 1X8, Canada
| | - Mingyao Liu
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Institute of Medical Sciences, University of Toronto, Ontario M5G 1X8, Canada
- Department of Surgery, University of Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
38
|
Clump DA, Yu JJ, Cho Y, Gao R, Jett J, Zot H, Cunnick JM, Snyder B, Clump AC, Dodrill M, Gannett P, Coad JE, Shurina R, Figg WD, Reed E, Flynn DC. A Polymorphic Variant of AFAP-110 Enhances cSrc Activity. Transl Oncol 2010; 3:276-85. [PMID: 20689769 PMCID: PMC2915419 DOI: 10.1593/tlo.10106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/18/2010] [Accepted: 03/31/2010] [Indexed: 12/27/2022] Open
Abstract
Enhanced expression and activity of cSrc are associated with ovarian cancer progression. Generally, cSrc does not contain activating mutations; rather, its activity is increased in response to signals that affect a conformational change that releases its autoinhibition. In this report, we analyzed ovarian cancer tissues for the expression of a cSrc-activating protein, AFAP-110. AFAP-110 activates cSrc through a direct interaction that releases it from its autoinhibited conformation. Immunohistochemical analysis revealed a concomitant increase of AFAP-110 and cSrc in ovarian cancer tissues. An analysis of the AFAP-110 coding sequence revealed the presence of a nonsynonymous, single-nucleotide polymorphism that resulted in a change of Ser403 to Cys403. In cells that express enhanced levels of cSrc, AFAP-110(403C) directed the activation of cSrc and the formation of podosomes independently of input signals, in contrast to wild-type AFAP-110. We therefore propose that, under conditions of cSrc overexpression, the polymorphic variant of AFAP-110 promotes cSrc activation. Further, these data indicate amechanismby which an inherited genetic variation could influence ovarian cancer progression and could be used to predict the response to targeted therapy.
Collapse
Affiliation(s)
- David A Clump
- The Mary Babb Randolph Cancer Center and the Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu X, Harder J, Flynn DC, Lanier LM. AFAP120 regulates actin organization during neuronal differentiation. Differentiation 2009; 77:38-47. [PMID: 19281763 PMCID: PMC2664250 DOI: 10.1016/j.diff.2008.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 01/10/2023]
Abstract
During development, dynamic changes in the actin cytoskeleton determine both cell motility and morphological differentiation. In most mature tissues, cells are generally minimally motile and have morphologies specialized to their functions. In metastatic cancer, cells generally lose their specialized morphology and become motile. Therefore, proteins that regulate the transition between the motile and morphologically differentiated states can play important roles in determining cancer outcomes. AFAP120 is a neuronal-specific protein that binds Src kinase and protein kinase C (PKC) and cross-links actin filaments. Here we report that expression and tyrosine phosphorylation of AFAP120 are developmentally regulated in the cerebellum. In cerebellar cultures, PKC activation induces Src kinase-dependent phosphorylation of AFAP120, indicating that AFAP120 may be a downstream effector of Src. In neuroblastoma cells induced to differentiate by treatment with a PKC activator, tyrosine phosphorylation of AFAP120 appears to regulate the formation of the lamellar actin structures and subsequent neurite initiation. Together, these results indicate that AFAP120 plays a role in organizing dynamic actin structures during neuronal differentiation and suggest that AFAP120 may help regulate the transition from motile precursor to morphologically differentiated neurons.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Jennifer Harder
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Daniel C. Flynn
- Department of Microbiology & Immunology, West Virginia University, Morgantown, WV 26506
| | - Lorene M. Lanier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
40
|
Harder J, Xu X, Letourneau P, Lanier LM. The actin cross-linking protein AFAP120 regulates axon elongation in a tyrosine phosphorylation-dependent manner. Neurosci Lett 2008; 444:132-6. [PMID: 18723076 PMCID: PMC2575687 DOI: 10.1016/j.neulet.2008.08.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/30/2008] [Accepted: 08/04/2008] [Indexed: 01/30/2023]
Abstract
Growth cone guidance and axon elongation require the dynamic coordinated regulation of the actin cytoskeleton. As the growth cone moves, actin-dependent forces generate tension that enables protrusive activity in the periphery and drives growth cone translocation. This dynamic remodeling of the actin cytoskeleton in response to membrane tension requires activation of Src kinase. Although it has been proposed that these actin-dependent forces vary with the extent of actin cross-linking, the identity of the cross-linking protein(s) remains unknown. AFAP120 is a nervous system specific actin cross-linking protein that is regulated by Src kinase phosphorylation. Here, we report that AFAP120 is expressed and tyrosine phosphorylated in differentiating cerebellar granule cells, where it is enriched in the axon and growth cone. Over-expression of AFAP120 enhances neurite elongation in a tyrosine phosphorylation-dependent manner. These findings suggest that AFAP120 may coordinate Src signaling with the dynamic changes in the actin cytoskeleton that drive growth cone motility and axon elongation.
