1
|
Srinivasan S, Hoff PD, Morey AL, Vuppala A, Mochizuki M, Morey RE, Meads M, Duggan E, Wildman DE, Nolan JP, Pantham P. Miniaturized Workflow for Transcriptomic Profiling of Urinary Extracellular RNA during Pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.639539. [PMID: 40093060 PMCID: PMC11908132 DOI: 10.1101/2025.03.03.639539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Urine contains extracellular RNA (exRNA) carried by extracellular vesicles (EVs) and other biomolecular complexes. There is currently a need for studies focused on female cohorts to develop new methods for non-invasive analysis of biofluids to create reference profiles and for identification of biomarkers of reproductive and pregnancy disorders. The objective of this study was therefore to identify optimal methods for transcriptomic profiling of urine by testing different exRNA isolation and scalable library preparation methods that enable detection of biomarkers that reflect pregnancy-associated changes in the placenta and maternal tissues. RNA was extracted from pooled and individual urine samples obtained from normal non-pregnant and pregnant females, as well as males, using input volumes of either 0.6 mL, 1 mL, or 4 mL. Samples were extracted using methods that focused either on isolating vesicular (EV-associated) or total (EV-associated and non EV-associated) exRNA. Small RNA libraries (n=208) were prepared using the NEBNext Small RNA Library Prep kit and long RNA libraries (n=97) were prepared using the SMART-Seq v4 Ultra Low Input RNA or the SMARTer Stranded Total RNA-Seq Kit v2 Pico Input kits (Takara). Principal component analysis showed that the greatest source of variance amongst technical replicates of small RNA libraries (n=176 which passed quality control) was exRNA isolation method, and amongst long RNA libraries (n=97 which passed quality control) was library preparation method. Long RNA libraries prepared from exRNA extracted using miRCURY showed that the SMART-Seq v4 method yielded significantly more uniquely mapped reads compared to the Pico v2 method (p<0.05). We have established a scalable pipeline for small and long RNA-Seq profiling of exRNA in urine in a reproducible manner, which we used to identify differentially expressed urinary exRNAs in pregnancy, and will enable transcriptomic profiling of urinary exRNA in disorders of pregnancy, including preeclampsia.
Collapse
|
2
|
Qiu S, Li Y, Zhang Z, Li C, Wang H, Chen A, Yan Z, Liu Y, Li Z, Huang H, Liu Y, Seow Y, Chen R, Guo J, Wen S, Tian J, Zhang H, Liu R, Han G, Wang B, Wang Y, Niu Y, Yin H. Differentiation of high risk prostate cancer with a facile urinary exosome detection workflow. iScience 2025; 28:111896. [PMID: 39995874 PMCID: PMC11848465 DOI: 10.1016/j.isci.2025.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Clear differentiation of high-grade and clinically insignificant prostate cancer (PCa) is critical for clinical decision-making. Here, we developed a proprietary urinary exosome isolation approach (EVLatch) and established a facile diagnostic workflow. We discovered that EEF1A1 levels, abundantly expressed on urinary exosomes, positively correlate to urinary exosome counts irrespective of source and collection time and demonstrated that EEF1A1 enables in-assay quantification of urinary exosomes. Importantly, a prostate cancer urinary EVLatch-based artificial intelligence diagnostics (PURE-AID) classification system utilizing PCA3, HOXC6, and DLX1 as targets with SPDEF for reference and EEF1A1 for quality checking, trained on 271 patients, achieved an area under the receiver operating characteristic curve (AUROC) of 0.76 in the test set of 351 patients. Combination of PURE-AID with prostate-specific antigen (PSA) and age increases AUROC to 0.80 and reduces 54.3% of unnecessary biopsies with 86.8% sensitivity. Our study provides a new classification system for differentiating high-grade PCa in a workflow- and patient-friendly manner.
Collapse
Affiliation(s)
- Shuai Qiu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zheng Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Chunchang Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Haoyu Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ao Chen
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yan
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yang Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Zifei Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Hua Huang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yi Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yiqi Seow
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Republic of Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Republic of Singapore
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simeng Wen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Jing Tian
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Hongtuan Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Ranlu Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Gang Han
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Baolong Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yong Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yuanjie Niu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - HaiFang Yin
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- China Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
3
|
Qi L, Li Z, Liu J, Chen X. Omics-Enhanced Nanomedicine for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409102. [PMID: 39473316 DOI: 10.1002/adma.202409102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Indexed: 12/13/2024]
Abstract
Cancer nanomedicine has emerged as a promising approach to overcome the limitations of conventional cancer therapies, offering enhanced efficacy and safety in cancer management. However, the inherent heterogeneity of tumors presents increasing challenges for the application of cancer nanomedicine in both diagnosis and treatment. This heterogeneity necessitates the integration of advanced and high-throughput analytical techniques to tailor nanomedicine strategies to individual tumor profiles. Omics technologies, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and more, provide unparalleled insights into the molecular and cellular mechanisms underlying cancer. By dissecting tumor heterogeneity across multiple levels, these technologies offer robust support for the development of personalized and precise cancer nanomedicine strategies. In this review, the principles, techniques, and applications of key omics technologies are summarized. Especially, the synergistic integration of omics and nanomedicine in cancer therapy is explored, focusing on enhanced diagnostic accuracy, optimized therapeutic strategies and the assessment of nanomedicine-mediated biological responses. Moreover, this review addresses current challenges and outlines future directions in the field of omics-enhanced nanomedicine. By offering valuable insights and guidance, this review aims to advance the integration of omics with nanomedicine, ultimately driving improved diagnostic and therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
| | - Jianping Liu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
| |
Collapse
|
4
|
Ahmadian S, Jafari N, Tamadon A, Ghaffarzadeh A, Rahbarghazi R, Mahdipour M. Different storage and freezing protocols for extracellular vesicles: a systematic review. Stem Cell Res Ther 2024; 15:453. [PMID: 39593194 PMCID: PMC11600612 DOI: 10.1186/s13287-024-04005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) have been considered promising tools in regenerative medicine. However, the nanoscale properties of EVs make them sensitive to environmental conditions. Optimal storage protocols are crucial for maintaining EV structural, molecular, and functional integrity. This systematic review aimed to gather evidence on the effects of various storage protocols on EV characteristics and integrity. STRATEGY A comprehensive search was conducted for original studies investigating the impacts of storage temperature, freezing techniques, freeze-thaw cycles, and stabilizing strategies on EV concentration, size distribution, morphology, cargo content, and bioactivity. Results from 50 included studies were analyzed. RESULTS Data indicated that rapid freezing procedures and constant subzero temperatures (optimally - 80 °C) resulted in appropriate EV quantity and cargo preservation. Subjecting EVs to multiple freeze-thaw cycles decreased particle concentrations, RNA content, impaired bioactivity, and increased EV size and aggregation. Electron microscopy revealed vesicle enlargement, and fusion, along with membrane deformation after being exposed to substandard storage protocols. The addition of stabilizers like trehalose helped EVs to maintain integrity. Of note, storage in native biofluids offered improved stability over purified EVs in buffers. CONCLUSION Data emphasize the critical need for precise storage protocols for EVs to ensure reproducible research outcomes and clinical applications. Further studies using reliable methods are necessary to create specific guidelines for improving the stability of EVs in various applications.
