1
|
Mavi AK, Gaur S, Kumar N, Shrivastav AK, Bhattacharya S, Belemkar S, Maru S, Kumar D. Effective Gene Transfer with Non‐Viral Vectors. INTEGRATION OF BIOMATERIALS FOR GENE THERAPY 2023:183-222. [DOI: 10.1002/9781394175635.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Butt MH, Zaman M, Ahmad A, Khan R, Mallhi TH, Hasan MM, Khan YH, Hafeez S, Massoud EES, Rahman MH, Cavalu S. Appraisal for the Potential of Viral and Nonviral Vectors in Gene Therapy: A Review. Genes (Basel) 2022; 13:1370. [PMID: 36011281 PMCID: PMC9407213 DOI: 10.3390/genes13081370] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Over the past few decades, gene therapy has gained immense importance in medical research as a promising treatment strategy for diseases such as cancer, AIDS, Alzheimer's disease, and many genetic disorders. When a gene needs to be delivered to a target cell inside the human body, it has to pass a large number of barriers through the extracellular and intracellular environment. This is why the delivery of naked genes and nucleic acids is highly unfavorable, and gene delivery requires suitable vectors that can carry the gene cargo to the target site and protect it from biological degradation. To date, medical research has come up with two types of gene delivery vectors, which are viral and nonviral vectors. The ability of viruses to protect transgenes from biological degradation and their capability to efficiently cross cellular barriers have allowed gene therapy research to develop new approaches utilizing viruses and their different genomes as vectors for gene delivery. Although viral vectors are very efficient, science has also come up with numerous nonviral systems based on cationic lipids, cationic polymers, and inorganic particles that provide sustainable gene expression without triggering unwanted inflammatory and immune reactions, and that are considered nontoxic. In this review, we discuss in detail the latest data available on all viral and nonviral vectors used in gene delivery. The mechanisms of viral and nonviral vector-based gene delivery are presented, and the advantages and disadvantages of all types of vectors are also given.
Collapse
Affiliation(s)
- Muhammad Hammad Butt
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Muhammad Zaman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Abrar Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Rahima Khan
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Tauqeer Hussain Mallhi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia or (T.H.M.); or (Y.H.K.)
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh;
| | - Yusra Habib Khan
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia or (T.H.M.); or (Y.H.K.)
| | - Sara Hafeez
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza 3725004, Egypt
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Pta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
3
|
Habib O, Mohd Sakri R, Ghazalli N, Chau DM, Ling KH, Abdullah S. Limited expression of non-integrating CpG-free plasmid is associated with increased nucleosome enrichment. PLoS One 2020; 15:e0244386. [PMID: 33347482 PMCID: PMC7751972 DOI: 10.1371/journal.pone.0244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
CpG-free pDNA was reported to facilitate sustained transgene expression with minimal inflammation in vivo as compared to CpG-containing pDNA. However, the expression potential and impact of CpG-free pDNA in in vitro model have never been described. Hence, in this study, we analyzed the transgene expression profiles of CpG-free pDNA in vitro to determine the influence of CpG depletion from the transgene. We found that in contrast to the published in vivo studies, CpG-free pDNA expressed a significantly lower level of luciferase than CpG-rich pDNA in several human cell lines. By comparing novel CpG-free pDNA carrying CpG-free GFP (pZGFP: 0 CpG) to CpG-rich GFP (pRGFP: 60 CpGs), we further showed that the discrepancy was not influenced by external factors such as gene transfer agent, cell species, cell type, and cytotoxicity. Moreover, pZGFP exhibited reduced expression despite having equal gene dosage as pRGFP. Analysis of mRNA distribution revealed that the mRNA export of pZGFP and pRGFP was similar; however, the steady state mRNA level of pZGFP was significantly lower. Upon further investigation, we found that the CpG-free transgene in non-integrating CpG-free pDNA backbone acquired increased nucleosome enrichment as compared with CpG-rich transgene, which may explain the observed reduced level of steady state mRNA. Our findings suggest that nucleosome enrichment could regulate non-integrating CpG-free pDNA expression and has implications on pDNA design.
