1
|
Wang X, Hallen NR, Lee M, Samuchiwal S, Ye Q, Buchheit KM, Maxfield AZ, Roditi RE, Bergmark RW, Bhattacharyya N, Ryan T, Gakpo D, Raychaudhuri S, Dwyer D, Laidlaw TM, Boyce JA, Gutierrez-Arcelus M, Barrett NA. Type 2 inflammation drives an airway basal stem cell program through insulin receptor substrate signaling. J Allergy Clin Immunol 2023; 151:1536-1549. [PMID: 36804595 PMCID: PMC10784786 DOI: 10.1016/j.jaci.2023.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a type 2 (T2) inflammatory disease associated with an increased number of airway basal cells (BCs). Recent studies have identified transcriptionally distinct BCs, but the molecular pathways that support or inhibit human BC proliferation and differentiation are largely unknown. OBJECTIVE We sought to determine the role of T2 cytokines in regulating airway BCs. METHODS Single-cell and bulk RNA sequencing of sinus and lung airway epithelial cells was analyzed. Human sinus BCs were stimulated with IL-4 and IL-13 in the presence and absence of inhibitors of IL-4R signaling. Confocal analysis of human sinus tissue and murine airway was performed. Murine BC subsets were sorted for RNA sequencing and functional assays. Fate labeling was performed in a murine model of tracheal injury and regeneration. RESULTS Two subsets of BCs were found in human and murine respiratory mucosa distinguished by the expression of basal cell adhesion molecule (BCAM). BCAM expression identifies airway stem cells among P63+KRT5+NGFR+ BCs. In the sinonasal mucosa, BCAMhi BCs expressing TSLP, IL33, CCL26, and the canonical BC transcription factor TP63 are increased in patients with CRSwNP. In cultured BCs, IL-4/IL-13 increases the expression of BCAM and TP63 through an insulin receptor substrate-dependent signaling pathway that is increased in CRSwNP. CONCLUSIONS These findings establish BCAM as a marker of airway stem cells among the BC pool and demonstrate that airway epithelial remodeling in T2 inflammation extends beyond goblet cell metaplasia to the support of a BC stem state poised to perpetuate inflammation.
Collapse
Affiliation(s)
- Xin Wang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Nils R Hallen
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Minkyu Lee
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Sachin Samuchiwal
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Qihua Ye
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Alice Z Maxfield
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Rachel E Roditi
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Regan W Bergmark
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Neil Bhattacharyya
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Mass
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Deb Gakpo
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, Mass; Divisions of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Mass; Versus Arthritis Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dan Dwyer
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Tanya M Laidlaw
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Joshua A Boyce
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Nora A Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
2
|
Screening of host genes regulated by ID1 and ID3 proteins during foot-and-mouth disease virus infection. Virus Res 2021; 306:198597. [PMID: 34648884 DOI: 10.1016/j.virusres.2021.198597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is an important pathogen that harms cloven-hoofed animals and has caused serious losses to livestock production since its discovery. Furthermore, inhibitor of DNA binding (ID) proteins have been thoroughly studied in tumorigenesis, differentiation and metastasis, but its role in viral infection is rarely known. In this study, three gene knockout cell lines ID1 KO, ID3 KO, ID1/3 KO were obtained based on BHK-21 cells. We found that ID1 and ID3 genes single or double knockout promote the replication of FMDV. Moreover, compared with negative control cells during virus infection, there were 551 up-regulated genes and 1222 down-regulated genes in the ID1 KO cell line; 916 up-regulated genes and 1845 down-regulated genes in the ID3 KO cell line; 810 up-regulated genes and 1566 down-regulated genes in ID1/3 KO cell line. Further genes expression patterns verification results also showed a good correlation between the data of RT-qRCR and RNA-seq. These findings provide a basis for studying the relevant mechanisms between host genes and ID genes during FMDV infection.
Collapse
|
3
|
Grishina KA, Khaylenko VA, Khaylenko DV, Karpukhin AV. Role of microRNAs in breast cancer development and their potential as biomarkers. ACTA ACUST UNITED AC 2018. [DOI: 10.17650/1994-4098-2018-14-3-40-47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Breast cancer is the 2nd most common malignant disease after lung cancer; about 1 in 8 women will develop breast cancer in her lifetime. Cancer progression is a serious complication of the disease that encourages comprehensive investigation of molecular mechanisms underlying breast cancer development. This is also important for healthcare professionals involved in patient management, since they have to choose an optimal treatment regimen. This article discusses the role of microRNAs in the development of breast cancer, their biogenesis, classification, association with various molecular subtypes of breast cancer, and their potential role in the development of new targeted drugs for breast cancer therapy. Current research on the role of microRNAs in breast cancer progression is focused on the development of markers for breast cancer prognosis, diagnostic markers and new targeted drugs.
