1
|
Schuh W, Baus L, Steinmetz T, Schulz SR, Weckwerth L, Roth E, Hauke M, Krause S, Morhart P, Rauh M, Hoffmann M, Vesper N, Reth M, Schneider H, Jäck H, Mielenz D. A surrogate cell-based SARS-CoV-2 spike blocking assay. Eur J Immunol 2021; 51:2665-2676. [PMID: 34547822 PMCID: PMC8646767 DOI: 10.1002/eji.202149302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/29/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023]
Abstract
To monitor infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and successful vaccination against coronavirus disease 2019 (COVID-19), the kinetics of neutralizing or blocking anti-SARS-CoV-2 antibody titers need to be assessed. Here, we report the development of a quick and inexpensive surrogate SARS-CoV-2 blocking assay (SUBA) using immobilized recombinant human angiotensin-converting enzyme 2 (hACE2) and human cells expressing the native form of surface SARS-CoV-2 spike protein. Spike protein-expressing cells bound to hACE2 in the absence or presence of blocking antibodies were quantified by measuring the optical density of cell-associated crystal violet in a spectrophotometer. The advantages are that SUBA is a fast and inexpensive assay, which does not require biosafety level 2- or 3-approved laboratories. Most importantly, SUBA detects blocking antibodies against the native trimeric cell-bound SARS-CoV-2 spike protein and can be rapidly adjusted to quickly pre-screen already approved therapeutic antibodies or sera from vaccinated individuals for their ACE2 blocking activities against any emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Lena Baus
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Tobit Steinmetz
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Edith Roth
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Manuela Hauke
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Sara Krause
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Patrick Morhart
- Division of Molecular Pediatrics, Department of PediatricsFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Manfred Rauh
- Division of Molecular Pediatrics, Department of PediatricsFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Markus Hoffmann
- Infection Biology UnitGerman Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany
- Faculty of Biology and PsychologyUniversity of GöttingenGöttingenGermany
| | - Niklas Vesper
- Institute of Biology III (Molecular Immunology)University of FreiburgFreiburgGermany
| | - Michael Reth
- Institute of Biology III (Molecular Immunology)University of FreiburgFreiburgGermany
| | - Holm Schneider
- Division of Molecular Pediatrics, Department of PediatricsFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Hans‐Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
2
|
Hoffmann M, Zhang L, Krüger N, Graichen L, Kleine-Weber H, Hofmann-Winkler H, Kempf A, Nessler S, Riggert J, Winkler MS, Schulz S, Jäck HM, Pöhlmann S. SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization. Cell Rep 2021; 35:109017. [PMID: 33857422 PMCID: PMC8018833 DOI: 10.1016/j.celrep.2021.109017] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023] Open
Abstract
Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to farmed mink has been observed in Europe and the US. In the infected animals, viral variants arose that harbored mutations in the spike (S) protein, the target of neutralizing antibodies, and these variants were transmitted back to humans. This raised concerns that mink might become a constant source of human infection with SARS-CoV-2 variants associated with an increased threat to human health and resulted in mass culling of mink. Here, we report that mutations frequently found in the S proteins of SARS-CoV-2 from mink are mostly compatible with efficient entry into human cells and its inhibition by soluble angiotensin-converting enzyme 2 (ACE2). In contrast, mutation Y453F reduces neutralization by an antibody with emergency use authorization for coronavirus disease 2019 (COVID-19) therapy and sera/plasma from COVID-19 patients. These results suggest that antibody responses induced upon infection or certain antibodies used for treatment might offer insufficient protection against SARS-CoV-2 variants from mink.
Collapse
Affiliation(s)
- Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany.
| | - Lu Zhang
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Nadine Krüger
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hannah Kleine-Weber
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Heike Hofmann-Winkler
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Joachim Riggert
- Department of Transfusion Medicine, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Martin Sebastian Winkler
- Department of Anaesthesiology and Intensive Care Medicine, University of Göttingen Medical Center, Göttingen, Georg-August University of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany.
