1
|
Poudineh M, Mohammadyari F, Parsamanesh N, Jamialahmadi T, Kesharwani P, Sahebkar A. Cell and gene therapeutic approaches in non-alcoholic fatty liver disease. Gene 2025; 956:149466. [PMID: 40189164 DOI: 10.1016/j.gene.2025.149466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) refers to a range of conditions marked by the buildup of triglycerides in liver cells, accompanied by inflammation, which contributes to liver damage, clinical symptoms, and histopathological alterations. Multiple molecular pathways contribute to NAFLD pathogenesis, including immune dysregulation, endoplasmic reticulum stress, and tissue injury. Both the innate and adaptive immune systems play crucial roles in disease progression, with intricate crosstalk between liver and immune cells driving NAFLD development. Among emerging therapeutic strategies, cell and gene-based therapies have shown promise. This study reviews the pathophysiological mechanisms of NAFLD and explores the therapeutic potential of cell-based interventions, highlighting their immunomodulatory effects, inhibition of hepatic stellate cells, promotion of hepatocyte regeneration, and potential for hepatocyte differentiation. Additionally, we examine gene delivery vectors designed to target NAFLD, focusing on their role in engineering hepatocytes through gene addition or editing to enhance therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tananz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Jia Q, Sun X, Li H, Guo J, Niu K, Chan KM, Bernards R, Qin W, Jin H. Perturbation of mRNA splicing in liver cancer: insights, opportunities and challenges. Gut 2025; 74:840-852. [PMID: 39658264 DOI: 10.1136/gutjnl-2024-333127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Perturbation of mRNA splicing is commonly observed in human cancers and plays a role in various aspects of cancer hallmarks. Understanding the mechanisms and functions of alternative splicing (AS) not only enables us to explore the complex regulatory network involved in tumour initiation and progression but also reveals potential for RNA-based cancer treatment strategies. This review provides a comprehensive summary of the significance of AS in liver cancer, covering the regulatory mechanisms, cancer-related AS events, abnormal splicing regulators, as well as the interplay between AS and post-transcriptional and post-translational regulations. We present the current bioinformatic approaches and databases to detect and analyse AS in cancer, and discuss the implications and perspectives of AS in the treatment of liver cancer.
Collapse
Affiliation(s)
- Qi Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianglong Guo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kongyan Niu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
He S, Li Z, Xie L, Lin R, Yan B, Li B, Luo L, Xv Y, Wen H, Liang Y, Huang C, Li Z. Biomimetic gene delivery system coupled with extracellular vesicle-encapsulated AAV for improving diabetic wound through promoting vascularization and remodeling of inflammatory microenvironment. J Nanobiotechnology 2025; 23:242. [PMID: 40128816 PMCID: PMC11931832 DOI: 10.1186/s12951-025-03261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Adeno-associated virus (AAV)-mediated gene transfer has demonstrated potential in effectively promoting re-epithelialization and angiogenesis. AAV vector has a safety profile; however, the relatively low delivery efficacy in chronic wound with an inflammatory microenvironment and external exposure has limited its prospective clinical translation. Here, we generated AAV-containing EVs (EV-AAVs) from cultured HEK 293T cells and confirmed that the gene transfer efficiency of VEGF-EV-AAV significantly surpassed that of free AAV. Subsequently, a biomimetic gene delivery system VEGF-EV-AAV/MSC-Exo@FHCCgel developing, and synergistically enhances anti-inflammation and transfection efficiency in the combination of human umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSC-Exo). Upon reaching physiological temperature, this hydrogel system transitions to a gel state, maintaining AAV bioactivity and facilitating a sustained release of the encapsulated vesicles. The encapsulation strategy enables the vesicles to rapidly fuse with endothelial cell membranes, ensuring controlled expression of endogenous VEGF. Results revealed that VEGF-EV-AAV/MSC-Exo@FHCCgel alleviates mitochondrial function in endotheliocyte under oxidative stress. Furthermore, it eliminates senescent macrophages by inhabitation of cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway to promote efferocytosis. The system increases Treg cells accumulation, leading to a reduction of inflammatory cytokines. Collectively, the biomimetic gene delivery system represents a promising multi-faceted strategy for chronic wound healing.
Collapse
Affiliation(s)
- Shan He
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenhao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lei Xie
- Department of Radiology, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Rongtian Lin
- R&D Center, Guangdong Luofushan Sinopharm Co., Ltd., Huizhou, 516100, China
| | - Biying Yan
- Department of Biology, Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Bixiang Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lingxi Luo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Youshan Xv
- Huiqiao Medical Center (International Medical Service), NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huangding Wen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yaxuan Liang
- Department of Biology, Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| | - Cong Huang
- Department of Ultrasound, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Zhiqing Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Sawan S, Kumari A, Majie A, Ghosh A, Karmakar V, Kumari N, Ghosh S, Gorain B. siRNA-based nanotherapeutic approaches for targeted delivery in rheumatoid arthritis. BIOMATERIALS ADVANCES 2025; 168:214120. [PMID: 39577366 DOI: 10.1016/j.bioadv.2024.214120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Rheumatoid arthritis (RA), characterized as a systemic autoimmune ailment, predominantly results in substantial joint and tissue damage, affecting millions of individuals globally. Modern treatment modalities are being explored as the traditional RA therapy with non-specific immunosuppressive drugs showcased potential side effects and variable responses. Research potential with small interfering RNA (siRNA) depicted potential in the treatment of RA. These siRNA-based therapies could include genes encoding pro-inflammatory cytokines like TNF-α, IL-1, and IL-6, as well as other molecular targets such as RANK, p38 MAPK, TGF-β, Wnt/Fz complex, and HIF. By downregulating the expression of these genes, siRNA-based nanoformulations can attenuate inflammation, inhibit immune system dysregulation, and prevent tissue damage associated with RA. Strategies of delivering siRNA molecules through nanocarriers could be targeted to treat RA effectively, where specific genes associated with this autoimmune disease pathology can be selectively silenced. Additionally, simultaneous targeting of multiple molecular pathways may offer synergistic therapeutic benefits, potentially leading to more effective and safer therapeutic strategies for RA patients. This review critically highlights the in-depth pathology of RA, RNA interference-mediated molecular targets, and nanocarrier-based siRNA delivery strategies, along with the challenges and opportunities to harbor future solutions.
Collapse
Affiliation(s)
- Sweta Sawan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankita Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Nimmy Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Santanu Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| |
Collapse
|
5
|
Suleman S, Khalifa MS, Fawaz S, Alhaque S, Chinea Y, Themis M. Analysis of HIV-1-Based Lentiviral Vector Particle Composition by PacBio Long-Read Nucleic Acid Sequencing. Hum Gene Ther 2025; 36:628-636. [PMID: 39973307 DOI: 10.1089/hum.2024.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Lentivirus (LV) vectors offer permanent delivery of therapeutic genes to the host through an RNA intermediate genome. They are one of the most commonly used vectors for clinical gene therapy of inherited disorders such as immune deficiencies and cancer immunotherapy. One of the most difficult challenges facing their widespread application to patients is the large-scale production of highly pure vector stocks. To improve vector production and downstream purification, there has been a recent investment in the United Kingdom to establish good manufacturing process (GMP)-licensed centers for manufacture and quality control. Other requirements for these vectors include their target cell specificity and tropism, how to regulate gene expression of the therapeutic payload and their potential side effects. Comprehensive detail on the full nucleic acid content of LV is unknown, even though they have entered clinical trials. With potential adverse effects in mind, it is important to identify these contents to assess their safety and purity. In this study, we used highly sensitive PacBio long-distance, next-generation sequencing of reverse-transcribed vector component RNA to investigate the nucleic acid composition of recombinant HIV-1 particles generated by human 293T packaging cells. In this article, we describe our findings of nucleic acids other than the recombinant vector genome that exist, which could potentially be delivered during gene transfer, and suggest that removal of these unwanted components be considered before clinical LV application.
Collapse
Affiliation(s)
- Saqlain Suleman
- Department of Life Sciences, Brunel University London, London, United Kingdom
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, United Kingdom
- Testavec Ltd., Queensgate House, Maidenhead, United Kingdom
| | - Mohammad S Khalifa
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Serena Fawaz
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Sharmin Alhaque
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Yaghoub Chinea
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Michael Themis
- Department of Life Sciences, Brunel University London, London, United Kingdom
- Testavec Ltd., Queensgate House, Maidenhead, United Kingdom
- Division of Ecology and Evolution, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Chaugule S, Constantinou CK, John AA, Micha D, Eekhoff M, Gravallese E, Gao G, Shim JH. Comprehensive Review of Osteogenesis Imperfecta: Current Treatments and Future Innovations. Hum Gene Ther 2025; 36:597-617. [PMID: 39932815 PMCID: PMC11971546 DOI: 10.1089/hum.2024.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Osteogenesis imperfecta (OI) is a rare genetic disorder characterized by bone fragility due to reduced bone quality, often accompanied by low bone mass, recurrent fractures, hearing loss, skeletal abnormalities, and short stature. Pathogenic variants in over 20 genes lead to clinical and genetic variability in OI, resulting in diverse symptoms and severity. Current management involves a multidisciplinary approach, including antiresorptive medications, physiotherapy, occupational therapy, and orthopedic surgery, which provide symptomatic relief but no cure. Advancements in gene therapy technologies and stem cell therapies offer promising prospects for long-lasting or permanent solutions. This review provides a comprehensive overview of OI's classification, pathogenesis, and current treatment options. It also explores emerging biotechnologies for stem cells and gene-targeted therapies in OI. The potential of these innovative therapies and their clinical implementation challenges are evaluated, focusing on their imminent success in treating bone disorders.