Collapse
Affiliation(s)
| | - V. A. Khaylenko
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - D. V. Khaylenko
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | | |
Collapse
|
4
|
Xu L, Zhang L, Wang Z, Li C, Li S, Li L, Fan Q, Zheng L. Melatonin Suppresses Estrogen Deficiency-Induced Osteoporosis and Promotes Osteoblastogenesis by Inactivating the NLRP3 Inflammasome. Calcif Tissue Int 2018; 103:400-410. [PMID: 29804160 DOI: 10.1007/s00223-018-0428-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023]
Abstract
Postmenopausal osteoporosis induced by estrogen deficiency causes inadequate new bone formation and affects millions of women worldwide. Melatonin can improve bone mineral density at the femoral neck in postmenopausal women with osteopenia. This study aimed to investigate the mechanism of melatonin in estrogen deficiency-induced osteoporosis by focusing on osteoblast differentiation. 12-week-old female C57BL/6J mice were ovariectomized (OVX) and intraperitoneally injected with 10 or 50 mg/kg of melatonin for 8 weeks. Micro-computerized tomography scanning demonstrated that melatonin alleviated OVX-induced bone loss in a dose-dependent manner. Serum levels of ALP and osteocalcin (OCN) were further increased, whereas tartrate-resistant acid phosphatase level was decreased by melatonin in OVX-treated mice. Melatonin promoted osteoblast differentiation in primary bone marrow mesenchymal stem cells from OVX mice. It also inhibited activation of NLRP3 inflammasome in femoral bone protein and in induced osteoblasts stimulated by OVX. Knockdown of NLRP3 attenuated OVX-induced repression of osteogenic differentiation. The NLRP3 inflammasome activator monosodium urate partly abrogated the effect of melatonin on the expression of osteoblastogenic markers, including Runx2 and OCN. Additionally, the results showed that melatonin suppressed NLRP3 inflammasome activation by regulating Wnt/β-catenin signaling, which was confirmed by the Wnt/β-catenin inhibitor recombinant DKK1. These results indicated that melatonin ameliorates estrogen deficiency-induced osteoporosis and impaired osteogenic differentiation potential by suppressing activation of the NLRP3 inflammasome via mediating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road No.1, Erqi District, Zhengzhou, 450052, China
| | - Lixia Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road No.1, Erqi District, Zhengzhou, 450052, China.
| | - Zhifang Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road No.1, Erqi District, Zhengzhou, 450052, China
| | - Chong Li
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road No.1, Erqi District, Zhengzhou, 450052, China
| | - Shan Li
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road No.1, Erqi District, Zhengzhou, 450052, China
| | - Li Li
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road No.1, Erqi District, Zhengzhou, 450052, China
| | - Qianying Fan
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road No.1, Erqi District, Zhengzhou, 450052, China
| | - Lili Zheng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road No.1, Erqi District, Zhengzhou, 450052, China
| |
Collapse
|
5
|
Gupta MK, De Jesus DF, Kahraman S, Valdez IA, Shamsi F, Yi L, Swensen AC, Tseng YH, Qian WJ, Kulkarni RN. Insulin receptor-mediated signaling regulates pluripotency markers and lineage differentiation. Mol Metab 2018; 18:153-163. [PMID: 30316806 PMCID: PMC6308035 DOI: 10.1016/j.molmet.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022] Open
Abstract
Objectives Insulin receptor (IR)-mediated signaling is involved in the regulation of pluripotent stem cells; however, its direct effects on regulating the maintenance of pluripotency and lineage development are not fully understood. The main objective of this study is to understand the role of IR signaling in pluripotency and lineage development. Methods To explore the role of IR signaling, we generated IR knock-out (IRKO) mouse induced pluripotent stem cells (miPSCs) from E14.5 mouse embryonic fibroblasts (MEFs) of global IRKO mice using a cocktail of four reprogramming factors: Oct4, Sox2, Klf4, cMyc. We performed pluripotency characterization and directed the differentiation of control and IRKO iPSCs into neural progenitors (ectoderm), adipocyte progenitors (mesoderm), and pancreatic beta-like cells (endoderm). We mechanistically confirmed these findings via phosphoproteomics analyses of control and IRKO iPSCs. Results Interestingly, expression of pluripotency markers including Klf4, Lin28a, Tbx3, and cMyc were upregulated, while abundance of Oct4 and Nanog were enhanced by 4-fold and 3-fold, respectively, in IRKO iPSCs. Analyses of signaling pathways demonstrated downregulation of phospho-STAT3, p-mTor and p-Erk and an increase in the total mTor and Erk proteins in IRKO iPSCs in the basal unstimulated state. Stimulation with leukemia inhibitory factor (LIF) showed a ∼33% decrease of phospho-ERK in IRKO iPSCs. On the contrary, Erk phosphorylation was increased during in vitro spontaneous differentiation of iPSCs lacking IRs. Lineage-specific directed differentiation of the iPSCs revealed that cells lacking IR showed enhanced expression of neuronal lineage markers (Pax6, Tubb3, Ascl1 and Oligo2) while exhibiting a decrease in adipocyte (Fas, Acc, Pparγ, Fabp4, C/ebpα, and Fsp27) and pancreatic beta cell markers (Ngn3, Isl1, and Sox9). Further molecular characterization by phosphoproteomics confirmed the novel IR-mediated regulation of the global pluripotency network including several key proteins involved in diverse aspects of growth and embryonic development. Conclusion We report, for the first time to our knowledge, the phosphoproteome of insulin, IGF1, and LIF stimulation in mouse iPSCs to reveal the importance of insulin receptor signaling for the maintenance of pluripotency and lineage determination. Insulin receptor signaling regulates expression of key pluripotency genes including Oct4 and Nanog. IRKO iPSCs show upregulation of neuronal markers during differentiation. Adipocyte and pancreatic beta cell differentiation are perturbed in IRKO iPSCs. Phosphoproteomics analyses confirmed the role of IR in regulation of pluripotency and developmental proteins.
