1
|
Wang C, Yuan C. Double-Negative CD4 CD8 Absolute Count Plays a Mediating Role in the Causal Relationship Between Plasma Lipids and Parkinson's Disease: A Mendel Randomized Study. Mol Neurobiol 2025; 62:6587-6597. [PMID: 39838179 PMCID: PMC11953120 DOI: 10.1007/s12035-025-04691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
According to certain research, there might be a connection between Parkinson's disease and plasma lipidome. However, the causal effects between plasma lipidome and Parkinson's disease and whether immune cells act as a mediator remain unclear. According to some research, plasma lipids are an important risk factor for Parkinson's disease, however, whether there is a causative connection between the two is unclear. In this study, Mendelian randomization (MR) was utilized to investigate the causal effect of plasma lipidomics on Parkinson's disease while conducting mediation analysis to determine whether immune cells served as mediators in this association. Plasma lipidome, immune cells, and Parkinson's disease were identified from large-scale genome-wide association studies (GWAS) summary data. We explored the causal connections between the plasma lipidome, Parkinson's disease, and the immune system using Mendelian randomization (MR). Inverse variance weighting (IVW) was used as the main statistical method. Furthermore, we investigated the potential that immune cells play a mediating role in the pathway leading from the plasma lipidome to Parkinson's disease. There were two positive and four negative causal effects between genetic liability in the plasma lipidome and Parkinson's disease. In addition, there were four positive and three negative causal relationships between immune cells and Parkinson's disease. The immune cells function as a mediator. Immune cells functioned as mediating components in the pathway from plasma lipidome to Parkinson's disease, and both plasma lipidome and immune cells were causally related to Parkinson's disease. It is expected that immune cells and plasma lipid intervention can be used as a preventive and therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Chunxu Wang
- Shanghai Chinese Medical University, Shanghai, 200032, China
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Xuhui District, No. 725 South Wan-Ping Road, Shanghai, 200032, China
| | - Canxing Yuan
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Xuhui District, No. 725 South Wan-Ping Road, Shanghai, 200032, China.
| |
Collapse
|
2
|
Passos GA, Genari AB, Assis AF, Monteleone-Cassiano AC, Donadi EA, Oliveira EH, Duarte MJ, Machado MV, Tanaka PP, Mascarenhas R. The Thymus as a Mirror of the Body's Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:247-268. [PMID: 40067590 DOI: 10.1007/978-3-031-77921-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The thymus, a complex organ formed by different cell types that establish close interaction, serves a unique function of significant interest. The role played by the thymic stroma is not only a connective tissue or a support structure, but it also involves the stromal thymic epithelial cells (TECs) establishing physical and functional interaction with developing thymocytes. This interaction culminates in the induction of central tolerance, a function that sets this organ apart. The role played by the medullary thymic epithelial cells (mTECs) is noteworthy and is the focus of many studies. The transcriptome of mTEC cells is also very complex. These cells express nearly the functional genome without altering morphological and functional features. Among the thousand mRNAs expressed, a particular set encodes all peripheral tissue antigens (PTAs), representing the body's different tissues and organs. The consequence of ectopic proteins translated from these mRNAs in the thymus is immunological and is associated with self-nonself-discrimination and induction of central tolerance. Due to the wide variety of PTAs, this process was termed promiscuous gene expression (PGE), whose control is shared between autoimmune regulator (human AIRE/murine Aire), a transcriptional modulator, and forebrain-expressed zinc finger 2 (FEZF2/Fezf2), a transcription factor. Therefore, this molecular-genetic process is closely linked to eliminating autoreactive thymocytes in the thymus through negative selection. In this chapter, we review PGE in mTECs and its immunologic implication, the role of the Aire and Fezf2genes, the role of Aire on the expression of miRNAs in mTECs, its consequence on PGE and the manipulation of the Aire expression either by siRNA or by genome editing using the Crispr-Cas9 system.
Collapse
Affiliation(s)
- Geraldo A Passos
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry (FORP-USP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Adriana B Genari
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda F Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana C Monteleone-Cassiano
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Max J Duarte
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mayara V Machado
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro P Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Romário Mascarenhas
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Sankaran DG, Zhu H, Maymi VI, Forlastro IM, Jiang Y, Laniewski N, Scheible KM, Rudd BD, Grimson AW. Gene Regulatory Programs that Specify Age-Related Differences during Thymocyte Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599011. [PMID: 38948840 PMCID: PMC11212896 DOI: 10.1101/2024.06.14.599011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
T cell development is fundamental to immune system establishment, yet how this development changes with age remains poorly understood. Here, we construct a transcriptional and epigenetic atlas of T cell developmental programs in neonatal and adult mice, revealing the ontogeny of divergent gene regulatory programs and their link to age-related differences in phenotype and function. Specifically, we identify a gene module that diverges with age from the earliest stages of genesis and includes programs that govern effector response and cell cycle regulation. Moreover, we reveal that neonates possess more accessible chromatin during early thymocyte development, likely establishing poised gene expression programs that manifest later in thymocyte development. Finally, we leverage this atlas, employing a CRISPR-based perturbation approach coupled with single-cell RNA sequencing as a readout to uncover a conserved transcriptional regulator, Zbtb20, that contributes to age-dependent differences in T cell development. Altogether, our study defines transcriptional and epigenetic programs that regulate age-specific differences in T cell development.