| |
Collapse
|
3
|
Burns JA, Chowdhury MA, Cartularo L, Berens C, Scicchitano DA. Genetic instability associated with loop or stem-loop structures within transcription units can be independent of nucleotide excision repair. Nucleic Acids Res 2018; 46:3498-3516. [PMID: 29474673 PMCID: PMC5909459 DOI: 10.1093/nar/gky110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/04/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022] Open
Abstract
Simple sequence repeats (SSRs) are found throughout the genome, and under some conditions can change in length over time. Germline and somatic expansions of trinucleotide repeats are associated with a series of severely disabling illnesses, including Huntington's disease. The underlying mechanisms that effect SSR expansions and contractions have been experimentally elusive, but models suggesting a role for DNA repair have been proposed, in particular the involvement of transcription-coupled nucleotide excision repair (TCNER) that removes transcription-blocking DNA damage from the transcribed strand of actively expressed genes. If the formation of secondary DNA structures that are associated with SSRs were to block RNA polymerase progression, TCNER could be activated, resulting in the removal of the aberrant structure and a concomitant change in the region's length. To test this, TCNER activity in primary human fibroblasts was assessed on defined DNA substrates containing extrahelical DNA loops that lack discernible internal base pairs or DNA stem-loops that contain base pairs within the stem. The results show that both structures impede transcription elongation, but there is no corresponding evidence that nucleotide excision repair (NER) or TCNER operates to remove them.
Collapse
Affiliation(s)
- John A Burns
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Laura Cartularo
- Department of Biology, New York University, New York, NY 10003, USA
| | - Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Löffler-Institut, Jena, Germany
| | - David A Scicchitano
- Department of Biology, New York University, New York, NY 10003, USA
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Weber D, Heisig J, Kneitz S, Wolf E, Eilers M, Gessler M. Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes. J Mol Cell Cardiol 2015; 79:79-88. [DOI: 10.1016/j.yjmcc.2014.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/07/2014] [Accepted: 11/06/2014] [Indexed: 01/20/2023]
|
5
|
Brachs S, Lang C, Buslei R, Purohit P, Fürnrohr B, Kalbacher H, Jäck HM, Mielenz D. Monoclonal antibodies to discriminate the EF hand containing calcium binding adaptor proteins EFhd1 and EFhd2. Monoclon Antib Immunodiagn Immunother 2014; 32:237-45. [PMID: 23909416 DOI: 10.1089/mab.2013.0014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Small Ca(2+) binding adaptor proteins of the EF hand family play important roles in neuronal and immune cell Ca(2+) signaling. Swiprosin-1/EFhd2 (EFhd2) and Swiprosin-2/EFhd1 (EFhd1) are conserved and very homologous Ca(2+) binding adaptor proteins of the EF hand family, with possibly redundant functions. In particular, EFhd2 has been proposed to be involved in B cell signaling and neuropathological disorders. Little is known thus far about the expression of EFhd2 on the single cell level in tissue sections or blood cells. Here we describe the generation of four specific anti-EFhd2 monoclonal antibodies. These recognize murine and human EFhd2, but not murine EFhd1, and their binding site maps to a region in the N-terminal part of EFhd2, where EFhd2 and EFhd1 differ most. Moreover, to detect EFhd1 specifically, we also generated anti-EFhd1 polyclonal antibodies, making use of a singular peptide of the N-terminal part of the protein. Using anti-EFhd2 MAb, we reveal two EFhd2 pools in B cells, one at the membrane and one cytoplasmic pool. Staining of human peripheral blood mononuclear cells shows EFhd2 expression in B cells but a ∼5 fold higher expression in monocytes. Taken together, EFhd2 monoclonal antibodies will be valuable to assess the real subcellular localization and expression level of EFhd2 in healthy and diseased primary cells and tissues.
Collapse
Affiliation(s)
- Sebastian Brachs
- Division of Molecular Immunology, Department of Medicine III, University of Erlangen-Nürnberg, Nikolaus Fiebiger Center, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Huang L, Pike D, Sleat DE, Nanda V, Lobel P. Potential pitfalls and solutions for use of fluorescent fusion proteins to study the lysosome. PLoS One 2014; 9:e88893. [PMID: 24586430 PMCID: PMC3931630 DOI: 10.1371/journal.pone.0088893] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/13/2014] [Indexed: 01/06/2023] Open
Abstract
Use of fusion protein tags to investigate lysosomal proteins can be complicated by the acidic, protease-rich environment of the lysosome. Potential artifacts include degradation or release of the tag and acid quenching of fluorescence. Tagging can also affect protein folding, glycosylation and/or trafficking. To specifically investigate the use of fluorescent tags to reveal lysosomal localization, we tested mCherry derivatives as C-terminal tags for Niemann-Pick disease type C protein 2 (NPC2), a luminal lysosomal protein. Full-length mCherry was released from the NPC2 chimera while deletion of the 11 N-terminal residues of mCherry generated a cleavage-resistant (cr) fluorescent variant. Insertion of proline linkers between NPC2 and crmCherry had little effect while Gly-Ser linkers promoted cleavage. The NPC2-crmCherry fusion was targeted to the lysosome and restored function in NPC2-deficient cells. Fusion of crmCherry to known and candidate lysosomal proteins revealed that the linkers had different effects on lysosomal localization. Direct fusion of crmCherry impaired mannose 6-phosphorylation and lysosomal targeting of the lysosomal protease tripeptidyl peptidase I (TPP1), while insertion of linkers corrected the defects. Molecular modeling suggested structural bases for the effects of different linkers on NPC2 and TPP1 fusion proteins. While mCherry fusion proteins can be useful tools for studying the lysosome and related organelles, our findings underscore the potential artifacts associated with such applications.