Collapse
Affiliation(s)
- Manoj K Gupta
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Dario F De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA; Graduate Program in Areas of Basic and Applied Biology (GABBA), Abel Salazar Biomedical Sciences Institute, University of Porto, 5000 Porto, Portugal
| | - Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ivan A Valdez
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Farnaz Shamsi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lian Yi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Yu-Hua Tseng
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving β-catenin. Exp Cell Res 2017; 360:281-291. [PMID: 28919123 DOI: 10.1016/j.yexcr.2017.09.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
Previous studies have proven that glucagon-like peptide-1 (GLP-1) and its receptor agonist exert favorable anabolic effects on skeletal metabolism. However, whether GLP-1 could directly impact osteoblast-mediated bone formation is still controversial, and the underlying molecular mechanism remains to be elucidated. Thus in this paper, we investigated the effects of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, on murine MC3T3-E1 preosteoblasts proliferation and differentiation and explored the potential cellular basis. Our study confirmed the presence of GLP-1R in MC3T3-E1, and demonstrated that liraglutide promotes osteoblasts proliferation at an intermediate concentration (100nM) and time (48h), upregulated the expression of osteoblastogenic biomarkers at various stages, and stimulated osteoblastic mineralization. Liraglutide also elevated the intracellular cAMP level and phosphorylation of AKT, ERK and β-catenin simultaneously with increased nuclear β-catenin content and transcriptional activity. Pretreatment of cells with the inhibitors LY294002, PD98059, H89 and GLP-1R and β-catenin siRNA partially blocked the liraglutide-induced signaling activation and attenuated the facilitating effect of liraglutide on MC3T3-E1 cells. Collectively, liraglutide was capable of acting upon osteoblasts directly through GLP-1R by activating PI3K/AKT, ERK1/2, cAMP/PKA/β-cat-Ser675 signaling to promote bone formation via GLP-1R. Thus, GLP-1 analogues may be potential therapeutic strategy for the treatment of osteoporosis in diabetics.
Collapse
|
7
|
Pestell TG, Jiao X, Kumar M, Peck AR, Prisco M, Deng S, Li Z, Ertel A, Casimiro MC, Ju X, Di Rocco A, Di Sante G, Katiyar S, Shupp A, Lisanti MP, Jain P, Wu K, Rui H, Hooper DC, Yu Z, Goldman AR, Speicher DW, Laury-Kleintop L, Pestell RG. Stromal cyclin D1 promotes heterotypic immune signaling and breast cancer growth. Oncotarget 2017; 8:81754-81775. [PMID: 29137220 PMCID: PMC5669846 DOI: 10.18632/oncotarget.19953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022] Open
Abstract
The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that drives cell autonomous cell cycle progression and proliferation. Herein we show cyclin D1 abundance is increased >30-fold in the stromal fibroblasts of patients with invasive breast cancer, associated with poor outcome. Cyclin D1 transformed hTERT human fibroblast to a cancer-associated fibroblast phenotype. Stromal fibroblast expression of cyclin D1 (cyclin D1Stroma) in vivo, enhanced breast epithelial cancer tumor growth, restrained apoptosis, and increased autophagy. Cyclin D1Stroma had profound effects on the breast tumor microenvironment increasing the recruitment of F4/80+ and CD11b+ macrophages and increasing angiogenesis. Cyclin D1Stroma induced secretion of factors that promoted expansion of stem cells (breast stem-like cells, embryonic stem cells and bone marrow derived stem cells). Cyclin D1Stroma resulted in increased secretion of proinflammatory cytokines (CCL2, CCL7, CCL11, CXCL1, CXCL5, CXCL9, CXCL12), CSF (CSF1, GM-CSF1) and osteopontin (OPN) (30-fold). OPN was induced by cyclin D1 in fibroblasts, breast epithelial cells and in the murine transgenic mammary gland and OPN was sufficient to induce stem cell expansion. These results demonstrate that cyclin D1Stroma drives tumor microenvironment heterocellular signaling, promoting several key hallmarks of cancer.
Collapse
Affiliation(s)
- Timothy G Pestell
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Mukesh Kumar
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marco Prisco
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Shengqiong Deng
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA.,Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiping Li
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Adam Ertel
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Xiaoming Ju
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Agnese Di Rocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Sanjay Katiyar
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Alison Shupp
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Salford, Greater Manchester, England, UK
| | - Pooja Jain
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Douglas C Hooper
- Department of Microbiology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Zuoren Yu
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA.,Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aaron R Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
8
|
Yang ZQ, Zhang HL, Duan CC, Geng S, Wang K, Yu HF, Yue ZP, Guo B. IGF1 regulates RUNX1 expression via IRS1/2: Implications for antler chondrocyte differentiation. Cell Cycle 2017; 16:522-532. [PMID: 28055425 DOI: 10.1080/15384101.2016.1274471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although IGF1 is important for the proliferation and differentiation of chondrocytes, its underlying molecular mechanism is still unknown. Here we addressed the physiologic function of IGF1 in antler cartilage and explored the interplay of IGF1, IRS1/2 and RUNX1 in chondrocyte differentiation. The results showed that IGF1 was highly expressed in antler chondrocytes. Exogenous rIGF1 could increase the proliferation of chondrocytes and cell proportion in the S phase, whereas IGF1R inhibitor PQ401 abrogated the induction by rIGF1. Simultaneously, IGF1 could stimulate the expression of IHH which was a well-known marker for prehypertrophic chondrocytes. Further analysis evidenced that IGF1 regulated the expression of IRS1/2 whose silencing resulted in a rise of IHH mRNA levels, but the regulation was impeded by PQ401. Knockdown of IRS1 or IRS2 with specific siRNA could greatly enhance rIGF1-induced chondrocyte differentiation and reduce the expression of RUNX1. Extraneous rRUNX1 might rescue the effects of IRS1 or IRS2 siRNA on the differentiation. In antler chondrocytes, IGF1 played a role in modulating the expression of RUNX1 through IGF1R. Moreover, attenuation of RUNX1 expression advanced the differentiation elicited by rIGF1, while administration of rRUNX1 to chondrocytes treated with IGF1 siRNA or PQ401 reduced their differentiation. Additionally, siRNA-mediated downregulation of IRS1 or IRS2 in the chondrocytes impaired the interaction between IGF1 and RUNX1. Collectively, IGF1 could promote the proliferation and differentiation of antler chondrocytes. Furthermore, IRS1/2 might act downstream of IGF1 to regulate chondrocyte differentiation through targeting RUNX1.