Collapse
Affiliation(s)
- Jennifer Harder
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Xiaohua Xu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Paul Letourneau
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Lorene M. Lanier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
41
|
Dorfleutner A, Cho Y, Vincent D, Cunnick J, Lin H, Weed SA, Stehlik C, Flynn DC. Phosphorylation of AFAP-110 affects podosome lifespan in A7r5 cells. J Cell Sci 2008; 121:2394-405. [PMID: 18577577 DOI: 10.1242/jcs.026187] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AFAP-110 is an actin-binding and -crosslinking protein that is enriched in Src and phorbol ester (PE)-induced podosomes. In vascular smooth muscle cells endogenous AFAP-110 localized to actin stress fibers and, in response to treatment with phorbol-12,13-dibutyrate (PDBu), to actin-rich podosomes. Since PEs can activate PKCalpha, AFAP-110 is a substrate of PKCalpha and PKCalpha-AFAP-110 interactions direct podosome formation, we sought to identify a PE-induced phosphorylation site in AFAP-110 and determine whether phosphorylation is linked to the formation of podosomes. Mutational analysis revealed Ser277 of AFAP-110 to be phosphorylated in PE-treated cells. The use of a newly generated, phospho-specific antibody directed against phosphorylated Ser277 revealed that PKCalpha activation is associated with PE-induced AFAP-110 phosphorylation. In PDBu-treated A7r5 rat vascular smooth muscle cells, immunolabeling using the phospho-specific antibody showed that phospho-AFAP-110 is primarily associated with actin in podosomes. Although mutation of Ser at position 277 to Ala (AFAP-110(S277A)) did not alter the ability of AFAP-110 to localize to podosomes, overexpression of AFAP-110(S277A) in treated and untreated A7r5 cells resulted in an increased number of cells that display podosomes. Video microscopy demonstrated that AFAP-110(S277A) expression correlates with an increased number of long-lived podosomes. Therefore, we hypothesize that AFAP-110 phosphorylation and/or dephosphorylation is involved in the regulation of podosome stability and lifespan.
Collapse
Affiliation(s)
- Andrea Dorfleutner
- The Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ye X. Lysophospholipid signaling in the function and pathology of the reproductive system. Hum Reprod Update 2008; 14:519-36. [PMID: 18562325 DOI: 10.1093/humupd/dmn023] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two prominent signaling lysophospholipids (LPs) exerting their functions through a group of G protein-coupled receptors (GPCRs). This review covers current knowledge of the LP signaling in the function and pathology of the reproductive system. METHODS PubMed was searched up to May 2008 for papers on lysophospholipids/LPA/S1P/LPC/SPC in combination with each part of the reproductive system, such as testis/ovary/uterus. RESULTS LPA and SIP are found in significant amounts in serum and other biological fluids. To date, 10 LP receptors have been identified, including LPA(1-5) and S1P(1-5). In vitro and in vivo studies from the past three decades have demonstrated or suggested the physiological functions of LP signaling in reproduction, such as spermatogenesis, male sexual function, ovarian function, fertilization, early embryo development, embryo spacing, implantation, decidualization, pregnancy maintenance and parturition, as well as pathological roles in ovary, cervix, mammary gland and prostate cancers. CONCLUSIONS Receptor knock-out and other studies indicate tissue-specific and receptor-specific functions of LP signaling in reproduction. More comprehensive studies are required to define mechanisms of LP signaling and explore the potential use as a therapeutic target.