Collapse
Affiliation(s)
- Shahin Ahmadian
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Jafari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Tamadon
- Department of Research and Development, PerciaVista R&D Co, Shiraz, Iran
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Liang C, Wang M, Huang Y, Yam JWP, Zhang X, Zhang X. Recent Advances of Small Extracellular Vesicles for the Regulation and Function of Cancer-Associated Fibroblasts. Int J Mol Sci 2024; 25:12548. [PMID: 39684264 DOI: 10.3390/ijms252312548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population in the tumor microenvironment (TME) that critically affect cancer progression. Small extracellular vesicles (sEVs) act as information messengers by transmitting a wide spectrum of biological molecules, including proteins, nucleic acids, and metabolites, from donor cells to recipient cells. Previous studies have demonstrated that CAFs play important roles in tumor progression by regulating tumor cell proliferation, metastasis, therapeutic resistance, and metabolism via sEVs. In turn, tumor-derived sEVs can also regulate the activation and phenotype switch of CAFs. The dynamic crosstalk between CAFs and cancer cells via sEVs could ultimately determine cancer progression. In this review, we summarized the recent advance of the biological roles and underlying mechanisms of sEVs in mediating CAF-tumor cell interaction and its impact on cancer progression. We also reviewed the clinical applications of tumor- and CAF-derived sEVs, which could identify novel potential targets and biomarkers for cancer diagnosis, therapy, and prognosis.
Collapse
Affiliation(s)
- Chengdong Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yongli Huang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
6
|
Xu W, Maruyama S, Sato A, Niidome T. Bacterial membrane vesicles combined with nanoparticles for bacterial vaccines and cancer immunotherapy. Colloids Surf B Biointerfaces 2024; 243:114125. [PMID: 39079185 DOI: 10.1016/j.colsurfb.2024.114125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/17/2024]
Abstract
Similar to mammalian cells, most bacteria can release nano-sized membrane vesicles (MVs) into the extracellular environment. MVs contain lipids, bioactive proteins, nucleic acids, and metabolites, and play important roles in microbial physiology. MVs have great potential for immunotherapeutic applications, such as bacterial vaccines and cancer immunotherapy. However, because of the diversity in content and heterogeneity in size of MVs, the clinical application of MVs has been limited. Recently, the use of MVs combined with nanoparticles (NPs) has been shown to be effective in improving the homogeneity, stability and function of MVs. In this review, we focus on studies of MVs combined with NPs (MV-NPs) and describe the use of these MV-NPs in biotechnology, especially in bacterial vaccine and cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Xu
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Sayo Maruyama
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Akito Sato
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
7
|
Wu G, Zhang Y, Jia S, Qi X, Feng X, Ren Y, Lu X, Hu L. Preparation of Dysprosium(III)-Metal Organic Framework Nanofiber for Exosome Capture and Biomarker Discovery toward Liver Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56874-56883. [PMID: 39393007 DOI: 10.1021/acsami.4c14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
As an emerging source for liquid biopsy, exosomes hold significant promise for clinical diagnosis. However, commonly used exosome isolation methods (e.g., ultracentrifugation) suffer from low throughput for a large number of clinical samples. Herein, a dysprosium-metal organic framework was synthesized and doped with nanofibers by electrospinning for efficient capture of exosomes from body fluid. With the integration of multichannel of pipet or robot automatic workstation, high throughput exosome isolation can be achieved with clinical samples with high reproducibility. To evaluate the clinical value of the developed method, urinary exosomes were enriched from 34 liver disease samples of different stages for the profiling of metabolites by mass spectrometry. The results showed that HCC, cirrhosis, and healthy controls can be significantly differentiated by the Random Forest classification model. The dysprosium-metal organic framework has promising applications in exosome-based liquid biopsy for large-scale clinical disease diagnosis.
Collapse
Affiliation(s)
- Guangyao Wu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yue Zhang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun 130041, China
| | - Xiulei Qi
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Feng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yujuan Ren
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Zhang G, Ding Y, Zhang H, Wei D, Liu Y, Sun J, Xie Z, Tao WA, Zhu Y. Assessment of urine sample collection and processing variables for extracellular vesicle-based proteomics. Analyst 2024; 149:3416-3424. [PMID: 38716512 DOI: 10.1039/d4an00296b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles (EVs) in urine are a promising source for developing non-invasive biomarkers. However, urine concentration and content are highly variable and dynamic, and actual urine collection and handling often is nonideal. Furthermore, patients such as those with prostate diseases have challenges in sample collection due to difficulties in holding urine at designated time points. Here, we simulated the actual situation of clinical sample collection to examine the stability of EVs in urine under different circumstances, including urine collection time and temporary storage temperature, as well as daily urine sampling under different diet conditions. EVs were isolated using functionalized EVtrap magnetic beads and characterized by nanoparticle tracking analysis (NTA), western blotting, electron microscopy, and mass spectrometry (MS). EVs in urine remained relatively stable during temporary storage for 6 hours at room temperature and for 12 hours at 4 °C, while significant fluctuations were observed in EV amounts from urine samples collected at different time points from the same individuals, especially under certain diets. Sample normalization with creatinine reduced the coefficient of variation (CV) values among EV samples from 17% to approximately 6% and facilitated downstream MS analyses. Finally, based on the results, we applied them to evaluate potential biomarker panels in prostate cancer by data-independent acquisition (DIA) MS, presenting the recommendation that can facilitate biomarker discovery with nonideal handling conditions.
Collapse
Affiliation(s)
- Guiyuan Zhang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China.
- Bell Mountain Molecular MedTech Institute, Nanjing 210032, China
- EVLiXiR Biotech, Nanjing 210032, China
| | - Yajie Ding
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Hao Zhang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China.
- EVLiXiR Biotech, Nanjing 210032, China
| | - Dong Wei
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China.
- Bell Mountain Molecular MedTech Institute, Nanjing 210032, China
| | - Yufeng Liu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China.