Collapse
Affiliation(s)
- Omar Habib
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Rozita Mohd Sakri
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Nadiah Ghazalli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
4
|
Rezaie J, Ajezi S, Avci ÇB, Karimipour M, Geranmayeh MH, Nourazarian A, Sokullu E, Rezabakhsh A, Rahbarghazi R. Exosomes and their Application in Biomedical Field: Difficulties and Advantages. Mol Neurobiol 2017; 55:3372-3393. [DOI: 10.1007/s12035-017-0582-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/27/2017] [Indexed: 12/31/2022]
|
5
|
Kim HS, Jeong HY, Lee YK, Kim KS, Park YS. Synergistic antitumoral effect of IL-12 gene cotransfected with antiangiogenic genes for angiostatin, endostatin, and saxatilin. Oncol Res 2014; 21:209-16. [PMID: 24762227 DOI: 10.3727/096504014x13907540404798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previously, it was reported that the cotransfection of angiostatin K1-3, endostatin, and saxatilin genes using cationic liposomes significantly inhibited tumor progression. IL-12 is a well-known immune modulator that promotes Th1-type antitumor immune responses and also induces antiangiogenic effects. In this study, we have examined the antitumoral function of the IL-12 gene cotransfected with antiangiogenic genes for angiostatin K1-3, endostatin, and saxatilin by O,O'-dimyristyl-N-lysyl glutamate (DMKE) cationic liposomes in a mouse tumor model. According to our results, the administration of the IL-12 gene or the genes for angiostatin K1-3, endostatin, and saxatilin exhibited effective inhibition of B16BL6 melanoma growth in mice. In particular, intravenous administration of the IL-12 gene along with intratumoral administration of the three antiangiogenic genes synergistically inhibited the B16BL6 tumor growth. These results suggest that systemically expressed IL-12 enhances antitumoral efficacy of locally expressed antiangiogenic proteins.
Collapse
Affiliation(s)
- Hong Sung Kim
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan, Korea
| | | | | | | | | |
Collapse
|
6
|
Abrogation of TNFα production during cancer immunotherapy is crucial for suppressing side effects due to the systemic expression of IL-12. PLoS One 2014; 9:e90116. [PMID: 24587231 PMCID: PMC3938584 DOI: 10.1371/journal.pone.0090116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022] Open
Abstract
For more than a decade, the cytokine interleukin-12 (IL-12) has been utilized, either alone or in combination with other drugs, as a treatment for cancer. The numerous anti-tumor properties of IL-12 still generate interest in the clinical use of this cytokine, even though it has demonstrated toxicity when administrated systemically. As an approach to overcome this toxicity, numerous laboratories have attempted to induce IL-12 expression at the site of the tumor. However for tumors that are difficult to remove surgically or for the treatment of disseminated metastases, systemic expression of this cytokine still remains as the most efficient method of administration. Nevertheless, finding alternative approaches for the use of IL-12 in the treatment of cancer and unraveling the basis of IL-12-side effects remain a challenge. In the present work we demonstrate that systemic expression of IL-12 through hydrodynamic injection of IL-12 cDNA is able to induce different types of liver lesions associated with a toxic pathology. However we report here that hepatic toxicity is diminished and survival of mice enhanced in the absence of tumor necrosis factor alpha (TNFα). This observation is in contrast to several murine models and clinical trials that postulate interferon gamma (IFNγ) as the main cytokine responsible for IL-12 toxicity. Moreover, our work demonstrates that when IL-12 cDNA is co-injected with IL-18 cDNA or when mice are pre-treated with a low dose of IL-12 cDNA prior to receiving a high dose of IL-12 cDNA, systemic levels of TNFα are almost completely abrogated, resulting in improved survival and less hepatic damage. Importantly, abrogation of TNFα signaling does not affect the strong anti-tumor activity of IL-12. Thus, neutralizing TNFα with antagonists already approved for human use offers a promising approach to abrogate IL-12 side effects during the use of this cytokine for the treatment of cancer.
Collapse
|
7
|
Oral immunization of mice with recombinant Lactococcus lactis expressing Cu,Zn superoxide dismutase of Brucella abortus triggers protective immunity. Vaccine 2012; 30:1283-90. [PMID: 22222868 DOI: 10.1016/j.vaccine.2011.12.088] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/17/2011] [Accepted: 12/19/2011] [Indexed: 11/20/2022]
Abstract
Brucella infections mainly occur through mucosal surfaces. Thus, the development of mucosal administered vaccines could be instrumental for the control of brucellosis. Here, we evaluated the usefulness of recombinant Lactococcus lactis secreting Brucella abortus Cu-Zn superoxide dismutase (SOD) as oral antigen delivery system, when administered alone or in combination with L. lactis expressing IL-12. To this end, mice were vaccinated by oral route with L. lactis NZ9000 transformed with pSEC derivatives encoding for SOD (pSEC:SOD) and IL-12 (pSEC:scIL-12). In animals receiving L. lactis pSEC:SOD alone, anti-SOD-specific IgM antibodies were detected in sera at day 28 post-vaccination, together with an IgG2a dominated IgG response. SOD-specific sIgA was also detected in nasal and bronchoalveolar lavages. In addition, T-cell-proliferative responses upon re-stimulation with either recombinant SOD or crude Brucella protein extracts were observed up to 6 months after the last boost, suggesting the induction of long term memory. Vaccinated animals were also protected against challenge with the virulent B. abortus 2308 strain. Responses were mildly improved when L. lactis pSEC:SOD was co-administered with L. lactis pSEC:scIL-12. These results indicated that vaccines based on lactococci-derived live carriers are promising interventions against B. abortus infections.