Collapse
Affiliation(s)
- Zhan-Qing Yang
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| | - Hong-Liang Zhang
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| | - Cui-Cui Duan
- b Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences , Changchun , P. R. China
| | - Shuang Geng
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| | - Kai Wang
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| | - Hai-Fan Yu
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| | - Zhan-Peng Yue
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| | - Bin Guo
- a College of Veterinary Medicine, Jilin University , Changchun , P. R. China
| |
Collapse
|
9
|
Vella V, Nicolosi ML, Giuliano S, Bellomo M, Belfiore A, Malaguarnera R. PPAR-γ Agonists As Antineoplastic Agents in Cancers with Dysregulated IGF Axis. Front Endocrinol (Lausanne) 2017; 8:31. [PMID: 28275367 PMCID: PMC5319972 DOI: 10.3389/fendo.2017.00031] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
It is now widely accepted that insulin resistance and compensatory hyperinsulinemia are associated to increased cancer incidence and mortality. Moreover, cancer development and progression as well as cancer resistance to traditional anticancer therapies are often linked to a deregulation/overactivation of the insulin-like growth factor (IGF) axis, which involves the autocrine/paracrine production of IGFs (IGF-I and IGF-II) and overexpression of their cognate receptors [IGF-I receptor, IGF-insulin receptor (IR), and IR]. Recently, new drugs targeting various IGF axis components have been developed. However, these drugs have several limitations including the occurrence of insulin resistance and compensatory hyperinsulinemia, which, in turn, may affect cancer cell growth and survival. Therefore, new therapeutic approaches are needed. In this regard, the pleiotropic effects of peroxisome proliferator activated receptor (PPAR)-γ agonists may have promising applications in cancer prevention and therapy. Indeed, activation of PPAR-γ by thiazolidinediones (TZDs) or other agonists may inhibit cell growth and proliferation by lowering circulating insulin and affecting key pathways of the Insulin/IGF axis, such as PI3K/mTOR, MAPK, and GSK3-β/Wnt/β-catenin cascades, which regulate cancer cell survival, cell reprogramming, and differentiation. In light of these evidences, TZDs and other PPAR-γ agonists may be exploited as potential preventive and therapeutic agents in tumors addicted to the activation of IGF axis or occurring in hyperinsulinemic patients. Unfortunately, clinical trials using PPAR-γ agonists as antineoplastic agents have reached conflicting results, possibly because they have not selected tumors with overactivated insulin/IGF-I axis or occurring in hyperinsulinemic patients. In conclusion, the use of PPAR-γ agonists in combined therapies of IGF-driven malignancies looks promising but requires future developments.