Collapse
Affiliation(s)
- Ling Huang
- . Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Pharmacology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States of America
| | - Douglas Pike
- . Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States of America
| | - David E. Sleat
- . Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States of America
| | - Vikas Nanda
- . Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States of America
| | - Peter Lobel
- . Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
7
|
|
8
|
Jackstadt R, Röh S, Neumann J, Jung P, Hoffmann R, Horst D, Berens C, Bornkamm GW, Kirchner T, Menssen A, Hermeking H. AP4 is a mediator of epithelial-mesenchymal transition and metastasis in colorectal cancer. J Exp Med 2013; 210:1331-50. [PMID: 23752226 PMCID: PMC3698521 DOI: 10.1084/jem.20120812] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/20/2013] [Indexed: 12/14/2022] Open
Abstract
The basic helix-loop-helix transcription factor AP4/TFAP4/AP-4 is encoded by a c-MYC target gene and displays up-regulation concomitantly with c-MYC in colorectal cancer (CRC) and numerous other tumor types. Here a genome-wide characterization of AP4 DNA binding and mRNA expression was performed using a combination of microarray, genome-wide chromatin immunoprecipitation, next-generation sequencing, and bioinformatic analyses. Thereby, hundreds of induced and repressed AP4 target genes were identified. Besides many genes involved in the control of proliferation, the AP4 target genes included markers of stemness (LGR5 and CD44) and epithelial-mesenchymal transition (EMT) such as SNAIL, E-cadherin/CDH1, OCLN, VIM, FN1, and the Claudins 1, 4, and 7. Accordingly, activation of AP4 induced EMT and enhanced migration and invasion of CRC cells. Conversely, down-regulation of AP4 resulted in mesenchymal-epithelial transition and inhibited migration and invasion. In addition, AP4 induction was required for EMT, migration, and invasion caused by ectopic expression of c-MYC. Inhibition of AP4 in CRC cells resulted in decreased lung metastasis in mice. Elevated AP4 expression in primary CRC significantly correlated with liver metastasis and poor patient survival. These findings imply AP4 as a new regulator of EMT that contributes to metastatic processes in CRC and presumably other carcinomas.
Collapse
Affiliation(s)
- Rene Jackstadt
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians University of Munich, D-80337 Munich, Germany
| | - Simone Röh
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians University of Munich, D-80337 Munich, Germany
| | - Jens Neumann
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians University of Munich, D-80337 Munich, Germany
| | - Peter Jung
- Institute for Research in Biomedicine, Barcelona Science Park, 08028 Barcelona, Spain
| | - Reinhard Hoffmann
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, D-81675 Munich, Germany
| | - David Horst
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians University of Munich, D-80337 Munich, Germany
| | - Christian Berens
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, D-91058 Erlangen, Germany
| | - Georg W. Bornkamm
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, D-81377 Munich, Germany
| | - Thomas Kirchner
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians University of Munich, D-80337 Munich, Germany
- German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Antje Menssen
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians University of Munich, D-80337 Munich, Germany
- German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians University of Munich, D-80337 Munich, Germany
- German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Klingenbeck L, Eckart RA, Berens C, Lührmann A. The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cell Microbiol 2012; 15:675-87. [PMID: 23126667 DOI: 10.1111/cmi.12066] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/27/2012] [Accepted: 10/26/2012] [Indexed: 12/18/2022]
Abstract
Manipulation of host cell apoptosis is a virulence property shared by many intracellular pathogens to ensure productive replication. For the obligate intracellular pathogen Coxiella burnetii anti-apoptotic activity, which depends on a functional type IV secretion system (T4SS), has been demonstrated. Accordingly, the C. burnetii T4SS effector protein AnkG was identified to inhibit pathogen-induced apoptosis, possibly by binding to the host cell mitochondrial protein p32 (gC1qR). However, it was unknown whether AnkG alone is sufficient for apoptosis inhibition or if additional effector proteins are required. Here, we identified two T4SS effector proteins CaeA and CaeB (C. burnetii anti-apoptotic effector) that inhibit the intrinsic apoptotic pathway. CaeB blocks apoptosis very efficiently, while the anti-apoptotic activity of CaeA is weaker. Our data suggest that CaeB inhibits apoptosis at the mitochondrial level, but does not bind to p32. Taken together, our results demonstrate that C. burnetii harbours several anti-apoptotic effector proteins and suggest that these effector proteins use different mechanism(s) to inhibit apoptosis.
