1
|
Li F, Cai C, Wang F, Zhang N, Zhao Q, Chen Y, Cui X, Wang S, Zhang W, Liu D, Cai Y, Jin J. 20(S)-ginsenoside Rg3 suppresses gastric cancer cell proliferation by inhibiting E2F-DP dimerization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156740. [PMID: 40252583 DOI: 10.1016/j.phymed.2025.156740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Gastric cancer (GC) is a common and aggressive malignancy, with treatment options often limited by drug resistance and the adverse effects of targeted therapies and immunotherapy. Ginsenoside Rg3, a bioactive compound derived from ginseng, has shown promise in inhibiting the growth of various tumor types, including GC. However, the molecular mechanisms underlying its therapeutic effects against GC remain insufficiently understood. OBJECTIVE This study aimed to elucidate the molecular mechanisms underlying the anti-cancer effects of ginsenoside Rg3 against GC. METHODS To explore the molecular mechanisms underlying Rg3's anti-GC effects, RNA sequencing (RNA-Seq) was conducted to identify potential Rg3-regulated targets. The interaction between Rg3 and E2F was analyzed using several approaches, including the cellular thermal shift assay (CETSA), Rg3-PEGA pull-down, Rg3 pull-down protein mass spectrometry, and 3D molecular docking. Additionally, quantitative reverse transcription PCR (qRT-PCR), co-transfection followed by immunoprecipitation, Western blotting, flow cytometry, Annexin V-FITC staining, Hoechst staining, and luciferase reporter assays were employed to elucidate the molecular effects of Rg3. The inhibitory effect of Rg3 on GC proliferation was assessed through colony formation assays in vitro and tumor xenograft experiments in C57BL/6 mice in vivo. RESULTS Rg3-mediated gene expression profiling in GC cells revealed several transcription factors, including E2F, and biological processes potentially influenced by Rg3. Consistent with these findings, Rg3 suppressed E2F expression and impeded GC cell proliferation by inducing G1/S cell cycle arrest, reducing cell growth both in vitro and in vivo, enhancing apoptosis, and inhibiting CDC6 transactivation. CETSA and Rg3 pull-down assays confirmed an interaction between Rg3 and E2F. Additionally, 3D molecular docking analysis demonstrated that Rg3 binds with high affinity to E2F at the heterodimeric domain via hydrogen bonding, potentially disrupting E2F-DP heterodimer formation and subsequently inhibiting cell cycle gene expression. In agreement with this, Rg3-treated GC cells exhibited reduced expression of cyclin D1, CDK4, cyclin A, CDK1, and CDK2. Moreover, Rg3 activated the tumor suppressors p53 and p21, further inhibiting RB phosphorylation by suppressing cyclin/CDK activity, thereby blocking transcription of G1/S transition-related genes. CONCLUSION This study provides the first evidence that Rg3 directly binds to E2F proteins, disrupting E2F-DP heterodimer formation and inhibiting the transcription of E2F-DP-regulated target genes. Furthermore, Rg3 activates the p53-p21 pathway while suppressing the cyclin/CDK-RB signaling pathway, effectively inhibiting cancer cell proliferation. These findings highlight a potential therapeutic strategy for developing small molecules structurally similar to Rg3 to target tumors with high E2F expression.
Collapse
Affiliation(s)
- Fuqiang Li
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China; School of Pharmacy, Changchun University of Chinese Medicine, Boshuo Road, Jingyue Development Zone, Changchun, Jilin 130117, China
| | - Chengyu Cai
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Fei Wang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Na Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Qingzhi Zhao
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Yuyang Chen
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Xueli Cui
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Siyang Wang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Wenjie Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Boshuo Road, Jingyue Development Zone, Changchun, Jilin 130117, China.
| | - Yong Cai
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China.
| | - Jingji Jin
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China.
| |
Collapse
|
2
|
Hong R, Wang H, Lin Y, Yin X, Fang J, Pang J, Chen L, Wu H, Liang Z. The clinicopathological and molecular features of primary high-grade neuroendocrine tumour in the breast. Histopathology 2025; 86:900-915. [PMID: 39688109 DOI: 10.1111/his.15398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/17/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
AIMS Nottingham grade for breast cancers, rather than gastro-entero-pancreatic (GEP) grade for neuroendocrine tumours (NETs), is currently applied to primary breast NETs, which need further clarification. High-grade NETs in breast also remain poorly recognised. METHODS AND RESULTS Among 595 breast carcinomas with diffuse synaptophysin (Syn) or chromogranin A (CgA) immunostaining (≥ 90%), 197 eligible cases were selected, including 69 NETs, 123 invasive breast carcinomas of no special type (IBC-NSTs) and five neuroendocrine carcinomas (NECs). The prognostic significance of these two grading systems in breast NETs was assessed. Furthermore, the clinicopathological features were compared in Nottingham G3 cases among three entities. Targeted sequencing and immunostaining (INSM1/p53/Rb/p16) were also performed in all Nottingham G3 NETs, NECs and 10 Nottingham G3 IBC-NSTs. All Nottingham G3 NETs (9 of 69, 13.0%) fell into GEP G3 cases (20 of 69, 29.0%). Nottingham grade provided better prognostic discrimination between G1/G2 and G3 NETs than GEP grade. Among Nottingham G3 cases, there was a trend towards reduced progression-free survival (PFS) in NETs compared with IBC-NSTs (P = 0.057), and the former were more often immunoreactive for INSM1 (44.4 versus 0%, P = 0.033). Nottingham G3 NETs were all of luminal-like phenotype (P < 0.001) and exhibited less aberrant p53 patterns (11.1 versus 80.0%, P = 0.023) as well as more favourable PFS (P = 0.012) and disease-specific survival (P = 0.002) than NECs. Rb loss (4 of 5, 80%), p16 overexpression (5 of 5, 100%) and RB1 mutation (2 of 5, 40%) were observed exclusively in NECs. Based on expression data, epithelial-mesenchymal transition and KRAS signalling pathways were significantly up-regulated in Nottingham G3 NETs (P < 0.05). CONCLUSIONS Nottingham grade, rather than GEP grade, holds important prognostic significance in primary breast NETs. Nottingham G3 NETs represent a small proportion of breast NETs, and may demonstrate distinct clinicopathological and molecular features from other high-grade breast carcinomas with diffuse neuroendocrine markers expression.
Collapse
Affiliation(s)
- Ruping Hong
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianglin Yin
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiuyuan Fang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Junyi Pang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Longyun Chen
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Zhou L, Liu S, Li C, Zhou W, Dai F, Tong X. BmE2F1 regulates endoreplication of silk gland cells in silkworm, Bombyx mori. Int J Biol Macromol 2025; 291:138916. [PMID: 39706412 DOI: 10.1016/j.ijbiomac.2024.138916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Endoreplication is particularly important in the context of silk protein synthesis within the silk gland cells of silkworms. Our previous research indicated that the BmE2F1 enhances the silk yield of silkworm cocoons, but the underlying molecular mechanism remains elusive. In this study, we employed RNA-sequencing to dissect the transcriptional profiles of silk glands in the wild-type Dazao silkworm strain and the overexpression (OE) silkworm strain with specific overexpression of the BmE2F1 gene in silk glands. Among the 1126 differentially expressed genes (DEGs), many related to DNA replication (endoreplication in silk glands of silkworm larvae) were significantly enriched. Quantitative real-time PCR confirmed that overexpression of BmE2F1 led to a substantial increase in the expression of 13 genes involved in the DNA replication pathway. Additionally, BmE2F1 upregulated the expression of BmCyclin E, a pivotal gene in the G/S phase transition. Moreover, BmE2F1 overexpression in silk glands significantly boosted DNA replication and concurrently increased the DNA content within silk glands. In conclusion, BmE2F1 regulates endoreplication in silk gland cells of silkworms through dual mechanisms: firstly, by enhancing the formation of the DNA replication complex; and secondly, by facilitating the cells' entry into the S phase.
Collapse
Affiliation(s)
- Linli Zhou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Shuo Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Chunlin Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Wei Zhou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
López-Ansio M, Ramos-García P, González-Moles MÁ. Predictive Value of the Loss of pRb Expression in the Malignant Transformation Risk of Oral Potentially Malignant Disorders: A Systematic Review and Meta-Analysis. Cancers (Basel) 2025; 17:329. [PMID: 39858110 PMCID: PMC11764026 DOI: 10.3390/cancers17020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE The aim of this systematic review and meta-analysis was to qualitatively and quantitatively evaluate the current evidence on the significance of the loss of early stages of oral carcinogenesis in lesions diagnosed according to clinical and/or histopathological criteria and their evolution to oral cancer. MATERIALS AND METHODS We searched MEDLINE (through PubMed), Embase, Scopus and Web of Science for primary-level studies published before November 2024, designed as prospective or retrospective longitudinal cohorts, and not restricted by language or publication date. The risk of bias was critically assessed using the QUIPS tool. Meta-analyses, heterogeneity exploration, sensitivity and small-study effect analyses were conducted. RESULTS The inclusion criteria were met by six primary-level studies, which recruited 330 patients with OPMDs with follow-up data. The loss of pRb expression, assessed through immunohistochemistry, was significantly associated with a higher malignant transformation risk of OPMDs (RR = 1.92, 95%CI = 1.25-2.94, p = 0.003). The leukoplakia subgroup retained this significant association (p = 0.006), being the OPMD where the loss of pRb expression showed the best predictive value for malignant transformation (RR = 2.00, 95%CI = 1.22-3.29). Regarding the immunohistochemical technique and scoring methods, better performance and results were achieved by applying a cutoff point > 10% pRb-positive cells with nuclear staining (RR = 2.10, 95%CI = 1.30-3.38, 95%CI = 0.002). CONCLUSSION The present systematic review and meta-analysis supports that the loss of expression of the tumor suppressor pRb, assessed through immunohistochemistry, is a predictor of the malignant transformation risk of oral leukoplakias. Future studies are needed in other OPMDs following the recommendations provided based on current evidence gaps.
Collapse
Affiliation(s)
| | - Pablo Ramos-García
- Biohealth Research Institute, IBS, School of Dentistry, University of Granada, 18071 Granada, Spain;
| | | |
Collapse
|
5
|
Bagheri-Yarmand R, Grubbs EG, Hofmann MC. Thyroid C-Cell Biology and Oncogenic Transformation. Recent Results Cancer Res 2025; 223:51-91. [PMID: 40102254 DOI: 10.1007/978-3-031-80396-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The thyroid parafollicular cell, or commonly named "C-cell," functions in serum calcium homeostasis. Elevations in serum calcium trigger release of calcitonin from the C-cell, which in turn functions to inhibit absorption of calcium by the intestine, resorption of bone by the osteoclast, and reabsorption of calcium by renal tubular cells. Oncogenic transformation of the thyroid C-cell is thought to progress through a hyperplastic process prior to malignancy with increasing levels of serum calcitonin serving as a biomarker for tumor burden. The discovery that Multiple Endocrine Neoplasia, type 2 is caused by activating mutations of the RET gene serves to highlight the RET-RAS-MAPK signaling pathway in both initiation and progression of medullary thyroid carcinoma. Thyroid C-cells are known to express RET at high levels relative to most cell types, therefore aberrant activation of this receptor is targeted primarily to the C-cell, providing one possible cause of tissue-specific oncogenesis. The role of RET signaling in normal C-cell function is unknown though calcitonin gene transcription appears to be sensitive to RET activation. Beyond RET the modeling of oncogenesis in animals and screening of human tumors for candidate gene mutations has uncovered mutation of RAS family members and inactivation of RB1 regulatory pathway as potential mediators of C-cell transformation. More recently, the integration of multiple biological layers of omics studies has uncovered new pathways of oncogenesis. A growing understanding of how RET interacts with these pathways, both in normal C-cell function and during oncogenic transformation, will help in the development of novel molecular targeted therapies.