Collapse
|
4
|
Lagou MK, Argyris DG, Vodopyanov S, Gunther-Cummins L, Hardas A, Poutahidis T, Panorias C, DesMarais S, Entenberg C, Carpenter RS, Guzik H, Nishku X, Churaman J, Maryanovich M, DesMarais V, Macaluso FP, Karagiannis GS. Morphometric Analysis of the Thymic Epithelial Cell (TEC) Network Using Integrated and Orthogonal Digital Pathology Approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584509. [PMID: 38559037 PMCID: PMC10979902 DOI: 10.1101/2024.03.11.584509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The thymus, a central primary lymphoid organ of the immune system, plays a key role in T cell development. Surprisingly, the thymus is quite neglected with regards to standardized pathology approaches and practices for assessing structure and function. Most studies use multispectral flow cytometry to define the dynamic composition of the thymus at the cell population level, but they are limited by lack of contextual insight. This knowledge gap hinders our understanding of various thymic conditions and pathologies, particularly how they affect thymic architecture, and subsequently, immune competence. Here, we introduce a digital pathology pipeline to address these challenges. Our approach can be coupled to analytical algorithms and utilizes rationalized morphometric assessments of thymic tissue, ranging from tissue-wide down to microanatomical and ultrastructural levels. This pipeline enables the quantitative assessment of putative changes and adaptations of thymic structure to stimuli, offering valuable insights into the pathophysiology of thymic disorders. This versatile pipeline can be applied to a wide range of conditions that may directly or indirectly affect thymic structure, ranging from various cytotoxic stimuli inducing acute thymic involution to autoimmune diseases, such as myasthenia gravis. Here, we demonstrate applicability of the method in a mouse model of age-dependent thymic involution, both by confirming established knowledge, and by providing novel insights on intrathymic remodeling in the aged thymus. Our orthogonal pipeline, with its high versatility and depth of analysis, promises to be a valuable and practical toolset for both basic and translational immunology laboratories investigating thymic function and disease.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Dimitrios G Argyris
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Stepan Vodopyanov
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Leslie Gunther-Cummins
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Alexandros Hardas
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hatfield, United Kingdom
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Panorias
- Division of Statistics and Operational Research, Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sophia DesMarais
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Conner Entenberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Randall S Carpenter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hillary Guzik
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Xheni Nishku
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Joseph Churaman
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Vera DesMarais
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Frank P Macaluso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| |
Collapse
|
5
|
Abstract
The thymus is an evolutionarily conserved organ that supports the development of T cells. Not only does the thymic environment support the rearrangement and expression of diverse T cell receptors but also provides a unique niche for the selection of appropriate T cell clones. Thymic selection ensures that the repertoire of available T cells is both useful (being MHC-restricted) and safe (being self-tolerant). The unique antigen-presentation features of the thymus ensure that the display of self-antigens is optimal to induce tolerance to all types of self-tissue. MHC class-specific functions of CD4+ T helper cells, CD8+ killer T cells and CD4+ regulatory T cells are also established in the thymus. Finally, the thymus provides signals for the development of several minor T cell subsets that promote immune and tissue homeostasis. This Review provides an introductory-level overview of our current understanding of the sophisticated thymic selection mechanisms that ensure T cells are useful and safe.
Collapse
Affiliation(s)
- K Maude Ashby
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
6
|
Fu Y, Zhang X, Wu H, Zhang P, Liu S, Guo T, Shan H, Liang Y, Chen H, Xie J, Duan Y. HOXA3 functions as the on-off switch to regulate the development of hESC-derived third pharyngeal pouch endoderm through EPHB2-mediated Wnt pathway. Front Immunol 2024; 14:1258074. [PMID: 38259452 PMCID: PMC10800530 DOI: 10.3389/fimmu.2023.1258074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives Normal commitment of the endoderm of the third pharyngeal pouch (3PP) is essential for the development and differentiation of the thymus. The aim of this study was to investigate the role of transcription factor HOXA3 in the development and differentiation of 3PP endoderm (3PPE) from human embryonic stem cells (hESCs). Methods The 3PPE was differentiated from hESC-derived definitive endoderm (DE) by mimicking developmental queues with Activin A, WNT3A, retinoic acid and BMP4. The function of 3PPE was assessed by further differentiating into functional thymic epithelial cells (TECs). The effect of HOXA3 inhibition on cells of 3PPE was subsequently investigated. Results A highly efficient approach for differentiating 3PPE cells was developed and these cells expressed 3PPE related genes HOXA3, SIX1, PAX9 as well as EpCAM. 3PPE cells had a strong potential to develop into TECs which expressed both cortical TEC markers K8 and CD205, and medullary TEC markers K5 and AIRE, and also promoted the development and maturation of T cells. More importantly, transcription factor HOXA3 not only regulated the differentiation of 3PPE, but also had a crucial role for the proliferation and migration of 3PPE cells. Our further investigation revealed that HOXA3 controlled the commitment and function of 3PPE through the regulation of Wnt signaling pathway by activating EPHB2. Conclusion Our results demonstrated that HOXA3 functioned as the on-off switch to regulate the development of hESC-derived 3PPE through EPHB2-mediated Wnt pathway, and our findings will provide new insights into studying the development of 3PP and thymic organ in vitro and in vivo.