Collapse
Affiliation(s)
- Leonie Klingenbeck
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054, Erlangen, Germany
| | | | | | | |
Collapse
|
10
|
Metzner M, Jäck HM, Wabl M. LINE-1 retroelements complexed and inhibited by activation induced cytidine deaminase. PLoS One 2012; 7:e49358. [PMID: 23133680 PMCID: PMC3487726 DOI: 10.1371/journal.pone.0049358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/08/2012] [Indexed: 12/31/2022] Open
Abstract
LINE-1 (abbreviated L1) is a major class of retroelements in humans and mice. If unrestricted, retroelements accumulate in the cytoplasm and insert their DNA into the host genome, with the potential to cause autoimmune disease and cancer. Retroviruses and other retroelements are inhibited by proteins of the APOBEC family, of which activation-induced cytidine deaminase (AID) is a member. Although AID is mainly known for being a DNA mutator shaping the antibody repertoire in B lymphocytes, we found that AID also restricts de novo L1 integrations in B- and non-B-cell lines. It does so by decreasing the protein level of open reading frame 1 (ORF1) of both exogenous and endogenous L1. In activated B lymphocytes, AID deficiency increased L1 mRNA 1.6-fold and murine leukemia virus (MLV) mRNA 2.7-fold. In cell lines and activated B lymphocytes, AID forms cytoplasmic high-molecular-mass complexes with L1 mRNA, which may contribute to L1 restriction. Because AID-deficient activated B lymphocytes do not express ORF1 protein, we suggest that ORF1 protein expression is inhibited by additional restriction factors in these cells. The greater increase in MLV compared to L1 mRNA in AID-deficient activated B lymphocytes may indicate less strict surveillance of retrovirus.
Collapse
Affiliation(s)
- Mirjam Metzner
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America.
| | | | | |
Collapse
|
11
|
Heisig J, Weber D, Englberger E, Winkler A, Kneitz S, Sung WK, Wolf E, Eilers M, Wei CL, Gessler M. Target gene analysis by microarrays and chromatin immunoprecipitation identifies HEY proteins as highly redundant bHLH repressors. PLoS Genet 2012; 8:e1002728. [PMID: 22615585 PMCID: PMC3355086 DOI: 10.1371/journal.pgen.1002728] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 04/05/2012] [Indexed: 01/03/2023] Open
Abstract
HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression. NOTCH signaling is a central developmental pathway that influences a multitude of cell fate decisions and differentiation steps as well as later tissue homeostasis and regeneration. The three HEY genes encode basic helix-loop-helix transcription factors that are critical effectors to convey signaling by NOTCH receptors and similar signaling systems. This is underscored by the multitude of developmental defects observed in HEY single- and double-mutant mice. The mode of action of HEY proteins remained largely unexplored, however. By gene expression analysis and chromatin immunoprecipitation we have now identified a large set of HEY target genes. While only 500–2,000 mRNAs are regulated by HEY1 or HEY2, there are around 10,000 binding sites in the genome. HEY proteins act as transcriptional repressors that bind close to transcriptional start sites in all cases tested. In contrast, gene activation seems to be mediated by indirect/secondary mechanisms. The extent of regulation is rather limited, implicating HEY genes in modulating rather than switching on or off target gene expression. All our in vitro and in vivo data point to a high degree of redundancy between the three HEY genes, suggesting that tissue specific patterns and expression levels determine the final outcome of HEY induced cellular responses.
Collapse
Affiliation(s)
- Julia Heisig
- Developmental Biochemistry, Theodor-Boveri-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - David Weber
- Developmental Biochemistry, Theodor-Boveri-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Eva Englberger
- Developmental Biochemistry, Theodor-Boveri-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Anja Winkler
- Developmental Biochemistry, Theodor-Boveri-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Susanne Kneitz
- Laboratory for Microarray Applications, and Physiological Chemistry I, Theodor-Boveri-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | | | - Elmar Wolf
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Eilers
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Chia-Lin Wei
- Genome Institute of Singapore, Singapore, Singapore
| | - Manfred Gessler
- Developmental Biochemistry, Theodor-Boveri-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Wittmann A, Suess B. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators. FEBS Lett 2012; 586:2076-83. [PMID: 22710175 DOI: 10.1016/j.febslet.2012.02.038] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/22/2022]
Abstract
Riboswitches are natural RNA-based genetic switches that sense small-molecule metabolites and regulate in response the expression of the corresponding metabolic genes. Within the last years, several engineered riboswitches have been developed that act on various stages of gene expression. These switches can be engineered to respond to any ligand of choice and are therefore of great interest for synthetic biology. In this review, we present an overview of engineered riboswitches and discuss their application in conditional gene expression systems. We will provide structural and mechanistic insights and point out problems and recent trends in the development of engineered riboswitches.