Collapse
Affiliation(s)
- Rozita Bagheri-Yarmand
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth G Grubbs
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Pandey P, Ramniwas S, Pandey S, Lakhanpal S, Ballal S, Kumar S, Bhat M, Sharma S, Kumar MR, Khan F. Elucidating the anticancerous efficacy of genistein via modulating HPV (E7 and E6) oncogenes expression and apoptotic induction in cervical cancer cells. Biotechnol Appl Biochem 2024. [PMID: 39491824 DOI: 10.1002/bab.2691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
In recent years, genistein has garnered increased interest for its ability to inhibit numerous deregulated targets associated with cancer progression and induction of programmed cell death and antiproliferative activities in human carcinoma cells. Cancer etiology is influenced via multiple disrupted signaling pathways. This study therefore directed toward investigating genistein efficacy in modulating mRNA expression levels of two crucial Human Pappiloma Virus (HPV) (E7 and E6) oncogenes for cancer treatment. Moreover, the inhibitory effects of genistein for HPV (E7 and E6) oncogenes in cervical carcinoma have not yet been reported. Current study investigated inhibitory potential of genistein in HPV (E7 and E6) oncogenes in HeLa cells. These oncogenes are known to deactivate many tumor suppressor proteins (p53 and pRB). Genistein therapy resulted in decreased cell proliferation and increased cell accumulation in the G (G0/G1) phase in HeLa cell lines. In addition, genistein therapy has resulted in the suppression of HPV (E7 and E6) gene expression and simultaneously increasing expression levels of p53 and pRB mRNA levels. As a consequence, there has been an activation of a series of caspases (3, 8, and 9), resulting in their cleavage. Consequently, our data suggests that genistein could be a powerful candidate for treating cervical cancer by targeting two important oncogenes involved in viral development. However, more in vitro research on primary cervical cancer cells is required to validate the clinically relevant efficacy of genistein against cervical cancer.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering & Technology, Chitkara University, Rajpura, Punjab, India
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Seema Ramniwas
- University Centre of Research and Development, University institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sanjay Kumar
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Mahakshit Bhat
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Fahad Khan
- Center for Global Health Research Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
7
|
Sun M, Ji Y, Zhang G, Li Y, Dong F, Wu T. Posttranslational modifications of E2F family members in the physiological state and in cancer: Roles, mechanisms and therapeutic targets. Biomed Pharmacother 2024; 178:117147. [PMID: 39053422 DOI: 10.1016/j.biopha.2024.117147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
The E2F transcription factor family, whose members are encoded by the E2F1-E2F8 genes, plays pivotal roles in the cell cycle, apoptosis, metabolism, stemness, metastasis, aging, angiogenesis, tumor promotion or suppression, and other biological processes. The activity of E2Fs is regulated at multiple levels, with posttranslational modifications being an important regulatory mechanism. There are numerous types of posttranslational modifications, among which phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, and poly(ADP-ribosyl)ation are the most commonly studied in the context of the E2F family. Posttranslational modifications of E2F family proteins regulate their biological activity, stability, localization, and interactions with other biomolecules, affecting cell proliferation, apoptosis, DNA damage, etc., and thereby playing roles in physiological and pathological processes. Notably, these modifications do not always act alone but rather form an interactive regulatory network. Currently, several drugs targeting posttranslational modifications are being studied or clinically applied, in which the proteolysis-targeting chimera and molecular glue can target E2Fs. This review aims to summarize the roles and regulatory mechanisms of different PTMs of E2F family members in the physiological state and in cancer and to briefly discuss their clinical significance and potential therapeutic use.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Yitong Ji
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Guojun Zhang
- Department of Physiology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, China
| | - Yang Li
- Department of Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fengming Dong
- Department of Urology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Tianyi Wu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Xie Y, Xiao D, Li D, Peng M, Peng W, Duan H, Yang X. Combined strategies with PARP inhibitors for the treatment of BRCA wide type cancer. Front Oncol 2024; 14:1441222. [PMID: 39156700 PMCID: PMC11327142 DOI: 10.3389/fonc.2024.1441222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Genomic instability stands out as a pivotal hallmark of cancer, and PARP inhibitors (PARPi) emerging as a groundbreaking class of targeted therapy drugs meticulously crafted to inhibit the repair of DNA single-strand breaks(SSB) in tumor cells. Currently, PARPi have been approved for the treatment of ovarian cancer, pancreatic cancer, breast cancer, and prostate cancer characterized by homologous recombination(HR) repair deficiencies due to mutations in BRCA1/2 or other DNA repair associated genes and acquiring the designation of breakthrough therapy. Nonetheless, PARPi exhibit limited efficacy in the majority of HR-proficient BRCA1/2 wild-type cancers. At present, the synergistic approach of combining PARPi with agents that induce HR defects, or with chemotherapy and radiotherapy to induce substantial DNA damage, significantly enhances the efficacy of PARPi in BRCA wild-type or HR-proficient patients, supporting extension the use of PARPi in HR proficient patients. Therefore, we have summarized the effects and mechanisms of the combined use of drugs with PARPi, including the combination of PARPi with HR defect-inducing drugs such as ATRi, CHKi, HR indirectly inducing drugs like VEGFRi, CDKi, immune checkpoint inhibitors and drugs instigating DNA damage such as chemotherapy or radiotherapy. In addition, this review discusses several ongoing clinical trials aimed at analyzing the clinical application potential of these combined treatment strategies.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Di Xiao
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Duo Li
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoping Yang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
9
|
Ma M, Zhu Y, Xiao C, Li R, Cao X, Kang R, Wang X, Li E. Novel insights into RB1 in prostate cancer lineage plasticity and drug resistance. TUMORI JOURNAL 2024; 110:252-263. [PMID: 38316605 DOI: 10.1177/03008916231225576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.
Collapse
Affiliation(s)
- Min Ma
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yazhi Zhu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruidong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyu Cao
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ermao Li
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
10
|
Cordier F, Creytens D. RB1: governor of the cell cycle in health and disease-a primer for the practising pathologist. J Clin Pathol 2024; 77:435-438. [PMID: 38772617 DOI: 10.1136/jcp-2024-209480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
RB1 stands as the pioneering discovery in tumour-suppressor genes, marking a pivotal breakthrough in comprehending cancer development. This overview delves into the role of RB1 in both health and disease, exploring its association with the tumourigenesis of various cancers and a distinct subset of soft-tissue neoplasms. Additionally, we discuss the application of immunohistochemistry and fluorescence in situ hybridisation to detect RB1 alterations.
Collapse
Affiliation(s)
- Fleur Cordier
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
11
|
Ding W, Cai W, Wang H. P53 and pRB induction improves response to radiation therapy in HPV-positive laryngeal squamous cell carcinoma. Clinics (Sao Paulo) 2024; 79:100415. [PMID: 38897099 PMCID: PMC11237859 DOI: 10.1016/j.clinsp.2024.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Patients with Human Papillomavirus (HPV+)-associated Laryngeal Squamous Cell Carcinoma (LSCC) exhibit dramatically improved survival relative to those with HPV-Negative (HPV-) tumors. In this study, the authors aimed to investigate the radiosensitivity of all available confirmed HPV+ and HPV-LSCC cells in vitro and in vivo. METHODS Primary LSCC cells were generated from tumor specimens obtained from patients. Real-time PCR was performed to confirm HPV infection and the expression of HPV-related genes (E6 and E7), p53, and pRB. Clonogenic survival assays, western blotting, and flow cytometry were used to assess radiation sensitivity, apoptosis, and the expression of p53 and pRB. p53 and pRB knockout cells were generated using CRISPR/Cas9 technology. RESULTS HPV+ LSCC cells displayed enhanced radiation sensitivity compared to HPV- cells. Radiation-induced apoptosis in HPV+ LSCC cells, accompanied by increased levels of p53 and pRB. Knockout of p53 or pRB led to radiation resistance and attenuated radiation-induced apoptosis in HPV+ LSCC cells. In vivo experiments showed similar results, where knockout of p53 or pRB decreased radiosensitivity in tumor-bearing mice. CONCLUSION The present findings demonstrated that HPV+ LSCC cells displayed obvious inherent radiation sensitivity, corresponding to increased apoptosis following radiation exposure. Mechanism study showed that the expression of p53 and pRB in HPV+ cells are required for radiation sensitivity. These findings highlight a novel mechanism by which p53 and pRB play key roles in the radiation sensitivity of HPV+ LSCC compared to HPV-LSCC.
Collapse
Affiliation(s)
- Weiquan Ding
- Department of Otolaryngology Head and Neck Surgery, Panyu Central Hospital, Guangzhou, Guangdong, China.
| | - Weiwei Cai
- Department of Otolaryngology Head and Neck Surgery, Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Haili Wang
- Department of Otolaryngology Head and Neck Surgery, Panyu Central Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Cao X, Huber S, Ahari AJ, Traube FR, Seifert M, Oakes CC, Secheyko P, Vilov S, Scheller IF, Wagner N, Yépez VA, Blombery P, Haferlach T, Heinig M, Wachutka L, Hutter S, Gagneur J. Analysis of 3760 hematologic malignancies reveals rare transcriptomic aberrations of driver genes. Genome Med 2024; 16:70. [PMID: 38769532 PMCID: PMC11103968 DOI: 10.1186/s13073-024-01331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/04/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Rare oncogenic driver events, particularly affecting the expression or splicing of driver genes, are suspected to substantially contribute to the large heterogeneity of hematologic malignancies. However, their identification remains challenging. METHODS To address this issue, we generated the largest dataset to date of matched whole genome sequencing and total RNA sequencing of hematologic malignancies from 3760 patients spanning 24 disease entities. Taking advantage of our dataset size, we focused on discovering rare regulatory aberrations. Therefore, we called expression and splicing outliers using an extension of the workflow DROP (Detection of RNA Outliers Pipeline) and AbSplice, a variant effect predictor that identifies genetic variants causing aberrant splicing. We next trained a machine learning model integrating these results to prioritize new candidate disease-specific driver genes. RESULTS We found a median of seven expression outlier genes, two splicing outlier genes, and two rare splice-affecting variants per sample. Each category showed significant enrichment for already well-characterized driver genes, with odds ratios exceeding three among genes called in more than five samples. On held-out data, our integrative modeling significantly outperformed modeling based solely on genomic data and revealed promising novel candidate driver genes. Remarkably, we found a truncated form of the low density lipoprotein receptor LRP1B transcript to be aberrantly overexpressed in about half of hairy cell leukemia variant (HCL-V) samples and, to a lesser extent, in closely related B-cell neoplasms. This observation, which was confirmed in an independent cohort, suggests LRP1B as a novel marker for a HCL-V subclass and a yet unreported functional role of LRP1B within these rare entities. CONCLUSIONS Altogether, our census of expression and splicing outliers for 24 hematologic malignancy entities and the companion computational workflow constitute unique resources to deepen our understanding of rare oncogenic events in hematologic cancers.