Collapse
Affiliation(s)
- Sachin Chaugule
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Aijaz Ahmad John
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam; Amsterdam Rare Bone Disease center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Marelise Eekhoff
- Department of Internal Medicine, Section Endocrinology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam; Amsterdam Rare Bone Disease center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam Reproduction and Development Amsterdam, Amsterdam, Netherlands
| | - Ellen Gravallese
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
7
|
Deramoudt L, Pinturaud M, Bouquet P, Goffard A, Simon N, Odou P. Method for the detection and quantification of viral contamination during the preparation of gene therapy drugs in a hospital pharmacy. Occup Environ Med 2025; 81:615-621. [PMID: 39632065 DOI: 10.1136/oemed-2024-109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE The objective of the present study was to develop a method for sampling and detecting an adenovirus-derived gene therapy (GT) vector on isolator worksurfaces. METHODS We used a quantitative PCR (q-PCR) to detect the viral genome in standard dilutions of pure GT product and extracts of sampled surfaces. We compared three devices for surface sampling (a cotton compress, a cotton swab and a polyester flocked swab) and performed positive control, negative control and induced contamination tests for each. RESULTS Our results showed that the GT pure product is detected by the q-PCR assay and is amplified throughout the range of dilutions. The mean difference between the expected and measured number of vector particles in the q-PCR assay was 1.27 log. The numbers of particles in the total extracted volume were 4.66×108 for the polyester swab (7.8% of the initial quantity), 3.82×108 for a cotton compress (6.4%) and 2.88×107 for a cotton swab (4.8%). CONCLUSION These initial results suggest that viral monitoring of worksurfaces is feasible and will help us to validate the GT product supply chain.
Collapse
Affiliation(s)
- Laure Deramoudt
- Institut Pharmacie, F-59000, CHU de Lille, Lille, France
- GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, Université de Lille ULR 7365, Lille, Hauts-de-France, France
| | - Marine Pinturaud
- Institut Pharmacie, F-59000, CHU de Lille, Lille, France
- GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, Université de Lille ULR 7365, Lille, Hauts-de-France, France
| | - Peggy Bouquet
- Unité de Microbiologie Clinique, Institut Pasteur de Lille, Lille, Hauts-de-France, France
| | - Anne Goffard
- UMR 9017, CIIL - Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Universit ́e de Lille, CNRS, INSERM, CHU de Lille, INSERM U1019, Lille, Hauts-de-France, France
| | - Nicolas Simon
- Institut Pharmacie, F-59000, CHU de Lille, Lille, France
- GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, Université de Lille ULR 7365, Lille, Hauts-de-France, France
| | - Pascal Odou
- Institut Pharmacie, F-59000, CHU de Lille, Lille, France
- GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, Université de Lille ULR 7365, Lille, Hauts-de-France, France
| |
Collapse
|
8
|
Shokoohi M, Sedaghatshoar S, Arian H, Mokarami M, Habibi F, Bamarinejad F. Genetic advancements in breast cancer treatment: a review. Discov Oncol 2025; 16:127. [PMID: 39918655 PMCID: PMC11805739 DOI: 10.1007/s12672-025-01884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Breast cancer (BC) remains a leading cause of cancer-related deaths among women globally, highlighting the urgent need for more effective and targeted therapies. Traditional treatments, including surgery, chemotherapy, and radiation, face limitations such as drug resistance, metastasis, and severe side effects. Recent advancements in gene therapy, particularly CRISPR/Cas9 technology and Oncolytic Virotherapy (OVT), are transforming the BC treatment landscape. CRISPR/Cas9 enables precise gene editing to correct mutations in oncogenes like HER2 and MYC, directly addressing tumor growth and immune evasion. Simultaneously, OVT leverages genetically engineered viruses to selectively destroy cancer cells and stimulate robust antitumor immune responses. Despite their potential, gene therapies face challenges, including off-target effects, delivery issues, and ethical concerns. Innovations in delivery systems, combination strategies, and integrating gene therapy with existing treatments offer promising solutions to overcome these barriers. Personalized medicine, guided by genomic profiling, further enhances treatment precision by identifying patient-specific mutations, such as BRCA1 and BRCA2, allowing for more tailored and effective interventions. As research progresses, the constructive interaction between gene therapy, immunotherapy, and traditional approaches is paving the way for groundbreaking advancements in BC care. Continued collaboration between researchers and clinicians is essential to translate these innovations into clinical practice, ultimately improving BC patients' survival rates and quality of life.
Collapse
Affiliation(s)
- Marzieh Shokoohi
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
- Amino Techno Gene Virtual Private Laboratory, Tehran, Iran.
| | - Sadaf Sedaghatshoar
- Kent School of Social Work and Family Science, University of Louisville, Louisville, KY, USA
| | - Homaira Arian
- Pharmaceutical Biotechnology Department, Pharmacy Faculty, Anadolu University, Eskishehir, Turkey.
| | - Milad Mokarami
- Student Research Committee, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Habibi
- Department of Speech Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bamarinejad
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Yang Y, Bian L, Cheng Y, Xu Y, Shao H, Rao J, Ge S, Gong J, Jiang M, Zheng X, Liu L, Ma S, Liu X, Cheng T, Gao C. The Role and Challenges of Investigator-Initiated Trials in the Cell and Gene Therapy Products Boom in Mainland China. Clin Transl Sci 2025; 18:e70148. [PMID: 39936621 PMCID: PMC11815567 DOI: 10.1111/cts.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
As cutting-edge technologies in biomedicine, cell and gene therapy (CGT) products demonstrate immense potential in treating cancer, rare diseases, and genetic disorders, thereby driving the importance of clinical research in this area. This study analyzes the growth trends and key characteristics of 1033 Investigator-Initiated Trials (IITs) conducted by mainland Chinese institutions in the CGT field. The results show that IITs have played a positive role in the early proof-of-concept of CGT products, helping to obtain preliminary safety and efficacy data, and exploring the combination of CGT products with other therapies. Additionally, this study discusses the regional distribution, therapeutic areas, and challenges faced by IITs in the development of CGT products in China. Based on these findings, policy suggestions are proposed to optimize the regulation of IITs in mainland China, such as improving regulatory frameworks and enhancing technical guidance. It is hoped that these measures will further improve the efficiency and quality of IITs, fully utilize the large patient base and abundant clinical resources, and support the development of high-quality CGT products in mainland China.
Collapse
Affiliation(s)
- Yifan Yang
- Changping LaboratoryBeijingChina
- China Pharmaceutical UniversityNanjingChina
| | | | - Yuan Cheng
- Changping LaboratoryBeijingChina
- Beijing Advanced and Innovative Medical Device Industrialization AllianceBeijingChina
| | - Yan Xu
- Peking University Third HospitalBeijingChina
| | - Hui Shao
- Changping LaboratoryBeijingChina
| | - Jian Rao
- Changping LaboratoryBeijingChina
| | | | | | | | | | - Lijun Liu
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical SciencesTianjinChina
| | - Shihui Ma
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical SciencesTianjinChina
| | - Xuan Liu
- Tsinghua Changgung HospitalBeijingChina
| | - Tao Cheng
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical SciencesTianjinChina
| | | |
Collapse
|
10
|
Hajipour Keyvani A, Mohammadnejad P, Pazoki-Toroudi H, Perez Gilabert I, Chu T, Manshian BB, Soenen SJ, Sohrabi B. Advancements in Cancer Treatment: Harnessing the Synergistic Potential of Graphene-Based Nanomaterials in Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2756-2790. [PMID: 39745785 DOI: 10.1021/acsami.4c15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects. This review explores the roles of graphene, graphene oxide (GO), and graphene quantum dots (GQDs) in combination therapies and highlights their potential to enhance immunotherapy and targeted cancer therapies. The large surface area and high drug-loading capacity of graphene facilitate the codelivery of multiple therapeutic agents, promoting targeted and sustained release. GQDs, with their unique optical properties, offer real-time imaging capabilities, adding another layer of precision to treatment. However, challenges such as biocompatibility, long-term toxicity, and scalability need to be addressed to ensure clinical safety. Preclinical studies show promising results for GBNs, suggesting their potential to revolutionize cancer treatment through innovative combination therapies.
Collapse
Affiliation(s)
- Armin Hajipour Keyvani
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Parizad Mohammadnejad
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Irati Perez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Tianjiao Chu
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, RK-Herestraat 49 - Box 505,3000 Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
- Leuven Cancer Institute, Faculty of Medicine, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Beheshteh Sohrabi
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
11
|
Uddin MN, Dinar MAM, Schrass LE, Pack DW, DeRouchey JE. Impact of Acetylation, Succinylation, and pH on DNA Packaging in PEI-Based Polyplexes. Biomacromolecules 2025; 26:178-189. [PMID: 39690700 DOI: 10.1021/acs.biomac.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Polyethylenimine (PEI) is a widely used cationic polymer for nonviral gene delivery, often modified to enhance transfection efficiency and reduce cytotoxicity. This study investigates how acetylation, succinylation (acPEI and zPEI), and pH influence the internal DNA packaging of polyplexes. Both modifications alter physicochemical properties, leading to complexes that decondense more readily with increasing modification. X-ray scattering reveals that high acetylation produces loosely packed DNA, while succinylation unexpectedly tightens DNA packing at higher modification levels. Polyplexes formed at low pH (pH 4) are more stable and tightly packed than those formed at pH 7.5. Acidifying polyplexes initially formed at pH 7.5 induces structural rearrangement to tighter DNA packing accompanied by significant PEI release, providing direct evidence for models where free PEI aids endosomal escape. These findings challenge conventional assumptions about PEI behavior and offer new insights into DNA packaging, emphasizing tailored polymer modifications and pH conditions to optimize gene delivery.