Collapse
Affiliation(s)
- Alexander Wittmann
- Institute of Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
13
|
Herr R, Wöhrle FU, Danke C, Berens C, Brummer T. A novel MCF-10A line allowing conditional oncogene expression in 3D culture. Cell Commun Signal 2011; 9:17. [PMID: 21752278 PMCID: PMC3163222 DOI: 10.1186/1478-811x-9-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ricarda Herr
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Kaller M, Liffers ST, Oeljeklaus S, Kuhlmann K, Röh S, Hoffmann R, Warscheid B, Hermeking H. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics 2011; 10:M111.010462. [PMID: 21566225 DOI: 10.1074/mcp.m111.010462] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gene encoding the miR-34a microRNA is a transcriptional target of the p53 tumor suppressor protein and subject to epigenetic inactivation in colorectal cancer and numerous other tumor types. Here, we combined pulsed SILAC (pSILAC) and microarray analyses to identify miR-34a-induced changes in protein and mRNA expression. pSILAC allowed to quantify the de novo protein synthesis of 1206 proteins after activation of a conditional miR-34a allele in a colorectal cancer cell line. ∼19% of the detected proteins were differentially regulated, with 113 proteins being down- and 115 up-regulated. The proteins with a miR-34a seed-matching-sequence in the 3'-untranslated region (UTR) of the corresponding mRNA showed a clear bias toward translational repression. Proteins involved in DNA replication, e.g. the MCM proteins, and cell proliferation, were over-represented among indirectly down-regulated proteins lacking a miR-34a seed-match. The decrease in de novo protein synthesis of direct miR-34a targets correlated with reduced levels of the corresponding mRNA in most cases, indicating an interdependence of both types of regulation. In addition, 43 mRNAs encoding proteins not detected by pSILAC were down-regulated after miR-34a expression and contained miR-34a seed-matches. The direct regulation of selected miR-34a target-mRNAs was confirmed using reporter assays. Via down-regulation of the proteins encoded by these mRNAs miR-34a presumably inhibits glycolysis (LDHA), WNT-signaling (LEF1), invasion/migration (AXL) and lipid metabolism (ACSL1, ACSL4). Furthermore, miR-34a may activate p53 by inhibiting its acetylation (MTA2, HDAC1) and degradation (YY1). In summary, miR-34a presumably participates in multiple tumor suppressive pathways by directly and indirectly suppressing the expression of numerous, critical proteins.
Collapse
Affiliation(s)
- Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Strasse 36, D-80337 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Danke C, Grünz X, Wittmann J, Schmidt A, Agha-Mohammadi S, Kutsch O, Jäck HM, Hillen W, Berens C. Adjusting transgene expression levels in lymphocytes with a set of inducible promoters. J Gene Med 2010; 12:501-15. [PMID: 20527043 DOI: 10.1002/jgm.1461] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inducible gene expression systems are powerful research tools and could be of clinical value in the future, with lymphocytes being likely prime application targets. However, currently available regulatable promoters exhibit variation in their efficiency in a cell line-dependent-manner and are notorious for basal leakiness or poor inducibility. Data concerning the regulatory properties of different inducible promoters are scarce for lymphocytes. In the present study, we report a comprehensive analysis of how various inducible promoters perform and how their combination with a transsilencer and a reverse transactivator can result in optimally controlled gene expression in T-cells. METHODS The performance of the tetracycline-regulated (Tet)-inducible promoters Tet-responsive element (TRE), mouse mammary tumor virus (MMTV)/TRE, TREtight and second generation TRE (SG/TRE) was compared in several B-cell lines and in Jurkat T-cells using transient transfections in combination with Tet-On. To monitor transgene expression in a Jurkat cell line containing a transsilencer and a reverse transactivator, expression cassettes encoding enhanced green fluorescent protein, CD123 or a constitutively active, cytotoxic caspase-3 were flanked with insulators and stably integrated. The performance of TREtight and SG/TRE was furthermore analysed in transiently transfected primary CD4(+) human T-cells. RESULTS The promoters exhibit greatly diverging characteristics. MMTV/TRE permits moderate, TRE and TREtight permits intermediate and SG/TRE permits very high expression levels. TRE and SG/TRE are leaky, whereas MMTV/TRE and TREtight provide stringent expression control. Tetracycline derivatives add flexibility to transgene expression by introducing intermediate expression levels. CONCLUSIONS The different expression profiles of the promoters increase the flexibility to adjust transgene expression levels. The promoters provide an additional option to optimize system performance for many applications.