- Bell Mountain Molecular MedTech Institute, Nanjing 210032, China
| | - Jie Sun
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhuoying Xie
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China.
| | - W Andy Tao
- Departments of Chemistry and Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Yefei Zhu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China.
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
9
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 988] [Impact Index Per Article: 988.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
10
|
Smith DA, Redman JE, Fraser DJ, Bowen T. Identification and detection of microRNA kidney disease biomarkers in liquid biopsies. Curr Opin Nephrol Hypertens 2023; 32:515-521. [PMID: 37678380 DOI: 10.1097/mnh.0000000000000927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs) are emerging rapidly as a novel class of biomarkers of major organ disorders, including kidney diseases. However, current PCR-based detection methods are not amenable to development for high-throughput, cost-effective miRNA biomarker quantification. RECENT FINDINGS MiRNA biomarkers show significant promise for diagnosis and prognosis of kidney diseases, including diabetic kidney disease, acute kidney injury, IgA nephropathy and delayed graft function following kidney transplantation. A variety of novel methods to detect miRNAs in liquid biopsies including urine, plasma and serum are being developed. As miRNAs are functional transcripts that regulate the expression of many protein coding genes, differences in miRNA profiles in disease also offer clues to underlying disease mechanisms. SUMMARY Recent findings highlight the potential of miRNAs as biomarkers to detect and predict progression of kidney diseases. Developing in parallel, novel methods for miRNA detection will facilitate the integration of these biomarkers into rapid routine clinical testing and existing care pathways. Validated kidney disease biomarkers also hold promise to identify novel therapeutic tools and targets. VIDEO ABSTRACT http://links.lww.com/CONH/A43.
Collapse
Affiliation(s)
- Daniel A Smith
- Division of Infection & Immunity
- Wales Kidney Research Unit
- Systems Immunity University Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff
| | - James E Redman
- School of Chemistry, Cardiff University, Park Place, Cardiff, Wales, UK
| | - Donald J Fraser
- Division of Infection & Immunity
- Wales Kidney Research Unit
- Systems Immunity University Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff
| | - Timothy Bowen
- Division of Infection & Immunity
- Wales Kidney Research Unit
- Systems Immunity University Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff
| |
Collapse
|
11
|
Zhao Z, Yan Q, Fang L, Li G, Liu Y, Li J, Pan S, Zhou S, Duan J, Liu D, Liu Z. Identification of urinary extracellular vesicles differentially expressed RNAs in diabetic nephropathy via whole-transcriptome integrated analysis. Comput Biol Med 2023; 166:107480. [PMID: 37738894 DOI: 10.1016/j.compbiomed.2023.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common systemic microvascular complication of diabetes and a leading cause of chronic kidney disease worldwide. Urinary extracellular vesicles (uEVs), which are natural nanoscale vesicles that protect RNA from degradation, have the potential to serve as an invasive diagnostic biomarker for DN. METHODS We enrolled 24 participants, including twelve with renal biopsy-proven T2DN and twelve with T2DM, and isolated uEVs using ultracentrifugation. We performed microarrays for mRNAs, lncRNAs, and circRNAs in parallel, and Next-Generation Sequencing for miRNAs. Differentially expressed RNAs (DE-RNAs) were subjected to CIBERSORTx, ssGSEA analysis, GO enrichment, PPI network analysis, and construction of the lncRNA/circRNA-miRNA-mRNA regulatory network. Candidate genes and potential biomarker RNAs were validated using databases and machine learning models. RESULTS A total of 1684 mRNAs, 126 lncRNAs, 123 circRNAs and 66 miRNAs were found in uEVs in T2DN samples compared with T2DM. CIBERSORTx revealed the involvement of uEVs in immune activity and ssGSEA explored possible cell or tissue sources of uEVs. A ceRNA co-expression and regulation relationship network was constructed. Candidate genes MYO1C and SP100 mRNA were confirmed to be expressed in the kidney using Nephroseq database, scRNA-seq dataset, and Human Protein Atlas database. We further selected 2 circRNAs, 2 miRNAs, and 2 lncRNAs from WGCNAs and ceRNAs and demonstrated their efficacy as potential diagnostic biomarkers for T2DN using machine learning algorithms. CONCLUSIONS This study reported, for the first time, the whole-transcriptome genetic resources found in urine extracellular vesicles of T2DN patients. The results provide additional support for the possible interactions, and regulators between RNAs from uEVs themselves and as potential biomarkers in DN.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Fang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Guangpu Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yong Liu
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Jia Li
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Jiayu Duan
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China.
| |
Collapse
|
12
|
Lee J, Kim E, Park J, Choi S, Lee MS, Park J. Pre-analytical handling conditions and protein marker recovery from urine extracellular vesicles for bladder cancer diagnosis. PLoS One 2023; 18:e0291198. [PMID: 37676879 PMCID: PMC10484439 DOI: 10.1371/journal.pone.0291198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Extracellular vesicles (EVs) contain a variety of biomolecules and provide information about the cells that produce them. EVs from cancer cells found in urine can be used as biomarkers to detect cancer, enabling early diagnosis and treatment. The potential of alpha-2-macroglobulin (A2M) and clusterin (CLU) as novel diagnostic urinary EV (uEV) biomarkers for bladder cancer (BC) was demonstrated previously. To validate the diagnostic value of these proteins in uEVs in a large BC cohort, urine handling conditions before uEV isolation should be optimized during sample transportation from medical centers. In this study, we analyzed the uEV protein quantity, EV particle number, and uEV-A2M/CLU after urine storage at 20°C and 4°C for 0-6 days, each. A2M and CLU levels in uEVs were relatively stable when stored at 4°C for a maximum of three days and at 20°C for up to 24 h, with minimal impact on analysis results. Interestingly, pre-processing to remove debris and cells by centrifugation and filtration of urine did not show any beneficial effects on the preservation of protein biomarkers of uEVs during storage. Here, the importance of optimizing shipping conditions to minimize the impact of pre-analytical handling on the uEVs protein biomarkers was emphasized. These findings provide insights for the development of clinical protocols that use uEVs for diagnostic purposes.