Collapse
|
8
|
Inhibition of nuclear delivery of plasmid DNA and transcription by interferon γ: hurdles to be overcome for sustained gene therapy. Gene Ther 2011; 18:891-7. [PMID: 21451577 DOI: 10.1038/gt.2011.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sustained expression of murine interferon (IFN)-γ (Muγ) was found to be effective in preventing tumor metastasis and atopic dermatitis in mouse models. However, our preliminary experiments suggested that the time-dependent decrease in the Muγ expression was not compensated for by repeated injections of Muγ-expressing plasmid. To identify the mechanism underlying this observation, a reporter plasmid was hydrodynamically injected into mice and the levels of the plasmid, mRNA and reporter protein were measured in mice receiving a pre- or co-administration of Muγ-expressing plasmid. Co-injection of Muγ-expressing plasmid had no significant effects on transgene expression from the reporter plasmid. In contrast, pre-injection of Muγ-expressing plasmid greatly inhibited the expression of the reporter protein. Moreover, pre-injection of Muγ-expressing plasmid also reduced the amount of the reporter plasmid in the nuclear fraction of mouse liver to < 10%, and that of reporter mRNA to < 1%. The degree of reduction in the expression of reporter protein was comparable with the reduction in mRNA. These results indicate that the difficulty in regaining the expression level of IFN-γ is due to the impaired delivery of plasmid to the nucleus and to the suppression of transcription from the plasmid.
Collapse
|
9
|
Vanrell L, Di Scala M, Blanco L, Otano I, Gil-Farina I, Baldim V, Paneda A, Berraondo P, Beattie SG, Chtarto A, Tenenbaum L, Prieto J, Gonzalez-Aseguinolaza G. Development of a liver-specific Tet-on inducible system for AAV vectors and its application in the treatment of liver cancer. Mol Ther 2011; 19:1245-53. [PMID: 21364542 DOI: 10.1038/mt.2011.37] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) are effective gene delivery vehicles that can mediate long-lasting transgene expression. However, tight regulation and tissue-specific transgene expression is required for certain therapeutic applications. For regulatable expression from the liver we designed a hepatospecific bidirectional and autoregulatory tetracycline (Tet)-On system (Tet(bidir)Alb) flanked by AAV inverted terminal repeats (ITRs). We characterized the inducible hepatospecific system in comparison with an inducible ubiquitous expression system (Tet(bidir)CMV) using luciferase (luc). Although the ubiquitous system led to luc expression throughout the mouse, luc expression derived from the hepatospecific system was restricted to the liver. Interestingly, the induction rate of the Tet(bidir)Alb was significantly higher than that of Tet(bidir)CMV, whereas leakage of Tet(bidir)Alb was significantly lower. To evaluate the therapeutic potential of this vector, an AAV-Tet(bidir)-Alb-expressing interleukin-12 (IL-12) was tested in a murine model for hepatic colorectal metastasis. The vector induced dose-dependent levels of IL-12 and interferon-γ (IFN-γ), showing no significant toxicity. AAV-Tet(bidir)-Alb-IL-12 was highly efficient in preventing establishment of metastasis in the liver and induced an efficient T-cell memory response to tumor cells. Thus, we have demonstrated persistent, and inducible in vivo expression of a gene from a liver-specific Tet-On inducible construct delivered via an AAV vector and proved to be an efficient tool for treating liver cancer.
Collapse
Affiliation(s)
- Lucia Vanrell
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rodriguez-Galan MC, Reynolds D, Correa SG, Iribarren P, Watanabe M, Young HA. Coexpression of IL-18 strongly attenuates IL-12-induced systemic toxicity through a rapid induction of IL-10 without affecting its antitumor capacity. THE JOURNAL OF IMMUNOLOGY 2009; 183:740-8. [PMID: 19535628 DOI: 10.4049/jimmunol.0804166] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IL-12 is an excellent candidate for the treatment of cancer due to its ability to drive strong antitumor responses. Recombinant IL-12 protein is currently used in cancer patients; however, systemic expression of rIL-12 presents disadvantages including cost and dose limitation due to its toxicity. In this study, we used hydrodynamic shear of cDNA as a tool to achieve systemic expression of IL-12. We found that sustained but toxic levels of serum IL-12 could be generated in 6- to 7-wk-old B6 mice after a single injection of the cDNA. Unexpectedly, we observed that when IL-12 cDNA is coinjected with IL-18 cDNA, IL-12 antitumor activity was maintained, but there was a significant attenuation of IL-12 toxicity, as evidenced by a greater survival index and a diminution of liver enzymes (ALT and AST). Interestingly, after IL-12 plus IL-18 cDNA administration, more rapid and higher IL-10 levels were observed than after IL-12 cDNA treatment alone. To understand the mechanism of protection, we coinjected IL-12 plus IL-10 cDNAs and observed an increase in survival that correlated with diminished serum levels of the inflammatory cytokines TNF-alpha and IFN-gamma. Confirming the protective role of early IL-10 expression, we observed a significant decrease in survival in IL-10 knockout mice or IL-10R-blocked B6 mice after IL-12 plus IL-18 treatment. Thus, our data demonstrate that the high and early IL-10 expression induced after IL-12 plus IL-18 cDNA treatment is critical to rapidly attenuate IL-12 toxicity without affecting its antitumor capacity. These data could highly contribute to the design of more efficient/less toxic protocols for the treatment of cancer.