Collapse
Affiliation(s)
- Christina Danke
- Department Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Usai I, Krueger M, Einsiedel J, Hillen W, Gmeiner P. Click-Chemistry-Derived Tetracycline-Amino Acid Conjugates Exhibiting Exceptional Potency and Exclusive Recognition of the Reverse Tet Repressor. Chembiochem 2010; 11:703-12. [DOI: 10.1002/cbic.200900710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Metzner M, Schuh W, Roth E, Jäck HM, Wabl M. Two forms of activation-induced cytidine deaminase differing in their ability to bind agarose. PLoS One 2010; 5:e8883. [PMID: 20111710 PMCID: PMC2811734 DOI: 10.1371/journal.pone.0008883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/17/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Activation-induced cytidine deaminase (AID) is a B-cell-specific DNA mutator that plays a key role in the formation of the secondary antibody repertoire in germinal center B cells. In the search for binding partners, protein coimmunoprecipitation assays are often performed, generally with agarose beads. METHODOLOGY/PRINCIPAL FINDINGS We found that, regardless of whether cell lysates containing exogenous or endogenous AID were examined, one of two mouse AID forms bound to agarose alone. CONCLUSIONS/SIGNIFICANCE These binding characteristics may be due to the known post-translational modifications of AID; they may also need to be considered in coimmunoprecipitation experiments to avoid false-positive results.
Collapse
Affiliation(s)
- Mirjam Metzner
- Nikolaus-Fiebiger Center, Department of Internal Medicine III, Division of Molecular Immunology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
18
|
Tschammer N, Dörfler M, Hübner H, Gmeiner P. Engineering a GPCR-ligand pair that simulates the activation of D(2L) by Dopamine. ACS Chem Neurosci 2010; 1:25-35. [PMID: 22778805 DOI: 10.1021/cn900001b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 09/03/2009] [Indexed: 02/05/2023] Open
Abstract
In the past decade, engineered G-protein-coupled receptors activated solely by synthetic ligands (RASSLs) have been implemented as a new means to study neurotransmission, which is controlled by G-protein-coupled receptors in vitro and in vivo. In this study, we report an engineered dopamine receptor D(2L) F390(6.52)W, which is the first identified RASSL for the dopamine receptor family. The mutant receptor is characterized by a disrupted ligand binding and complete loss of efficacy for the endogenous ligand, dopamine, which is putatively due to a sterically induced perturbation of H-bonding with conserved serine residues in TM5. Based on this model, we rationally developed an aminoindane-derived set of agonists. Because these agonists forgo analogous H-bonding functionalities, their binding energy does not depend on the respective interactions. Binding affinity and potency were optimized by ligand modifications bearing molecular appendages that obviously interact with a secondary recognition site provided by four hydrophobic residues in TM2 and TM3. Thus, the ferrocenyl carboxamide 5b (FAUC 185) was identified as a synthetic agonist that is able to stimulate the mutant receptor in a manner similar to that by which endogenous dopamine activates the D(2L) wild-type receptor. The engineered dopamine receptor D(2L) F390(6.52)W in combination with FAUC 185 (5b) provides a new tool to probe GPCR functions selectively in specific cell populations in vitro and in vivo.
Collapse
Affiliation(s)
- Nuska Tschammer
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Miriam Dörfler
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| |
Collapse
|
19
|
Kormann C, Pimenta I, Löber S, Wimmer C, Lanig H, Clark T, Hillen W, Gmeiner P. Diarylpropane-1,3-dione Derivatives as TetR-Inducing Tetracycline Mimetics: Synthesis and Biological Investigations. Chembiochem 2009; 10:2924-33. [DOI: 10.1002/cbic.200900564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Schucht R, Wirth D, May T. Precise regulation of transgene expression level and control of cell physiology. Cell Biol Toxicol 2009; 26:29-42. [DOI: 10.1007/s10565-009-9135-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 08/10/2009] [Indexed: 12/12/2022]
|
21
|
Leikam C, Hufnagel A, Schartl M, Meierjohann S. Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. Oncogene 2008; 27:7070-82. [PMID: 18806824 DOI: 10.1038/onc.2008.323] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Contrary to malignant melanoma, nevi are a benign form of melanocytic hyperproliferation. They are frequently observed as precursor lesions of melanoma, but they also feature biochemical markers of senescence. In particular, evidence for oncogene-induced melanocyte senescence as natural means to prevent tumorigenesis has been obtained in nevi with mutated B-Raf(V600E). Here, we demonstrate that strong oncogenic growth factor receptor signalling drives melanocytes into senescence, whereas weaker signals keep them in the proliferative state. Activation of oncogene-induced senescence also produces multinucleated giant cells, a long known histological feature of nevus cells. The protein levels of the senescence mediators, p53 and pRB, and their upstream activators do not correlate with senescence. However, strong oncogene signalling leads to pronounced reactive oxygen stress, and scavenging of reactive oxygen species (ROS) efficiently prevents the formation of multinucleated cells and senescence. Similarly, expression of oncogenic N-RAS results in ROS generation, DNA damage and the same multinuclear senescent phenotype. Hence, we identified oncogenic signalling-dependent ROS production as critical mediator of the melanocytic multinuclear phenotype and senescence, both of them being hallmarks of human nevus cells.