Collapse
Affiliation(s)
- Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Eunha Kim
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Joohee Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Seokjoo Choi
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Jinsung Park
- Department of Urology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si, Republic of Korea
| |
Collapse
|
13
|
Zhang W, Zhou B, Yang X, Zhao J, Hu J, Ding Y, Zhan S, Yang Y, Chen J, Zhang F, Zhao B, Deng F, Lin Z, Sun Q, Zhang F, Yao Z, Liu W, Li C, Liu KX. Exosomal circEZH2_005, an intestinal injury biomarker, alleviates intestinal ischemia/reperfusion injury by mediating Gprc5a signaling. Nat Commun 2023; 14:5437. [PMID: 37673874 PMCID: PMC10482849 DOI: 10.1038/s41467-023-41147-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a severe clinical condition without optimal diagnostic markers nor clear molecular etiological insights. Plasma exosomal circular RNAs (circRNAs) are valuable biomarkers and therapeutic targets for various diseases, but their role in intestinal I/R injury remains unknown. Here we screen the expression profile of circRNAs in intestinal tissue exosomes collected from intestinal I/R mice and identify circEZH2_005 as a significantly downregulated exosomal circRNA. In parallel, circEZH2_005 is also reduced in the plasma of clinical cardiac surgery patients who developed postoperative intestinal I/R injury. Exosomal circEZH2_005 displays a significant diagnostic value for intestinal injury induced by I/R. Mechanistically, circEZH2_005 is highly expressed in intestinal crypt cells. CircEZH2_005 upregulation promotes the proliferation of Lgr5+ stem cells by direct interaction with hnRNPA1, and enhanced Gprc5a stability, thereby alleviating I/R-induced intestinal mucosal damage. Hence, exosomal circEZH2_005 may serve as a biomarker for intestinal I/R injury and targeting the circEZH2_005/hnRNPA1/Gprc5a axis may be a potential therapeutic strategy for intestinal I/R injury.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Bowei Zhou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jin Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jingjuan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yuqi Ding
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shuteng Zhan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yifeng Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jun Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fu Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Bingcheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fan Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zebin Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qishun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fangling Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhiwen Yao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Weifeng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Barreiro K, Dwivedi OP, Rannikko A, Holthöfer H, Tuomi T, Groop PH, Puhka M. Capturing the Kidney Transcriptome by Urinary Extracellular Vesicles-From Pre-Analytical Obstacles to Biomarker Research. Genes (Basel) 2023; 14:1415. [PMID: 37510317 PMCID: PMC10379145 DOI: 10.3390/genes14071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Urinary extracellular vesicles (uEV) hold non-invasive RNA biomarkers for genitourinary tract diseases. However, missing knowledge about reference genes and effects of preanalytical choices hinder biomarker studies. We aimed to assess how preanalytical variables (urine storage temperature, isolation workflow) affect diabetic kidney disease (DKD)-linked miRNAs or kidney-linked miRNAs and mRNAs (kidney-RNAs) in uEV isolates and to discover stable reference mRNAs across diverse uEV datasets. We studied nine raw and normalized sequencing datasets including healthy controls and individuals with prostate cancer or type 1 diabetes with or without albuminuria. We focused on kidney-RNAs reviewing literature for DKD-linked miRNAs from kidney tissue, cell culture and uEV/urine experiments. RNAs were analyzed by expression heatmaps, hierarchical clustering and selecting stable mRNAs with normalized counts (>200) and minimal coefficient of variation. Kidney-RNAs were decreased after urine storage at -20 °C vs. -80 °C. Isolation workflows captured kidney-RNAs with different efficiencies. Ultracentrifugation captured DKD -linked miRNAs that separated healthy and diabetic macroalbuminuria groups. Eleven mRNAs were stably expressed across the datasets. Hence, pre-analytical choices had variable effects on kidney-RNAs-analyzing kidney-RNAs complemented global correlation, which could fade differences in some relevant RNAs. Replicating prior DKD-marker results and discovery of candidate reference mRNAs encourages further uEV biomarker studies.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPREP Core, University of Helsinki, 00290 Helsinki, Finland
| | - Om Prakash Dwivedi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Urology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Harry Holthöfer
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Endocrinology, Abdominal Centre, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Nephrology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPREP Core, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
15
|
Dwivedi OP, Barreiro K, Käräjämäki A, Valo E, Giri AK, Prasad RB, Roy RD, Thorn LM, Rannikko A, Holthöfer H, Gooding KM, Sourbron S, Delic D, Gomez MF, Groop PH, Tuomi T, Forsblom C, Groop L, Puhka M. Genome-wide mRNA profiling in urinary extracellular vesicles reveals stress gene signature for diabetic kidney disease. iScience 2023; 26:106686. [PMID: 37216114 PMCID: PMC10193229 DOI: 10.1016/j.isci.2023.106686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/19/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Urinary extracellular vesicles (uEV) are a largely unexplored source of kidney-derived mRNAs with potential to serve as a liquid kidney biopsy. We assessed ∼200 uEV mRNA samples from clinical studies by genome-wide sequencing to discover mechanisms and candidate biomarkers of diabetic kidney disease (DKD) in Type 1 diabetes (T1D) with replication in Type 1 and 2 diabetes. Sequencing reproducibly showed >10,000 mRNAs with similarity to kidney transcriptome. T1D DKD groups showed 13 upregulated genes prevalently expressed in proximal tubules, correlated with hyperglycemia and involved in cellular/oxidative stress homeostasis. We used six of them (GPX3, NOX4, MSRB, MSRA, HRSP12, and CRYAB) to construct a transcriptional "stress score" that reflected long-term decline of kidney function and could even identify normoalbuminuric individuals showing early decline. We thus provide workflow and web resource for studying uEV transcriptomes in clinical urine samples and stress-linked DKD markers as potential early non-invasive biomarkers or drug targets.