Collapse
Affiliation(s)
- Yingjie Fu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xueyan Zhang
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Pingping Zhang
- Department of Laboratory Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huanhuan Shan
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan Liang
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jinghe Xie
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Jiang Q, Ma X, Zhu G, Si W, He L, Yang G. Altered T cell development in an animal model of multiple sclerosis. Exp Neurol 2024; 371:114579. [PMID: 37866699 DOI: 10.1016/j.expneurol.2023.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS), leading to demyelination and axonal degeneration. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that has significantly improved our understanding of MS. Studies have observed early thymic involution in MS patients, suggesting the potential involvement of the thymus in CNS autoimmunity. However, our knowledge of the thymus's role in autoimmune disorders affecting the CNS remains limited. In this study, we examined the effects of EAE induction on thymopoiesis and observed alterations in T cell development. These changes were characterized by increased apoptosis and decreased proliferation of thymocytes at the EAE peak stage. We also identified a blockade in the transition from CD4-CD8- double-negative thymocytes to CD4+CD8+ double-positive cells, as evidenced by the accumulation of double-negative stage 1 thymocytes at both the EAE onset and peak stages. Furthermore, positive selection was disrupted in the thymus of EAE mice at both stages, leading to an elevated proportion and number of CD4+CD8- and CD4-CD8+ single-positive cells. Meanwhile, we observed an augmented production of regulatory T cells in the thymus of EAE mice. Moreover, peripheral blood analysis of EAE mice at the onset stage showed expanded T cell subsets but not at the peak stage. We also observed altered expression patterns in thymus-derived CD4+CD8- and CD4-CD8+ single-positive cells between MS patients and healthy controls. Our findings demonstrate a modified T cell development in EAE/MS, providing valuable insights into the potential of modulating thymic function as a targeted therapeutic approach to MS/EAE.
Collapse
Affiliation(s)
- Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Xin Ma
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Gaochen Zhu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Wen Si
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Lingyu He
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
| |
Collapse
|
8
|
Ullrich KAM, Derdau J, Baltes C, Battistella A, Rosso G, Uderhardt S, Schulze LL, Liu LJ, Dedden M, Spocinska M, Kainka L, Kubánková M, Müller TM, Schmidt NM, Becker E, Ben Brahim O, Atreya I, Finotto S, Prots I, Wirtz S, Weigmann B, López-Posadas R, Atreya R, Ekici AB, Lautenschläger F, Guck J, Neurath MF, Zundler S. IL-3 receptor signalling suppresses chronic intestinal inflammation by controlling mechanobiology and tissue egress of regulatory T cells. Gut 2023; 72:2081-2094. [PMID: 37541770 PMCID: PMC10579496 DOI: 10.1136/gutjnl-2023-329818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 08/06/2023]
Abstract
IL-3 has been reported to be involved in various inflammatory disorders, but its role in inflammatory bowel disease (IBD) has not been addressed so far. Here, we determined IL-3 expression in samples from patients with IBD and studied the impact of Il3 or Il3r deficiency on T cell-dependent experimental colitis. We explored the mechanical, cytoskeletal and migratory properties of Il3r -/- and Il3r +/+ T cells using real-time deformability cytometry, atomic force microscopy, scanning electron microscopy, fluorescence recovery after photobleaching and in vitro and in vivo cell trafficking assays. We observed that, in patients with IBD, the levels of IL-3 in the inflamed mucosa were increased. In vivo, experimental chronic colitis on T cell transfer was exacerbated in the absence of Il-3 or Il-3r signalling. This was attributable to Il-3r signalling-induced changes in kinase phosphorylation and actin cytoskeleton structure, resulting in increased mechanical deformability and enhanced egress of Tregs from the inflamed colon mucosa. Similarly, IL-3 controlled mechanobiology in human Tregs and was associated with increased mucosal Treg abundance in patients with IBD. Collectively, our data reveal that IL-3 signaling exerts an important regulatory role at the interface of biophysical and migratory T cell features in intestinal inflammation and suggest that this might be an interesting target for future intervention.