Collapse
Affiliation(s)
- C Leikam
- Department of Physiological Chemistry I, Biocenter, Am Hubland, University of Wurzburg, Wurzburg, Germany
| | | | | | | |
Collapse
|
22
|
Tang SY, Fazelinia H, Cirino PC. AraC Regulatory Protein Mutants with Altered Effector Specificity. J Am Chem Soc 2008; 130:5267-71. [DOI: 10.1021/ja7109053] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Bockamp E, Sprengel R, Eshkind L, Lehmann T, Braun JM, Emmrich F, Hengstler JG. Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration. Regen Med 2008; 3:217-35. [DOI: 10.2217/17460751.3.2.217] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many mouse models are currently available, providing avenues to elucidate gene function and to recapitulate specific pathological conditions. To a large extent, successful translation of clinical evidence or analytical data into appropriate mouse models is possible through progress in transgenic or gene-targeting technology. Beginning with a review of standard mouse transgenics and conventional gene targeting, this article will move on to discussing the basics of conditional gene expression: the tetracycline (tet)-off and tet-on systems based on the transactivators tet-controlled transactivator (Tta) and reverse tet-on transactivator (rtTA) that allow downregulation or induction of gene expression; Cre or Flp recombinase-mediated modifications, including excision, inversion, insertion and interchromosomal translocation; combination of the tet and Cre systems, permitting inducible knockout, reporter gene activation or activation of point mutations; the avian retroviral system based on delivery of rtTA specifically into cells expressing the avian retroviral receptor, which enables cell type-specific, inducible gene expression; the tamoxifen system, one of the most frequently applied steroid receptor-based systems, allows rapid activation of a fusion protein between the gene of interest and a mutant domain of the estrogen receptor, whereby activation does not depend on transcription; and techniques for cell type-specific ablation. The diphtheria toxin receptor system offers the advantage that it can be combined with the ‘zoo’ of Cre recombinase driver mice. Having described the basics we move on to the cutting edge: generation of genome-wide sets of conditional knockout mice. To this end, large ongoing projects apply two strategies: gene trapping based on random integration of trapping vectors into introns leading to truncation of the transcript, and gene targeting, representing the directed approach using homologous recombination. It can be expected that in the near future genome-wide sets of such mice will be available. Finally, the possibilities of conditional expression systems for investigating gene function in tissue regeneration will be illustrated by examples for neurodegenerative disease, liver regeneration and wound healing of the skin.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Johannes Gutenberg-Universität Mainz, Institute of Toxicology/Mouse Genetics, Obere Zahlbacher Str. 67,55131, Mainz, Germany
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, D-69120 Heidelber, Germany
| | - Leonid Eshkind
- Johannes Gutenberg-Universität Mainz, Institute of Toxicology/Mouse Genetics, Obere Zahlbacher Str. 67,55131, Mainz, Germany
| | - Thomas Lehmann
- TRM-Leipzig, Philipp-Rosenthal-Strasse 55, University of Leipzig, 04103 Leipzig, Germany
| | - Jan M Braun
- University of Leipzig, Institute of Clinical Immunology and Transfusion Medicine (IKIT), Germany
| | - Frank Emmrich
- University of Leipzig, Institute of Clinical Immunology and Transfusion Medicine (IKIT), Germany
| | - Jan G Hengstler
- Dortmund University of Technology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Institute of Legal Medicine and Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Ardeystrasse 67, 44139 Dortmund, Germany
| |
Collapse
|
24
|
Greber D, Fussenegger M. Mammalian synthetic biology: Engineering of sophisticated gene networks. J Biotechnol 2007; 130:329-45. [PMID: 17602777 DOI: 10.1016/j.jbiotec.2007.05.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 05/05/2007] [Accepted: 05/18/2007] [Indexed: 11/26/2022]
Abstract
With the recent development of a wide range of inducible mammalian transgene control systems it has now become possible to create functional synthetic gene networks by linking and connecting systems into various configurations. The past 5 years has thus seen the design and construction of the first synthetic mammalian gene regulatory networks. These networks have built upon pioneering advances in prokaryotic synthetic networks and possess an impressive range of functionalities that will some day enable the engineering of sophisticated inter- and intra-cellular functions to become a reality. At a relatively simple level, the modular linking of transcriptional components has enabled the creation of genetic networks that are strongly analogous to the architectural design and functionality of electronic circuits. Thus, by combining components in different serial or parallel configurations it is possible