Collapse
Affiliation(s)
- Maria Cecilia Rodriguez-Galan
- Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Identification of infected B-cell populations by using a recombinant murine gammaherpesvirus 68 expressing a fluorescent protein. J Virol 2009; 83:6484-93. [PMID: 19386718 DOI: 10.1128/jvi.00297-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Infection of inbred mice with murine gammaherpesvirus 68 (MHV68) has proven to be a powerful tool to study gammaherpesvirus pathogenesis. However, one of the limitations of this system has been the inability to directly detect infected cells harvested from infected animals. To address this issue, we generated a transgenic virus that expresses the enhanced yellow fluorescent protein (YFP), driven by the human cytomegalovirus immediate-early promoter and enhancer, from a neutral locus within the viral genome. This virus, MHV68-YFP, replicated and established latency as efficiently as did the wild-type virus. During the early phase of viral latency, MHV68-YFP efficiently marked latently infected cells in the spleen after intranasal inoculation. Staining splenocytes for expression of various surface markers demonstrated the presence of MHV68 in distinct populations of splenic B cells harboring MHV68. Notably, these analyses also revealed that markers used to discriminate between newly formed, follicular and marginal zone B cells may not be reliable for phenotyping B cells harboring MHV68 since virus infection appears to modulate cell surface expression levels of CD21 and CD23. However, as expected, we observed that the overwhelming majority of latently infected B cells at the peak of latency exhibited a germinal center phenotype. These analyses also demonstrated that a significant percentage of MHV68-infected splenocytes at the peak of viral latency are plasma cells (ca. 15% at day 14 and ca. 8% at day 18). Notably, the frequency of virus-infected plasma cells correlated well with the frequency of splenocytes that spontaneously reactivate virus upon explant. Finally, we observed that the efficiency of marking latently infected B cells with the MHV68-YFP recombinant virus declined at later times postinfection, likely due to shut down of transgene expression, and indicating that the utility of this marking strategy is currently limited to the early stages of virus infection.
Collapse
|
12
|
Abstract
Gene therapy is a new and promising approach which opens a new door to the treatment of human diseases. By direct transfer of genetic materials to the target cells, it could exert functions on the level of genes and molecules. It is hoped to be widely used in the treatment of liver disease, especially hepatic tumors by using different vectors encoding the aim gene for anti-tumor activity by activating primary and adaptive immunity, inhibiting oncogene and angiogenesis. Despite the huge curative potential shown in animal models and some pilot clinical trials, gene therapy has been under fierce discussion since its birth in academia and the public domain because of its unexpected side effects and ethical problems. There are other challenges arising from the technique itself like vector design, administration route test and standard protocol exploration. How well we respond will decide the fate of gene therapy clinical medical practice.
Collapse
|
13
|
Abstract
Drug-inducible systems allow modulation of the duration and intensity of cytokine expression in liver immuno-based gene therapy protocols. However, the biological activity of the transgene may influence their function. We have analyzed the kinetics of interleukin-12 (IL-12) expression controlled by the doxycycline (Dox)- and the mifepristone (Mif)-dependent systems using two long-term expressing vectors directed to liver: a plasmid administered by hydrodynamic injection and a high-capacity adenoviral vector. Daily administration of Dox or Mif was associated with a progressive loss of inducibility and a decrease of murine IL-12 production. This inhibition occurred at the transcriptional level and was probably caused by an interferon (IFN)-gamma-mediated downmodulation of liver-specific promoters that control the expression of transactivators in these systems. Genome-wide expression microarrays studies revealed a parallel downregulation of liver-specific genes in mice overexpressing murine IL-12. However, a promoter naturally induced by IL-12 was also inhibited by this cytokine when placed in a plasmid vector. Interestingly, treatment with sodium butyrate, a class I/II histone deacetylase inhibitor, was able to rescue liver-specific promoter activity solely in the vector. We conclude that biologically active IL-12 can transiently inhibit the function of drug-inducible systems in non-integrative DNA vectors by reducing promoter activity, probably through IFN-gamma and protein deacetylation-dependent mechanisms.