Collapse
Affiliation(s)
- Veronica Vella
- Scienze delle Attività Motorie e Sportive, University Kore, Enna, Italy
| | - Maria Luisa Nicolosi
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Stefania Giuliano
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria Bellomo
- Scienze delle Attività Motorie e Sportive, University Kore, Enna, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonino Belfiore,
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
10
|
Wang W, Luo YP. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B 2015; 16:18-31. [PMID: 25559952 DOI: 10.1631/jzus.b1400184] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRs) are small single-stranded RNA molecules, which function as key negative regulators of post-transcriptional modulation in almost all biological processes. Abnormal expression of microRNAs has been observed in various types of cancer including breast cancer. Great efforts have been made to identify an association between microRNA expression profiles and breast cancer, and to understand the functional role and molecular mechanism of aberrant-expressed microRNAs. As research progressed, 'oncogenic microRNAs' and 'tumor suppressive microRNAs' became a focus of interest. The potential of candidate microRNAs from both intercellular (tissue) and extracellular (serum) sources for clinical diagnosis and prognosis was revealed, and treatments involving microRNA achieved some amazing curative effects in cancer disease models. In this review, advances from the most recent studies of microRNAs in one of the most common cancers, breast cancer, are highlighted, especially the functions of specifically selected microRNAs. We also assess the potential value of these microRNAs as diagnostic and prognostic markers, and discuss the possible development of microRNA-based therapies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Immunology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | |
Collapse
|
11
|
Wu Y, Zhu R, Zhou Y, Zhang J, Wang W, Sun X, Wu X, Cheng L, Zhang J, Wang S. Layered double hydroxide nanoparticles promote self-renewal of mouse embryonic stem cells through the PI3K signaling pathway. NANOSCALE 2015; 7:11102-11114. [PMID: 26060037 DOI: 10.1039/c5nr02339d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles have shown promising applications in directing the stem cell fate. Herein, we investigated the cellular effects of layered double hydroxide nanoparticles (LDH NPs) on mouse ESCs (mESCs) and the associated molecular mechanisms. Mg-Al-LDH NPs with an average diameter of ∼100 nm were prepared by hydrothermal methods. To determine the influences of LDH NPs on mESCs, cellular cytotoxicity, self-renewal, differentiation potential, and the possible signaling pathways were explored. Evaluation of cell viability, lactate dehydrogenase release, ROS generation and apoptosis demonstrated the low cytotoxicity of LDH NPs. The alkaline phosphatase activity and the expression of pluripotency genes in mESCs were examined, which indicated that exposure to LDH NPs could support self-renewal and inhibit spontaneous differentiation of mESCs under feeder-free culture conditions. The self-renewal promotion was further proved to be independent of the leukemia inhibitory factor (LIF). Furthermore, cells treated with LDH NPs maintained the potential to differentiate into all three germ layers both in vitro and in vivo through formation of embryoid bodies and teratomas. In addition, we observed that LDH NPs initiated the activation of the PI3K/Akt pathway, while treatment with the PI3K inhibitor LY294002 could block the effects of LDH NPs on mESCs. The results confirmed that the promotion of self-renewal by LDH NPs was associated with activation of the PI3K/Akt signaling pathway. Altogether, our studies identified a new role of LDH NPs in maintaining self-renewal of mouse ES cells which could potentially be applied in stem cell research.
Collapse
Affiliation(s)
- Youjun Wu
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang K, Zhang Y, Liu C, Xiong Y, Zhang J. MicroRNAs in the diagnosis and prognosis of breast cancer and their therapeutic potential (review). Int J Oncol 2014; 45:950-8. [PMID: 24913679 DOI: 10.3892/ijo.2014.2487] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/30/2014] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNAs in eukaryotes and are involved in the regulation of the post-transcriptional expression of specific genes. Studies have demonstrated that miRNAs play important roles in regulating diverse physiological events such as cell proliferation, differentiation and embryo development. In recent decades, considerable attention has been given to the relationship between miRNA and the pathology of cancers, particularly breast cancer. A large number of miRNAs have been shown to be involved in the pathophysiology of breast cancer. Studies have revealed that some miRNAs might regulate the oncogenesis and growth of breast cancer by acting on breast tumor-initiating cells or other downstream targets. Studies have also demonstrated that some miRNAs act as suppressors of metastasis or promoters of breast cancer. Additionally, certain miRNAs are involved in cancer tissue angiogenesis (one of the most important mechanisms of tumor growth and metastasis). Clinical evidence indicates that some miRNAs can be used as diagnostic and prognostic biomarkers for breast cancer due to their significantly increased or decreased expression in cancer tissue. Moreover, certain miRNAs may have therapeutic potential for targeting ER-α/HER, breast tumor-initiating cells and metastasis as well as multidrug resistance. In this review, we discuss the relationship between miRNAs and the pathogenesis of breast cancer as well as the progress of current research on the miRNA-specific diagnosis, prognosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yanlei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Chang Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Ying Xiong
- Cadet Brigade, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jiqiang Zhang
- Cadet Brigade, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
13
|
Malaguarnera R, Belfiore A. The emerging role of insulin and insulin-like growth factor signaling in cancer stem cells. Front Endocrinol (Lausanne) 2014; 5:10. [PMID: 24550888 PMCID: PMC3912738 DOI: 10.3389/fendo.2014.00010] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/21/2014] [Indexed: 12/20/2022] Open
Abstract
Cancer cells frequently exploit the IGF signaling, a fundamental pathway mediating development, cell growth, and survival. As a consequence, several components of the IGF signaling are deregulated in cancer and sustain cancer progression. However, specific targeting of IGF-IR in humans has resulted efficacious only in small subsets of cancers, making researches wondering whether IGF system targeting is still worth pursuing in the clinical setting. Although no definite answer is yet available, it has become increasingly clear that other components of the IGF signaling pathway, such as IR-A, may substitute for the lack of IGF-IR, and induce cancer resistance and/or clonal selection. Moreover, accumulating evidence now indicates that IGF signaling is a central player in the induction/maintenance of epithelial mesenchymal transition (EMT) and cell stemness, two strictly related programs, which play a key role in metastatic spread and resistance to cancer treatments. Here we review the evidences indicating that IGF signaling enhances the expression of transcription factors implicated in the EMT program and has extensive cross-talk with specific pathways involved in cell pluripotency and stemness maintenance. In turn, EMT and cell stemness activate positive feed-back mechanisms causing up-regulation of various IGF signaling components. These findings may have novel translational implications.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