Collapse
Affiliation(s)
- Xueqi Cao
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Graduate School of Quantitative Biosciences (QBM), Munich, Germany
| | - Sandra Huber
- Munich Leukemia Laboratory (MLL), Munich, Germany
| | - Ata Jadid Ahari
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Franziska R Traube
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christopher C Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Polina Secheyko
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sergey Vilov
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Ines F Scheller
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Vicente A Yépez
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Torsten Haferlach Leukämiediagnostik Stiftung, Munich, Germany
| | | | - Matthias Heinig
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Leonhard Wachutka
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
| | | | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Graduate School of Quantitative Biosciences (QBM), Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
13
|
Zhao H, Meng L, Du P, Liao X, Mo X, Gong M, Chen J, Liao Y. IDH1 mutation produces R-2-hydroxyglutarate (R-2HG) and induces mir-182-5p expression to regulate cell cycle and tumor formation in glioma. Biol Res 2024; 57:30. [PMID: 38760850 PMCID: PMC11100189 DOI: 10.1186/s40659-024-00512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), are present in most gliomas. IDH1 mutation is an important prognostic marker in glioma. However, its regulatory mechanism in glioma remains incompletely understood. RESULTS miR-182-5p expression was increased within IDH1-mutant glioma specimens according to TCGA, CGGA, and online dataset GSE119740, as well as collected clinical samples. (R)-2-hydroxyglutarate ((R)-2HG) treatment up-regulated the expression of miR-182-5p, enhanced glioma cell proliferation, and suppressed apoptosis; miR-182-5p inhibition partially eliminated the oncogenic effects of R-2HG upon glioma cells. By direct binding to Cyclin Dependent Kinase Inhibitor 2 C (CDKN2C) 3'UTR, miR-182-5p inhibited CDKN2C expression. Regarding cellular functions, CDKN2C knockdown promoted R-2HG-treated glioma cell viability, suppressed apoptosis, and relieved cell cycle arrest. Furthermore, CDKN2C knockdown partially attenuated the effects of miR-182-5p inhibition on cell phenotypes. Moreover, CDKN2C knockdown exerted opposite effects on cell cycle check point and apoptosis markers to those of miR-182-5p inhibition; also, CDKN2C knockdown partially attenuated the functions of miR-182-5p inhibition in cell cycle check point and apoptosis markers. The engineered CS-NPs (antagomir-182-5p) effectively encapsulated and delivered antagomir-182-5p, enhancing anti-tumor efficacy in vivo, indicating the therapeutic potential of CS-NPs(antagomir-182-5p) in targeting the miR-182-5p/CDKN2C axis against R-2HG-driven oncogenesis in mice models. CONCLUSIONS These insights highlight the potential of CS-NPs(antagomir-182-5p) to target the miR-182-5p/CDKN2C axis, offering a promising therapeutic avenue against R-2HG's oncogenic influence to glioma.
Collapse
Affiliation(s)
- Haiting Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- Department of Neurology, Xiangya Hospital, The Central South University (CSU), Changsha, 410008, P.R. China
| | - Li Meng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- Department of Radiology, Xiangya Hospital, Central South University (CSU), Changsha, 410008, P.R. China
| | - Peng Du
- Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, 830063, PR China
| | - Xinbin Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, 410008, P.R. China
| | - Xin Mo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, 410008, P.R. China
| | - Mengqi Gong
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, 410008, P.R. China
| | - Jiaxin Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- Department of Neurology, Xiangya Hospital, The Central South University (CSU), Changsha, 410008, P.R. China
| | - Yiwei Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, 410008, P.R. China.
| |
Collapse
|
14
|
Wang M, Yan X, Dong Y, Li X, Gao B. Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment. PLoS Comput Biol 2024; 20:e1012113. [PMID: 38728362 PMCID: PMC11230636 DOI: 10.1371/journal.pcbi.1012113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/08/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.
Collapse
Affiliation(s)
- Meng Wang
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Xinyue Yan
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Yanan Dong
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Xiaoqin Li
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Bin Gao
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| |
Collapse
|
15
|
Papavassiliou KA, Sofianidi AA, Gogou VA, Anagnostopoulos N, Papavassiliou AG. P53 and Rb Aberrations in Small Cell Lung Cancer (SCLC): From Molecular Mechanisms to Therapeutic Modulation. Int J Mol Sci 2024; 25:2479. [PMID: 38473726 DOI: 10.3390/ijms25052479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The genes coding for the tumor suppressors p53 and retinoblastoma (Rb) are inactivated in the vast majority of small cell lung cancer (SCLC) tumors. Data support the notion that these two deleterious genetic events represent the initial steps in the development of SCLC, making them essential for a lung epithelial cell to progress toward the acquisition of a malignant phenotype. With the loss of TP53 and RB1, their broad tumor suppressive functions are eliminated and a normal cell is able to proliferate indefinitely, escape entering into cellular senescence, and evade death, no matter the damage it has experienced. Within this setting, lung epithelial cells accumulate further oncogenic mutations and are well on their way to becoming SCLC cells. Understanding the molecular mechanisms of these genetic lesions and their effects within lung epithelial cells is of paramount importance, in order to tackle this aggressive and deadly lung cancer. The present review summarizes the current knowledge on p53 and Rb aberrations, their biological significance, and their prospective therapeutic potential, highlighting completed and ongoing clinical trials with agents that target downstream pathways.
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Amalia A Sofianidi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassiliki A Gogou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nektarios Anagnostopoulos
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
16
|
Li F, Yan J, Leng J, Yu T, Zhou H, Liu C, Huang W, Sun Q, Zhao W. Expression patterns of E2Fs identify tumor microenvironment features in human gastric cancer. PeerJ 2024; 12:e16911. [PMID: 38371373 PMCID: PMC10870925 DOI: 10.7717/peerj.16911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Objective E2F transcription factors are associated with tumor development, but their underlying mechanisms in gastric cancer (GC) remain unclear. This study explored whether E2Fs determine the prognosis or immune and therapy responses of GC patients. Methods E2F regulation patterns from The Cancer Genome Atlas (TCGA) were systematically investigated and E2F patterns were correlated with the characteristics of cellular infiltration in the tumor microenvironment (TME). A principal component analysis was used to construct an E2F scoring model based on prognosis-related differential genes to quantify the E2F regulation of a single tumor. This scoring model was then tested in patient cohorts to predict effects of immunotherapy. Results Based on the expression profiles of E2F transcription factors in GC, two different regulatory patterns of E2F were identified. TME and survival differences emerged between the two clusters. Lower survival rates in the Cluster2 group were attributed to limited immune function due to stromal activation. The E2F scoring model was then constructed based on the E2F-related prognostic genes. Evidence supported the E2F score as an independent and effective prognostic factor and predictor of immunotherapy response. A gene-set analysis correlated E2F score with the characteristics of immune cell infiltration within the TME. The immunotherapy cohort database showed that patients with a higher E2F score demonstrated better survival and immune responses. Conclusions This study found that differences in GC prognosis might be related to the E2F patterns in the TME. The E2F scoring system developed in this study has practical value as a predictor of survival and treatment response in GC patients.
Collapse
Affiliation(s)
- Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Yan
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Leng
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huayou Zhou
- Department of General Surgery, Hanzhong Central Hospital, Hanzhong, China
| | - Chang Liu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenbo Huang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
17
|
Iqbal MJ, Kabeer A, Abbas Z, Siddiqui HA, Calina D, Sharifi-Rad J, Cho WC. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun Signal 2024; 22:7. [PMID: 38167159 PMCID: PMC10763046 DOI: 10.1186/s12964-023-01398-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer remains a significant global public health concern, with increasing incidence and mortality rates worldwide. Oxidative stress, characterized by the production of reactive oxygen species (ROS) within cells, plays a critical role in the development of cancer by affecting genomic stability and signaling pathways within the cellular microenvironment. Elevated levels of ROS disrupt cellular homeostasis and contribute to the loss of normal cellular functions, which are associated with the initiation and progression of various types of cancer. In this review, we have focused on elucidating the downstream signaling pathways that are influenced by oxidative stress and contribute to carcinogenesis. These pathways include p53, Keap1-NRF2, RB1, p21, APC, tumor suppressor genes, and cell type transitions. Dysregulation of these pathways can lead to uncontrolled cell growth, impaired DNA repair mechanisms, and evasion of cell death, all of which are hallmark features of cancer development. Therapeutic strategies aimed at targeting oxidative stress have emerged as a critical area of investigation for molecular biologists. The objective is to limit the response time of various types of cancer, including liver, breast, prostate, ovarian, and lung cancers. By modulating the redox balance and restoring cellular homeostasis, it may be possible to mitigate the damaging effects of oxidative stress and enhance the efficacy of cancer treatments. The development of targeted therapies and interventions that specifically address the impact of oxidative stress on cancer initiation and progression holds great promise in improving patient outcomes. These approaches may include antioxidant-based treatments, redox-modulating agents, and interventions that restore normal cellular function and signaling pathways affected by oxidative stress. In summary, understanding the role of oxidative stress in carcinogenesis and targeting this process through therapeutic interventions are of utmost importance in combating various types of cancer. Further research is needed to unravel the complex mechanisms underlying oxidative stress-related pathways and to develop effective strategies that can be translated into clinical applications for the management and treatment of cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Ayesha Kabeer
- Department of Biotechnology, University of Sialkot, Sialkot, Punjab, Pakistan
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zaighum Abbas
- Department of Biotechnology, University of Sialkot, Sialkot, Punjab, Pakistan
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Harada K, Carr SM, Shrestha A, La Thangue NB. Citrullination and the protein code: crosstalk between post-translational modifications in cancer. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220243. [PMID: 37778382 PMCID: PMC10542456 DOI: 10.1098/rstb.2022.0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 10/03/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are central to epigenetic regulation and cellular signalling, playing an important role in the pathogenesis and progression of numerous diseases. Growing evidence indicates that protein arginine citrullination, catalysed by peptidylarginine deiminases (PADs), is involved in many aspects of molecular and cell biology and is emerging as a potential druggable target in multiple diseases including cancer. However, we are only just beginning to understand the molecular activities of PADs, and their underlying mechanistic details in vivo under both physiological and pathological conditions. Many questions still remain regarding the dynamic cellular functions of citrullination and its interplay with other types of PTMs. This review, therefore, discusses the known functions of PADs with a focus on cancer biology, highlighting the cross-talk between citrullination and other types of PTMs, and how this interplay regulates downstream biological events. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Koyo Harada
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Simon M. Carr
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Amit Shrestha
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Nicholas B. La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
19
|
Figueiredo D, Marques IA, Pires AS, Cavaleiro CF, Costa LC, Castela G, Murta JN, Botelho MF, Abrantes AM. Risk of Second Tumors in Retinoblastoma Survivors after Ionizing Radiation: A Review. Cancers (Basel) 2023; 15:5336. [PMID: 38001596 PMCID: PMC10670427 DOI: 10.3390/cancers15225336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Retinoblastoma (RB) is the most common ocular neoplasm in children, whose development depends on two mutational events that occur in both alleles of the retinoblastoma susceptibility gene (RB1). Regarding the nature of these mutational events, RB can be classified as hereditary if the first event is a germline mutation and the second one is a somatic mutation in retina cells or nonhereditary if both mutational events occur in somatic cells. Although the rate of survival of RB is significantly elevated, the incidence of second malignant neoplasms (SMNs) is a concern, since SMNs are the main cause of death in these patients. Effectively, RB patients present a higher risk of SMN incidence compared to other oncology patients. Furthermore, evidence confirms that hereditary RB survivors are at a higher risk for SMNs than nonhereditary RB survivors. Over the decades, some studies have been performed to better understand this subject, evaluating the risk of the development of SMNs in RB patients. Furthermore, this risk seems to increase with the use of ionizing radiation in some therapeutic approaches commonly used in the treatment of RB. This review aims to clarify the effect of ionizing radiation in RB patients and to understand the association between the risk of SMN incidence in patients that underwent radiation therapy, especially in hereditary RB individuals.