Collapse
|
14
|
Luo P, Reed BD, Tsang TC, Harris DT, Flavell RA. A self-augmenting gene expression cassette for enhanced and sustained transgene expression in the presence of proinflammatory cytokines. DNA Cell Biol 2007; 25:659-67. [PMID: 17184167 DOI: 10.1089/dna.2006.25.659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viral promoters can yield high gene expression levels yet tend to be attenuated in vivo by host proinflammatory cytokines. Prolonged transgene expression can be obtained using constitutive cellular promoters. However, levels of transgene expression driven by cellular promoters are insufficient for effective therapy. We designed a novel self-augmenting gene expression cassette in which the transgene product can induce an endogenous transcription factor to enhance the activity of a weak cellular promoter driving its expression. Using the cellular major histocompatibility complex class I (H-2K(b)) promoter to drive the interferon (IFN-gamma) cytokine gene, we show that the H-2K(b) promoter, although exhibiting much lower basal activity, yields higher IFN-gamma production than the CMV promoter 2 days after transfection. IFN-gamma expression driven by the H-2K(b) promoter also lasts longer than that driven by the cytomegalovirus promoter. Our data demonstrate that the self-augmenting strategy provides a promising approach to achieve high and sustained transgene expression in vivo.
Collapse
Affiliation(s)
- P Luo
- Department of Immunology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | |
Collapse
|
15
|
Cortes-Perez NG, Ah-Leung S, Bermúdez-Humarán LG, Corthier G, Wal JM, Langella P, Adel-Patient K. Intranasal coadministration of live lactococci producing interleukin-12 and a major cow's milk allergen inhibits allergic reaction in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:226-33. [PMID: 17202306 PMCID: PMC1828845 DOI: 10.1128/cvi.00299-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Th1/Th2 balance deregulation toward a Th2 immune response plays a central role in allergy. We previously demonstrated that administration of recombinant Lactococcus lactis strains expressing bovine beta-lactoglobulin (BLG), a major cow's milk allergen, partially prevents mice from sensitization. In the present study, we aimed to improve this preventive effect by coadministration of L. lactis BLG and a second recombinant L. lactis strain producing biologically active interleukin-12 (IL-12). This L. lactis strain producing IL-12 was previously used to enhance the Th1 immune response in a tumoral murine model (L. G. Bermúdez-Humarán et al., J. Immunol. 175:7297-7302, 2005). A comparison of the administration of either BLG alone or BLG in the presence of IL-12 was conducted. A BLG-specific primary Th1 immune response was observed only after intranasal coadministration of both L. lactis BLG and IL-12-producing L. lactis, as demonstrated by the induction of serum-specific immunoglobulin G2a (IgG2a) concomitant with gamma interferon secretion by splenocytes, confirming the adjuvanticity of IL-12-producing L. lactis. Immunized mice were further sensitized by intraperitoneal administration of purified BLG, and the allergic reaction was elicited by intranasal challenge with purified BLG. Mice pretreated with BLG in either the presence or the absence of IL-12 were rendered completely tolerant to further allergic sensitization and elicitation. Pretreatment with either L. lactis BLG or L. lactis BLG and IL-12-producing L. lactis induces specific anti-BLG IgG2a production in serum and bronchoalveolar lavage (BAL) fluid. Although specific serum IgE was not affected by these pretreatments, the levels of eosinophilia and IL-5 secretion in BAL fluid were significantly reduced after BLG challenge in the groups pretreated with L. lactis BLG and L. lactis BLG-IL-12-producing L. lactis, demonstrating a decreased allergic reaction. Our data demonstrate for the first time (i) the induction of a protective Th1 response by the association of L. lactis BLG and IL-12-producing L. lactis which inhibits the elicitation of the allergic reaction to BLG in mice and (ii) the efficiency of intranasal administration of BLG for the induction of tolerance.
Collapse
Affiliation(s)
- Naima G Cortes-Perez
- Laboratoire INRA d'Immuno-Allergie Alimentaire, DSV/SPI-Bâtiment 136, CEA de Saclay, 91191 Gif-sur-Yvette cedex, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Huang Y, Babiuk LA, van Drunen Littel-van den Hurk S. The cell-mediated immune response induced by plasmid encoding bovine herpesvirus 1 glycoprotein B is enhanced by plasmid encoding IL-12 when delivered intramuscularly or by gene gun, but not after intradermal injection. Vaccine 2006; 24:5349-59. [PMID: 16714071 DOI: 10.1016/j.vaccine.2006.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 04/15/2006] [Accepted: 04/19/2006] [Indexed: 11/20/2022]
Abstract
Bovine herpesvirus 1 (BHV-1) causes respiratory and genital infections in cattle. Previously we demonstrated that a DNA vaccine encoding a truncated, secreted form of BHV-1 glycoprotein B (tgB) induces cytotoxic T lymphocyte (CTL) responses in C3H mice. In this study we investigated the potential of interleukin 12 (IL-12) to further enhance the CTL response. C3H mice were immunized with a plasmid encoding tgB or with plasmids encoding tgB and murine IL-12. When the plasmid encoding tgB was delivered intramuscularly or epidermally by a gene gun, co-administration with IL-12 plasmid stimulated the synthesis of more IgG2a, the production of higher levels of IFN-gamma, and more effective killing by CTLs. In contrast, after intradermal delivery no effect of co-administration of IL-12 encoding plasmid was observed. Further investigation suggested that antigen and IL-12 need to be expressed in the draining lymph nodes, where IL-12 can have a direct effect on T cells.