to produce networks that follow strict logic in integrating multiple independent signals (logic gates and transcriptional cascades) or which temporally modify input signals (time-delay circuits). Progressing in terms of sophistication, synthetic transcriptional networks have also been constructed which emulate naturally occurring genetic properties, such as bistability or dynamic instability. Toggle switches which possess "memory" so as to remember transient administered inputs, hysteric switches which are resistant to stochastic fluctuations in inputs, and oscillatory networks which produce regularly timed expression outputs, are all examples of networks that have been constructed using such properties. Initial steps have also been made in designing the above networks to respond not only to exogenous signals, but also endogenous signals that may be associated with aberrant cellular function or physiology thereby providing a means for tightly controlled gene therapy applications. Moving beyond pure transcriptional control, synthetic networks have also been created which utilize phenomena, such as post-transcriptional silencing, translational control, or inter-cellular signaling to produce novel network-based control both within and between cells. It is envisaged in the not-too-distant future that these networks will provide the basis for highly sophisticated genetic manipulations in biopharmaceutical manufacturing, gene therapy and tissue engineering applications.
Collapse
Affiliation(s)
- David Greber
- Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
25
|
Szymanski P, Kretschmer PJ, Bauzon M, Jin F, Qian HS, Rubanyi GM, Harkins RN, Hermiston TW. Development and Validation of a Robust and Versatile One-plasmid Regulated Gene Expression System. Mol Ther 2007; 15:1340-7. [PMID: 17505483 DOI: 10.1038/sj.mt.6300171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have developed a one-plasmid regulated gene expression system, pBRES, based on a mifepristone (MFP)-inducible two-plasmid system. The various expression elements of the pBRES system (promoters, 5' and 3' untranslated regions (UTRs), introns, target gene, and polyA sequences) are bounded by restriction enzyme sites so that each module can be conveniently replaced by alternate DNA elements in order to tailor the system for particular tissues, organs, or conditions. There are four possible orientations of the two expression units relative to each other, and insertion of a variety of expression elements and target genes into the four different orientations revealed orientation- and gene-dependent effects on induced and uninduced levels of gene expression. Induced target gene expression from the pBRES system was shown to be comparable to the two-plasmid system and higher than the expression from the cytomegalovirus (CMV) promoter in vivo, while maintaining low uninduced levels of expression. Finally, a pBRES expression cassette was transferred to an adeno-associated virus (AAV) vector and shown to be capable of regulated gene expression in vivo for nearly 1 year.
Collapse
Affiliation(s)
- Paul Szymanski
- Department of Gene Technologies, Berlex Biosciences, Richmond, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Improved single-chain transactivators of the Tet-On gene expression system. BMC Biotechnol 2007; 7:6. [PMID: 17239234 PMCID: PMC1797012 DOI: 10.1186/1472-6750-7-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 01/19/2007] [Indexed: 11/26/2022] Open
Abstract
Background The Tet-Off (tTA) and Tet-On (rtTA) regulatory systems are widely applied to control gene expression in eukaryotes. Both systems are based on the Tet repressor (TetR) from transposon Tn10, a dimeric DNA-binding protein that binds to specific operator sequences (tetO). To allow the independent regulation of multiple genes, novel Tet systems are being developed that respond to different effectors and bind to different tetO sites. To prevent heterodimerization when multiple Tet systems are expressed in the same cell, single-chain variants of the transactivators have been constructed. Unfortunately, the activity of the single-chain rtTA (sc-rtTA) is reduced when compared with the regular rtTA, which might limit its application. Results We recently identified amino acid substitutions in rtTA that greatly improved the transcriptional activity and doxycycline-sensitivity of the protein. To test whether we can similarly improve other TetR-based gene regulation systems, we introduced these mutations into tTA and sc-rtTA. Whereas none of the tested mutations improved tTA activity, they did significantly enhance sc-rtTA activity. We thus generated a novel sc-rtTA variant that is almost as active and dox-sensitive as the regular dimeric rtTA. This variant was also less sensitive to interference by co-expressed TetR-based tTS repressor protein and may therefore be more suitable for applications where multiple TetR-based regulatory systems are used. Conclusion We developed an improved sc-rtTA variant that may replace regular rtTA in applications where multiple TetR-based regulatory systems are used.
Collapse
|