Collapse
Affiliation(s)
- Diana Figueiredo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.F.); (I.A.M.); (A.S.P.)
- University of Coimbra, Faculty of Sciences and Technology, 3000-548 Coimbra, Portugal
| | - Inês A. Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.F.); (I.A.M.); (A.S.P.)
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| | - Ana Salomé Pires
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.F.); (I.A.M.); (A.S.P.)
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061 Coimbra, Portugal; (G.C.); (J.N.M.)
| | - Claudia F. Cavaleiro
- Medical Imaging and Radiotherapy Department, Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, 3045-093 Coimbra, Portugal; (C.F.C.); (L.C.C.)
| | - Luís C. Costa
- Medical Imaging and Radiotherapy Department, Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, 3045-093 Coimbra, Portugal; (C.F.C.); (L.C.C.)
| | - Guilherme Castela
- Clinical Academic Centre of Coimbra (CACC), 3000-061 Coimbra, Portugal; (G.C.); (J.N.M.)
- Pediatric Oncology Service, Centro Hospitalar Universitário de Coimbra, 3000-602 Coimbra, Portugal
- Department of Ophthalmology, Centro de Responsabilidade Integrado de Oftalmologia, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Joaquim N. Murta
- Clinical Academic Centre of Coimbra (CACC), 3000-061 Coimbra, Portugal; (G.C.); (J.N.M.)
- Department of Ophthalmology, Centro de Responsabilidade Integrado de Oftalmologia, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.F.); (I.A.M.); (A.S.P.)
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061 Coimbra, Portugal; (G.C.); (J.N.M.)
| | - Ana Margarida Abrantes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.F.); (I.A.M.); (A.S.P.)
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061 Coimbra, Portugal; (G.C.); (J.N.M.)
- Medical Imaging and Radiotherapy Department, Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, 3045-093 Coimbra, Portugal; (C.F.C.); (L.C.C.)
| |
Collapse
|
20
|
Kim MJ, Kulkarni V, Goode MA, Sivesind TE. Exploring the interactions of antihistamine with retinoic acid receptor beta (RARB) by molecular dynamics simulations and genome-wide meta-analysis. J Mol Graph Model 2023; 124:108539. [PMID: 37331258 PMCID: PMC10529808 DOI: 10.1016/j.jmgm.2023.108539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Kaposi sarcoma (KS) is one of the most common AIDS-related malignant neoplasms, which can leave lesions on the skin among HIV patients. These lesions can be treated with 9-cis-retinoic acid (9-cis-RA), an endogenous ligand of retinoic acid receptors that has been FDA-approved for treatment of KS. However, topical application of 9-cis-RA can induce several unpleasant side effects, like headache, hyperlipidemia, and nausea. Hence, alternative therapeutics with less side effects are desirable. There are case reports associating over-the-counter antihistamine usage with regression of KS. Antihistamines competitively bind to H1 receptor and block the action of histamine, best known for being released in response to allergens. Furthermore, there are already dozens of antihistamines that are FDA-approved with less side effects than 9-cis-RA. This led our team to conduct a series of in-silico assays to determine whether antihistamines can activate retinoic acid receptors. First, we utilized high-throughput virtual screening and molecular dynamics simulations to model high-affinity interactions between antihistamines and retinoic acid receptor beta (RARβ). We then performed systems genetics analysis to identify a genetic association between H1 receptor itself and molecular pathways involved in KS. Together, these findings advocate for exploration of antihistamines against KS, starting with our two promising hit compounds, bepotastine and hydroxyzine, for experimental validation study in the future.
Collapse
Affiliation(s)
- Minjae J Kim
- University of Tennessee Health Sciences Center School of Medicine, Memphis, TN, USA.
| | | | - Micah A Goode
- University of Tennessee Health Sciences Center School of Medicine, Memphis, TN, USA.
| | - Torunn E Sivesind
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
21
|
Nafe R, Hattingen E. The Spectrum of Molecular Pathways in Gliomas-An Up-to-Date Review. Biomedicines 2023; 11:2281. [PMID: 37626776 PMCID: PMC10452344 DOI: 10.3390/biomedicines11082281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
During the last 20 years, molecular alterations have gained increasing significance in the diagnosis and biological assessment of tumors. Gliomas represent the largest group of tumors of the central nervous system, and the main aim of this review is to present the current knowledge on molecular pathways and their alterations in gliomas. A wide range of new insights has been gained, including evidence for the involvement of the WNT pathway or the hippo pathway in the pathobiology of gliomas, indicating a broad involvement of different pathways formerly not considered to play a central role in gliomas. Even new aspects of angiogenic, apoptotic, and metabolic pathways are presented, as well as the rapidly growing field of epigenetic processes, including non-coding RNAs. The two major conclusions drawn from the present review are the distinct interconnectivity of the whole spectrum of molecular pathways and the prominent role of non-coding RNAs, especially circular RNAs, in the regulation of specific targets. All these new insights are discussed, even considering the topic of the resistance to therapy of gliomas, along with aspects that are still incompletely understood, like the role of hydroxymethylation, or even ferroptosis, in the pathobiology of gliomas.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
22
|
Deregulated E2F Activity as a Cancer-Cell Specific Therapeutic Tool. Genes (Basel) 2023; 14:genes14020393. [PMID: 36833320 PMCID: PMC9956157 DOI: 10.3390/genes14020393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The transcription factor E2F, the principal target of the tumor suppressor pRB, plays crucial roles in cell proliferation and tumor suppression. In almost all cancers, pRB function is disabled, and E2F activity is enhanced. To specifically target cancer cells, trials have been undertaken to suppress enhanced E2F activity to restrain cell proliferation or selectively kill cancer cells, utilizing enhanced E2F activity. However, these approaches may also impact normal growing cells, since growth stimulation also inactivates pRB and enhances E2F activity. E2F activated upon the loss of pRB control (deregulated E2F) activates tumor suppressor genes, which are not activated by E2F induced by growth stimulation, inducing cellular senescence or apoptosis to protect cells from tumorigenesis. Deregulated E2F activity is tolerated in cancer cells due to inactivation of the ARF-p53 pathway, thus representing a feature unique to cancer cells. Deregulated E2F activity, which activates tumor suppressor genes, is distinct from enhanced E2F activity, which activates growth-related genes, in that deregulated E2F activity does not depend on the heterodimeric partner DP. Indeed, the ARF promoter, which is specifically activated by deregulated E2F, showed higher cancer-cell specific activity, compared to the E2F1 promoter, which is also activated by E2F induced by growth stimulation. Thus, deregulated E2F activity is an attractive potential therapeutic tool to specifically target cancer cells.
Collapse
|
23
|
Modified method for differentiation of myeloid-derived suppressor cells in vitro enhances immunosuppressive ability via glutathione metabolism. Biochem Biophys Rep 2022; 33:101416. [PMID: 36605123 PMCID: PMC9807831 DOI: 10.1016/j.bbrep.2022.101416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), which accumulate in tumor bearers, are known to suppress anti-tumor immunity and thus promote tumor progression. MDSCs are considered a major cause of resistance against immune checkpoint inhibitors in patients with cancer. Therefore, MDSCs are potential targets in cancer immunotherapy. In this study, we modified an in vitro method of MDSC differentiation. Upon stimulating bone marrow (BM) cells with granulocyte-macrophage colony-stimulating factor in vitro, we obtained both lymphocyte antigen 6G positive (Ly-6G+) and negative (Ly-6G-) MDSCs (collectively, hereafter referred to as conventional MDSCs), which were non-immunosuppressive and immunosuppressive, respectively. We then found that MDSCs differentiated from Ly-6G- BM (hereafter called 6G- BM-MDSC) suppressed T-cell proliferation more strongly than conventional MDSCs, whereas the cells differentiated from Ly-6G+ BM (hereafter called 6G+ BM-MDSC) were non-immunosuppressive. In line with this, conventional MDSCs or 6G- BM-MDSC, but not 6G+ BM-MDSC, promoted tumor progression in tumor-bearing mice. Moreover, we identified that activated glutathione metabolism was responsible for the enhanced immunosuppressive ability of 6G- BM-MDSC. Finally, we showed that Ly-6G+ cells in 6G- BM-MDSC, which exhibited weak immunosuppression, expressed higher levels of Cybb mRNA, an immunosuppressive gene of MDSCs, than 6G+ BM-MDSC. Together, these data suggest that the depletion of Ly-6G+ cells from the BM cells leads to differentiation of immunosuppressive Ly-6G+ MDSCs. In summary, we propose a better method for MDSC differentiation in vitro. Moreover, our findings contribute to the understanding of MDSC subpopulations and provide a basis for further research on MDSCs.