Collapse
Affiliation(s)
- Md Nasir Uddin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Md Abu Monsur Dinar
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Leah E Schrass
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Daniel W Pack
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
12
|
Rasizadeh R, Shiri Aghbash P, Mokhtarzadeh A, Poortahmasebi V, Ahangar Oskouee M, Sadri Nahand J, Amini M, Zahra Bahojb Mahdavi S, Hossein Yari A, Bannazadeh Baghi H. Novel strategies in HPV‑16‑related cervical cancer treatment: An in vitro study of combined siRNA-E5 with oxaliplatin and ifosfamide chemotherapy. Gene 2025; 932:148904. [PMID: 39218415 DOI: 10.1016/j.gene.2024.148904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cervical cancer, primarily caused by HPV infection, remains a global health concern. Current treatments face challenges including drug resistance and toxicity. This study investigates combining E5-siRNA with chemotherapy drugs, Oxaliplatin and Ifosfamide, to enhance treatment efficacy in HPV-16 positive cervical cancer cells, targeting E5 oncoprotein to overcome limitations of existing therapies. METHODS The CaSki cervical cancer cell line was transfected with E5-siRNA, and subsequently treated with Oxaliplatin/Ifosfamide. Quantitative real-time PCR was employed to assess the expression of related genes including p53, MMP2, Nanog, and Caspases. Cell apoptosis, cell cycle progression, and cell viability were evaluated using Annexin V/PI staining, DAPI staining, and MTT test, respectively. Furthermore, stemness ability was determined through a colony formation assay, and cell motility was assessed by wound healing assay. RESULTS E5-siRNA transfection significantly reduced E5 mRNA expression in CaSki cells compared to the control group. The MTT assay revealed that monotherapy with E5-siRNA, Oxaliplatin, or Ifosfamide had moderate effects on cell viability. However, combination therapy showed synergistic effects, reducing the IC50 of Oxaliplatin from 11.42 × 10-8 M (45.36 μg/ml) to 6.71 × 10-8 M (26.66 μg/ml) and Ifosfamide from 12.52 × 10-5 M (32.7 μg/ml) to 8.206 × 10-5 M (21.43 μg/ml). Flow cytometry analysis demonstrated a significant increase in apoptosis for combination treatments, with apoptosis rates rising from 11.02 % (Oxaliplatin alone) and 16.98 % (Ifosfamide alone) to 24.8 % (Oxaliplatin + E5-siRNA) and 34.9 % (Ifosfamide + E5-siRNA). The sub-G1 cell population increased from 15.7 % (Oxaliplatin alone) and 18 % (Ifosfamide alone) to 21.9 % (Oxaliplatin + E5-siRNA) and 27.1 % (Ifosfamide + E5-siRNA), indicating cell cycle arrest. The colony formation assay revealed a substantial decrease in the number of colonies following combination treatment. qRT-PCR analysis showed decreased expression of stemness-related genes CD44 and Nanog, and migration-related genes MMP2 and CXCL8 in the combination groups. Apoptosis-related genes Casp-3, Casp-9, and pP53 showed increased expression following combination therapy, while BAX expression increased and BCL2 expression decreased relative to the control. CONCLUSION The study demonstrates that combining E5-siRNA with Oxaliplatin or Ifosfamide enhances the efficacy of chemotherapy in HPV-16 positive cervical cancer cells. This synergistic approach effectively targets multiple aspects of cancer cell behavior, including proliferation, apoptosis, migration, and stemness. The findings suggest that this combination strategy could potentially allow for lower chemotherapy doses, thereby reducing toxicity while maintaining therapeutic efficacy. This research provides valuable insights into targeting HPV E5 as a complementary approach to existing therapies focused on E6 and E7 oncoproteins, opening new avenues for combination therapies in cervical cancer treatment.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Genetic, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahin Ahangar Oskouee
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amir Hossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Meng X, Du Y, Liu C, Zhai Z, Pan J. GTO: a comprehensive gene therapy omnibus. Nucleic Acids Res 2025; 53:D1393-D1403. [PMID: 39540438 PMCID: PMC11701634 DOI: 10.1093/nar/gkae1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Gene therapy, which involves the delivery of genetic material into cells to correct an underlying genetic problem, has emerged as a promising approach for treating various conditions. To promote research in this rapidly evolving field, we developed the Gene Therapy Omnibus (GTO) (http://www.inbirg.com/gto/), a comprehensive resource containing detailed clinical trial data and molecular information related to gene therapy. The GTO includes 6333 clinical trial records and 3466 transcriptome profiles, with information on 614 altered genes and 22 types of gene therapy, including DNA therapies, RNA therapies and genetically-modified cell therapies. For each gene therapy product in a clinical trial, detailed information, such as altered gene name, structural components, indication, vector information, phase of the clinical trial, clinical outcomes and adverse effects, is provided when available. Additionally, 345 comparison datasets, including 29 single-cell RNA-sequencing datasets comprising information on both gene therapy and control samples, were established. Differential gene expression and downstream functional enrichment analyses were performed through standardized pipelines to elucidate the molecular alterations induced by gene therapy. The user-friendly interface of the GTO supports efficient data retrieval, visualization and analysis, making it an invaluable resource for researchers and clinicians performing clinical research on gene therapy and the underlying mechanisms.
Collapse
Affiliation(s)
- Xuehang Meng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yujia Du
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Chang Liu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zhaoyu Zhai
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jianbo Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| |
Collapse
|
14
|
Bimbo JF, Schiffelers R. A Robust Post-Insertion Method for the Preparation of Targeted Lipid Nanoparticles. Methods Mol Biol 2025; 2901:241-250. [PMID: 40175880 DOI: 10.1007/978-1-0716-4394-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Lipid nanoparticles (LNPs) have garnered significant attention as nonviral vectors for gene delivery due to their low immunogenicity and cytotoxicity. In addition, their surfaces can readily be functionalized with targeting moieties. Here we describe a simple and robust method for the preparation of targeted siRNA, mRNA, or DNA LNPs. After conjugating a targeting ligand to a PEG lipid, this binder-lipid conjugate is post-inserted into preformed LNPs. This process allows the LNPs to be easily decorated with one or various combinations of ligands.
Collapse
Affiliation(s)
- Jaime Fernández Bimbo
- NanoCell Therapeutics B.V. (nanocelltx.com), Utrecht, Utrecht, The Netherlands.
- University of Utrecht, Utrecht, The Netherlands.
- University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Raymond Schiffelers
- University of Utrecht, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
15
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
16
|
Dhodapkar RM, Jung E, Lee SY. An Eye on Extracellular Vesicles: Trends and Clinical Translations in Vision Research. OPHTHALMOLOGY SCIENCE 2025; 5:100619. [PMID: 39584184 PMCID: PMC11585720 DOI: 10.1016/j.xops.2024.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 11/26/2024]
Abstract
Purpose To perform a review of research, funding, and clinical translation efforts for extracellular vesicles (EVs) within vision science. Design Retrospective analysis of publication, funding, and clinical trials data. Methods A pretrained large language model (Jina2) was used to create semantic embeddings for 41 282 abstracts from articles related to EVs archived on EMBASE and published between January 1966 and January 2024. The articles were projected and clustered according to semantic embedding similarity, and research subdomains for EVs were determined through inspection of term frequency-inverse document frequency weighted word clouds. Mann-Kendall trend analysis was performed to identify current areas of growth within EV research. Additionally, National Institutes of Health funding data from RePORT Expenditures and Results and clinical trials data from ClinicalTrials.gov were analyzed to correlate publication trends with funding support and clinical translation efforts. Results Unsupervised clustering and Mann-Kendall trend analysis identified wound healing/regeneration (P = 0.030) and neurodegenerative disease (P = 0.049) as significantly accelerating in growth of publication over time. Ophthalmology-restricted subset analysis identified that publications in age-related macular degeneration (P = 0.191) and clinical applications (P = 0.086) are no longer growing at a significant rate. Analysis of funding data identified that the National Cancer Institute was the top funding institution overall, but that the National Institute on Aging is rapidly advancing in terms of funding EV research and trials. Analysis of ClinicalTrials.gov data highlights a dearth of clinical trials within ophthalmology despite a growing number of studies in other medical subfields. Conclusions Extracellular vesicles remain a promising substrate for both the identification and treatment of vision-threatening diseases. A better understanding of the current landscape of research and funding trends should help to inform future funding and translational efforts. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Rahul M. Dhodapkar
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eric Jung
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sun Young Lee
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
17
|
Wang J, Chen Z, Zhao P, Wang Y, Chen J, Lin Q. PDGFR-α shRNA-polyplex for uveal melanoma treatment via EMT mediated vasculogenic mimicry interfering. J Nanobiotechnology 2024; 22:797. [PMID: 39726008 DOI: 10.1186/s12951-024-03077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Up to 50% of individuals with uveal melanoma (UM), a frequent cancer of the eye, pass away from metastases. One of the major challenges in treating UM is the role of receptor tyrosine kinases (RTKs), which mediate the epithelial-mesenchymal transition (EMT) of tumors. RTKs are involved in binding multiple growth factors, leading to angiogenesis and vasculogenic mimicry (VM) phenomena. Currently, most anti-angiogenic drugs have shown a tendency to increase the VM of tumors in clinical trials, resulting in limited efficacy. The existing gap in UM treatment lies in the lack of effective strategies to target RTK-mediated EMT and VM. While some approaches have been attempted, there is still a need for novel therapeutic interventions that can specifically interfere with these processes. This research employed the gene vector PEI-g-PEG to interfere with the platelet derived growth factor-alpha receptor (PDGFR-α)-mediated EMT process, thereby retarding the growth of UM. The cell experiments demonstrated that the gene polyplex exhibited favorable cell uptake and lysosome escape properties, effectively suppressing the expression of PDGFR-α protein and EMT marker proteins and the occurrence of VM phenomenon. In vivo animal studies also inhibited the growth of UM, and PAS assays showed that the treatment reduced the generation of VM in tumor tissue. This study broadens the application of PEI-g-PEG while interfering with the RTK-mediated tumor EMT process with the help of RNAi technology, providing a new idea for tumor reduction research.
Collapse
Affiliation(s)
- Jiahao Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhirong Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Peiyi Zhao
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yajia Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiang Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
18
|
Muravyeva A, Smirnikhina S. Adenoviral Vectors for Gene Therapy of Hereditary Diseases. BIOLOGY 2024; 13:1052. [PMID: 39765719 PMCID: PMC11673936 DOI: 10.3390/biology13121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Adenoviral vectors (AdVs) are effective vectors for gene therapy due to their broad tropism, high capacity, and high transduction efficiency, which makes them actively used as oncolytic vectors and for creating vector vaccines. However, despite their numerous advantages, AdVs have not yet found their place in gene therapy for hereditary diseases. This review provides an overview of AdVs, their features, and clinical trials using them for gene replacement therapy in monogenic diseases and analyzes the reasons for the failures of these studies. Additionally, current research on the modification of AdVs to reduce immune responses and target delivery is discussed.