Collapse
Affiliation(s)
- Om Prakash Dwivedi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Karina Barreiro
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPrep Core, University of Helsinki, Helsinki, Finland
| | - Annemari Käräjämäki
- Department of Primary Health Care, Vaasa Central Hospital, Hietalahdenkatu 2-4, 65130 Vaasa, Finland
- Diabetes Center, Vaasa Health Care Center, Sepänkyläntie 14-16, 65100 Vaasa, Finland
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anil K. Giri
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute (FCI), Tukholmankatu 8, 00290 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Rashmi B. Prasad
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, SE 214 28 Malmö, Sweden
| | - Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lena M. Thorn
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Department of Urology, 00014 University of Helsinki, and Helsinki University Hospital, 00100 Helsinki, Finland
| | - Harry Holthöfer
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Kim M. Gooding
- Diabetes and Vascular Research Centre, National Institute for Health Research Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, UK
| | - Steven Sourbron
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- Fifth Department of Medicine, Nephrology/Endocrinology/Rheumatology/Pneumology, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Maria F. Gomez
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, SE 214 28 Malmö, Sweden
| | | | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School Monash University, Melbourne, VIC, Australia
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, SE 214 28 Malmö, Sweden
- Endocrinology, Abdominal Centre, Helsinki University Hospital, Helsinki, Finland
| | - Carol Forsblom
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leif Groop
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, SE 214 28 Malmö, Sweden
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPrep Core, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
López‐Guerrero JA, Valés‐Gómez M, Borrás FE, Falcón‐Pérez JM, Vicent MJ, Yáñez‐Mó M. Standardising the preanalytical reporting of biospecimens to improve reproducibility in extracellular vesicle research - A GEIVEX study. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e76. [PMID: 38939690 PMCID: PMC11080825 DOI: 10.1002/jex2.76] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/29/2024]
Abstract
The standardization of clinical studies using extracellular vesicles (EVs) has mainly focused on the procedures employed for their isolation and characterization; however, preanalytical aspects of sample collection, handling and storage also significantly impact the reproducibility of results. We conducted an online survey based on SPREC (Standard PREanalytical Code) among members of GEIVEX (Grupo Español de Investigación en Vesiculas Extracelulares) to explore how different laboratories handled fluid biospecimens destined for EV analyses. We received 70 surveys from forty-three different laboratories: 44% focused on plasma, 9% on serum and 16% on urine. The survey indicated that variability in preanalytical approaches reaches 94%. Moreover, in some cases, researchers had no access to all relevant preanalytical details of samples, with some sample aspects with potential impact on EV isolation/characterisation not coded within the current version of SPREC. Our study highlights the importance of working with common standard operating procedures (SOP) to control preanalytical conditions. The application of SPREC represents a suitable approach to codify and register preanalytical conditions. Integrating SPREC into the SOPs of laboratories/biobanks will provide a valuable source of information and constitute an advance for EV research by improving reproducibility and credibility.
Collapse
Affiliation(s)
- José A. López‐Guerrero
- Laboratory of Molecular BiologyFundación Instituto Valenciano de OncologíaValenciaSpain
- IVO‐CIPF Joint Research Unit of CancerPríncipe Felipe Research Center (CIPF)ValenciaSpain
- Department of PathologySchool of MedicineCatholic University of Valencia ‘San Vicente Martir’ValenciaSpain
| | - Mar Valés‐Gómez
- Department of Immunology and Oncology, National Centre for BiotechnologySpanish National Research CouncilMadridSpain
| | - Francesc E. Borrás
- REMAR‐IVECAT Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP)Can Ruti CampusBarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat de Barcelona (UB)BarcelonaSpain
| | - Juan Manuel Falcón‐Pérez
- Exosomes Laboratory and Metabolomics PlatformCIC bioGUNE‐BRTADerioSpain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd)MadridSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - María J. Vicent
- Polymer Therapeutics Lab.Centro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - María Yáñez‐Mó
- Department of Molecular Biology, University Institute of Molecular Biology (IUBM), Autonomous University of Madrid (UAM), Severo Ochoa Center for Molecular BiologyLa Princesa Health Research Institute (IIS‐IP)MadridSpain
| |
Collapse
|
17
|
Schiller EA, Cohen K, Lin X, El-Khawam R, Hanna N. Extracellular Vesicle-microRNAs as Diagnostic Biomarkers in Preterm Neonates. Int J Mol Sci 2023; 24:2622. [PMID: 36768944 PMCID: PMC9916767 DOI: 10.3390/ijms24032622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Neonates born prematurely (<37 weeks of gestation) are at a significantly increased risk of developing inflammatory conditions associated with high mortality rates, including necrotizing enterocolitis, bronchopulmonary dysplasia, and hypoxic-ischemic brain damage. Recently, research has focused on characterizing the content of extracellular vesicles (EVs), particularly microRNAs (miRNAs), for diagnostic use. Here, we describe the most recent work on EVs-miRNAs biomarkers discovery for conditions that commonly affect premature neonates.
Collapse
Affiliation(s)
- Emily A. Schiller
- Department of Foundational Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Koral Cohen
- Department of Foundational Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xinhua Lin
- Department of Foundational Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Rania El-Khawam
- Department of Pediatrics, Division of Neonatology, New York University Langone Long Island Hospital, Mineola, NY 11501, USA
| | - Nazeeh Hanna
- Department of Foundational Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
- Department of Pediatrics, Division of Neonatology, New York University Langone Long Island Hospital, Mineola, NY 11501, USA
| |
Collapse
|
18
|
Jain G, Das P, Ranjan P, Neha, Valderrama F, Cieza-Borrella C. Urinary extracellular vesicles miRNA-A new era of prostate cancer biomarkers. Front Genet 2023; 14:1065757. [PMID: 36741322 PMCID: PMC9895092 DOI: 10.3389/fgene.2023.1065757] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Prostate cancer is the second most common male cancer worldwide showing the highest rates of incidence in Western Europe. Although the measurement of serum prostate-specific antigen levels is the current gold standard in PCa diagnosis, PSA-based screening is not considered a reliable diagnosis and prognosis tool due to its lower sensitivity and poor predictive score which lead to a 22%-43% overdiagnosis, unnecessary biopsies, and over-treatment. These major limitations along with the heterogeneous nature of the disease have made PCa a very unappreciative subject for diagnostics, resulting in poor patient management; thus, it urges to identify and validate new reliable PCa biomarkers that can provide accurate information in regard to disease diagnosis and prognosis. Researchers have explored the analysis of microRNAs (miRNAs), messenger RNAs (mRNAs), small proteins, genomic rearrangements, and gene expression in body fluids and non-solid tissues in search of lesser invasive yet efficient PCa biomarkers. Although the presence of miRNAs in body fluids like blood, urine, and saliva initially sparked great interest among the scientific community; their potential use as liquid biopsy biomarkers in PCa is still at a very nascent stage with respect to other well-established diagnostics and prognosis tools. Up to date, numerous studies have been conducted in search of PCa miRNA-based biomarkers in whole blood or blood serum; however, only a few studies have investigated their presence in urine samples of which less than two tens involve the detection of miRNAs in extracellular vesicles isolated from urine. In addition, there exists some discrepancy around the identification of miRNAs in PCa urine samples due to the diversity of the urine fractions that can be targeted for analysis such as urine circulating cells, cell-free fractions, and exosomes. In this review, we aim to discuss research output from the most recent studies involving the analysis of urinary EVs for the identification of miRNA-based PCa-specific biomarkers.