Collapse
Key Words
- Ab, antibody
- BM, bone marrow
- BM-MDSC
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- Cybb, Cytochrome b-245 beta polypeptide
- FBS, fetal bovine serum
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- Glutathione metabolism
- ICI, immune checkpoint inhibitor
- Immunosuppression
- Ly-6G
- Ly-6G, lymphocyte antigen 6G
- M-MDSCs, monocytic MDSCs
- MDSCs, myeloid-derived suppressor cells
- Myeloid-derived suppressor cell
- PBS, phosphate-buffered saline
- PD-1, programmed cell death 1
- PD-L1, programmed cell death 1 ligand 1
- PMN-MDSCs, polymorphonuclear MDSCs
- ROS, reactive oxygen species
- Rb1, retinoblastoma 1
- Tumor progression
- iNOS, inducible nitric oxide synthase
Collapse
|
24
|
Permatasari HK, Wewengkang DS, Tertiana NI, Muslim FZ, Yusuf M, Baliulina SO, Daud VPA, Setiawan AA, Nurkolis F. Anti-cancer properties of Caulerpa racemosa by altering expression of Bcl-2, BAX, cleaved caspase 3 and apoptosis in HeLa cancer cell culture. Front Oncol 2022; 12:964816. [PMID: 36203436 PMCID: PMC9530281 DOI: 10.3389/fonc.2022.964816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
The main cause of cervical cancer is infection with Human Papilloma Virus (HPV). Loss of apoptotic control allows cancer cells to survive longer and allows time for mutation accumulation thereby increasing the ability to invade during tumor development. Treatment options for cervical cancer today are surgery, radiotherapy, and chemotherapy. Toxicity to normal cells, adverse side effects, and drug resistance are the main barriers to the use of chemotherapy. Among marine organisms such as bacteria, fungi, actinobacteria, and seaweed have been used for the treatment of cancer. Caulerpa has bioactive metabolites, namely alkaloids, terpenoids, flavonoids, steroids and tannins and its bioactivity has been reported against many diseases including cancer. This study aimed to evaluate the anticancer activity of C. racemosa on HeLa cervical cancer cells. The study used a true experimental post-test only control group design to determine the effect of C. racemosa extract on HeLa cancer cells. C. racemosa extract was given in doses of 50 μg/mL, 100 μg/mL, 200 μg/mL, and 0 μg/mL as controls. Quantitative measurement of apoptosis was measured using flowcytometry and the expression of Bcl-2, BAX, and cleaved-caspase 3 as pro and anti-apoptotic proteins was measured using immunofluorescence. Trypan blue exclusion test was performed to measure cell viability. C. racemosa extract significantly increased the expression of pro-apoptotic proteins BAX and cleaved caspase-3 compared to controls. Annexin V-PI analysis showed the induction of apoptosis in treated cells and decreased HeLa cell viability at 24 hours and 48 hours post-treatment (p-value <0.05). C. racemosa extract has potential as an anti-cancer with pro-apoptotic and anti-proliferative activity on HeLa cancer cells and can be explored further as a cervical cancer therapy.
Collapse
Affiliation(s)
| | | | - Nur Iedha Tertiana
- Medical School, Faculty of Medicine, UIN Maulana Malik Ibrahim Malang, Malang, Indonesia
| | | | - Muhammad Yusuf
- Medical Programme, Faculty of Medicine Universitas Brawijaya, Malang, Indonesia
| | | | | | | | - Fahrul Nurkolis
- Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| |
Collapse
|
25
|
Li YP, Wang YT, Wang W, Zhang X, Shen RJ, Jin K, Jin LW, Jin ZB. Second hit impels oncogenesis of retinoblastoma in patient-induced pluripotent stem cell-derived retinal organoids: direct evidence for Knudson's theory. PNAS NEXUS 2022; 1:pgac162. [PMID: 36714839 PMCID: PMC9802398 DOI: 10.1093/pnasnexus/pgac162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
Retinoblastoma (Rb) is a type of malignant tumor due to abnormal retinogenesis with biallelic mutations of the RB1 gene. Its pathogenesis has been proposed as a "two-mutation hypothesis" by Knudson since 1971; however, there remain some debates on disease onset sufficiency of the biallelic RB1 mutations. To obtain straightforward evidence for this hypothesis, we investigated whether two-hit mutations of the RB1 gene drive tumorigenesis in patient-induced pluripotent stem cell (hiPSC)-derived human retinal organoids (hROs) and whether single allelic mutation hiPSC-derived hROs exhibit molecular and cellular defects. We generated hiPSCs with a heterozygous germline mutation (RB1m1/ wt ) from a Rb patient. A second-allele RB1 gene mutation was knocked in to produce compound heterozygous mutations (RB1m1/m2 ) in the hiPSCs. These two hiPSC lines were independently developed into hROs through a stepwise differentiation. The hiPSC-RB1m1/m2 derived organoids demonstrated tumorigenesis in dishes, consistent with Rb profiles in spatiotemporal transcriptomes, in which developmentally photoreceptor fate-determining markers, CRX and OTX2, were highly expressed in hiPSC-RB1m1/m2 derived hROs. Additionally, ARR3+ maturing cone precursors were co-labeled with proliferative markers Ki67 or PCNA, in agreement with the consensus that human Rb is originated from maturing cone precursors. Finally, we demonstrated that retinal cells of hROs with monoallelic RB1 mutation were abnormal in molecular aspects due to its haploinsufficiency. In conclusion, this study provides straightforward supporting evidence in a way of reverse genetics for "two-hit hypothesis" in the Rb tumorigenesis and opens new avenues for development of early intervention and treatment of Rb.
Collapse
Affiliation(s)
- Yan-Ping Li
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ya-Ting Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Li-Wen Jin
- Quanzhou Aier Eye Hospital, Quanzhou 362017, China
| | | |
Collapse
|
26
|
Mendonça V, Pereira Sena P, Evangelista Dos Santos AC, Rodrigues Bonvicino C, Ashton-Prolla P, Epelman S, Ferman SE, Lapunzina P, Nevado J, Grigorovski N, Mattosinho C, Seuànez H, Regla Vargas F. Diverse mutational spectrum in the 13q14 chromosomal region in a Brazilian cohort of retinoblastoma. Exp Eye Res 2022; 224:109211. [PMID: 35985532 DOI: 10.1016/j.exer.2022.109211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Retinoblastoma is a rare childhood tumor caused by the inactivation of both copies of the RB1 gene. Early diagnosis and identification of heritable RB1 mutation carriers can improve the disease outcome and management via genetic counseling. We used the Multiplex Ligation-dependent Probe Amplification (MLPA) method to analyze the RB1 gene and flanking regions in blood samples from 159 retinoblastoma patients previously negative for RB1 point mutations via Sanger sequencing. We detected a wide spectrum of germline chromosomal alterations, ranging from partial loss or duplication of RB1 to large deletions spanning RB1 and adjacent genes. Mutations were validated via karyotyping, fluorescent in situ hybridization (FISH), SNP-arrays (Single Nucleotide Polymorphism-arrays) and/or quantitative relative real-time PCR. Patients with leukocoria as a presenting symptom showed reduced death rate (p = 0.013) and this sign occurred more frequently among carriers of two breakpoints within RB1 (p = 0.05). All unilateral cases presented both breakpoints outside of RB1 (p = 0.0075). Patients with one breakpoint within RB1 were diagnosed at earlier ages (p = 0.017). Our findings characterize the mutational spectrum of a Brazilian cohort of retinoblastoma patients and point to a possible relationship between the mutation breakpoint location and tumor outcome, contributing to a better prospect of the genotype/phenotype correlation and adding to the wide diversity of germline mutations involving RB1 and adjacent regions in retinoblastoma.
Collapse
Affiliation(s)
- Vanessa Mendonça
- Genetics Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil; Genetics Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Priscila Pereira Sena
- Genetics Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil; Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | | | | | | - Sidnei Epelman
- Pediatric Oncology Service, Hospital Santa Marcelina, São Paulo, Brazil
| | - Sima Esther Ferman
- Department of Pediatric Oncology, Clinical Division, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Pablo Lapunzina
- INGEMM, Hospital La Paz, Universidad de Madrid, Madrid, Spain; CIBERER (Centro de Investigación Médica en Red de Enfermedades Raras), Madrid, Spain; ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | - Julián Nevado
- INGEMM, Hospital La Paz, Universidad de Madrid, Madrid, Spain; CIBERER (Centro de Investigación Médica en Red de Enfermedades Raras), Madrid, Spain; ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | - Nathalia Grigorovski
- Department of Pediatric Oncology, Clinical Division, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Clarissa Mattosinho
- Department of Ocular Oncology, Division of Surgery, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Hector Seuànez
- Genetics Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil; Genetics Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Regla Vargas
- Birth Defects Epidemiology Laboratory, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil; Department of Genetics and Molecular Biology, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Yao Y, Gu X, Xu X, Ge S, Jia R. Novel insights into RB1 mutation. Cancer Lett 2022; 547:215870. [PMID: 35964818 DOI: 10.1016/j.canlet.2022.215870] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 01/09/2023]
Abstract
Since the discovery of the retinoblastoma susceptibility gene (RB1) decades ago, RB1 has been regarded as a prototype tumor suppressor gene providing a paradigm for tumor genetic research. Constant research has updated the understanding of RB1-related pathways and their impact on tumor and nontumor diseases. Mutation of RB1 gene has been observed in multiple types of malignant tumors including prostate cancer, lung cancer, breast cancer, and almost every familial and sporadic case of retinoblastoma. Even if well-known and long-investigated, the application potential of RB1 mutation has not been fully tapped. In this review, we focus on the mechanism underlying RB1 mutation during oncogenesis. Therapeutically, we have further discussed potential clinical strategies by targeting RB1-mutated cancers. The unsolved problems and prospects of RB1 mutation are also discussed.
Collapse
Affiliation(s)
- Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
28
|
Human Blood Serum Inhibits Ductal Carcinoma Cells BT474 Growth and Modulates Effect of HER2 Inhibition. Biomedicines 2022; 10:biomedicines10081914. [PMID: 36009461 PMCID: PMC9405390 DOI: 10.3390/biomedicines10081914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Trastuzumab, a HER2-targeted antibody, is widely used for targeted therapy of HER2-positive breast cancer (BC) patients; yet, not all of them respond to this treatment. We investigated here whether trastuzumab activity on the growth of HER2-overexpressing BT474 cells may interfere with human peripheral blood endogenous factors. Among 33 individual BC patient blood samples supplemented to the media, BT474 sensitivity to trastuzumab varied up to 14 times. In the absence of trastuzumab, human peripheral blood serum samples could inhibit growth of BT474, and this effect varied ~10 times for 50 individual samples. In turn, the epidermal growth factor (EGF) suppressed the trastuzumab effect on BT474 cell growth. Trastuzumab treatment increased the proportion of BT474 cells in the G0/G1 phases of cell cycle, while simultaneous addition of EGF decreased it, yet not to the control level. We used RNA sequencing profiling of gene expression to elucidate the molecular mechanisms involved in EGF- and human-sera-mediated attenuation of the trastuzumab effect on BT474 cell growth. Bioinformatic analysis of the molecular profiles suggested that trastuzumab acts similarly to the inhibition of PI3K/Akt/mTOR signaling axis, and the mechanism of EGF suppression of trastuzumab activity may be associated with parallel activation of PKC and transcriptional factors ETV1-ETV5.
Collapse
|
29
|
Crabtree JS. Epigenetic Regulation in Gastroenteropancreatic Neuroendocrine Tumors. Front Oncol 2022; 12:901435. [PMID: 35747820 PMCID: PMC9209739 DOI: 10.3389/fonc.2022.901435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms are a rare, diverse group of neuroendocrine tumors that form in the pancreatic and gastrointestinal tract, and often present with side effects due to hormone hypersecretion. The pathogenesis of these tumors is known to be linked to several genetic disorders, but sporadic tumors occur due to dysregulation of additional genes that regulate proliferation and metastasis, but also the epigenome. Epigenetic regulation in these tumors includes DNA methylation, chromatin remodeling and regulation by noncoding RNAs. Several large studies demonstrate the identification of epigenetic signatures that may serve as biomarkers, and others identify innovative, epigenetics-based targets that utilize both pharmacological and theranostic approaches towards the development of new treatment approaches.