14
|
Zhang J, Li L, Peng L, Sun Y, Li J. An efficient weighted graph strategy to identify differentiation associated genes in embryonic stem cells. PLoS One 2013; 8:e62716. [PMID: 23638139 PMCID: PMC3637163 DOI: 10.1371/journal.pone.0062716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/25/2013] [Indexed: 11/18/2022] Open
Abstract
In the past few decades, embryonic stem cells (ESCs) were of great interest as a model system for studying early developmental processes and because of their potential therapeutic applications in regenerative medicine. However, the underlying mechanisms of ESC differentiation remain unclear, which limits our exploration of the therapeutic potential of stem cells. Fortunately, the increasing quantity and diversity of biological datasets can provide us with opportunities to explore the biological secrets. However, taking advantage of diverse biological information to facilitate the advancement of ESC research still remains a challenge. Here, we propose a scalable, efficient and flexible function prediction framework that integrates diverse biological information using a simple weighted strategy, for uncovering the genetic determinants of mouse ESC differentiation. The advantage of this approach is that it can make predictions based on dynamic information fusion, owing to the simple weighted strategy. With this approach, we identified 30 genes that had been reported to be associated with differentiation of stem cells, which we regard to be associated with differentiation or pluripotency in embryonic stem cells. We also predicted 70 genes as candidates for contributing to differentiation, which requires further confirmation. As a whole, our results showed that this strategy could be applied as a useful tool for ESC research.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Prevention, Tongji University School of Medicine, Shanghai, China
- * E-mail: (JZ); (JL)
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Jue Li
- Department of Prevention, Tongji University School of Medicine, Shanghai, China
- * E-mail: (JZ); (JL)
| |
Collapse
|
15
|
Xue P, Wu X, Zhou L, Ma H, Wang Y, Liu Y, Ma J, Li Y. IGF1 promotes osteogenic differentiation of mesenchymal stem cells derived from rat bone marrow by increasing TAZ expression. Biochem Biophys Res Commun 2013; 433:226-31. [DOI: 10.1016/j.bbrc.2013.02.088] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/23/2013] [Indexed: 01/10/2023]
|
16
|
Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochem J 2011; 438:11-23. [PMID: 21793804 DOI: 10.1042/bj20102152] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
LIF (leukaemia inhibitory factor) is a key cytokine for maintaining self-renewal and pluripotency of mESCs (mouse embryonic stem cells). Upon binding to the LIF receptor, LIF activates three major intracellular signalling pathways: the JAK (Janus kinase)/STAT3 (signal transducer and activator of transcription 3), PI3K (phosphoinositide 3-kinase)/AKT and SHP2 [SH2 (Src homology 2) domain-containing tyrosine phosphatase 2]/MAPK (mitogen-activated protein kinase) pathways. These pathways converge to orchestrate the gene expression pattern specific to mESCs. Among the many signalling events downstream of the LIF receptor, activation and DNA binding of the transcription factor STAT3 plays a central role in transducing LIF's functions. The fundamental role of LIF for pluripotency was highlighted further by the discovery that LIF accelerates the conversion of epiblast-derived stem cells into a more fully pluripotent state. In the present review, we provide an overview of the three major LIF signalling pathways, the molecules that interact with STAT3 and the current interpretations of the roles of LIF in pluripotency.
Collapse
|
17
|
Abstract
The widespread epidemic of obesity and type 2 diabetes has raised concern for the impact of these disorders as risk factors for cancer and has renewed the interest for studies regarding the involvement of hyperinsulinemia and insulin receptor (IR) in cancer progression. Overexpression of IR in cancer cells may explain their increased sensitivity to hyperinsulinemia. Moreover, IR isoform A (IR-A) together with autocrine production of its ligand IGF2 is emerging as an important mechanism of normal and cancer stem cell expansion and is a feature of several malignancies. De novo activation of the IR-A/IGF2 autocrine loop also represents a mechanism of resistance to anticancer therapies. Increasing knowledge of the IR role in cancer has important implications for cancer prevention, which should include control of insulin resistance and hyperinsulinemia in the population and meticulous evaluation of new antidiabetic drugs for their metabolic:mitogenic ratio. We are now aware that several anticancer treatments may induce or worsen insulin resistance that may limit therapy efficacy. Future anticancer therapies need to target the IR-A pathway in order to inhibit the tumor promoting effect of IR without impairing the metabolic effect of insulin.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Campus Universitario, località Germaneto, 88100 Catanzaro, Italy.
| | | |
Collapse
|
18
|
Low concentrations of nitric oxide delay the differentiation of embryonic stem cells and promote their survival. Cell Death Dis 2010; 1:e80. [PMID: 21368853 PMCID: PMC3035898 DOI: 10.1038/cddis.2010.57] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) is an intracellular messenger in several cell systems, but its contribution to embryonic stem cell (ESC) biology has not been characterized. Exposure of ESCs to low concentrations (2-20 μM) of the NO donor diethylenetriamine NO adduct confers protection from apoptosis elicited by leukaemia inhibitory factor (LIF) withdrawal. NO blocked caspase 3 activation, PARP degradation, downregulation of the pro-apoptotic genes Casp7, Casp9, Bax and Bak1 and upregulation of the anti-apoptotic genes Bcl-2 111, Bcl-2 and Birc6. These effects were also observed in cells overexpressing eNOS. Exposure of LIF-deprived mESCs to low NO prevented the loss of expression of self-renewal genes (Oct4, Nanog and Sox2) and the SSEA marker. Moreover, NO blocked the differentiation process promoted by the absence of LIF and bFGF in mouse and human ESCs. NO treatment decreased the expression of differentiation markers, such as Brachyury, Gata6 and Gata4. Constitutive overexpression of eNOS in cells exposed to LIF deprivation maintained the expression of self-renewal markers, whereas the differentiation genes were repressed. These effects were reversed by addition of the NOS inhibitor L-NMMA. Altogether, the data suggest that low NO has a role in the regulation of ESC differentiation by delaying the entry into differentiation, arresting the loss of self-renewal markers and promoting cell survival by inhibiting apoptosis.