Collapse
Affiliation(s)
- Y Huang
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | | |
Collapse
|
17
|
Kobayashi N, Nishikawa M, Takakura Y. The hydrodynamics-based procedure for controlling the pharmacokinetics of gene medicines at whole body, organ and cellular levels. Adv Drug Deliv Rev 2005; 57:713-31. [PMID: 15757757 DOI: 10.1016/j.addr.2004.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 12/18/2004] [Indexed: 10/25/2022]
Abstract
Hydrodynamics-based gene delivery, involving a large-volume and high-speed intravenous injection of naked plasmid DNA (pDNA), gives a significantly high level of transgene expression in vivo. This has attracted a lot of attention and has been used very frequently as an efficient, simple and convenient transfection method for laboratory animals. Until recently, however, little information has been published on the pharmacokinetics of the injected DNA molecules and of the detailed mechanisms underlying the efficient gene transfer. We and other groups have very recently demonstrated that the mechanism for the hydrodynamics-based gene transfer would involve, in part, the direct cytosolic delivery of pDNA through the cell membrane due to transiently enhanced permeability. Along with the findings in our series of studies, this article reviews the cumulative reports and other intriguing information on the controlled pharmacokinetics of naked pDNA in the hydrodynamics-based gene delivery. In addition, we describe various applications reported so far, as well as the current attempts and proposals to develop novel gene medicines for future gene therapy using the concept of the hydrodynamics-based procedure. Furthermore, the issues associated with the clinical feasibility of its seemingly invasive nature, which is probably the most common concern about this hydrodynamics-based procedure, are discussed along with its future prospects and challenges.
Collapse
Affiliation(s)
- Naoki Kobayashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
18
|
Liu F, Tyagi P. Naked DNA for Liver Gene Transfer. ADVANCES IN GENETICS 2005; 54:43-64. [PMID: 16096007 DOI: 10.1016/s0065-2660(05)54003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The majority of acquired and inherited genetic disorders, including most inborn errors of metabolism, are manifested in the liver. Therefore, it is hardly any surprise to see a large number of Medline reports describing gene therapy efforts in preclinical settings directed toward this organ (Inoue et al., 2004; Oka and Chen, 2004). Of late, non-viral vectors have garnered a lot of attention from the biomedical research community engaged in liver gene therapy (Gupta et al., 2004). However, the first initiative toward gene transfer to the liver using a non-viral approach was taken by Hickman et al. (1994), who applied the technique of naked DNA injection pioneered by Wolff (1990) for skeletal muscle. Direct injection of naked DNA resulted in low, variable and localized gene expression in the rat liver. Consequently, several developments reported in the literature since then aimed to improve hepatic gene expression by employing both surgical and nonsurgical methods. These developments include the exploitation of the unique vasculature of liver as well as the use of electric and mechanical force as an adjunct to the systemic administration of the naked plasmid gene. This chapter focuses on these developments reported from various laboratories, including ours. In addition, the underlying mechanism responsible for the dramatic increase in gene expression using these latest approaches for non-viral gene transfer to the liver is also discussed.
Collapse
Affiliation(s)
- Feng Liu
- Center for Pharmacogenetics, School of Pharmacy University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
19
|
Liu F, Lei J, Vollmer R, Huang L. Mechanism of liver gene transfer by mechanical massage. Mol Ther 2004; 9:452-7. [PMID: 15006613 DOI: 10.1016/j.ymthe.2003.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 12/08/2003] [Indexed: 11/27/2022] Open
Abstract
Many metabolic diseases are caused by defects in the metabolic pathways in the liver. Others result from the absence of specific proteins normally produced and secreted by the liver. Because these metabolic disorders are usually caused by single gene defect, they are ideal candidates for gene therapy. We have previously shown that mouse liver can be transfected by mechanically massaging the liver (MML) after intravenous injection of naked plasmid DNA. We now show a significant linear relationship between the level of liver gene expression and the venous blood pressure, supporting the idea that gene transfer by MML is due, at least in part, to pressure-mediated effect. Liver transfection could not be blocked by co-injection of excess irrelevant DNA or poly I, suggesting that there is no involvement of receptors, including the scavenger receptor, in MML. Moreover, the level of gene expression could be further enhanced by a combination of MML and an increase in DNA retention-time in the liver. Persistence of gene expression could be significantly improved using an EBV-based plasmid vector. Our data suggest the mechanical massage produces transient membrane defects through which naked DNA can enter into the liver cells by simple diffusion.