Collapse
Affiliation(s)
- Karen Anne-Marie Ullrich
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Derdau
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carsten Baltes
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Alice Battistella
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Stefan Uderhardt
- Department of Medicine 3, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, FAU Optical Imaging Competence Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Lisa Lou Schulze
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Li-Juan Liu
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mark Dedden
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marta Spocinska
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lucina Kainka
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Markéta Kubánková
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Tanja Martina Müller
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Nina-Maria Schmidt
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emily Becker
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oumaima Ben Brahim
- Department of Medicine 3, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, FAU Optical Imaging Competence Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Molecular Pneumology, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Dental Clinic 1 - Dental Preservation and Periodontology, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Arif Bülent Ekici
- Institute of Human Genetics, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Lautenschläger
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
Reis MDDS, Veneziani LP, Porto FL, Lins MP, Mendes-da-Cruz DA, Savino W. Intrathymic somatotropic circuitry: consequences upon thymus involution. Front Immunol 2023; 14:1108630. [PMID: 37426675 PMCID: PMC10323194 DOI: 10.3389/fimmu.2023.1108630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Growth hormone (GH) is a classic pituitary-derived hormone crucial to body growth and metabolism. In the pituitary gland, GH production is stimulated by GH-releasing hormone and inhibited by somatostatin. GH secretion can also be induced by other peptides, such as ghrelin, which interacts with receptors present in somatotropic cells. It is well established that GH acts directly on target cells or indirectly by stimulating the production of insulin-like growth factors (IGFs), particularly IGF-1. Notably, such somatotropic circuitry is also involved in the development and function of immune cells and organs, including the thymus. Interestingly, GH, IGF-1, ghrelin, and somatostatin are expressed in the thymus in the lymphoid and microenvironmental compartments, where they stimulate the secretion of soluble factors and extracellular matrix molecules involved in the general process of intrathymic T-cell development. Clinical trials in which GH was used to treat immunocompromised patients successfully recovered thymic function. Additionally, there is evidence that the reduction in the function of the somatotropic axis is associated with age-related thymus atrophy. Treatment with GH, IGF-1 or ghrelin can restore thymopoiesis of old animals, thus in keeping with a clinical study showing that treatment with GH, associated with metformin and dehydroepiandrosterone, could induce thymus regeneration in healthy aged individuals. In conclusion, the molecules of the somatotrophic axis can be envisioned as potential therapeutic targets for thymus regeneration in age-related or pathological thymus involution.
Collapse
Affiliation(s)
- Maria Danielma dos Santos Reis
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Luciana Peixoto Veneziani
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Felipe Lima Porto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Blanco LP, Kaplan MJ. Metabolic alterations of the immune system in the pathogenesis of autoimmune diseases. PLoS Biol 2023; 21:e3002084. [PMID: 37098006 PMCID: PMC10128981 DOI: 10.1371/journal.pbio.3002084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Systemic autoimmune diseases are characteristically associated with aberrant autoreactive innate and adaptive immune responses that lead to tissue damage and increased morbidity and mortality. Autoimmunity has been linked to alterations in the metabolic functions of immune cells (immunometabolism) and, more specifically, to mitochondrial dysfunction. Much has been written about immunometabolism in autoimmunity in general, so this Essay focuses on recent research into the role of mitochondrial dysfunction in the dysregulation of innate and adaptive immunity that is characteristic of systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Enhancing the understanding of mitochondrial dysregulation in autoimmunity will hopefully contribute to accelerating the development of immunomodulatory treatments for these challenging diseases.
Collapse
Affiliation(s)
- Luz P Blanco
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
García-Ceca J, Montero-Herradón S, González A, Plaza R, Zapata AG. Altered thymocyte development observed in EphA4-deficient mice courses with changes in both thymic epithelial and extracellular matrix organization. Cell Mol Life Sci 2022; 79:583. [PMID: 36334147 PMCID: PMC9637064 DOI: 10.1007/s00018-022-04610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
Eph receptors and their ligands, Ephrins, are involved in the thymocyte-thymic epithelial cell (TEC) interactions, key for the functional maturation of both thymocytes and thymic epithelium. Several years ago, we reported that the lack of EphA4, a Eph of the subfamily A, coursed with reduced proportions of double positive (DP) thymocytes apparently due to an altered thymic epithelial stroma [Munoz et al. in J Immunol 177:804–813, 2006]. In the present study, we reevaluate the lymphoid, epithelial, and extracellular matrix (ECM) phenotype of EphA4−/− mice grouped into three categories with respect to their proportions of DP thymocytes. Our results demonstrate a profound hypocellularity, specific alterations of T cell differentiation that affected not only DP thymocytes, but also double negative and single positive T cell subsets, as well as the proportions of positively and negatively selected thymocytes. In correlation, thymic histological organization changed markedly, especially in the cortex, as well as the proportions of both Ly51+UEA-1− cortical TECs and Ly51−UEA-1+ medullary TECs. The alterations observed in the expression of ECM components (Fibronectin, Laminin, Collagen IV), integrin receptors (VLA-4, VLA-6), chemokines (CXCL12, CCL25, CCL21) and their receptors (CXCR4, CCR7, CCR9) and in vitro transwell assays on the capacity of migration of WT and mutant thymocytes suggest that the lack of EphA4 alters T-cell differentiation by presumably affecting cell adhesion between TECs and T-TEC interactions rather than by thymocyte migration.