Collapse
|
30
|
Clinical measures, radiomics, and genomics offer synergistic value in AI-based prediction of overall survival in patients with glioblastoma. Sci Rep 2022; 12:8784. [PMID: 35610333 PMCID: PMC9130299 DOI: 10.1038/s41598-022-12699-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Multi-omic data, i.e., clinical measures, radiomic, and genetic data, capture multi-faceted tumor characteristics, contributing to a comprehensive patient risk assessment. Here, we investigate the additive value and independent reproducibility of integrated diagnostics in prediction of overall survival (OS) in isocitrate dehydrogenase (IDH)-wildtype GBM patients, by combining conventional and deep learning methods. Conventional radiomics and deep learning features were extracted from pre-operative multi-parametric MRI of 516 GBM patients. Support vector machine (SVM) classifiers were trained on the radiomic features in the discovery cohort (n = 404) to categorize patient groups of high-risk (OS < 6 months) vs all, and low-risk (OS ≥ 18 months) vs all. The trained radiomic model was independently tested in the replication cohort (n = 112) and a patient-wise survival prediction index was produced. Multivariate Cox-PH models were generated for the replication cohort, first based on clinical measures solely, and then by layering on radiomics and molecular information. Evaluation of the high-risk and low-risk classifiers in the discovery/replication cohorts revealed area under the ROC curves (AUCs) of 0.78 (95% CI 0.70-0.85)/0.75 (95% CI 0.64-0.79) and 0.75 (95% CI 0.65-0.84)/0.63 (95% CI 0.52-0.71), respectively. Cox-PH modeling showed a concordance index of 0.65 (95% CI 0.6-0.7) for clinical data improving to 0.75 (95% CI 0.72-0.79) for the combination of all omics. This study signifies the value of integrated diagnostics for improved prediction of OS in GBM.
Collapse
|
31
|
Rozanska A, Cerna-Chavez R, Queen R, Collin J, Zerti D, Dorgau B, Beh CS, Davey T, Coxhead J, Hussain R, Al-Aama J, Steel DH, Benvenisty N, Armstrong L, Parulekar M, Lako M. pRB-Depleted Pluripotent Stem Cell Retinal Organoids Recapitulate Cell State Transitions of Retinoblastoma Development and Suggest an Important Role for pRB in Retinal Cell Differentiation. Stem Cells Transl Med 2022; 11:415-433. [PMID: 35325233 PMCID: PMC9052432 DOI: 10.1093/stcltm/szac008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/19/2021] [Indexed: 11/12/2022] Open
Abstract
Retinoblastoma (Rb) is a childhood cancer of the developing retina, accounting for up to 17% of all tumors in infancy. To gain insights into the transcriptional events of cell state transitions during Rb development, we established 2 disease models via retinal organoid differentiation of a pRB (retinoblastoma protein)-depleted human embryonic stem cell line (RB1-null hESCs) and a pRB patient-specific induced pluripotent (iPSC) line harboring a RB1 biallelic mutation (c.2082delC). Both models were characterized by pRB depletion and accumulation of retinal progenitor cells at the expense of amacrine, horizontal and retinal ganglion cells, which suggests an important role for pRB in differentiation of these cell lineages. Importantly, a significant increase in the fraction of proliferating cone precursors (RXRγ+Ki67+) was observed in both pRB-depleted organoid models, which were defined as Rb-like clusters by single-cell RNA-Seq analysis. The pRB-depleted retinal organoids displayed similar features to Rb tumors, including mitochondrial cristae aberrations and rosette-like structures, and were able to undergo cell growth in an anchorage-independent manner, indicative of cell transformation in vitro. In both models, the Rb cones expressed retinal ganglion and horizontal cell markers, a novel finding, which could help to better characterize these tumors with possible therapeutic implications. Application of Melphalan, Topotecan, and TW-37 led to a significant reduction in the fraction of Rb proliferating cone precursors, validating the suitability of these in vitro models for testing novel therapeutics for Rb.
Collapse
Affiliation(s)
- Agata Rozanska
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Darin Zerti
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chia Shyan Beh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tracey Davey
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jumana Al-Aama
- Faculty of Medicine, King Abdulaziz University, Riyadh, Saudi Arabia
| | - David H Steel
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Manoj Parulekar
- Birmingham Women's and Children NHS Foundation Trust, Birmingham, UK
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
32
|
He K, Li Z, Ye K, Zhou Y, Yan M, Qi H, Hu H, Dai Y, Tang Y. Novel sequential therapy with metformin enhances the effects of cisplatin in testicular germ cell tumours via YAP1 signalling. Cancer Cell Int 2022; 22:113. [PMID: 35264157 PMCID: PMC8905836 DOI: 10.1186/s12935-022-02534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background Testicular germ cell tumours (TGCTs) are the most commonly diagnosed malignancy in young men. Although cisplatin has been shown to be effective to treat TGCT patients, long-term follow-up has shown that TGCT survivors who accepted cisplatin treatment suffered from a greater number of adverse reactions than patients who underwent orchiectomy alone. As metformin has shown an anticancer effect in various cancers, we investigated whether metformin could enhance the effects of cisplatin to treat TGCTs. Methods The anticancer effects of different treatment strategies consisting of metformin and cisplatin in TCam-2 and NTERA-2 cells were assessed in vitro and in vivo. First, we used a colony formation assay, CCK-8 and MTT assays to explore the viability of TGCT cells. Flow cytometry was used to assess the cell cycle and apoptosis of TGCTs. Then, Western blotting was used to detect the protein expression of TGCTs cells after different treatments. In addition, a xenograft model was used to investigate the effects of the different treatments on the proliferation of TGCT cells. Immunohistochemistry assays were performed to analyse the expression of related proteins in the tissues from the xenograft model. Results Metformin inhibited the proliferation of TCam-2 and NTERA-2 cells by arresting them in G1 phase, while metformin did not induce apoptosis in TGCT cells. Compared with cisplatin monotherapy, the CCK-8, MTT assay and colony formation assay showed that sequential treatment with metformin and cisplatin produced enhanced anticancer effects. Further study showed that metformin blocked the cells in G1 phase by inducing phosphorylated YAP1 and reducing the expression of cyclin D1, CDK6, CDK4 and RB, which enhanced the chemosensitivity of cisplatin and activated the expression of cleaved caspase 3 in TGCTs. Conclusions Our study discovers the important role of YAP1 in TGCTs and reports a new treatment strategy that employs the sequential administration of metformin and cisplatin, which can reduce the required cisplatin dose and enhance the sensitivity of TGCT cells to cisplatin. Therefore, this sequential treatment strategy may facilitate the development of basic and clinical research for anticancer therapies to treat TGCTs.
Collapse
Affiliation(s)
- Kancheng He
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zitaiyu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Kun Ye
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Minbo Yan
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Hao Qi
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Huating Hu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China. .,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China. .,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
33
|
Verdugo-Sivianes EM, Carnero A. SPINOPHILIN: a multiplayer tumor suppressor. Genes Dis 2022; 10:187-198. [PMID: 37013033 PMCID: PMC10066247 DOI: 10.1016/j.gendis.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
SPINOPHILIN (SPN, PPP1R9B or NEURABIN-2) is a multifunctional protein that regulates protein-protein interactions in different cell signaling pathways. SPN is also one of the regulatory subunits of protein phosphatase 1 (PP1), implicated in the dephosphorylation of retinoblastoma protein (pRB) during cell cycle. The SPN gene has been described as a tumor suppressor in different human tumor contexts, in which low levels of SPN are correlated with a higher grade and worse prognosis. In addition, mutations of the SPN protein have been reported in human tumors. Recently, an oncogenic mutation of SPN, A566V, was described, which affects both the SPN-PP1 interaction and the phosphatase activity of the holoenzyme, and promotes p53-dependent tumorigenesis by increasing the cancer stem cell (CSC) pool in breast tumors. Thus, the loss or mutation of SPN could be late events that promotes tumor progression by increasing the CSC pool and, eventually, the malignant behavior of the tumor.
Collapse
|
34
|
Mandigo AC, Tomlins SA, Kelly WK, Knudsen KE. Relevance of pRB Loss in Human Malignancies. Clin Cancer Res 2022; 28:255-264. [PMID: 34407969 PMCID: PMC9306333 DOI: 10.1158/1078-0432.ccr-21-1565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 01/07/2023]
Abstract
The retinoblastoma tumor suppressor protein (pRB) is a known regulator of cell-cycle control; however, recent studies identified critical functions for pRB in regulating cancer-associated gene networks that influence the DNA damage response, apoptosis, and cell metabolism. Understanding the impact of these pRB functions on cancer development and progression in the clinical setting will be essential, given the prevalence of pRB loss of function across disease types. Moreover, the current state of evidence supports the concept that pRB loss results in pleiotropic effects distinct from tumor proliferation. Here, the implications of pRB loss (and resultant pathway deregulation) on disease progression and therapeutic response will be reviewed, based on clinical observation. Developing a better understanding of the pRB-regulated pathways that underpin the aggressive features of pRB-deficient tumors will be essential for further developing pRB as a biomarker of disease progression and for stratifying pRB-deficient tumors into more effective treatment regimens.
Collapse
Affiliation(s)
- Amy C. Mandigo
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Scott A. Tomlins
- Departments of Pathology and Urology, Michigan Center for Translational Pathology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - William K. Kelly
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E. Knudsen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Corresponding Author: Karen E. Knudsen, Thomas Jefferson University, 233 South 10th Street, BLSB 1050, Philadelphia, PA 19107. Phone: 215-503-5692; E-mail:
| |
Collapse
|
35
|
AIM and Evolutionary Theory. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Vervoort SJ, Devlin JR, Kwiatkowski N, Teng M, Gray NS, Johnstone RW. Targeting transcription cycles in cancer. Nat Rev Cancer 2022; 22:5-24. [PMID: 34675395 DOI: 10.1038/s41568-021-00411-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Accurate control of gene expression is essential for normal development and dysregulation of transcription underpins cancer onset and progression. Similar to cell cycle regulation, RNA polymerase II-driven transcription can be considered as a unidirectional multistep cycle, with thousands of unique transcription cycles occurring in concert within each cell. Each transcription cycle comprises recruitment, initiation, pausing, elongation, termination and recycling stages that are tightly controlled by the coordinated action of transcriptional cyclin-dependent kinases and their cognate cyclins as well as the opposing activity of transcriptional phosphatases. Oncogenic dysregulation of transcription can entail defective control of gene expression, either at select loci or more globally, impacting a large proportion of the genome. The resultant dependency on the core-transcriptional machinery is believed to render 'transcriptionally addicted' cancers sensitive to perturbation of transcription. Based on these findings, small molecules targeting transcriptional cyclin-dependent kinases and associated proteins hold promise for the treatment of cancer. Here, we utilize the transcription cycles concept to explain how dysregulation of these finely tuned gene expression processes may drive tumorigenesis and how therapeutically beneficial responses may arise from global or selective transcriptional perturbation. This conceptual framework helps to explain tumour-selective transcriptional dependencies and facilitates the rational design of combination therapies.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer R Devlin
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingxing Teng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA.