Collapse
Affiliation(s)
- Feng Liu
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
20
|
Zabala M, Wang L, Hernandez-Alcoceba R, Hillen W, Qian C, Prieto J, Kramer MG. Optimization of the Tet-on system to regulate interleukin 12 expression in the liver for the treatment of hepatic tumors. Cancer Res 2004; 64:2799-804. [PMID: 15087396 DOI: 10.1158/0008-5472.can-03-3061] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interleukin 12 (IL-12) is a potent antitumoral cytokine, but it can be toxic at high doses. Therapy of liver tumors might benefit from the use of vectors enabling tight control of IL-12 expression in hepatic tissue for long periods of time. To this aim, we have improved the Tet-on system by modifying the minimal region of the inducible promoter and adjusting the level of the trans-activator using liver-specific promoters with graded activities. The resulting vectors allowed hepato-specific gene regulation with lower basal activity and higher inducibility compared with the original system in the absence of repressor molecules. The basal and final protein levels depend on the strength of the promoter that directs the transcripcional activator as well as the relative orientation of the two genes in the same plasmid. We have selected the construct combining minimal leakage with higher level of induced gene expression to regulate IL-12 after DNA transfer to mouse liver. Administration of doxycycline (Dox) enhanced IL-12 expression in a dose-dependent manner, whereas it was undetectable in serum in the noninduced state. Gene activation could be repeated several times, and sustained levels of IL-12 were achieved by daily administration of Dox. The antitumor effect of IL-12 was evaluated in a mouse model of metastatic colon cancer to the liver. Complete eradication of liver metastasis and prolonged survival was observed in all mice receiving Dox for 10 days. These data demonstrate the potential of a naked DNA gene therapy strategy to achieve tight control of IL-12 within the liver for the treatment of cancer.
Collapse
Affiliation(s)
- Maider Zabala
- Division of Hepatology and Gene Therapy, School of Medicine, Fundacion para la Investigacion Medica Aplicada (FIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Hydrodynamic delivery is an efficient and inexpensive procedure to deliver a wide range of nucleic acids to hepatic tissues and other organs in vivo. The successful application of hydrodynamic delivery is dependent on the rapid injection of a large aqueous volume containing DNA, RNA or other molecules into the vasculature of the liver. In this review, the development of the procedures for hydrodynamic delivery will be described and the parameters necessary for attaining maximal gene expression will be highlighted. A review of the mechanisms for transfecting hepatocytes, as well as potential uses of this approach in various research and clinical applications, will also be discussed.
Collapse
Affiliation(s)
- Bradley L Hodges
- Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701, USA.
| | | |
Collapse
|
22
|
Chen D, Murphy B, Sung R, Bromberg JS. Adaptive and innate immune responses to gene transfer vectors: role of cytokines and chemokines in vector function. Gene Ther 2003; 10:991-8. [PMID: 12756420 DOI: 10.1038/sj.gt.3302031] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D Chen
- Carl C Ichan Center for Gene Therapy and Molecular Medicine, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
23
|
Bermúdez-Humarán LG, Langella P, Cortes-Perez NG, Gruss A, Tamez-Guerra RS, Oliveira SC, Saucedo-Cardenas O, Montes de Oca-Luna R, Le Loir Y. Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun 2003; 71:1887-96. [PMID: 12654805 PMCID: PMC152106 DOI: 10.1128/iai.71.4.1887-1896.2003] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-12 (IL-12), a heterodimeric cytokine, plays an important role in cellular immunity to several bacterial, viral, and parasitic infections and has adjuvant activity when it is codelivered with DNA vaccines. IL-12 has also been used with success in cancer immunotherapy treatments. However, systemic IL-12 therapy has been limited by high levels of toxicity. We describe here inducible expression and secretion of IL-12 in the food-grade lactic acid bacterium Lactococcus lactis. IL-12 was expressed as two separate polypeptides (p35-p40) or as a single recombinant polypeptide (scIL-12). The biological activity of IL-12 produced by the recombinant L. lactis strain was confirmed in vitro by its ability to induce gamma interferon (IFN-gamma) production by mouse splenocytes. Local administration of IL-12-producing strains at the intranasal mucosal surface resulted in IFN-gamma production in mice. The activity was greater with the single polypeptide scIL-12. An antigen-specific cellular response (i.e., secretion of Th1 cytokines, IL-2, and IFN-gamma) elicited by a recombinant L. lactis strain displaying a cell wall-anchored human papillomavirus type 16 E7 antigen was dramatically increased by coadministration with an L. lactis strain secreting IL-12 protein. Our data show that IL-12 is produced and secreted in an active form by L. lactis and that the strategy which we describe can be used to enhance an antigen-specific immune response and to stimulate local mucosal immunity.