Collapse
Affiliation(s)
- Garima Jain
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Ranjan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Neha
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ferran Valderrama
- Centre for Biomedical Education, Cell Biology and Genetics Research Centre, St. George’s University of London, London, United Kingdom
| | - Clara Cieza-Borrella
- Centre for Biomedical Education, Cell Biology and Genetics Research Centre, St. George’s University of London, London, United Kingdom
| |
Collapse
|
19
|
Tepus M, Tonoli E, Verderio EAM. Molecular profiling of urinary extracellular vesicles in chronic kidney disease and renal fibrosis. Front Pharmacol 2023; 13:1041327. [PMID: 36712680 PMCID: PMC9877239 DOI: 10.3389/fphar.2022.1041327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD) is a long-term kidney damage caused by gradual loss of essential kidney functions. A global health issue, CKD affects up to 16% of the population worldwide. Symptoms are often not apparent in the early stages, and if left untreated, CKD can progress to end-stage kidney disease (ESKD), also known as kidney failure, when the only possible treatments are dialysis and kidney transplantation. The end point of nearly all forms of CKD is kidney fibrosis, a process of unsuccessful wound-healing of kidney tissue. Detection of kidney fibrosis, therefore, often means detection of CKD. Renal biopsy remains the best test for renal scarring, despite being intrinsically limited by its invasiveness and sampling bias. Urine is a desirable source of fibrosis biomarkers as it can be easily obtained in a non-invasive way and in large volumes. Besides, urine contains biomolecules filtered through the glomeruli, mirroring the pathological state. There is, however, a problem of highly abundant urinary proteins that can mask rare disease biomarkers. Urinary extracellular vesicles (uEVs), which originate from renal cells and carry proteins, nucleic acids, and lipids, are an attractive source of potential rare CKD biomarkers. Their cargo consists of low-abundant proteins but highly concentrated in a nanosize-volume, as well as molecules too large to be filtered from plasma. Combining molecular profiling data (protein and miRNAs) of uEVs, isolated from patients affected by various forms of CKD, this review considers the possible diagnostic and prognostic value of uEVs biomarkers and their potential application in the translation of new experimental antifibrotic therapeutics.
Collapse
Affiliation(s)
- Melanie Tepus
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisa Tonoli
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisabetta A. M. Verderio
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Yin X, Jiang LH. Extracellular vesicles: Targeting the heart. Front Cardiovasc Med 2023; 9:1041481. [PMID: 36704471 PMCID: PMC9871562 DOI: 10.3389/fcvm.2022.1041481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular diseases rank the highest incidence and mortality worldwide. As the most common type of cardiovascular disease, myocardial infarction causes high morbidity and mortality. Recent studies have revealed that extracellular vesicles, including exosomes, show great potential as a promising cell-free therapy for the treatment of myocardial infarction. However, low heart-targeting efficiency and short plasma half-life have hampered the clinical translation of extracellular vesicle therapy. Currently, four major types of strategies aiming at enhancing target efficiency have been developed, including modifying EV surface, suppressing non-target absorption, increasing the uptake efficiency of target cells, and utilizing a hydrogel patch. This presented review summarizes the current research aimed at EV heart targeting and discusses the challenges and opportunities in EV therapy, which will be beneficial for the development of effective heart-targeting strategies.
Collapse
Affiliation(s)
- Xin Yin
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, China,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China,The First People’s Hospital of Yunnan, Kunming, Yunnan, China
| | - Li-Hong Jiang
- Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China,The First People’s Hospital of Yunnan, Kunming, Yunnan, China,*Correspondence: Li-Hong Jiang,
| |
Collapse
|
21
|
Friso S, Castagna A, Mango G, Olivieri O, Pizzolo F. Urinary extracellular vesicles carry valuable hints through mRNA for the understanding of endocrine hypertension. Front Endocrinol (Lausanne) 2023; 14:1155011. [PMID: 37065732 PMCID: PMC10096029 DOI: 10.3389/fendo.2023.1155011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Urinary extracellular vesicles (uEVs), released from cells of the urogenital tract organs, carry precious information about originating tissues. The study of molecules transported through uEVs such as proteins, lipids and nucleic acids provides a deeper understanding of the function of the kidney, an organ involved in the pathogenesis of hypertension and a target of hypertension-mediated organ damage. Molecules derived from uEVs are often proposed for the study of disease pathophysiology or as possible disease diagnostic and prognostic biomarkers. Analysis of mRNA loading within uEVs may be a unique and readily obtainable way to assess gene expression patterns of renal cells, otherwise achievable only by an invasive biopsy procedure. Interestingly, the only few studies investigating transcriptomics of hypertension-related genes through the analysis of mRNA from uEVs are inherent to mineralocorticoid hypertension. More specifically, it has been observed that perturbation in human endocrine signalling through mineralcorticoid receptors (MR) activation parallels changes of mRNA transcripts in urine supernatant. Furthermore, an increased copy number of uEVs-extracted mRNA transcripts of the 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) gene were detected among subjects affected by apparent mineralocorticoid excess (AME), a hypertension-inducing autosomal recessive disorder due to a defective enzyme function. Moreover, by studying uEVs mRNA, it was observed that the renal sodium chloride cotransporter (NCC) gene expression is modulated under different conditions related to hypertension. Following this perspective, we illustrate here the state of the art and the possible future of uEVs transcriptomics towards a deeper knowledge of hypertension pathophysiology and ultimately more tailored investigational, diagnostic-prognostic approaches.