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
37
|
Cao Y. Possible relationship between the somatic mutations and the formation of cancers. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cancer is one of the most life-threatening diseases and has been studied for more than 3 thousand years (earliest records of cancer research is 1500BC). But there are still insufficient number of efficient treatments for cancer. This is a review started with introducing the cancer and somatic mutations by explaining the hallmarks of cancer, followed by, the discussion of few types of mutations, which may be potential targets regarding to the therapeutic treatments. Also, some potential targets related to those mutations are listed, such as, pRb proteins with its two subunits (p130 and p107), reverse transcriptase telomerase (TERT), shelterin complex and so on. The statement “cancer is caused by accumulation of somatic mutations” can be supported by the positive correlation between cancer and age. In addition, some mutations, which have contribution on increasing mutation frequencies, has been proved to be the factors of cancer. For example, xeroderma pigmentosum, mutations on DNA MMR rep air and BRCA1 and BRCA2 mutations. This overview of the relationship between cancer and those somatic mutations, which may provide potentials for further cancer treatments.
Collapse
|
38
|
Chkheidze R, Raisanen J, Gagan J, Richardson TE, Pinho MC, Raj K, Achilleos M, Slepicka C, White CL, Evers BM, Patel TR, Malter JS, Hatanpaa KJ. Alterations in the RB Pathway With Inactivation of RB1 Characterize Glioblastomas With a Primitive Neuronal Component. J Neuropathol Exp Neurol 2021; 80:1092-1098. [PMID: 34850045 DOI: 10.1093/jnen/nlab109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A primitive neuronal component is a feature of some glioblastomas but defining molecular alterations of this histologic variant remains uncertain. We performed next-generation sequencing of 1500 tumor related genes on tissue from 9 patients with glioblastoma with a primitive component (G/PN) and analyzed 27 similar cases from the Cancer Genome Atlas (TCGA) dataset. Alterations in the RB pathway were identified in all of our patients' tumors and 81% of TCGA tumors with the retinoblastoma tumor suppressor gene (RB1) commonly affected. Although RB1 mutations were observed in some conventional glioblastomas, the allelic fractions of these mutations were significantly higher in tumors with a primitive neuronal component in both our and TCGA cohorts (median, 72% vs 25%, p < 0.001 and 80% vs 40%, p < 0.02, respectively). Further, in 78% of patients in our cohort, RB expression was lost by immunohistochemistry. Our findings indicate that alterations in the RB pathway are common in G/PNs and suggest that inactivation of RB1 may be a driving mechanism for the phenotype.
Collapse
Affiliation(s)
- Rati Chkheidze
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jack Raisanen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Timothy E Richardson
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA.,UT Health San Antonio, San Antonio, Texas, USA
| | - Marco C Pinho
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Karuna Raj
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael Achilleos
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chenelle Slepicka
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Toral R Patel
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
39
|
Abstract
In human cells, each rDNA unit consists of the ~13 kb long ribosomal part and ~30 kb long intergenic spacer (IGS). The ribosomal part, transcribed by RNA polymerase I (pol I), includes genes coding for 18S, 5.8S, and 28S RNAs of the ribosomal particles, as well as their four transcribed spacers. Being highly repetitive, intensively transcribed, and abundantly methylated, rDNA is a very fragile site of the genome, with high risk of instability leading to cancer. Multiple small mutations, considerable expansion or contraction of the rDNA locus, and abnormally enhanced pol I transcription are usual symptoms of transformation. Recently it was found that both IGS and the ribosomal part of the locus contain many functional/potentially functional regions producing non-coding RNAs, which participate in the pol I activity regulation, stress reactions, and development of the malignant phenotype. Thus, there are solid reasons to believe that rDNA locus plays crucial role in carcinogenesis. In this review we discuss the data concerning the human rDNA and its closely associated factors as both targets and drivers of the pathways essential for carcinogenesis. We also examine whether variability in the structure of the locus may be blamed for the malignant transformation. Additionally, we consider the prospects of therapy focused on the activity of rDNA.
Collapse
|
40
|
Sun E, Zhang P. RNF12 Promotes Glioblastoma Malignant Proliferation via Destructing RB1 and Regulating MAPK Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4711232. [PMID: 34900190 PMCID: PMC8654525 DOI: 10.1155/2021/4711232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
Background RNF12 has been linked to a variety of biological activities, including the control of the MDM2/P53 pathway, although its additional functions remain unclear. RNF12 was discovered to be a new ubiquitin ligase (E3) for RB1, amongst the most frequently repressed proteins in cancer of human. Method Cell Counting Kit-8 was used to detect the cell proliferation; coimmunoprecipitation was used to determine that RNF12 interacts with RB1. Xenograft studies were used to verify the results. Result In vivo and in vitro RNF12 interacts with RB1 regardless of E3 ligase activity. The ubiquitination of RB1 by RNF12 had an effect on its stability. RNF12 inhibits the RB1 protein and stimulates the MAPK pathway, promoting the growth of GBMs. Conclusion Our findings show that RNF12 may operate as a tumour promoter by modulating the cancerous proliferation of glioblastoma by controlling the activity of a new RNF12/RB1/MAPK pathway regulatory axis and that this regulatory axis might be a valuable diagnostic focus in glioblastoma.
Collapse
Affiliation(s)
- Eryi Sun
- Zhenjiang First People's Hospital, Zhenjiang, China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
41
|
de Mey S, Dufait I, De Ridder M. Radioresistance of Human Cancers: Clinical Implications of Genetic Expression Signatures. Front Oncol 2021; 11:761901. [PMID: 34778082 PMCID: PMC8579106 DOI: 10.3389/fonc.2021.761901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Although radiotherapy is given to more than 50% of cancer patients, little progress has been made in identifying optimal radiotherapy - drug combinations to improve treatment efficacy. Using molecular data from The Cancer Genome Atlas (TCGA), we extracted a total of 1016 cancer patients that received radiotherapy. The patients were diagnosed with head-and-neck (HNSC - 294 patients), cervical (CESC - 166 patients) and breast (BRCA - 549 patients) cancer. We analyzed mRNA expression patterns of 50 hallmark gene sets of the MSigDB collection, which we divided in eight categories based on a shared biological or functional process. Tumor samples were split into upregulated, neutral or downregulated mRNA expression for all gene sets using a gene set analysis (GSEA) pre-ranked analysis and assessed for their clinical relevance. We found a prognostic association between three of the eight gene set categories (Radiobiological, Metabolism and Proliferation) and overall survival in all three cancer types. Furthermore, multiple single associations were revealed in the other categories considered. To the best of our knowledge, our study is the first report suggesting clinical relevance of molecular characterization based on hallmark gene sets to refine radiation strategies.
Collapse
Affiliation(s)
- Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
42
|
Kaczmarek JV, Bogan CM, Pierce JM, Tao YK, Chen SC, Liu Q, Liu X, Boyd KL, Calcutt MW, Bridges TM, Lindsley CW, Friedman DL, Richmond A, Daniels AB. Intravitreal HDAC Inhibitor Belinostat Effectively Eradicates Vitreous Seeds Without Retinal Toxicity In Vivo in a Rabbit Retinoblastoma Model. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 34757417 PMCID: PMC8590161 DOI: 10.1167/iovs.62.14.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Current melphalan-based regimens for intravitreal chemotherapy for retinoblastoma vitreous seeds are effective but toxic to the retina. Thus, alternative agents are needed. Based on the known biology of histone deacetylases (HDACs) in the retinoblastoma pathway, we systematically studied whether the HDAC inhibitor belinostat is a viable, molecularly targeted alternative agent for intravitreal delivery that might provide comparable efficacy, without toxicity. Methods In vivo pharmacokinetic experiments in rabbits and in vitro cytotoxicity experiments were performed to determine the 90% inhibitory concentration (IC90). Functional toxicity by electroretinography and structural toxicity by optical coherence tomography (OCT), OCT angiography, and histopathology were evaluated in rabbits following three injections of belinostat 350 µg (2× IC90) or 700 µg (4× IC90), compared with melphalan 12.5 µg (rabbit equivalent of the human dose). The relative efficacy of intravitreal belinostat versus melphalan to treat WERI-Rb1 human cell xenografts in rabbit eyes was directly quantified. RNA sequencing was used to assess belinostat-induced changes in RB cell gene expression. Results The maximum nontoxic dose of belinostat was 350 µg, which caused no reductions in electroretinography parameters, retinal microvascular loss on OCT angiography, or retinal degeneration. Melphalan caused severe retinal structural and functional toxicity. Belinostat 350 µg (equivalent to 700 µg in the larger human eye) was equally effective at eradicating vitreous seeds in the rabbit xenograft model compared with melphalan (95.5% reduction for belinostat, P < 0.001; 89.4% reduction for melphalan, P < 0.001; belinostat vs. melphalan, P = 0.10). Even 700 µg belinostat (equivalent to 1400 µg in humans) caused only minimal toxicity. Widespread changes in gene expression resulted. Conclusions Molecularly targeted inhibition of HDACs with intravitreal belinostat was equally effective as standard-of-care melphalan but without retinal toxicity. Belinostat may therefore be an attractive agent to pursue clinically for intravitreal treatment of retinoblastoma.
Collapse
Affiliation(s)
- Jessica V Kaczmarek
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Carley M Bogan
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Janene M Pierce
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Yuankai K Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Sheau-Chiann Chen
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Xiao Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kelli L Boyd
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - M Wade Calcutt
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Thomas M Bridges
- Warren Center for Neuroscience Drug Discovery at Vanderbilt, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery at Vanderbilt, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Debra L Friedman
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ann Richmond
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States.,Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Anthony B Daniels
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States.,Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
43
|
Molecular alterations in retinoblastoma beyond RB1. Exp Eye Res 2021; 211:108753. [PMID: 34478740 DOI: 10.1016/j.exer.2021.108753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022]
Abstract
Retinoblastoma is the most common malignant ocular tumor in children. Although RB1 alterations are most frequently involved in the etiology of retinoblastoma, candidate driver events and somatic alterations leading to cell transformation, tumor onset and progression remain poorly understood. In this study, we identified novel genomic alterations in tumors with a panel of 160 genes. Sanger sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA) were initially performed for identifying patients without apparent RB1 alterations in blood DNA. Subsequently, NGS analyses of 24 paired (blood/tumor) samples of these patients were carried out for identifying somatic mutations and copy number variation in RB1 and other 159 genes. One novel pathogenic RB1 mutation and seven novel VUS were identified as well as 90 novel pathogenic mutations in 61 other genes. Twenty-three genes appeared exclusively mutated in tumors without altered RB1 alleles and three frequently affected biological pathways while five other tumors did not show pathogenic RB1 alterations or SNV/indels in 159 other genes. Curiously, deletion of GATA2, AKT1, ARID1A, DNMT3A, MAP2K2, MEN1, MTOR, PTCH1 and SUFU (in homo- or heterozygosity) were exclusively found in these tumors when compared to those with any pathogenic alterations, probably indicating genes that might be essential for the development of retinoblastoma regardless of a functional RB1. Identification of genes associated with retinoblastoma will contribute to understanding presently unknown aspects of this malignancy, which might be essential for its initiation and progression, as well as providing valuable molecular markers.