Collapse
|
19
|
Chen L, Khillan JS. A novel signaling by vitamin A/retinol promotes self renewal of mouse embryonic stem cells by activating PI3K/Akt signaling pathway via insulin-like growth factor-1 receptor. Stem Cells 2010; 28:57-63. [PMID: 19890980 DOI: 10.1002/stem.251] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pluripotent embryonic stem (ES) cells are a potential source of all types of cells for regenerative medicine. ES cells maintain pluripotency through a complex interplay of different signaling pathways and transcription factors, including leukemia inhibitory factor (LIF), Nanog, Sox2, and Oct3/4. Nanog, however, plays a key role in maintaining the pluripotency of mouse and human ES cells. Phosphoinositde 3-kinase (PI3K) signaling pathway which is activated in response to growth factors and cytokines also plays a critical role in promoting the survival and proliferation of ES cells. Our earlier studies revealed that retinol, the alcohol form of vitamin A, enhances the expression of Nanog and prevents differentiation of ES cells in long-term cultures. Normally vitamin A/retinol is associated with cell differentiation via its potent metabolite, retinoic acid. Thus far, no direct function has been ascribed to retinol itself. In this study, we demonstrate for the first time that retinol directly activates phosphoinositide three (PI3) kinase signaling pathway through IGF-1 receptor/insulin receptor substrate one (IRS-1) by engaging Akt/PKB-mTORC1 mammalian target of rapamycin-2 (mammalian target of rapamycin complex 2), indicating a growth factor-like function of vitamin A. Furthermore, ES cells do not express enzymes to metabolize retinol into retinoic acid and lack receptors for retinol transport into the cytoplasm, indicating that retinol signaling is independent of retinoic acid. This study presents a novel system to investigate how extracellular signals control the self renewal of ES cells which will be important for high-quality ES cells for regenerative medicine.
Collapse
Affiliation(s)
- Liguo Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
20
|
Wang HW, Wu YH, Hsieh JY, Liang ML, Chao ME, Liu DJ, Hsu MT, Wong TT. Pediatric primary central nervous system germ cell tumors of different prognosis groups show characteristic miRNome traits and chromosome copy number variations. BMC Genomics 2010; 11:132. [PMID: 20178649 PMCID: PMC2837036 DOI: 10.1186/1471-2164-11-132] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/24/2010] [Indexed: 01/07/2023] Open
Abstract
Background Intracranial pediatric germ cell tumors (GCTs) are rare and heterogeneous neoplasms and vary in histological differentiation, prognosis and clinical behavior. Germinoma and mature teratoma are GCTs that have a good prognosis, while other types of GCTs, termed nongerminomatous malignant germ cell tumors (NGMGCTs), are tumors with an intermediate or poor prognosis. The second group of tumors requires more extensive drug and irradiation treatment regimens. The mechanisms underlying the differences in incidence and prognosis of the various GCT subgroups are unclear. Results We identified a distinct mRNA profile correlating with GCT histological differentiation and prognosis, and also present in this study the first miRNA profile of pediatric primary intracranial GCTs. Most of the differentially expressed miRNAs were downregulated in germinomas, but miR-142-5p and miR-146a were upregulated. Genes responsible for self-renewal (such as POU5F1 (OCT4), NANOG and KLF4) and the immune response were abundant in germinomas, while genes associated with neuron differentiation, Wnt/β-catenin pathway, invasiveness and epithelial-mesenchymal transition (including SNAI2 (SLUG) and TWIST2) were abundant in NGMGCTs. Clear transcriptome segregation based on patient survival was observed, with malignant NGMGCTs being closest to embryonic stem cells. Chromosome copy number variations (CNVs) at cytobands 4q13.3-4q28.3 and 9p11.2-9q13 correlated with GCT malignancy and clinical risk. Six genes (BANK1, CXCL9, CXCL11, DDIT4L, ELOVL6 and HERC5) within 4q13.3-4q28.3 were more abundant in germinomas. Conclusions Our results integrate molecular profiles with clinical observations and provide insights into the underlying mechanisms causing GCT malignancy. The genes, pathways and microRNAs identified have the potential to be novel therapeutic targets.