Collapse
Affiliation(s)
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| |
Collapse
|
19
|
Lin Z, Li S, Wu Q, Qu H, Shi X, Wang K, Tang C, Yin C. In situ customized apolipoprotein B48-enriched protein corona enhances oral gene delivery of chitosan-based nanoparticles. Biomaterials 2024; 311:122704. [PMID: 39018697 DOI: 10.1016/j.biomaterials.2024.122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The formation of protein corona (PC) is important for promoting the in vivo delivery of nanoparticles (NPs). However, PC formed in the physiological environment of oral delivery is poorly understood. Here, we engineered seven types of trimethyl chitosan-cysteine (TC) NPs, with distinct molecular weights, quaternization degrees, and thiolation degrees, to deeply investigate the influence of various PC formed in the physiological environment of oral delivery on in vivo gene delivery of polymeric NPs, further constructing the relationship between the surface characteristics of NPs and the efficacy of oral gene delivery. Our findings reveal that TC7 NPs, with high molecular weight, moderate quaternization, and high sulfhydryl content, modulate PC formation in the gastrointestinal tract, thereby reducing particle size and promoting oral delivery of gene loaded TC7 NPs. Orally delivered TC7 NPs target macrophages by in situ adsorption of apolipoprotein (Apo) B48 in intestinal tissue, leading to the improved in vivo antihepatoma efficacy via the natural tumor homing ability of macrophages. Our results suggest that efficient oral delivery of genes can be achieved through an in situ customized ApoB48-enriched PC, offering a promising modality in treating macrophage-related diseases.
Collapse
Affiliation(s)
- Ziyun Lin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Shengqi Li
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Qiuji Wu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Hongfei Qu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Xiliang Shi
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Ke Wang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
20
|
Muravyeva A, Smirnikhina S. Strategies for Modifying Adenoviral Vectors for Gene Therapy. Int J Mol Sci 2024; 25:12461. [PMID: 39596526 PMCID: PMC11595218 DOI: 10.3390/ijms252212461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Adenoviral vectors (AdVs) are effective vectors for gene therapy due to their broad tropism, large capacity, and high transduction efficiency, making them widely used as oncolytic vectors and for creating vector-based vaccines. This review also considers the application of adenoviral vectors in oncolytic virotherapy and gene therapy for inherited diseases, analyzing strategies to enhance their efficacy and specificity. However, despite significant progress in this field, the use of adenoviral vectors is limited by their high immunogenicity, low specificity to certain cell types, and limited duration of transgene expression. Various strategies and technologies aimed at improving the characteristics of adenoviral vectors are being developed to overcome these limitations. Significant attention is being paid to the creation of tissue-specific promoters, which allow for the controlled expression of transgenes, as well as capsid modifications that enhance tropism to target cells, which also play a key role in reducing immunogenicity and increasing the efficiency of gene delivery. This review focuses on modern approaches to adenoviral vector modifications made to enhance their effectiveness in gene therapy, analyzing the current achievements, challenges, and prospects for applying these technologies in clinical practice, as well as identifying future research directions necessary for successful clinical implementation.
Collapse
Affiliation(s)
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| |
Collapse
|
21
|
Yudaeva A, Kostyusheva A, Kachanov A, Brezgin S, Ponomareva N, Parodi A, Pokrovsky VS, Lukashev A, Chulanov V, Kostyushev D. Clinical and Translational Landscape of Viral Gene Therapies. Cells 2024; 13:1916. [PMID: 39594663 PMCID: PMC11592828 DOI: 10.3390/cells13221916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Gene therapies hold significant promise for treating previously incurable diseases. A number of gene therapies have already been approved for clinical use. Currently, gene therapies are mostly limited to the use of adeno-associated viruses and the herpes virus. Viral vectors, particularly those derived from human viruses, play a critical role in this therapeutic approach due to their ability to efficiently deliver genetic material to target cells. Despite their advantages, such as stable gene expression and efficient transduction, viral vectors face numerous limitations that hinder their broad application. These limitations include small cloning capacities, immune and inflammatory responses, and risks of insertional mutagenesis. This review explores the current landscape of viral vectors used in gene therapy, discussing the different types of DNA- and RNA-based viral vectors, their characteristics, limitations, and current medical and potential clinical applications. The review also highlights strategies to overcome existing challenges, including optimizing vector design, improving safety profiles, and enhancing transgene expression both using molecular techniques and nanotechnologies, as well as by approved drug formulations.
Collapse
Affiliation(s)
- Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
| | - Vadim S. Pokrovsky
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Biochemistry, People’s Friendship University, 117198 Moscow, Russia
| | - Alexander Lukashev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
22
|
Küçükekmekci B, Budak Yıldıran FA. Investigation of the efficacy of siRNA-mediated KRAS gene silencing in pancreatic cancer therapy. PeerJ 2024; 12:e18214. [PMID: 39553720 PMCID: PMC11566511 DOI: 10.7717/peerj.18214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/11/2024] [Indexed: 11/19/2024] Open
Abstract
Aim Pancreatic carcinoma is an aggressive cancer that progresses without many symptoms. The difficulty of early diagnosis and an inadequate response to traditional treatments also cause the survival rate of pancreatic cancer to be low. Current research is focusing on methods of diagnosis and treatment, such as gene therapy, to increase survival rates. Small interfering ribonucleic acid (siRNA) has emerged as a promising advanced therapeutic strategy for cancer treatment. This study sought to silence the KRAS gene in the human pancreatic carcinoma cell line using a complex of small interfering ribonucleic acid (siRNA) and gold nanoparticles (AuNP). Methods In this study, 25 nM siRNA and gold nanoparticles at 0.5 mg/ml, 0.25 mg/ml, and 0.125 mg/ml concentrations were used to silence the KRAS gene in the CAPAN-1 cell line. Real-time PCR analysis, agarose gel electrophoresis, and double staining were carried out, and xCelligence real-time cell analysis (RTCA) was used to measure proliferation. Results The PCR analysis revealed crossing point (CP) values of actin beta (ACTB) ranging from 33.04 to 35.98, which was in the expected range for all samples. The interaction between the gold nanoparticle/siRNA complex in the double staining analysis revealed that the most effective concentration of gold nanoparticle was 0.125 mg/ml. The WST-1 technique showed that siRNA/AuPEI cells in application groups had a viability rate of over 90%, indicating no toxicity or side effects. The xCELLigence RTCA® showed that at hour 72, there was a significant difference in proliferation in the 0.5 mg/mL PEI/AuNP-siRNA, 0.25 mg/mL PEI/AuNP-siRNA, and 0.125 mg/mL PEI/AuNP-siRNA application groups compared to the control and siRNA groups (p < 0.05). By hour 96, all three groups were statistically different from the control and siRNA groups in terms of proliferation (p < 0.05). Conclusions The results of this analysis suggest that the AuPEI/siRNA complex can be effectively used to silence the target gene, but more studies are needed to verify these results.
Collapse
Affiliation(s)
- Büşra Küçükekmekci
- Institute of Sciences, Department of Biology, Kırıkkale University, Kırıkkale, Yahşihan, Turkey
| | - Fatma Azize Budak Yıldıran
- Vocational High School of Health Care Services, Department of Medical Services and Techniques, Kırıkkale University, Kırıkkale, Yahşihan, Turkey
| |
Collapse
|
23
|
Izmailov A, Minyazeva I, Markosyan V, Safiullov Z, Gazizov I, Salafutdinov I, Markelova M, Garifulin R, Shmarov M, Logunov D, Islamov R, Pospelov V. Biosafety Evaluation of a Chimeric Adenoviral Vector in Mini-Pigs: Insights into Immune Tolerance and Gene Therapy Potential. Biomedicines 2024; 12:2568. [PMID: 39595134 PMCID: PMC11592036 DOI: 10.3390/biomedicines12112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The biosafety of gene therapy products remains a major challenge to their introduction into the clinic. In particular, the problem of immunogenicity of viral vectors is the focus of attention. Large animals such as pigs, whose anatomical and physiological characteristics are similar to those of humans, have an advantage in testing vector systems. METHODS We performed a comprehensive in vitro and in vivo study to evaluate the biosafety of a chimeric adenoviral vector carrying a green fluorescent protein gene (Ad5/35F-GFP) in a mini-pig model. RESULTS Transcriptome and secretome analyses of mini-pig leucocytes transduced with Ad5/35F-GFP revealed changes restraining pro-inflammatory processes and cytokine production. No adverse effects were revealed through the clinical, instrumental, laboratory, and histological examinations conducted within a week after the direct or autologous leucocyte-mediated administration of Ad5/35F-GFP to mini-pigs. The decrease in cytokine levels in the blood of experimental animals is also consistent with the in vitro data and confirms the immune tolerance of mini-pigs to Ad5/35F-GFP. CONCLUSIONS Here, we show the safety of Ad5/35F in a mini-pig model and provide evidence that Ad5/35F is a promising vector for gene therapy. These results advance our understanding of vector-host interactions and offer a solid foundation for the clinical application of this vector.
Collapse
Affiliation(s)
- Andrei Izmailov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia; (I.M.); (R.G.)
| | - Irina Minyazeva
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia; (I.M.); (R.G.)
| | - Vage Markosyan
- Department of Topographic Anatomy and Operative Surgery, Kazan State Medical University, 420012 Kazan, Russia;
| | - Zufar Safiullov
- Department of Anatomy, Kazan State Medical University, 420012 Kazan, Russia; (Z.S.); (I.G.)
| | - Ilnaz Gazizov
- Department of Anatomy, Kazan State Medical University, 420012 Kazan, Russia; (Z.S.); (I.G.)
| | - Ilnur Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (M.M.)
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (M.M.)
| | - Ravil Garifulin
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia; (I.M.); (R.G.)
| | - Maksim Shmarov
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.S.); (D.L.)
| | - Denis Logunov
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.S.); (D.L.)
| | - Rustem Islamov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia; (I.M.); (R.G.)
| | - Vadim Pospelov
- LLC “Impulse of Life”, Marshala Biryuzova Str., 32, 123060 Moscow, Russia;
| |
Collapse
|
24
|
Choules MP, Bonate PL, Heo N, Weddell J. Prospective approaches to gene therapy computational modeling - spotlight on viral gene therapy. J Pharmacokinet Pharmacodyn 2024; 51:399-416. [PMID: 37848637 DOI: 10.1007/s10928-023-09889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Clinical studies have found there still exists a lack of gene therapy dose-toxicity and dose-efficacy data that causes gene therapy dose selection to remain elusive. Model informed drug development (MIDD) has become a standard tool implemented throughout the discovery, development, and approval of pharmaceutical therapies, and has the potential to inform dose-toxicity and dose-efficacy relationships to support gene therapy dose selection. Despite this potential, MIDD approaches for gene therapy remain immature and require standardization to be useful for gene therapy clinical programs. With the goal to advance MIDD approaches for gene therapy, in this review we first provide an overview of gene therapy types and how they differ from a bioanalytical, formulation, route of administration, and regulatory standpoint. With this biological and regulatory background, we propose how MIDD can be advanced for AAV-based gene therapies by utilizing physiological based pharmacokinetic modeling and quantitative systems pharmacology to holistically inform AAV and target protein dynamics following dosing. We discuss how this proposed model, allowing for in-depth exploration of AAV pharmacology, could be the key the field needs to treat these unmet disease populations.