Collapse
|
22
|
Yi X, Huang D, Li Z, Wang X, Yang T, Zhao M, Wu J, Zhong T. The role and application of small extracellular vesicles in breast cancer. Front Oncol 2022; 12:980404. [PMID: 36185265 PMCID: PMC9515427 DOI: 10.3389/fonc.2022.980404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related deaths in women worldwide. Currently, patients’ survival remains a challenge in BC due to the lack of effective targeted therapies and the difficult condition of patients with higher aggressiveness, metastasis and drug resistance. Small extracellular vesicles (sEVs), which are nanoscale vesicles with lipid bilayer envelopes released by various cell types in physiological and pathological conditions, play an important role in biological information transfer between cells. There is growing evidence that BC cell-derived sEVs may contribute to the establishment of a favorable microenvironment that supports cancer cells proliferation, invasion and metastasis. Moreover, sEVs provide a versatile platform not only for the diagnosis but also as a delivery vehicle for drugs. This review provides an overview of current new developments regarding the involvement of sEVs in BC pathogenesis, including tumor proliferation, invasion, metastasis, immune evasion, and drug resistance. In addition, sEVs act as messenger carriers carrying a variety of biomolecules such as proteins, nucleic acids, lipids and metabolites, making them as potential liquid biopsy biomarkers for BC diagnosis and prognosis. We also described the clinical applications of BC derived sEVs associated MiRs in the diagnosis and treatment of BC along with ongoing clinical trials which will assist future scientific endeavors in a more organized direction.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
23
|
Yi X, Chen J, Huang D, Feng S, Yang T, Li Z, Wang X, Zhao M, Wu J, Zhong T. Current perspectives on clinical use of exosomes as novel biomarkers for cancer diagnosis. Front Oncol 2022; 12:966981. [PMID: 36119470 PMCID: PMC9472136 DOI: 10.3389/fonc.2022.966981] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a heterogeneous subset of extracellular vesicles (EVs) that biogenesis from endosomes. Besides, exosomes contain a variety of molecular cargoes including proteins, lipids and nucleic acids, which play a key role in the mechanism of exosome formation. Meanwhile, exosomes are involved with physiological and pathological conditions. The molecular profile of exosomes reflects the type and pathophysiological status of the originating cells so could potentially be exploited for diagnostic of cancer. This review aims to describe important molecular cargoes involved in exosome biogenesis. In addition, we highlight exogenous factors, especially autophagy, hypoxia and pharmacology, that regulate the release of exosomes and their corresponding cargoes. Particularly, we also emphasize exosome molecular cargoes as potential biomarkers in liquid biopsy for diagnosis of cancer.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuo Feng
- English Teaching and Research Section, Gannan Healthcare Vocational College, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
24
|
Wu A, Wolley MJ, Fenton RA, Stowasser M. Using human urinary extracellular vesicles to study physiological and pathophysiological states and regulation of the sodium chloride cotransporter. Front Endocrinol (Lausanne) 2022; 13:981317. [PMID: 36105401 PMCID: PMC9465297 DOI: 10.3389/fendo.2022.981317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC), expressed in the renal distal convoluted tubule, plays a major role in Na+, Cl- and K+ homeostasis and blood pressure as exemplified by the symptoms of patients with non-functional NCC and Gitelman syndrome. NCC activity is modulated by a variety of hormones, but is also influenced by the extracellular K+ concentration. The putative "renal-K+ switch" mechanism is a relatively cohesive model that links dietary K+ intake to NCC activity, and may offer new targets for blood pressure control. However, a remaining hurdle for full acceptance of this model is the lack of human data to confirm molecular findings from animal models. Extracellular vesicles (EVs) have attracted attention from the scientific community due to their potential roles in intercellular communication, disease pathogenesis, drug delivery and as possible reservoirs of biomarkers. Urinary EVs (uEVs) are an excellent sample source for the study of physiology and pathology of renal, urothelial and prostate tissues, but the diverse origins of uEVs and their dynamic molecular composition present both methodological and data interpretation challenges. This review provides a brief overview of the state-of-the-art, challenges and knowledge gaps in current uEV-based analyses, with a focus on the application of uEVs to study the "renal-K+ switch" and NCC regulation. We also provide recommendations regarding biospecimen handling, processing and reporting requirements to improve experimental reproducibility and interoperability towards the realisation of the potential of uEV-derived biomarkers in hypertension and clinical practice.
Collapse
Affiliation(s)
- Aihua Wu
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
| | - Martin J. Wolley
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
- Department of Nephrology, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | | | - Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Zeng Y, Qiu Y, Jiang W, Shen J, Yao X, He X, Li L, Fu B, Liu X. Biological Features of Extracellular Vesicles and Challenges. Front Cell Dev Biol 2022; 10:816698. [PMID: 35813192 PMCID: PMC9263222 DOI: 10.3389/fcell.2022.816698] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological macromolecules such as DNA, RNA, lipids and proteins on the inside. EVs were once thought to be vesicles for the removal of waste materials, but are now known to be involved in a variety of pathophysiological processes in many diseases. This study examines the advantage of EVs and the challenges associated with their application. A more rational use of the advantageous properties of EVs such as composition specificity, specific targeting, circulatory stability, active penetration of biological barriers, high efficient drug delivery vehicles and anticancer vaccines, oxidative phosphorylation activity and enzymatic activity, and the resolution of shortcomings such as isolation and purification methods, storage conditions and pharmacokinetics and biodistribution patterns during drug delivery will facilitate the clinical application of EVs.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bingmei Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| |
Collapse
|
26
|
Görgens A, Corso G, Hagey DW, Jawad Wiklander R, Gustafsson MO, Felldin U, Lee Y, Bostancioglu RB, Sork H, Liang X, Zheng W, Mohammad DK, van de Wakker SI, Vader P, Zickler AM, Mamand DR, Ma L, Holme MN, Stevens MM, Wiklander OPB, EL Andaloussi S. Identification of storage conditions stabilizing extracellular vesicles preparations. J Extracell Vesicles 2022; 11:e12238. [PMID: 35716060 PMCID: PMC9206228 DOI: 10.1002/jev2.12238] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) play a key role in many physiological and pathophysiological processes and hold great potential for therapeutic and diagnostic use. Despite significant advances within the last decade, the key issue of EV storage stability remains unresolved and under investigated. Here, we aimed to identify storage conditions stabilizing EVs and comprehensively compared the impact of various storage buffer formulations at different temperatures on EVs derived from different cellular sources for up to 2 years. EV features including concentration, diameter, surface protein profile and nucleic acid contents were assessed by complementary methods, and engineered EVs containing fluorophores or functionalized surface proteins were utilized to compare cellular uptake and ligand binding. We show that storing EVs in PBS over time leads to drastically reduced recovery particularly for pure EV samples at all temperatures tested, starting already within days. We further report that using PBS as diluent was found to result in severely reduced EV recovery rates already within minutes. Several of the tested new buffer conditions largely prevented the observed effects, the lead candidate being PBS supplemented with human albumin and trehalose (PBS-HAT). We report that PBS-HAT buffer facilitates clearly improved short-term and long-term EV preservation for samples stored at -80°C, stability throughout several freeze-thaw cycles, and drastically improved EV recovery when using a diluent for EV samples for downstream applications.