Collapse
Affiliation(s)
- Javier García-Ceca
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040, Madrid, Spain.,Health Research Institute, Hospital 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040, Madrid, Spain.,Health Research Institute, Hospital 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Ana González
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Rosa Plaza
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040, Madrid, Spain. .,Health Research Institute, Hospital 12 de Octubre (imas12), 28041, Madrid, Spain.
| |
Collapse
|
12
|
Minaduola M, Aili A, Bao Y, Peng Z, Ge Q, Jin R. The circadian clock sets a spatial–temporal window for recent thymic emigrants. Immunol Cell Biol 2022; 100:731-741. [DOI: 10.1111/imcb.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/11/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Mili Minaduola
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University) Peking University Beijing China
| | - Abudureyimujiang Aili
- Department of Medical Oncology and Radiation Sickness Peking University Third Hospital Beijing China
| | - Yuhui Bao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University) Peking University Beijing China
| | - Zhi Peng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University) Peking University Beijing China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences Peking University Beijing China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University) Peking University Beijing China
| |
Collapse
|
13
|
Conev A, Devaurs D, Rigo MM, Antunes DA, Kavraki LE. 3pHLA-score improves structure-based peptide-HLA binding affinity prediction. Sci Rep 2022; 12:10749. [PMID: 35750701 PMCID: PMC9232595 DOI: 10.1038/s41598-022-14526-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
Binding of peptides to Human Leukocyte Antigen (HLA) receptors is a prerequisite for triggering immune response. Estimating peptide-HLA (pHLA) binding is crucial for peptide vaccine target identification and epitope discovery pipelines. Computational methods for binding affinity prediction can accelerate these pipelines. Currently, most of those computational methods rely exclusively on sequence-based data, which leads to inherent limitations. Recent studies have shown that structure-based data can address some of these limitations. In this work we propose a novel machine learning (ML) structure-based protocol to predict binding affinity of peptides to HLA receptors. For that, we engineer the input features for ML models by decoupling energy contributions at different residue positions in peptides, which leads to our novel per-peptide-position protocol. Using Rosetta's ref2015 scoring function as a baseline we use this protocol to develop 3pHLA-score. Our per-peptide-position protocol outperforms the standard training protocol and leads to an increase from 0.82 to 0.99 of the area under the precision-recall curve. 3pHLA-score outperforms widely used scoring functions (AutoDock4, Vina, Dope, Vinardo, FoldX, GradDock) in a structural virtual screening task. Overall, this work brings structure-based methods one step closer to epitope discovery pipelines and could help advance the development of cancer and viral vaccines.
Collapse
Affiliation(s)
- Anja Conev
- grid.21940.3e0000 0004 1936 8278Department of Computer Science, Rice University, Houston, 77005 USA
| | - Didier Devaurs
- grid.4305.20000 0004 1936 7988MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Mauricio Menegatti Rigo
- grid.21940.3e0000 0004 1936 8278Department of Computer Science, Rice University, Houston, 77005 USA
| | | | - Lydia E. Kavraki
- grid.21940.3e0000 0004 1936 8278Department of Computer Science, Rice University, Houston, 77005 USA
| |
Collapse
|
14
|
Dong X, Zhang J, Zhang Q, Liang Z, Xu Y, Zhao Y, Zhang B. Cytosolic Nuclear Sensor Dhx9 Controls Medullary Thymic Epithelial Cell Differentiation by p53-Mediated Pathways. Front Immunol 2022; 13:896472. [PMID: 35720303 PMCID: PMC9203851 DOI: 10.3389/fimmu.2022.896472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Thymic epithelial cells (TECs) critically participate in T cell maturation and selection for the establishment of immunity to foreign antigens and immune tolerance to self-antigens of T cells. It is well known that many intracellular and extracellular molecules elegantly have mastered the development of medullary TECs (mTECs) and cortical TECs (cTECs). However, the role played by NTP-dependent helicase proteins in TEC development is currently unclear. Herein, we created mice with a TEC-specific DExD/H-box helicase 9 (Dhx9) deletion (Dhx9 cKO) to study the involvement of Dhx9 in TEC differentiation and function. We found that a Dhx9 deficiency in TECs caused a significant decreased cell number of TECs, including mTECs and thymic tuft cells, accompanied by accelerated mTEC maturation but no detectable effect on cTECs. Dhx9-deleted mTECs transcriptionally expressed poor tissue-restricted antigen profiles compared with WT mTECs. Importantly, Dhx9 cKO mice displayed an impaired thymopoiesis, poor thymic T cell output, and they suffered from spontaneous autoimmune disorders. RNA-seq analysis showed that the Dhx9 deficiency caused an upregulated DNA damage response pathway and Gadd45, Cdkn1a, Cdc25, Wee1, and Myt1 expression to induce cell cycle arrest in mTECs. In contrast, the p53-dependent upregulated RANK-NF-κB pathway axis accelerated the maturation of mTECs. Our results collectively indicated that Dhx9, a cytosolic nuclear sensor recognizing viral DNA or RNA, played an important role in mTEC development and function in mice.