Collapse
|
44
|
Seo D, Roh J, Chae Y, Kim W. Gene expression profiling after LINC00472 overexpression in an NSCLC cell line. Cancer Biomark 2021; 32:175-188. [PMID: 34397405 DOI: 10.3233/cbm-210242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lung cancer accounts for a large proportion of cancer-related deaths worldwide. Personalized therapeutic medicine based on the genetic characteristics of non-small cell lung cancer (NSCLC) is a promising field, and discovering clinically applicable biomarkers of NSCLC is required. LINC00472 is a long non-coding RNA and has been recently suggested to be a biomarker of NSCLC, but little is known of its mechanism in NSCLC. Thus, the current study was performed to document changes in gene expression after LINC00472 overexpression in NSCLC cells. As a result of cell viability and migration assay, LINC00472 downregulated cell survival, proliferation, and motility. Transcriptome sequencing analysis showed 3,782 genes expression were changed in LINC00472 overexpressing cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed most genes were associated with intracellular metabolism. The PPP1R12B, RGS5, RBM5, RBL2, LDLR and PTPRM genes were upregulated by LINC00472 overexpression and these genes functioned as tumor suppressors in several cancers. In contrast, SPSB1, PCNA, CD24, CDK5, CDC25A, and EIF4EBP1 were downregulated by LINC00472, and they functioned as oncogenes in various cancers. Consequently, the function of LINC00472 in tumorigenesis might be related to changes in the expressions of other oncogenes and tumor suppressors.
Collapse
Affiliation(s)
- Danbi Seo
- Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk, Republic of Korea.,Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk, Republic of Korea
| | - Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk, Republic of Korea.,Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk, Republic of Korea
| | - Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk, Republic of Korea
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk, Republic of Korea.,Department of Biology Education, Korea National University of Education, Cheongju-si, Chungbuk, Republic of Korea
| |
Collapse
|
45
|
Verdugo-Sivianes EM, Carnero A. Role of the Holoenzyme PP1-SPN in the Dephosphorylation of the RB Family of Tumor Suppressors During Cell Cycle. Cancers (Basel) 2021; 13:cancers13092226. [PMID: 34066428 PMCID: PMC8124259 DOI: 10.3390/cancers13092226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cell cycle progression is highly regulated by modulating the phosphorylation status of retinoblastoma (RB) family proteins. This process is controlled by a balance in the action of kinases, such as the complexes formed by cyclin-dependent kinases (CDKs) and cyclins, and phosphatases, mainly the protein phosphatase 1 (PP1). However, while the phosphorylation of the RB family has been largely studied, its dephosphorylation is less known. Recently, the PP1-Spinophilin (SPN) holoenzyme has been described as the main phosphatase responsible for the dephosphorylation of RB proteins during the G0/G1 transition and at the end of G1. Here, we describe the regulation of the phosphorylation status of RB family proteins, giving importance not only to their inactivation by phosphorylation but also to their dephosphorylation to restore the cell cycle. Abstract Cell cycle progression is highly regulated by modulating the phosphorylation status of the retinoblastoma protein (pRB) and the other two members of the RB family, p107 and p130. This process is controlled by a balance in the action of kinases, such as the complexes formed by cyclin-dependent kinases (CDKs) and cyclins, and phosphatases, mainly the protein phosphatase 1 (PP1). However, while the phosphorylation of the RB family has been largely studied, its dephosphorylation is less known. Phosphatases are holoenzymes formed by a catalytic subunit and a regulatory protein with substrate specificity. Recently, the PP1-Spinophilin (SPN) holoenzyme has been described as the main phosphatase responsible for the dephosphorylation of RB proteins during the G0/G1 transition and at the end of G1. Moreover, SPN has been described as a tumor suppressor dependent on PP1 in lung and breast tumors, where it promotes tumorigenesis by increasing the cancer stem cell pool. Therefore, a connection between the cell cycle and stem cell biology has also been proposed via SPN/PP1/RB proteins.
Collapse
Affiliation(s)
- Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-955-92-31-11
| |
Collapse
|
46
|
Mandigo AC, Yuan W, Xu K, Gallagher P, Pang A, Guan YF, Shafi AA, Thangavel C, Sheehan B, Bogdan D, Paschalis A, McCann JJ, Laufer TS, Gordon N, Vasilevskaya IA, Dylgjeri E, Chand SN, Schiewer MJ, Domingo-Domenech J, Den RB, Holst J, McCue PA, de Bono JS, McNair C, Knudsen KE. RB/E2F1 as a Master Regulator of Cancer Cell Metabolism in Advanced Disease. Cancer Discov 2021; 11:2334-2353. [PMID: 33879449 DOI: 10.1158/2159-8290.cd-20-1114] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/20/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Loss of the retinoblastoma (RB) tumor suppressor protein is a critical step in reprogramming biological networks that drive cancer progression, although mechanistic insight has been largely limited to the impact of RB loss on cell-cycle regulation. Here, isogenic modeling of RB loss identified disease stage-specific rewiring of E2F1 function, providing the first-in-field mapping of the E2F1 cistrome and transcriptome after RB loss across disease progression. Biochemical and functional assessment using both in vitro and in vivo models identified an unexpected, prominent role for E2F1 in regulation of redox metabolism after RB loss, driving an increase in the synthesis of the antioxidant glutathione, specific to advanced disease. These E2F1-dependent events resulted in protection from reactive oxygen species in response to therapeutic intervention. On balance, these findings reveal novel pathways through which RB loss promotes cancer progression and highlight potentially new nodes of intervention for treating RB-deficient cancers. SIGNIFICANCE: This study identifies stage-specific consequences of RB loss across cancer progression that have a direct impact on tumor response to clinically utilized therapeutics. The study herein is the first to investigate the effect of RB loss on global metabolic regulation and link RB/E2F1 to redox control in multiple advanced diseases.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Amy C Mandigo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom.,The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Kexin Xu
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Peter Gallagher
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Angel Pang
- School of Medical Sciences and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Yi Fang Guan
- School of Medical Sciences and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ayesha A Shafi
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Chellappagounder Thangavel
- Departments of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Dermatology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Beshara Sheehan
- The Institute of Cancer Research, London, United Kingdom.,The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom.,The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Alec Paschalis
- The Institute of Cancer Research, London, United Kingdom.,The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jennifer J McCann
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Talya S Laufer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicolas Gordon
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Irina A Vasilevskaya
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saswati N Chand
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew J Schiewer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Robert B Den
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Departments of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeff Holst
- Department of Dermatology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter A McCue
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom.,The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Christopher McNair
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Departments of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Fan Y, Fan H, Quan Z, Wu X. Ionizing Radiation Combined with PARP1 Inhibitor Reduces Radioresistance in Prostate Cancer with RB1/TP53 Loss. Cancer Invest 2021; 39:423-434. [PMID: 33683975 DOI: 10.1080/07357907.2021.1899200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor suppressor genes RB1 and TP53 are altered frequently in prostate cancer (PC), whether RB1 and TP53 inactivation promotes radioresistance remains unclear. Herein, we demonstrated that RB1 loss enhanced ionizing radiation (IR)-induced DNA damage to inhibit cell proliferation and promote cellular senescence through a TP53-dependent pathway in LNCaP cells. Furthermore, the stabilization of TP53 was regulated by ATM-mediated phosphorylation of MDM2 at Ser395. However, inactivation of RB1/TP53 reversed DNA damage-induced cellular senescence and promoted radiation survival. Importantly, combined with PARP1 inhibitor restored radiosensitivity. This finding provides a potential approach for the therapy of PC with RB1/TP53 inactivation.
Collapse
Affiliation(s)
- Yao Fan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, Chongqing Medical University, Chongqing, China
| | - Hui Fan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, Chongqing Medical University, Chongqing, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - XiaoHou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Muto Y, Ryo E, Namikawa K, Takahashi A, Ogata D, Fujimura T, Yatabe Y, Aiba S, Yamazaki N, Mori T. RB1 gene mutations are a distinct predictive factor in Merkel cell carcinoma. Pathol Int 2021; 71:337-347. [PMID: 33751708 DOI: 10.1111/pin.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare cutaneous neuroendocrine carcinoma that tends to show local recurrence and metastasis. Typically, MCC is polyomavirus (MCPyV)-associated and cytokeratin 20 (CK20) positive. However, little is known about this tumor and its origins. Here, we aimed to determine the developmental origins of MCC and to identify prognostic clinicopathologic factors. Initial examinations revealed that CK20 and MCPyV expression (CK20+, MCPyV+ (60%); CK20+, MCPyV- (10%); CK20-, and MCPyV- (30%)) did not affect overall survival. With RB1 gene sequencing of FFPE specimens, which covered an entire exon, all RB1 mutation-positive cases showed positive regional lymph node and/or distant metastases (8/8 cases, 100%), whereas the frequency of the metastasis was statistically significantly lower in RB1 mutation-negative cases, (10/16 cases, 62%, P = 0.033). The results were also confirmed with immunohistochemistry, and either RB1 alterations, entire exon sequencing, or immunohistochemistry was associated with the metastasis (P = 0.007). RB1 alterations may be used to access the aggressive clinical course of MCC.
Collapse
Affiliation(s)
- Yusuke Muto
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan.,Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenjiro Namikawa
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Takahashi
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasushi Yatabe
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Taisuke Mori
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
49
|
The Rapidly Expanding Group of RB1-Deleted Soft Tissue Tumors: An Updated Review. Diagnostics (Basel) 2021; 11:diagnostics11030430. [PMID: 33802620 PMCID: PMC8000249 DOI: 10.3390/diagnostics11030430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
The classification of soft tissue tumors has evolved considerably in the last decade, largely due to advances in understanding the pathogenetic basis of many of these, sometimes rare, tumors. Deletion of Retinoblastoma 1 (RB1), a well-known tumor suppressor gene, has been implicated in the tumorigenesis of a particular group of soft tissue neoplasms. This group of so-called “RB1-deleted soft tissue tumors” has been rapidly expanding in recent years, currently consisting of spindle cell/pleomorphic lipoma, atypical spindle cell/pleomorphic lipomatous tumor, pleomorphic liposarcoma, myofibroblastoma, cellular angiofibroma, and acral fibromyxoma. Most of these neoplasms, except pleomorphic liposarcoma, are considered benign entities and are mainly described in the older adult population. This article will review the currently known morphological, immunohistochemical, and molecular features of this heterogeneous group of mesenchymal tumors with an emphasis on differential diagnosis.
Collapse
|
50
|
AIM and Evolutionary Theory. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_41-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|