Collapse
Affiliation(s)
- Luis G Bermúdez-Humarán
- Unité de Recherches Laitières et de Génétique Appliquée, INRA, Domaine de Vilvert, 78352 Jouy en Josas cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Non-viral DNA vectors have several advantages over viral vectors. For example, virus production is expensive and there are safety concerns regarding viral manipulations. In addition, the size of the delivered plasmid is limited by the size of the viral capsid, whereas this is not a problem with non-viral vectors. The major disadvantage of using non-viral DNA delivery vectors, compared with their viral counterparts, is the low transfection efficiency. This has resulted in low levels of usage in clinical trials. Consequently, the majority of research into non-viral gene therapy has been focused on developing more efficient vectors.
Collapse
Affiliation(s)
- Gabriele D Schmidt-Wolf
- Medizinische Klinik und Poliklinik I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | | |
Collapse
|
25
|
Eastman SJ, Baskin KM, Hodges BL, Chu Q, Gates A, Dreusicke R, Anderson S, Scheule RK. Development of catheter-based procedures for transducing the isolated rabbit liver with plasmid DNA. Hum Gene Ther 2002; 13:2065-77. [PMID: 12490001 DOI: 10.1089/10430340260395910] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rapid systemic injection of naked plasmid DNA (pDNA) in a large volume into a mouse tail vein has been shown to result in a high level of gene expression in the liver. However, the potential therapeutic benefit to humans embodied in hydrodynamic transfection of the liver cannot be realized until a clinically viable method for gene delivery is developed. In light of this fact, we have devised and evaluated several methods for delivering pDNA to the isolated rabbit liver using minimally invasive catheter-based techniques. Using a lobar technique, pDNA was delivered hydrodynamically to an isolated hepatic lobe using a balloon occlusion balloon catheter to occlude a selected hepatic vein. A whole organ technique was used wherein the entire hepatic venous system was isolated and the pDNA solution injected hydrodynamically into the vena cava between two balloons used to block hepatic venous outflow. Lobar delivery of a plasmid encoding a secreted alkaline phosphatase (SEAP) reporter gene resulted in significant levels of transgene product in the serum. A nonsecreted transgene product, chloramphenicol acetyltransferase (CAT), showed the highest levels of expression in the injected lobe distal to the injection site. Compared to lobar delivery, whole organ delivery yielded much higher serum levels of SEAP expression and a significantly broader hepatic parenchymal distribution of CAT expression. These preliminary studies suggest that catheter-mediated hydrodynamic delivery of pDNA to the isolated liver may provide a method for human gene therapy that is both therapeutically significant and clinically practicable.
Collapse
Affiliation(s)
- Simon J Eastman
- Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
With the recent completion of the human genome project and the tremendous growth of biotechnology, the desire to extract information concerning gene expression, protein level, subcellular localization, and functionality in the liver will demand the development of efficient gene transfer to this organ with minimal toxicity. In this report, we show that significant gene expression in the liver could be achieved by simple mechanical massage after intravenous injection of naked plasmid DNA into mice. This method is simple, highly reproducible, repeatable, and, more importantly, free of toxicity. Hepatic gene transfer with hepatocyte growth factor (HGF) plasmid DNA prevented endotoxin-induced lethal fulminant hepatic failure, leading to dramatically enhanced survival in mice.
Collapse
Affiliation(s)
- Feng Liu
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
27
|
Lui VWY, He Y, Falo L, Huang L. Systemic administration of naked DNA encoding interleukin 12 for the treatment of human papillomavirus DNA-positive tumor. Hum Gene Ther 2002; 13:177-85. [PMID: 11812275 DOI: 10.1089/10430340252769716] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interleukin 12 (IL-12) is one of the most effective and promising cytokines for cancer therapy. Its therapeutic effects have been demonstrated in a variety of tumors in animal models when it is administrated locally or systemically. We describe here a systemic delivery of naked murine IL-12 (mIL-12) gene in vivo. Dose-dependent systemic production of mIL-12, with a serum level up to approximately 20 microg/ml, was observed 24 hr after systemic gene delivery. The apparent half-life in the circulation was about 5 hr. The result of a bioactivity assay (in vitro interferon gamma [IFN-gamma] release) indicated that the gene product in mice was as active as the purified recombinant murine IL-12 protein (rmIL-12). The circulating mIL-12 activated natural killer cells and stimulated IFN-gamma production in vivo. A single administration of mIL-12 gene resulted in prominent regression of established subcutaneous tumor in a human papillomavirus (HPV) DNA-positive tumor model (TC-1) in C57BL/6J mice. The antitumor effect of the single gene dose was comparable to repeated intraperitoneal administration of rmIL-12 (0.5 microg/day for consecutive 5 days). This systemic gene delivery is simple, economical, and highly efficient for the production of large amounts of cytokine in vivo. With this gene delivery method, we have demonstrated the therapeutic potential of IL-12 for the treatment of HPV DNA-positive tumor and the usefulness of the systemic gene delivery for assessing the therapeutic effect of a candidate gene.
Collapse
Affiliation(s)
- Vivian Wai Yan Lui
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|