Collapse
Affiliation(s)
- Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
- *Correspondence: Baojun Zhang, ; Yong Zhao,
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Baojun Zhang, ; Yong Zhao,
| |
Collapse
|
15
|
The interface between biochemical signaling and cell mechanics shapes T lymphocyte migration and activation. Eur J Cell Biol 2022; 101:151236. [DOI: 10.1016/j.ejcb.2022.151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022] Open
|
16
|
Song J, Yi X, Gao R, Sun L, Wu Z, Zhang S, Huang L, Han C, Ma J. Impact of Drp1-Mediated Mitochondrial Dynamics on T Cell Immune Modulation. Front Immunol 2022; 13:873834. [PMID: 35432303 PMCID: PMC9008543 DOI: 10.3389/fimmu.2022.873834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, various breakthroughs have been made in tumor immunotherapy that have contributed to prolonging the survival of tumor patients. However, only a subset of patients respond to immunotherapy, which limits its use. One reason for this is that the tumor microenvironment (TME) hinders the migration and infiltration of T cells and affects their continuous functioning, resulting in an exhausted phenotype. Therefore, clarifying the mechanism by which T cells become exhausted is of significance for improving the efficacy of immunotherapy. Several recent studies have shown that mitochondrial dynamics play an important role in the immune surveillance function of T cells. Dynamin-related protein 1 (Drp1) is a key protein that mediates mitochondrial fission and maintains the mitochondrial dynamic network. Drp1 regulates various activities of T cells in vivo by mediating the activation of a series of pathways. In addition, abnormal mitochondrial dynamics were observed in exhausted T cells in the TME. As a potential target for immunotherapy, in this review, we describe in detail how Drp1 regulates various physiological functions of T cells and induces changes in mitochondrial dynamics in the TME, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Jun Song
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruolin Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhixuan Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jietao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Kamnev A, Lacouture C, Fusaro M, Dupré L. Molecular Tuning of Actin Dynamics in Leukocyte Migration as Revealed by Immune-Related Actinopathies. Front Immunol 2021; 12:750537. [PMID: 34867982 PMCID: PMC8634686 DOI: 10.3389/fimmu.2021.750537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Motility is a crucial activity of immune cells allowing them to patrol tissues as they differentiate, sample or exchange information, and execute their effector functions. Although all immune cells are highly migratory, each subset is endowed with very distinct motility patterns in accordance with functional specification. Furthermore individual immune cell subsets adapt their motility behaviour to the surrounding tissue environment. This review focuses on how the generation and adaptation of diversified motility patterns in immune cells is sustained by actin cytoskeleton dynamics. In particular, we review the knowledge gained through the study of inborn errors of immunity (IEI) related to actin defects. Such pathologies are unique models that help us to uncover the contribution of individual actin regulators to the migration of immune cells in the context of their development and function.
Collapse
Affiliation(s)
- Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,Laboratoire De Physique Théorique, IRSAMC, Université De Toulouse (UPS), CNRS, Toulouse, France
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| |
Collapse
|
18
|
Bainter W, Lougaris V, Wallace JG, Badran Y, Hoyos-Bachiloglu R, Peters Z, Wilkie H, Das M, Janssen E, Beano A, Farhat KB, Kam C, Bercich L, Incardona P, Villanacci V, Bondioni MP, Meini A, Baronio M, Abarzua P, Parolini S, Tabellini G, Maio S, Schmidt B, Goldsmith JD, Murphy G, Hollander G, Plebani A, Chou J, Geha RS. Combined immunodeficiency with autoimmunity caused by a homozygous missense mutation in inhibitor of nuclear factor 𝛋B kinase alpha (IKKα). Sci Immunol 2021; 6:eabf6723. [PMID: 34533979 DOI: 10.1126/sciimmunol.abf6723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vassilios Lougaris
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Jacqueline G Wallace
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yousef Badran
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Zachary Peters
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hazel Wilkie
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdallah Beano
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Khaoula Ben Farhat
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christy Kam
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luisa Bercich
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Paolo Incardona
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vincenzo Villanacci
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Maria Pia Bondioni
- Department of Pediatric Radiology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Antonella Meini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Manuela Baronio
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Phammela Abarzua
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Silvia Parolini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Giovanna Tabellini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Stefano Maio
- Department of Paediatrics, the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Birgitta Schmidt
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey D Goldsmith
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - George Murphy
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georg Hollander
- Department of Paediatrics, the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Paediatric Immunology, Department of Biomedicine, University of Basel, University Children's Hospital Basel, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alessandro Plebani
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Asperud J, Arous D, Edin NFJ, Malinen E. Spatially fractionated radiotherapy: tumor response modelling including immunomodulation. Phys Med Biol 2021; 66. [PMID: 34298527 DOI: 10.1088/1361-6560/ac176b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/23/2021] [Indexed: 01/20/2023]
Abstract