Collapse
Affiliation(s)
- Mary P Choules
- Early Development, New Technologies Group, Astellas, Northbrook, IL, USA
| | - Peter L Bonate
- Early Development, New Technologies Group, Astellas, Northbrook, IL, USA.
| | - Nakyo Heo
- Early Development, New Technologies Group, Astellas, Northbrook, IL, USA
| | - Jared Weddell
- Early Development, New Technologies Group, Astellas, Northbrook, IL, USA
| |
Collapse
|
25
|
Brown DW, Wee P, Bhandari P, Bukhari A, Grin L, Vega H, Hejazi M, Sosnowski D, Ablack J, Clancy EK, Pink D, Kumar J, Solis Ares MP, Lamb S, Quevedo R, Rawal B, Elian F, Rana N, Morales L, Govindasamy N, Todd B, Delmage A, Gupta S, McMullen N, MacKenzie D, Beatty PH, Garcia H, Parmar M, Gyoba J, McAllister C, Scholz M, Duncan R, Raturi A, Lewis JD. Safe and effective in vivo delivery of DNA and RNA using proteolipid vehicles. Cell 2024; 187:5357-5375.e24. [PMID: 39260374 DOI: 10.1016/j.cell.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/08/2024] [Accepted: 07/12/2024] [Indexed: 09/13/2024]
Abstract
Genetic medicines show promise for treating various diseases, yet clinical success has been limited by tolerability, scalability, and immunogenicity issues of current delivery platforms. To overcome these, we developed a proteolipid vehicle (PLV) by combining features from viral and non-viral approaches. PLVs incorporate fusion-associated small transmembrane (FAST) proteins isolated from fusogenic orthoreoviruses into a well-tolerated lipid formulation, using scalable microfluidic mixing. Screening a FAST protein library, we identified a chimeric FAST protein with enhanced membrane fusion activity that improved gene expression from an optimized lipid formulation. Systemically administered FAST-PLVs showed broad biodistribution and effective mRNA and DNA delivery in mouse and non-human primate models. FAST-PLVs show low immunogenicity and maintain activity upon repeat dosing. Systemic administration of follistatin DNA gene therapy with FAST-PLVs raised circulating follistatin levels and significantly increased muscle mass and grip strength. These results demonstrate the promising potential of FAST-PLVs for redosable gene therapies and genetic medicines.
Collapse
Affiliation(s)
- Douglas W Brown
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Ping Wee
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Prakash Bhandari
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Amirali Bukhari
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Liliya Grin
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Hector Vega
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Maryam Hejazi
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Deborah Sosnowski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jailal Ablack
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; OncoSenX, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Eileen K Clancy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Desmond Pink
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jitendra Kumar
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | | | - Suellen Lamb
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Rodrigo Quevedo
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Bijal Rawal
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Fahed Elian
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Natasha Rana
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Luis Morales
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Natasha Govindasamy
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Brendan Todd
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Angela Delmage
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Somnath Gupta
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Nichole McMullen
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Duncan MacKenzie
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Perrin H Beatty
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Henry Garcia
- Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Manoj Parmar
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Jennifer Gyoba
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Chandra McAllister
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Matthew Scholz
- Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Roy Duncan
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Arun Raturi
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada.
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; OncoSenX, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA; Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA.
| |
Collapse
|
26
|
Sercia L, Romano O, Marini G, Enzo E, Forcato M, De Rosa L, De Luca M. A cellular disease model toward gene therapy of TGM1-dependent lamellar ichthyosis. Mol Ther Methods Clin Dev 2024; 32:101311. [PMID: 39234443 PMCID: PMC11372595 DOI: 10.1016/j.omtm.2024.101311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
Lamellar ichthyosis (LI) is a chronic disease, mostly caused by mutations in the TGM1 gene, marked by impaired skin barrier formation. No definitive therapies are available, and current treatments aim at symptomatic relief. LI mouse models often fail to faithfully replicate the clinical and histopathological features of human skin conditions. To develop advanced therapeutic approaches, such as combined ex vivo cell and gene therapy, we established a human cellular model of LI by efficient CRISPR-Cas9-mediated gene ablation of the TGM1 gene in human primary clonogenic keratinocytes. Gene-edited cells showed complete absence of transglutaminase 1 (TG1) expression and recapitulated a hyperkeratotic phenotype with most of the molecular hallmarks of LI in vitro. Using a self-inactivating γ-retroviral (SINγ-RV) vector expressing transgenic TGM1 under the control of its own promoter, we tested an ex vivo gene therapy approach and validate the model of LI as a platform for pre-clinical evaluation studies. Gene-corrected TGM1-null keratinocytes displayed proper TG1 expression, enzymatic activity, and cornified envelope formation and, hence, restored proper epidermal architecture. Single-cell multiomics analysis demonstrated proviral integrations in holoclone-forming epidermal stem cells, which are crucial for epidermal regeneration. This study serves as a proof of concept for assessing the potential of this therapeutic approach in treating TGM1-dependent LI.
Collapse
Affiliation(s)
- Laura Sercia
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Oriana Romano
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Grazia Marini
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elena Enzo
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Mattia Forcato
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Laura De Rosa
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
27
|
Guan JX, Wang YL, Wang JL. How Advanced are Nanocarriers for Effective Subretinal Injection? Int J Nanomedicine 2024; 19:9273-9289. [PMID: 39282576 PMCID: PMC11401526 DOI: 10.2147/ijn.s479327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.
Collapse
Affiliation(s)
- Jia-Xin Guan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
28
|
Gay L, Suwan K, Hajitou A. Construction and utilization of a new generation of bacteriophage-based particles, or TPA, for guided systemic delivery of nucleic acids to tumors. Nat Protoc 2024:10.1038/s41596-024-01040-9. [PMID: 39237829 DOI: 10.1038/s41596-024-01040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 06/12/2024] [Indexed: 09/07/2024]
Abstract
Successful delivery of nucleic acid therapeutics to diseased sites would present a pivotal advancement in cancer treatment. However, progress has been hindered by the lack of efficient tumor-selective vectors via clinical systemic routes, the blood-brain barrier for brain tumors and problems with repeated administrations. We present a new generation of M13 phage-based vectors termed transmorphic phage/adeno-associated virus (AAV) (TPA), wherein the phage genome has been excised to facilitate exclusive packaging of human AAV DNA by phage coat proteins. Here we provide a detailed protocol for the molecular cloning of DNA into the TPA construct, display of disease-specific ligands on the helper phage capsid for cell targeting and entry, and packaging of TPA DNA by helper phage coat proteins in a bacterial host. Furthermore, we provide methods for mammalian cell transduction and assessment of transgene expression in vitro as well as in vivo application of TPA particles in tumor-bearing mice. Unlike other similar methods, our protocol enables high-yield production and control of helper phage quantity in TPA preparations. Moreover, compared with existing M13 phage vectors, TPA particles can accommodate large size transgene inserts, despite being considerably more compact, providing superior gene delivery through enhanced diffusion across the extracellular matrix, improved cellular binding and entry and increased vector DNA accumulation in the nucleus. The protocol encompasses a timeline of 4-5 months, including construction and production of TPA particles with transgene and targeted ligand and in vitro/in vivo testing. This protocol can be conducted by researchers trained in basic molecular biology/bacteriology research techniques.
Collapse
Affiliation(s)
- Lauren Gay
- Cancer Phage Therapy, Department of Brain Sciences, Imperial College London, London, UK
| | - Keittisak Suwan
- Cancer Phage Therapy, Department of Brain Sciences, Imperial College London, London, UK
| | - Amin Hajitou
- Cancer Phage Therapy, Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
29
|
Monfrini E, Baso G, Ronchi D, Meneri M, Gagliardi D, Quetti L, Verde F, Ticozzi N, Ratti A, Di Fonzo A, Comi GP, Ottoboni L, Corti S. Unleashing the potential of mRNA therapeutics for inherited neurological diseases. Brain 2024; 147:2934-2945. [PMID: 38662782 PMCID: PMC11969220 DOI: 10.1093/brain/awae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neurological monogenic loss-of-function diseases are hereditary disorders resulting from gene mutations that decrease or abolish the normal function of the encoded protein. These conditions pose significant therapeutic challenges, which may be resolved through the development of innovative therapeutic strategies. RNA-based technologies, such as mRNA replacement therapy, have emerged as promising and increasingly viable treatments. Notably, mRNA therapy exhibits significant potential as a mutation-agnostic approach that can address virtually any monogenic loss-of-function disease. Therapeutic mRNA carries the information for a healthy copy of the defective protein, bypassing the problem of targeting specific genetic variants. Moreover, unlike conventional gene therapy, mRNA-based drugs are delivered through a simplified process that requires only transfer to the cytoplasm, thereby reducing the mutagenic risks related to DNA integration. Additionally, mRNA therapy exerts a transient effect on target cells, minimizing the risk of long-term unintended consequences. The remarkable success of mRNA technology for developing coronavirus disease 2019 vaccines has rekindled interest in mRNA as a cost-effective method for delivering therapeutic proteins. However, further optimization is required to enhance mRNA delivery, particularly to the CNS, while minimizing adverse drug reactions and toxicity. In this comprehensive review, we delve into past, present and ongoing applications of mRNA therapy for neurological monogenic loss-of-function diseases. We also discuss the promises and potential challenges presented by mRNA therapeutics in this rapidly advancing field. Ultimately, we underscore the full potential of mRNA therapy as a game-changing therapeutic approach for neurological disorders.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Giacomo Baso
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Dario Ronchi
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Megi Meneri
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Lorenzo Quetti
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Federico Verde
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
- Department of Neurology, Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Nicola Ticozzi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
- Department of Neurology, Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Antonia Ratti
- Department of Neurology, Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
- Department Medical Biotechnology and Translational Medicine, University of Milan, Milan 20100, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Giacomo P Comi
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
- Department of Neuroscience, Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| |
Collapse
|
30
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
31
|
李 婷, 宋 红. [Advances in gene therapy for inborn errors of immunity]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:865-870. [PMID: 39148393 PMCID: PMC11334546 DOI: 10.7499/j.issn.1008-8830.2404027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse group of disorders caused by defects in immune system structure or function, involving both innate and adaptive immunity. The 2022 update of the IEI classification includes 485 distinct disorders, categorized into ten major disease groups. With the rapid development of molecular biology, the specific pathogenesis of many IEI has been revealed, making gene therapy possible in preclinical and clinical research of this type of disease. This article reviews the advancements in gene therapy for IEI, aiming to increase awareness and understanding of these disorders.