Collapse
Affiliation(s)
- Hsei-Wei Wang
- School of Life Sciences, Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yu Z, Baserga R, Chen L, Wang C, Lisanti MP, Pestell RG. microRNA, cell cycle, and human breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1058-64. [PMID: 20075198 DOI: 10.2353/ajpath.2010.090664] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of microRNAs as a novel class of gene expression regulators has led to a new strategy for disease diagnostics and therapeutics. Cell cycle, cell proliferation, and tumorigenesis are all regulated by microRNAs. Several general principles linking microRNAs and cancer have been recently reviewed; therefore, the current review focuses specifically on the perspective of microRNAs in control of cell cycle, stem cells, and heterotypic signaling, as well as the role of these processes in breast cancer. Altered abundance of cell cycle regulation proteins and aberrant expression of microRNAs frequently coexist in human breast cancers. Altered microRNA expression in breast cancer cell lines is associated with altered cell cycle progression and cell proliferation. Indeed, recent studies have demonstrated a causal role for microRNA in governing breast tumor suppression or collaborative oncogenesis. This review summarizes the current understanding of the role for microRNA in regulating the cell cycle and summarizes the evidence for aberrant microRNA expression in breast cancer. The new evidence for microRNA regulation by annotated genes and the involvement of microRNA in breast cancer metastasis are discussed, as is the potential for microRNA to improve breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Zuoren Yu
- Department of Cancer Biology, Thomas Jefferson University, 233 S. 10 Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
22
|
Shi J, Wang DM, Wang CM, Hu Y, Liu AH, Zhang YL, Sun B, Song JG. Insulin Receptor Substrate-1 Suppresses Transforming Growth Factor-β1–Mediated Epithelial-Mesenchymal Transition. Cancer Res 2009; 69:7180-7. [DOI: 10.1158/0008-5472.can-08-4470] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Mardilovich K, Pankratz SL, Shaw LM. Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal 2009; 7:14. [PMID: 19534786 PMCID: PMC2709114 DOI: 10.1186/1478-811x-7-14] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 06/17/2009] [Indexed: 12/13/2022] Open
Abstract
The Insulin Receptor Substrate (IRS) proteins are cytoplasmic adaptor proteins that function as essential signaling intermediates downstream of activated cell surface receptors, many of which have been implicated in cancer. The IRS proteins do not contain any intrinsic kinase activity, but rather serve as scaffolds to organize signaling complexes and initiate intracellular signaling pathways. As common intermediates of multiple receptors that can influence tumor progression, the IRS proteins are positioned to play a pivotal role in regulating the response of tumor cells to many different microenvironmental stimuli. Limited studies on IRS expression in human tumors and studies on IRS function in human tumor cell lines and in mouse models have provided clues to the potential function of these adaptor proteins in human cancer. A general theme arises from these studies; IRS-1 and IRS-4 are most often associated with tumor growth and proliferation and IRS-2 is most often associated with tumor motility and invasion. In this review, we discuss the mechanisms by which IRS expression and function are regulated and how the IRS proteins contribute to tumor initiation and progression.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
24
|
Yu JY, Reynolds SH, Hatfield SD, Shcherbata HR, Fischer KA, Ward EJ, Long D, Ding Y, Ruohola-Baker H. Dicer-1-dependent Dacapo suppression acts downstream of Insulin receptor in regulating cell division of Drosophila germline stem cells. Development 2009; 136:1497-507. [PMID: 19336466 DOI: 10.1242/dev.025999] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is important to understand the regulation of stem cell division because defects in this process can cause altered tissue homeostasis or cancer. The cyclin-dependent kinase inhibitor Dacapo (Dap), a p21/p27 homolog, acts downstream of the microRNA (miRNA) pathway to regulate the cell cycle in Drosophila melanogaster germline stem cells (GSCs). Tissue-extrinsic signals, including insulin, also regulate cell division of GSCs. We report that intrinsic and extrinsic regulators intersect in GSC division control; the Insulin receptor (InR) pathway regulates Dap levels through miRNAs, thereby controlling GSC division. Using GFP-dap 3'UTR sensors in vivo, we show that in GSCs the dap 3'UTR is responsive to Dicer-1, an RNA endonuclease III required for miRNA processing. Furthermore, the dap 3'UTR can be directly targeted by miR-7, miR-278 and miR-309 in luciferase assays. Consistent with this, miR-278 and miR-7 mutant GSCs are partially defective in GSC division and show abnormal cell cycle marker expression, respectively. These data suggest that the GSC cell cycle is regulated via the dap 3'UTR by multiple miRNAs. Furthermore, the GFP-dap 3'UTR sensors respond to InR but not to TGF-beta signaling, suggesting that InR signaling utilizes Dap for GSC cell cycle regulation. We further demonstrate that the miRNA-based Dap regulation may act downstream of InR signaling; Dcr-1 and Dap are required for nutrition-dependent cell cycle regulation in GSCs and reduction of dap partially rescues the cell cycle defect of InR-deficient GSCs. These data suggest that miRNA- and Dap-based cell cycle regulation in GSCs can be controlled by InR signaling.
Collapse
Affiliation(s)
- Jenn-Yah Yu
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The insulin receptor substrate-1: A biomarker for cancer? Exp Cell Res 2009; 315:727-32. [DOI: 10.1016/j.yexcr.2008.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/23/2008] [Accepted: 09/23/2008] [Indexed: 01/13/2023]
|
26
|
Chen J, Capozza F, Wu A, deAngelis T, Sun H, Lisanti M, Baserga R. Regulation of insulin receptor substrate-1 expression levels by caveolin-1. J Cell Physiol 2008; 217:281-9. [DOI: 10.1002/jcp.21498] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Abstract
Pluripotent ES (embryonic stem) cells can be expanded in culture and induced to differentiate into a wide range of cell types. Self-renewal of ES cells involves proliferation with concomitant suppression of differentiation. Some critical and conserved pathways regulating self-renewal in both human and mouse ES cells have been identified, but there is also evidence suggesting significant species differences. Cytoplasmic and receptor tyrosine kinases play important roles in proliferation, survival, self-renewal and differentiation in stem, progenitor and adult cells. The present review focuses on the role of tyrosine kinase signalling for maintenance of the undifferentiated state, proliferation, survival and early differentiation of ES cells.
Collapse
Affiliation(s)
- Cecilia Annerén
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|