A mathematical tumor response model has been developed, encompassing the interplay between immune cells and cancer cells initiated by either partial or full tumor irradiation. The iterative four-compartment model employs the linear-quadratic radiation response theory for four cell types: active and inactive cytotoxic T lymphocytes (immune cells, CD8+T cells in particular), viable cancer cells (undamaged and reparable cells) and doomed cells (irreparably damaged cells). The cell compartment interactions are calculated per day, with total tumor volume (TV) as the main quantity of interest. The model was fitted to previously published data on syngeneic xenografts (67NR breast carcinoma and Lewis lung carcinoma; (Markovskyet al2019Int. J. Radiat. Oncol. Biol. Phys.103697-708)) subjected to single doses of 10 or 15 Gy by 50% (partial) or 100% (full) TV irradiation. The experimental data included effects from anti-CD8+antibodies and immunosuppressive drugs. Using a new optimization method, promising fits were obtained where the lowest and highest root-mean-squared error values were observed for anti-CD8+treatment and unirradiated control data, respectively, for both cell types. Additionally, predictive capabilities of the model were tested by using the estimated model parameters to predict scenarios for higher doses and different TV irradiation fractions. Here, mean relative deviations in the range of 19%-34% from experimental data were found. However, more validation data is needed to conclude on the model's predictive capabilities. In conclusion, the model was found useful in evaluating the impact from partial and full TV irradiation on the immune response and subsequent tumor growth. The model shows potential to support and guide spatially fractionated radiotherapy in future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Jonas Asperud
- Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway
| | - Delmon Arous
- Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.,Department of Medical Physics, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953 Nydalen, N-0424 Oslo, Norway
| | | | - Eirik Malinen
- Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.,Department of Medical Physics, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953 Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
20
|
Xia H, Zhong S, Zhao Y, Ren B, Wang Z, Shi Y, Chai Q, Wang X, Zhu M. Thymic Egress Is Regulated by T Cell-Derived LTβR Signal and via Distinct Thymic Portal Endothelial Cells. Front Immunol 2021; 12:707404. [PMID: 34276703 PMCID: PMC8281811 DOI: 10.3389/fimmu.2021.707404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/17/2021] [Indexed: 11/14/2022] Open
Abstract
Thymic blood vessels at the perivascular space (PVS) are the critical site for both homing of hematopoietic progenitor cells (HPCs) and egress of mature thymocytes. It has been intriguing how different opposite migrations can happen in the same place. A subset of specialized thymic portal endothelial cells (TPECs) associated with PVS has been identified to function as the entry site for HPCs. However, the cellular basis and mechanism underlying egress of mature thymocytes has not been well defined. In this study, using various conventional and conditional gene-deficient mouse models, we first confirmed the role of endothelial lymphotoxin beta receptor (LTβR) for thymic egress and ruled out the role of LTβR from epithelial cells or dendritic cells. In addition, we found that T cell-derived ligands lymphotoxin (LT) and LIGHT are required for thymic egress, suggesting a crosstalk between T cells and endothelial cells (ECs) for thymic egress control. Furthermore, immunofluorescence staining analysis interestingly showed that TPECs are also the exit site for mature thymocytes. Single-cell transcriptomic analysis of thymic endothelial cells suggested that TPECs are heterogeneous and can be further divided into two subsets depending on BST-1 expression level. Importantly, BST-1hi population is associated with thymic egressing thymocytes while BST-1lo/− population is associated with HPC settling. Thus, we have defined a LT/LIGHT-LTβR signaling–mediated cellular crosstalk regulating thymic egress and uncovered distinct subsets of TPECs controlling thymic homing and egress, respectively.
Collapse
Affiliation(s)
- Huan Xia
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yixiao Zhao
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Boyang Ren
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Zhongnan Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Shi
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qian Chai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Tereshchenko V, Bulygin A, Zavodskii R, Maksyutov A, Kurilin V, Fisher M, Semenyuk N, Aladev S, Sennikov S. The murine DCs transfected with DNA-plasmid encoding CCR9 demonstrate the increased migration to CCL25 and thymic cells in vitro and to the thymus in vivo. Cytokine 2021; 142:155473. [PMID: 33647585 DOI: 10.1016/j.cyto.2021.155473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND B220+CD11c+plasmacytoid DCs(pDCs) are known to participate in the negative selection and central tolerance induction by the capturing of self-antigens in peripheral tissues and further migration to the thymus using the CCL25-CCR9 chemotaxis axis. AIM Here we investigate the possibility of DCs migration stimulation to the thymus by the transfection with plasmid DNA-constructs encoding CCR9(pmaxCCR9) to develop a system for desired antigen delivery to the thymus for central tolerance induction. METHODS Dendritic cells(DCs) cultures were generated from UBC-GFP mice bone marrow cells expressing green fluorescent protein using the rmFlt3-L. DCs cultures were transfected with pmaxCCR9 by electroporation. The efficiency of electroporation was confirmed by RT-qPCR and flow cytometry. The migration of electroporated DCs was assessed in vitro and in vivo. RESULTS Dendritic cells(DCs) cultures obtained from UBC-GFP mice contained both B220+pDCs and SIRPa+cDC2. According to the RT-qPCR assay, the electroporation of obtained DCs cultures with pmaxCCR9 resulted in a 94.4-fold increase of RNA encoding CCR9 compared with non-electroporated cultures. Flow cytometry data showed that DCs cultures electroporated with pmaxCCR9 contained a significantly higher frequency of DCs carrying significantly higher levels of surface CCR9. Migration dynamics of obtained DCs analyzed in vitro showed that pmaxCCR9 electroporated DCs migrated significantly more active to CCL25 and thymic cells than non-electroporated and mock-electroporated DCs. In vivo, 30 days after injection, the relative amount of the DCs electroporated with pmaxCCR9 and pmaxMHC encoding antigenic determinants in the mice thymuses was 2.02-fold higher than the relative amount of the DCs electroporated with control plasmid. CONCLUSION Thus, the electroporation of murine DCs with pmaxCCR9 stimulated its migration to CCL25 and thymic cells in vitro as well as to the thymus in vivo. The obtained DCs loaded with a desired antigen may be suggested for further evaluation of central tolerance induction ability in in vivo models of autoimmune diseases and transplantation.