Collapse
|
32
|
Mapfumo P, Reichel LS, André T, Hoeppener S, Rudolph LK, Traeger A. Optimizing Biocompatibility and Gene Delivery with DMAEA and DMAEAm: A Niacin-Derived Copolymer Approach. Biomacromolecules 2024; 25:4749-4761. [PMID: 38963401 PMCID: PMC11323007 DOI: 10.1021/acs.biomac.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Gene therapy is pivotal in nanomedicine, offering a versatile approach to disease treatment. This study aims to achieve an optimal balance between biocompatibility and efficacy, which is a common challenge in the field. A copolymer library is synthesized, incorporating niacin-derived monomers 2-acrylamidoethyl nicotinate (AAEN) or 2-(acryloyloxy)ethyl nicotinate (AEN) with N,N-(dimethylamino)ethyl acrylamide (DMAEAm) or hydrolysis-labile N,N-(dimethylamino)ethyl acrylate (DMAEA). Evaluation of the polymers' cytotoxicity profiles reveals that an increase in AAEN or DMAEA molar ratios correlates with improved biocompatibility. Remarkably, an increase in AAEN in both DMAEA and DMAEAm copolymers demonstrated enhanced transfection efficiencies of plasmid DNA in HEK293T cells. Additionally, the top-performing polymers demonstrate promising gene expression in challenging-to-transfect cells (THP-1 and Jurkat cells) and show no significant effect on modulating immune response induction in ex vivo treated murine monocytes. Overall, the best performing candidates exhibit an optimal balance between biocompatibility and efficacy, showcasing potential advancements in gene therapy.
Collapse
Affiliation(s)
- Prosper
P. Mapfumo
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany
| | - Liên S. Reichel
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany
| | - Thomas André
- Leibniz
Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
| | - Stephanie Hoeppener
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| | | | - Anja Traeger
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| |
Collapse
|
33
|
Khaparde A, Mathias GP, Poornachandra B, Thirumalesh MB, Shetty R, Ghosh A. Gene therapy for retinal diseases: From genetics to treatment. Indian J Ophthalmol 2024; 72:1091-1101. [PMID: 39078952 PMCID: PMC11451791 DOI: 10.4103/ijo.ijo_2902_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 04/19/2024] [Indexed: 10/06/2024] Open
Abstract
The gene therapy approach for retinal disorders has been considered largely over the last decade owing to the favorable outcomes of the US Food and Drug Administration-approved commercial gene therapy, Luxturna. Technological advances in recent years, such as next-generation sequencing, research in molecular pathogenesis of retinal disorders, and precise correlations with their clinical phenotypes, have contributed to the progress of gene therapies for various diseases worldwide, and more recently in India as well. Thus, considerable research is being conducted for the right choice of vectors, transgene engineering, and accessible and cost-effective large-scale vector production. Many retinal disease-specific clinical trials are presently being conducted, thereby necessitating the collation of such information as a ready reference for the scientific and clinical community. In this article, we present an overview of existing gene therapy research, which is derived from an extensive search across PubMed, Google Scholar, and clinicaltrials.gov sources. This contributes to prime the understanding of basic aspects of this cutting-edge technology and information regarding current clinical trials across many different conditions. This information will provide a comprehensive evaluation of therapies in existing use/research for personalized treatment approaches in retinal disorders.
Collapse
Affiliation(s)
- Ashish Khaparde
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
| | - Grace P Mathias
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - B Poornachandra
- Department of Vitreo Retina Services, Narayana Nethralaya, Manipal, Karnataka, India
| | - M B Thirumalesh
- Department of Vitreo Retina Services, Narayana Nethralaya, Manipal, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
| |
Collapse
|
34
|
Dou J, Yu S, Zhang Y. A facile and scalable method to synthesize PEGylated PDMAEMA for gene delivery. Biopolymers 2024; 115:e23584. [PMID: 38695839 DOI: 10.1002/bip.23584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
In recent years, cationic polymer vectors have been viewed as a promising method for delivering nucleic acids. With the advancement of synthetic polymer chemistry, we can control chemical structures and properties to enhance the efficacy of gene delivery. Herein, a facile, cost-effective, and scalable method was developed to synthesize PEGylated PDMAEMA polymers (PEO-PDMAEMA-PEO), where PEGylation could enable prolonged polyplexes circulation time in the blood stream. Two polymers of different molecular weights were synthesized, and polymer/eGFP polyplexes were prepared and characterized. The correlation between polymers' molecular weight and physicochemical properties (size and zeta potential) of polyplexes was investigated. Lipofectamine 2000, a commercial non-viral transfection reagent, was used as a standard control. PEO-PDMAEMA-PEO with higher molecular weight exhibited slightly better transfection efficiency than Lipofectamine 2000, and the cytotoxicity study proved that it could function as a safe gene vector. We believe that PEO-PDMAEMA-PEO could serve as a model to investigate more potential in the gene delivery area.
Collapse
Affiliation(s)
- Jie Dou
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
35
|
Arjunan P, Kathirvelu D, Mahalingam G, Goel AK, Zacharaiah UG, Srivastava A, Marepally S. Lipid-nanoparticle-enabled nucleic acid therapeutics for liver disorders. Acta Pharm Sin B 2024; 14:2885-2900. [PMID: 39027251 PMCID: PMC11252464 DOI: 10.1016/j.apsb.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 07/20/2024] Open
Abstract
Inherited genetic disorders of the liver pose a significant public health burden. Liver transplantation is often limited by the availability of donor livers and the exorbitant costs of immunosuppressive therapy. To overcome these limitations, nucleic acid therapy provides a hopeful alternative that enables gene repair, gene supplementation, and gene silencing with suitable vectors. Though viral vectors are the most efficient and preferred for gene therapy, pre-existing immunity debilitating immune responses limit their use. As a potential alternative, lipid nanoparticle-mediated vectors are being explored to deliver multiple nucleic acid forms, including pDNA, mRNA, siRNA, and proteins. Herein, we discuss the broader applications of lipid nanoparticles, from protein replacement therapy to restoring the disease mechanism through nucleic acid delivery and gene editing, as well as multiple preclinical and clinical studies as a potential alternative to liver transplantation.
Collapse
Affiliation(s)
- Porkizhi Arjunan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
- Manipal academy for higher education, Mangalore 576104, Karnataka, India
| | - Durga Kathirvelu
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Gokulnath Mahalingam
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Ashish Kumar Goel
- Department of Hepatology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Uday George Zacharaiah
- Department of Hepatology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
- Department of Hematology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Srujan Marepally
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| |
Collapse
|
36
|
Liu Y, Kong J, Liu G, Li Z, Xiao Y. Precise Gene Knock-In Tools with Minimized Risk of DSBs: A Trend for Gene Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401797. [PMID: 38728624 PMCID: PMC11267366 DOI: 10.1002/advs.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Gene knock-in refers to the insertion of exogenous functional genes into a target genome to achieve continuous expression. Currently, most knock-in tools are based on site-directed nucleases, which can induce double-strand breaks (DSBs) at the target, following which the designed donors carrying functional genes can be inserted via the endogenous gene repair pathway. The size of donor genes is limited by the characteristics of gene repair, and the DSBs induce risks like genotoxicity. New generation tools, such as prime editing, transposase, and integrase, can insert larger gene fragments while minimizing or eliminating the risk of DSBs, opening new avenues in the development of animal models and gene therapy. However, the elimination of off-target events and the production of delivery carriers with precise requirements remain challenging, restricting the application of the current knock-in treatments to mainly in vitro settings. Here, a comprehensive review of the knock-in tools that do not/minimally rely on DSBs and use other mechanisms is provided. Moreover, the challenges and recent advances of in vivo knock-in treatments in terms of the therapeutic process is discussed. Collectively, the new generation of DSBs-minimizing and large-fragment knock-in tools has revolutionized the field of gene editing, from basic research to clinical treatment.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityNanjing210009China
| | - Jianping Kong
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Gongyu Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Zhaoxing Li
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yibei Xiao
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
37
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
38
|
Zhang W, Jiao Y, Zhang Z, Zhang Y, Yu J, Gu Z. Transdermal gene delivery. J Control Release 2024; 371:516-529. [PMID: 38849095 DOI: 10.1016/j.jconrel.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Jiao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziru Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
39
|
Waqar MA, Zaman M, Khan R, Shafeeq Ur Rahman M, Majeed I. Navigating the tumor microenvironment: mesenchymal stem cell-mediated delivery of anticancer agents. J Drug Target 2024; 32:624-634. [PMID: 38652480 DOI: 10.1080/1061186x.2024.2347356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
Scientific knowledge of cancer has advanced greatly throughout the years, with most recent studies findings includes many hallmarks that capture disease's multifaceted character. One of the novel approach utilised for the delivery of anti-cancer agents includes mesenchymal stem cell mediated drug delivery. Mesenchymal stem cells (MSCs) are non-haematopoietic progenitor cells that may be extracted from bone marrow, tooth pulp, adipose tissue and placenta/umbilical cord blood dealing with adult stem cells. MSCs are mostly involved in regeneration of tissue, they have also been shown to preferentially migrate to location of several types of tumour in-vivo. Usage of MSCs ought to improve both effectiveness and safety of anti-cancer drugs by enhancing delivery efficiency of anti-cancer therapies to tumour site. Numerous researches has demonstrated that various drugs, when delivered via mesenchymal stem cell mediated delivery can elicit anti-tumour effect of cells in cancers of breast cells and thyroid cells. MSCs have minimal immunogenicity because to lack of co-stimulatory molecule expression, which means there is no requirement for immunosuppression after allogenic transplantation. This current review elaborates recent advancements of mesenchyma stem cell mediated drug delivery of anti-cancer agents along with its mechanism and previously reported studies of drugs manufactured via this drug delivery system.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Rabeel Khan
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | | | - Imtiaz Majeed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
40
|
Zhang W, Hou Y, Yin S, Miao Q, Lee K, Zhou X, Wang Y. Advanced gene nanocarriers/scaffolds in nonviral-mediated delivery system for tissue regeneration and repair. J Nanobiotechnology 2024; 22:376. [PMID: 38926780 PMCID: PMC11200991 DOI: 10.1186/s12951-024-02580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue regeneration technology has been rapidly developed and widely applied in tissue engineering and repair. Compared with traditional approaches like surgical treatment, the rising gene therapy is able to have a durable effect on tissue regeneration, such as impaired bone regeneration, articular cartilage repair and cancer-resected tissue repair. Gene therapy can also facilitate the production of in situ therapeutic factors, thus minimizing the diffusion or loss of gene complexes and enabling spatiotemporally controlled release of gene products for tissue regeneration. Among different gene delivery vectors and supportive gene-activated matrices, advanced gene/drug nanocarriers attract exceptional attraction due to their tunable physiochemical properties, as well as excellent adaptive performance in gene therapy for tissue regeneration, such as bone, cartilage, blood vessel, nerve and cancer-resected tissue repair. This paper reviews the recent advances on nonviral-mediated gene delivery systems with an emphasis on the important role of advanced nanocarriers in gene therapy and tissue regeneration.