Collapse
Affiliation(s)
- André Görgens
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
- Evox Therapeutics LimitedOxfordUK
| | - Giulia Corso
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Daniel W. Hagey
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Rim Jawad Wiklander
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Manuela O. Gustafsson
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Ulrika Felldin
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Yi Lee
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - R. Beklem Bostancioglu
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Helena Sork
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - Xiuming Liang
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Wenyi Zheng
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Dara K. Mohammad
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- College of Agricultural Engineering SciencesSalahaddin University‐ErbilErbilKurdistan RegionIraq
| | - Simonides I. van de Wakker
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Pieter Vader
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- CDL ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Antje M. Zickler
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Doste R. Mamand
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Li Ma
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Oscar P. B. Wiklander
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Evox Therapeutics LimitedOxfordUK
| | - Samir EL Andaloussi
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Evox Therapeutics LimitedOxfordUK
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
27
|
Nieuwland R, Siljander PRM, Falcón-Pérez JM, Witwer KW. Reproducibility of extracellular vesicle research. Eur J Cell Biol 2022; 101:151226. [PMID: 35460959 DOI: 10.1016/j.ejcb.2022.151226] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Cells release membrane-delimited particles into the environment. These particles are called "extracellular vesicles" (EVs), and EVs are present in fluids contacting cells, including body fluids and conditioned culture media. Because EVs change and contribute to health and disease, EVs have become a hot topic. From the thousands of papers now published on EVs annually, one easily gets the impression that EVs provide biomarkers for all diseases, and that EVs are carriers of all relevant biomolecules and are omnipotent therapeutics. At the same time, EVs are heterogeneous, elusive and difficult to study due to their physical properties and the complex composition of their environment. This overview addresses the current challenges encountered when working with EVs, and how we envision that most of these challenges will be overcome in the near future. Right now, an infrastructure is being developed to improve the reproducibility of EV measurement results. This infrastructure comprises expert task forces of the International Society of Extracellular Vesicles (ISEV) developing guidelines and recommendations, instrument calibration, standardized and transparent reporting, and education. Altogether, these developments will support the credibility of EV research by introducing robust reproducibility, which is a prerequisite for understanding their biological significance and biomarker potential.
Collapse
Affiliation(s)
- Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands; Vesicle Observation Centre, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Pia R-M Siljander
- EV Group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juan M Falcón-Pérez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Exosomes Laboratory, Derio, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), 28029 Madrid, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Li X, Yang L. Urinary exosomes: Emerging therapy delivery tools and biomarkers for urinary system diseases. Biomed Pharmacother 2022; 150:113055. [PMID: 35658226 DOI: 10.1016/j.biopha.2022.113055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Urinary exosomes (UE) are small circular membranous vesicles with a lipid bilayer with a diameter of 40-160 nm secreted by epithelial cells of the kidney and genitourinary system, which can reflect the physiological and functional status of secretory cells. Protein and RNA in exosomes can be used as markers for diseases diagnosis. Urine specimens are available and non-invasive. The protein and RNA in UE are more stable than the soluble protein and RNA in urine, which have broad application prospects in the diagnosis of urinary system diseases. This article reviews the recent advances in the application of protein or RNA in UE as markers to the diagnosis of urinary system diseases.
Collapse
Affiliation(s)
- Xin Li
- Departments of Infectious Disease, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lina Yang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
29
|
Yu Z, Wen Y, Jiang N, Li Z, Guan J, Zhang Y, Deng C, Zhao L, Zheng SG, Zhu Y, Su W, Zhuo Y. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis. Biomaterials 2022; 284:121484. [DOI: 10.1016/j.biomaterials.2022.121484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022]
|
30
|
Puhka M, Thierens L, Nicorici D, Forsman T, Mirtti T, af Hällström T, Serkkola E, Rannikko A. Exploration of Extracellular Vesicle miRNAs, Targeted mRNAs and Pathways in Prostate Cancer: Relation to Disease Status and Progression. Cancers (Basel) 2022; 14:cancers14030532. [PMID: 35158801 PMCID: PMC8833493 DOI: 10.3390/cancers14030532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Prostate cancer lacks non-invasive specific biomarkers for aggressive disease. Urinary extracellular vesicles (uEV) could provide such markers; however, due to technical challenges, little is known regarding the pathogenesis pathways reflected in uEV. We performed a miRNA, target mRNA and pathway study focused on uEV, exploring the differences between cancer (1) status groups (Gleason score) and (2) progression groups. The uEV provided a surprisingly comprehensive presentation of differentially expressed miRNAs, target mRNAs and pathogenesis pathways. The miRNAs associated with prostate cancer status or progression were mostly unique, but still targeted overlapping sets of signalling, resistance, hormonal and immune pathways. Interestingly, mRNA targets of the key miRNAs (miR-892a, miR-223-3p, miR-146a-5p) were widely expressed in both uEV and plasma EV from PCa patients. The study thus suggests that uEV carry a vast presentation of PCa status and progression-linked RNAs that are worth further exploration in large personalized medicine trials. Abstract Background: Prostate cancer (PCa) lacks non-invasive specific biomarkers for aggressive disease. We studied the potential of urinary extracellular vesicles (uEV) as a liquid PCa biopsy by focusing on the micro RNA (miRNA) cargo, target messenger RNA (mRNA) and pathway analysis. Methods: We subjected uEV samples from 31 PCa patients (pre-prostatectomy) to miRNA sequencing and matched uEV and plasma EV (pEV) from three PCa patients to mRNA sequencing. EV quality control was performed by electron microscopy, Western blotting and particle and RNA analysis. We compared miRNA expression based on PCa status (Gleason Score) and progression (post-prostatectomy follow-up) and confirmed selected miRNAs by quantitative PCR. Expression of target mRNAs was mapped in matched EV. Results: Quality control showed typical small uEV, pEV, RNA and EV-protein marker enriched samples. Comparisons between PCa groups revealed mostly unique differentially expressed miRNAs. However, they targeted comprehensive and largely overlapping sets of cancer and progression-associated signalling, resistance, hormonal and immune pathways. Quantitative PCR confirmed changes in miR-892a (Gleason Score 7 vs. ≥8), miR-223-3p (progression vs. no progression) and miR-146a-5p (both comparisons). Their target mRNAs were expressed widely in PCa EV. Conclusions: PCa status and progression-linked RNAs in uEV are worth exploration in large personalized medicine trials.
Collapse
Affiliation(s)
- Maija Puhka
- HiPrep and EV Core, Institute for Molecular Medicine Finland FIMM, University of Helsinki, 00290 Helsinki, Finland;
- Correspondence: (M.P.); (A.R.)
| | - Lisse Thierens
- HiPrep and EV Core, Institute for Molecular Medicine Finland FIMM, University of Helsinki, 00290 Helsinki, Finland;
| | - Daniel Nicorici
- Orion Pharma, Orion Corporation, 02200 Espoo, Finland; (D.N.); (T.F.); (E.S.)
| | - Tarja Forsman
- Orion Pharma, Orion Corporation, 02200 Espoo, Finland; (D.N.); (T.F.); (E.S.)
| | - Tuomas Mirtti
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, 00290 Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | | - Elina Serkkola
- Orion Pharma, Orion Corporation, 02200 Espoo, Finland; (D.N.); (T.F.); (E.S.)
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Correspondence: (M.P.); (A.R.)
| |
Collapse
|