Collapse
Affiliation(s)
- Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
43
|
Flynn DC, Cho Y, Vincent D, Cunnick JM. Podosomes and Invadopodia: Related structures with Common Protein Components that May Promote Breast Cancer Cellular Invasion. Breast Cancer (Auckl) 2008; 2:17-29. [PMID: 21655365 PMCID: PMC3085414 DOI: 10.4137/bcbcr.s789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A rate-limiting step in breast cancer progression is acquisition of the invasive phenotype, which can precede metastasis. Expression of cell-surface proteases at the leading edge of a migrating cell provides cells with a mechanism to cross tissue barriers. A newly appreciated mechanism that may be relevant for breast cancer cell invasion is the formation of invadopodia, well-defined structures that project from the ventral membrane and promote degradation of the extracellular matrix, allowing the cell to cross a tissue barrier. Recently, there has been some controversy and discussion as to whether invadopodia, which are associated with carcinoma cells, are related to a similar structure called podosomes, which are associated with normal cells. Invadopodia and podosomes share many common characteristics, including a similar size, shape, subcellular localization and an ability to promote invasion. These two structures also share many common protein components, which we outline herein. It has been speculated that podosomes may be precursors to invadopodia and by extension both structures may be relevant to cancer cell invasion. Here, we compare and contrast the protein components of invadopodia and podosomes and discuss a potential role for these proteins and the evidence that supports a role for invadopodia and podosomes in breast cancer invasion.
Collapse
Affiliation(s)
- Daniel C. Flynn
- Mary Babb Randolph Cancer Center
- Department of Microbiology, Immunology and Cell Biology and
| | - YoungJin Cho
- Mary Babb Randolph Cancer Center
- Department of Microbiology, Immunology and Cell Biology and
| | - Deanne Vincent
- Mary Babb Randolph Cancer Center
- Department of Microbiology, Immunology and Cell Biology and
| | - Jess M. Cunnick
- Mary Babb Randolph Cancer Center
- Department of Pathology, West Virginia University, Morgantown, WV 26506-9300
| |
Collapse
|
44
|
Zhang J, Park SI, Artime MC, Summy JM, Shah AN, Bomser JA, Dorfleutner A, Flynn DC, Gallick GE. AFAP-110 is overexpressed in prostate cancer and contributes to tumorigenic growth by regulating focal contacts. J Clin Invest 2007; 117:2962-73. [PMID: 17885682 PMCID: PMC1978423 DOI: 10.1172/jci30710] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 07/09/2007] [Indexed: 01/07/2023] Open
Abstract
The actin filament-associated protein AFAP-110 is an actin cross-linking protein first identified as a substrate of the viral oncogene v-Src. AFAP-110 regulates actin cytoskeleton integrity but also functions as an adaptor protein that affects crosstalk between Src and PKC. Here we investigated the roles of AFAP-110 in the tumorigenic process of prostate carcinoma. Using immunohistochemistry of human tissue arrays, we found that AFAP-110 was absent or expressed at very low levels in normal prostatic epithelium and benign prostatic hyperplasia but significantly increased in prostate carcinomas. The level of AFAP-110 in carcinomas correlated with the Gleason scores. Downregulation of AFAP-110 in PC3 prostate cancer cells inhibited cell proliferation in vitro and tumorigenicity and growth in orthotopic nude mouse models. Furthermore, downmodulation of AFAP-110 resulted in decreased cell-matrix adhesion and cell migration, defective focal adhesions, and reduced integrin beta1 expression. Reintroduction of avian AFAP-110 or a mutant disabling its interaction with Src restored these properties. However, expression of an AFAP-110 lacking the PKC-interacting domain failed to restore properties of parental cells. Thus, increased expression of AFAP-110 is associated with progressive stages of prostate cancer and is critical for tumorigenic growth, in part by regulating focal contacts in a PKC-dependent mechanism.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Serk In Park
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Marlene C. Artime
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Justin M. Summy
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Ami N. Shah
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Joshua A. Bomser
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Andrea Dorfleutner
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Daniel C. Flynn
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Gary E. Gallick
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|