Collapse
Affiliation(s)
- Wanheng Zhang
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Hou
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
| | - Shiyi Yin
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi Miao
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kyubae Lee
- Department of Biomedical Materials, Konyang University, Daejeon, 35365, Republic of Korea
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Yongtao Wang
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China.
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
41
|
Nikrad JA, Galvin RT, Sheehy MM, Novacek EL, Jacobsen KL, Corbière SMAS, Beckmann PJ, Jubenville TA, Yamamoto M, Largaespada DA. Conditionally replicative adenovirus as a therapy for malignant peripheral nerve sheath tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200783. [PMID: 38595983 PMCID: PMC10959710 DOI: 10.1016/j.omton.2024.200783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Oncolytic adenoviruses (Ads) stand out as a promising strategy for the targeted infection and lysis of tumor cells, with well-established clinical utility across various malignancies. This study delves into the therapeutic potential of oncolytic Ads in the context of neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumors (MPNSTs). Specifically, we evaluate conditionally replicative adenoviruses (CRAds) driven by the cyclooxygenase 2 (COX2) promoter, as selective agents against MPNSTs, demonstrating their preferential targeting of MPNST cells compared with non-malignant Schwann cell control. COX2-driven CRAds, particularly those with modified fiber-knobs exhibit superior binding affinity toward MPNST cells and demonstrate efficient and preferential replication and lysis of MPNST cells, with minimal impact on non-malignant control cells. In vivo experiments involving intratumoral CRAd injections in immunocompromised mice with human MPNST xenografts significantly extend survival and reduce tumor growth rate compared with controls. Moreover, in immunocompetent mouse models with MPNST-like allografts, CRAd injections induce a robust infiltration of CD8+ T cells into the tumor microenvironment (TME), indicating the potential to promote a pro-inflammatory response. These findings underscore oncolytic Ads as promising, selective, and minimally toxic agents for MPNST therapy, warranting further exploration.
Collapse
Affiliation(s)
- Julia A Nikrad
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Robert T Galvin
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Mackenzie M Sheehy
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Ethan L Novacek
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Kari L Jacobsen
- Department of Surgery, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Stanislas M A S Corbière
- Institute for Research in Immunology and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Marcelle-Coutu Pavilion, Montréal, QC H3T1J4, Canada
| | - Pauline J Beckmann
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Tyler A Jubenville
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Chongchai A, Bentayebi K, Chu G, Yan W, Waramit S, Phitak T, Kongtawelert P, Pothacharoen P, Suwan K, Hajitou A. Targeted treatment of chondrosarcoma with a bacteriophage-based particle delivering a secreted tumor necrosis factor-related apoptosis-inducing ligand. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200805. [PMID: 38745750 PMCID: PMC11090904 DOI: 10.1016/j.omton.2024.200805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Chondrosarcoma (CS) is a malignant cartilage-forming bone tumor that is inherently resistant to chemotherapy and radiotherapy, leaving surgery as the only treatment option. We have designed a tumor-targeted bacteriophage (phage)-derived particle (PDP), for targeted systemic delivery of cytokine-encoding transgenes to solid tumors. Phage has no intrinsic tropism for mammalian cells; therefore, it was engineered to display a double cyclic RGD4C ligand on the capsid to target tumors. To induce cancer cell death, we constructed a transgene cassette expressing a secreted form of the cytokine tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). We detected high expression of αvβ3 and αvβ5 integrin receptors of the RGD4C ligand, and of the TRAIL receptor-2 in human CS cells (SW1353), but not in primary normal chondrocytes. The RGD4C.PDP-Luc particle carrying a luciferase reporter gene, Luc, effectively and selectively mediated gene delivery to SW1353 cells, but not primary chondrocytes. Transduction of SW1353 cells with RGD4C.PDP-sTRAIL encoding a human sTRAIL, resulted in the expression of TRAIL and subsequent cell death without harming the normal chondrocytes. Intravenous administration of RGD4C.PDP-sTRAIL to mice with established human CS resulted in a decrease in tumor size and tumor viability. Altogether, RGD4C.PDP-sTRAIL can be used to target systemic treatment of CS with the sTRAIL.
Collapse
Affiliation(s)
- Aitthiphon Chongchai
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kaoutar Bentayebi
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
- Medical Biotechnology Laboratory, Rabat Medical and Pharmacy School, Mohammed V University, Rabat 10100, Morocco
| | - Grace Chu
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Wenqing Yan
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Sajee Waramit
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Thanyaluck Phitak
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Prachya Kongtawelert
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Keittisak Suwan
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Amin Hajitou
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| |
Collapse
|
43
|
Drouyer M, Chu TH, Labit E, Haase F, Navarro RG, Nazareth D, Rosin N, Merjane J, Scott S, Cabanes-Creus M, Westhaus A, Zhu E, Midha R, Alexander IE, Biernaskie J, Ginn SL, Lisowski L. Novel AAV variants with improved tropism for human Schwann cells. Mol Ther Methods Clin Dev 2024; 32:101234. [PMID: 38558569 PMCID: PMC10978538 DOI: 10.1016/j.omtm.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Gene therapies and associated technologies are transforming biomedical research and enabling novel therapeutic options for patients living with debilitating and incurable genetic disorders. The vector system based on recombinant adeno-associated viral vectors (AAVs) has shown great promise in recent clinical trials for genetic diseases of multiple organs, such as the liver and the nervous system. Despite recent successes toward the development of novel bioengineered AAV variants for improved transduction of primary human tissues and cells, vectors that can efficiently transduce human Schwann cells (hSCs) have yet to be identified. Here, we report the application of the functional transduction-RNA selection method in primary hSCs for the development of AAV variants for specific and efficient transgene delivery to hSCs. The two identified capsid variants, Pep2hSC1 and Pep2hSC2, show conserved potency for delivery across various in vitro, in vivo, and ex vivo models of hSCs. These novel AAV capsids will serve as valuable research tools, forming the basis for therapeutic solutions for both SC-related disorders or peripheral nervous system injury.
Collapse
Affiliation(s)
- Matthieu Drouyer
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Tak-Ho Chu
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Florencia Haase
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Renina Gale Navarro
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Deborah Nazareth
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Nicole Rosin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jessica Merjane
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Suzanne Scott
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Rajiv Midha
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jeff Biernaskie
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Samantha L. Ginn
- Gene Therapy Research Unit, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Australian Genome Therapeutics Centre, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| |
Collapse
|
44
|
Shay B, Storey M. Gene therapy: Practical considerations for clinical and operational pharmacy practice. Am J Health Syst Pharm 2024; 81:479-482. [PMID: 38364866 DOI: 10.1093/ajhp/zxae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Indexed: 02/18/2024] Open
Affiliation(s)
- Blake Shay
- BayCare St. Joseph's Women's and Children's Hospital, Tampa, FL, USA
| | | |
Collapse
|
45
|
Naing C, Ni H, Aung HH, Htet NH, Nikolova D. Gene therapy for people with hepatocellular carcinoma. Cochrane Database Syst Rev 2024; 6:CD013731. [PMID: 38837373 PMCID: PMC11152182 DOI: 10.1002/14651858.cd013731.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Hepatocellular carcinoma is the most common type of liver cancer, accounting for 70% to 85% of individuals with primary liver cancer. Gene therapy, which uses genes to treat or prevent diseases, holds potential for treatment, especially for tumours. Trials on the effects of gene therapy in people with hepatocellular carcinoma have been published or are ongoing. OBJECTIVES To evaluate the benefits and harms of gene therapy in people with hepatocellular carcinoma, irrespective of sex, administered dose, and type of formulation. SEARCH METHODS We identified randomised clinical trials through electronic searches in The Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, LILACS, Science Citation Index Expanded, and Conference Proceedings Citation Index-Science. We searched five online clinical trial registries to identify unpublished or ongoing trials. We checked reference lists of the retrieved studies for further trials. The date of last search was 20 January 2023. SELECTION CRITERIA We aimed to include randomised clinical trials assessing any type of gene therapy in people diagnosed with hepatocellular carcinoma, irrespective of year, language of publication, format, or outcomes reported. DATA COLLECTION AND ANALYSIS We followed Cochrane methodology and used Review Manager to prepare the review. The primary outcomes were all-cause mortality/overall survival (whatever data were provided), serious adverse events during treatment, and health-related quality of life. The secondary outcomes were proportion of people with disease progression, adverse events considered non-serious, and proportion of people without improvement in liver function tests. We assessed risk of bias of the included trials using RoB 2 and the certainty of evidence using GRADE. We presented the results of time-to-event outcomes as hazard ratios (HR), dichotomous outcomes as risk ratios (RR), and continuous outcomes as mean difference (MD) with their 95% confidence intervals (CI). Our primary analyses were based on intention-to-treat and outcome data at the longest follow-up. MAIN RESULTS We included six randomised clinical trials with 364 participants. The participants had unresectable (i.e. advanced inoperable) hepatocellular carcinoma. We found no trials assessing the effects of gene therapy in people with operable hepatocellular carcinoma. Four trials were conducted in China, one in several countries (from North America, Asia, and Europe), and one in Egypt. The number of participants in the six trials ranged from 10 to 129 (median 47), median age was 55.2 years, and the mean proportion of males was 72.7%. The follow-up duration ranged from six months to five years. As the trials compared different types of gene therapy and had different controls, we could not perform meta-analyses. Five of the six trials administered co-interventions equally to the experimental and control groups. All trials assessed one or more outcomes of interest in this review. The certainty of evidence was very low in five of the six comparisons and low in the double-dose gene therapy comparison. Below, we reported the results of the primary outcomes only. Pexastimogene devacirepvec (Pexa-Vec) plus best supportive care versus best supportive care alone There is uncertainty about whether there may be little to no difference between the effect of Pexa-Vec plus best supportive care compared with best supportive care alone on overall survival (HR 1.19, 95% CI 0.78 to 1.82; 1 trial (censored observation at 20-month follow-up), 129 participants; very low-certainty evidence) and on serious adverse events (RR 1.42, 95% CI 0.60 to 3.33; 1 trial at 20 months after treatment, 129 participants; very low-certainty evidence). The trial reported quality of life narratively as "assessment of quality of life and time to symptomatic progression was confounded by the high patient dropout rate." Adenovirus-thymidine kinase with ganciclovir (ADV-TK/GCV) plus liver transplantation versus liver transplantation alone There is uncertainty about whether ADV-TK/GCV plus liver transplantation may benefit all-cause mortality at the two-year follow-up (RR 0.39, 95% CI 0.20 to 0.76; 1 trial, 45 participants; very low-certainty evidence). The trial did not report serious adverse events other than mortality or quality of life. Double-dose ADV-TK/GCV plus liver transplantation versus liver transplantation alone There is uncertainty about whether double-dose ADV-TK/GCV plus liver transplantation versus liver transplantation may benefit all-cause mortality at five-year follow-up (RR 0.40, 95% CI 0.22 to 0.73; 1 trial, 86 participants; low-certainty evidence). The trial did not report serious adverse events other than mortality or quality of life. Recombinant human adenovirus-p53 with hydroxycamptothecin (rAd-p53/HCT) versus hydroxycamptothecin alone There is uncertainty about whether there may be little to no difference between the effect of rAd-p53/HCT versus hydroxycamptothecin alone on the overall survival at 12-month follow-up (RR 3.06, 95% CI 0.16 to 60.47; 1 trial, 48 participants; very low-certainty evidence). The trial did not report serious adverse events or quality of life. rAd-p53/5-Fu (5-fluorouracil) plus transarterial chemoembolisation versus transarterial chemoembolisation alone The trial included 46 participants. We had insufficient data to assess overall survival. The trial did not report serious adverse events or quality of life. E1B-deleted (dl1520) adenovirus versus percutaneous ethanol injection The trial included 10 participants. It did not report data on overall survival, serious adverse events, or health-related quality of life. One trial did not provide any information on sponsorship; one trial received a national research grant, one trial by the Pedersen foundation, and three were industry-funded trials. We found five ongoing randomised clinical trials. AUTHORS' CONCLUSIONS The evidence is very uncertain about the effects of gene therapy on the studied outcomes because of high risk of bias and imprecision of outcome results. The trials were underpowered and lacked trial data on clinically important outcomes. There was only one trial per comparison, and we could not perform meta-analyses. Therefore, we do not know if gene therapy may reduce, increase, or have little to no effect on all-cause mortality or overall survival, or serious adverse events in adults with unresectable hepatocellular carcinoma. The impact of gene therapy on adverse events needs to be investigated further. Evidence on the effect of gene therapy on health-related quality of life is lacking.
Collapse
Affiliation(s)
- Cho Naing
- Division of Tropical Health and Medicine, James Cook University, Queensland, Australia
| | - Han Ni
- Department of Medicine, Newcastle University Medicine Malaysia, Johor, Malaysia
| | - Htar Htar Aung
- School of Medicine, IMU University, Kuala Lumpur, Malaysia
| | | | - Dimitrinka Nikolova
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital ─ Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
46
|
Trujillo Cubillo L, Gurdal M, Zeugolis DI. Corneal fibrosis: From in vitro models to current and upcoming drug and gene medicines. Adv Drug Deliv Rev 2024; 209:115317. [PMID: 38642593 DOI: 10.1016/j.addr.2024.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Fibrotic diseases are characterised by myofibroblast differentiation, uncontrolled pathological extracellular matrix accumulation, tissue contraction, scar formation and, ultimately tissue / organ dysfunction. The cornea, the transparent tissue located on the anterior chamber of the eye, is extremely susceptible to fibrotic diseases, which cause loss of corneal transparency and are often associated with blindness. Although topical corticosteroids and antimetabolites are extensively used in the management of corneal fibrosis, they are associated with glaucoma, cataract formation, corneoscleral melting and infection, imposing the need of far more effective therapies. Herein, we summarise and discuss shortfalls and recent advances in in vitro models (e.g. transforming growth factor-β (TGF-β) / ascorbic acid / interleukin (IL) induced) and drug (e.g. TGF-β inhibitors, epigenetic modulators) and gene (e.g. gene editing, gene silencing) therapeutic strategies in the corneal fibrosis context. Emerging therapeutical agents (e.g. neutralising antibodies, ligand traps, receptor kinase inhibitors, antisense oligonucleotides) that have shown promise in clinical setting but have not yet assessed in corneal fibrosis context are also discussed.
Collapse
Affiliation(s)
- Laura Trujillo Cubillo
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
47
|
Ersöz E, Demir-Dora D. Unveiling the potential of antisense oligonucleotides: Mechanisms, therapies, and safety insights. Drug Dev Res 2024; 85:e22187. [PMID: 38764172 DOI: 10.1002/ddr.22187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 05/21/2024]
Abstract
Antisense oligonucleotides (ASOs) are short, synthetic, single-stranded deoxynucleotide sequences composed of phosphate backbone-connected sugar rings. Designing of those strands is based on Watson-Crick hydrogen bonding mechanism. Thanks to rapidly advancing medicine and technology, evolving of the gene therapy area and ASO approaches gain attention. Considering the genetic basis of diseases, it is promising that gene therapy approaches offer more specific and effective options compared to conventional treatments. The objective of this review is to explain the mechanism of ASOs and discuss the characteristics and safety profiles of therapeutic agents in this field. Pharmacovigilance for gene therapy products is complex, requiring accurate assessment of benefit-risk balance and evaluation of adverse effects.
Collapse
Affiliation(s)
- Edanur Ersöz
- Health Sciences Institute, Department of Gene and Cell Therapy, Akdeniz University, Antalya, Turkey
| | - Devrim Demir-Dora
- Health Sciences Institute, Department of Gene and Cell Therapy, Akdeniz University, Antalya, Turkey
- Faculty of Medicine, Department of Medical Pharmacology, Akdeniz University, Antalya, Turkey
- Health Sciences Institute, Department of Medical Biotechnology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
48
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
49
|
Eş I, Thakur A, Mousavi Khaneghah A, Foged C, de la Torre LG. Engineering aspects of lipid-based delivery systems: In vivo gene delivery, safety criteria, and translation strategies. Biotechnol Adv 2024; 72:108342. [PMID: 38518964 DOI: 10.1016/j.biotechadv.2024.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Defects in the genome cause genetic diseases and can be treated with gene therapy. Due to the limitations encountered in gene delivery, lipid-based supramolecular colloidal materials have emerged as promising gene carrier systems. In their non-functionalized form, lipid nanoparticles often demonstrate lower transgene expression efficiency, leading to suboptimal therapeutic outcomes, specifically through reduced percentages of cells expressing the transgene. Due to chemically active substituents, the engineering of delivery systems for genetic drugs with specific chemical ligands steps forward as an innovative strategy to tackle the drawbacks and enhance their therapeutic efficacy. Despite intense investigations into functionalization strategies, the clinical outcome of such therapies still needs to be improved. Here, we highlight and comprehensively review engineering aspects for functionalizing lipid-based delivery systems and their therapeutic efficacy for developing novel genetic cargoes to provide a full snapshot of the translation from the bench to the clinics. We outline existing challenges in the delivery and internalization processes and narrate recent advances in the functionalization of lipid-based delivery systems for nucleic acids to enhance their therapeutic efficacy and safety. Moreover, we address clinical trials using these vectors to expand their clinical use and principal safety concerns.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia.
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
50
|
Ko T, Fumoto S, Kurosaki T, Nakashima M, Miyamoto H, Sasaki H, Nishida K. Interaction of γ-Polyglutamic Acid/Polyethyleneimine/Plasmid DNA Ternary Complexes with Serum Components Plays a Crucial Role in Transfection in Mice. Pharmaceutics 2024; 16:522. [PMID: 38675183 PMCID: PMC11053868 DOI: 10.3390/pharmaceutics16040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Typical examples of non-viral vectors are binary complexes of plasmid DNA with cationic polymers such as polyethyleneimine (PEI). However, problems such as cytotoxicity and hemagglutination, owing to their positively charged surfaces, hinder their in vivo use. Coating binary complexes with anionic polymers, such as γ-polyglutamic acid (γ-PGA), can prevent cytotoxicity and hemagglutination. However, the role of interactions between these complexes and serum components in in vivo gene transfer remains unclear. In this study, we analyzed the contribution of serum components to in vivo gene transfer using PEI/plasmid DNA binary complexes and γ-PGA/PEI/plasmid DNA ternary complexes. In binary complexes, heat-labile components in the serum greatly contribute to the hepatic and splenic gene expression of the luciferase gene. In contrast, serum albumin and salts affected the hepatic and splenic gene expression in the ternary complexes. Changes in physicochemical characteristics, such as increased particle size and decreased absolute values of ζ-potential, might be involved in the enhanced gene expression. These findings would contribute to a better understanding of in vivo non-viral gene transfer using polymers, such as PEI and γ-PGA.
Collapse
Affiliation(s)
- Tomotaka Ko
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tomoaki Kurosaki
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Moe Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hitoshi Sasaki
- Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|