Collapse
Affiliation(s)
- Valeriy Tereshchenko
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Aleksei Bulygin
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Roman Zavodskii
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Amir Maksyutov
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; State Research Center of Virology and Biotechnology "Vector", 630559 Koltsovo, Russia
| | - Vasiliy Kurilin
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Marina Fisher
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | | | | | - Sergey Sennikov
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; Novosibirsk State University, 630090 Novosibirsk, Russia.
| |
Collapse
|
22
|
Miccoli A, Guerra L, Pianese V, Saraceni PR, Buonocore F, Taddei AR, Couto A, De Wolf T, Fausto AM, Scapigliati G, Picchietti S. Molecular, Cellular and Functional Analysis of TRγ Chain along the European Sea Bass Dicentrarchus labrax Development. Int J Mol Sci 2021; 22:ijms22073376. [PMID: 33806063 PMCID: PMC8036326 DOI: 10.3390/ijms22073376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
In jawed vertebrates, adaptive immune responses are enabled by T cells. Two lineages were characterized based on their T cell receptor (TcR) heterodimers, namely αβ or γδ peptide chains, which display an Ig domain-type sequence that is somatically rearranged. γδ T cells have been less extensively characterized than αβ and teleost fish, in particular, suffer from a severe scarcity of data. In this paper, we worked on the well-known model, the European sea bass Dicentrarchus labrax, to broaden the understanding of teleost γδ-T cells. The T cell receptor chain (TR) γ transcript was expressed at a later developmental stage than TRβ, suggesting a layered appearance of fish immune cells, and the thymus displayed statistically-significant higher mRNA levels than any other organ or lymphoid tissue investigated. The polyclonal antibody developed against the TRγ allowed the localization of TRγ-expressing cells in lymphoid organs along the ontogeny. Cell positivity was investigated through flow cytometry and the highest percentage was found in peripheral blood leukocytes, followed by thymus, gut, gills, spleen and head kidney. Numerous TRγ-expressing cells were localized in the gut mucosa, and the immunogold labelling revealed ultrastructural features that are typical of T cells. At last, microalgae-based diet formulations significantly modulated the abundance of TRγ+ cells in the posterior intestine, hinting at a putative involvement in nutritional immunity. From a comparative immunological perspective, our results contribute to the comprehension of the diversity and functionalities of γδ T cells during the development of a commercially relevant marine teleost model.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Laura Guerra
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Valeria Pianese
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Paolo Roberto Saraceni
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, University of Tuscia, 01100 Viterbo, Italy;
| | - Ana Couto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal;
| | - Tania De Wolf
- INVE Aquaculture Research Center, 57016 Rosignano Solvay, Italy;
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
- Correspondence: ; Tel.: +39-0761-357-135
| |
Collapse
|
23
|
James KD, Jenkinson WE, Anderson G. Non-Epithelial Stromal Cells in Thymus Development and Function. Front Immunol 2021; 12:634367. [PMID: 33717173 PMCID: PMC7946857 DOI: 10.3389/fimmu.2021.634367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 12/23/2022] Open
Abstract
The thymus supports T-cell development via specialized microenvironments that ensure a diverse, functional and self-tolerant T-cell population. These microenvironments are classically defined as distinct cortex and medulla regions that each contain specialized subsets of stromal cells. Extensive research on thymic epithelial cells (TEC) within the cortex and medulla has defined their essential roles during T-cell development. Significantly, there are additional non-epithelial stromal cells (NES) that exist alongside TEC within thymic microenvironments, including multiple subsets of mesenchymal and endothelial cells. In contrast to our current understanding of TEC biology, the developmental origins, lineage relationships, and functional properties, of NES remain poorly understood. However, experimental evidence suggests these cells are important for thymus function by either directly influencing T-cell development, or by indirectly regulating TEC development and/or function. Here, we focus attention on the contribution of NES to thymic microenvironments, including their phenotypic identification and functional classification, and explore their impact on thymus function.
Collapse
Affiliation(s)
- Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021; 43:45-64. [PMID: 33537838 PMCID: PMC7925479 DOI: 10.1007/s00281-021-00842-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
The thymus prevents autoimmune diseases through mechanisms that operate in the cortex and medulla, comprising positive and negative selection and the generation of regulatory T-cells (Tregs). Egress from the thymus through the perivascular space (PVS) to the blood is another possible checkpoint, as shown by some autoimmune/immunodeficiency syndromes. In polygenic autoimmune diseases, subtle thymic dysfunctions may compound genetic, hormonal and environmental cues. Here, we cover (a) tolerance-inducing cell types, whether thymic epithelial or tuft cells, or dendritic, B- or thymic myoid cells; (b) tolerance-inducing mechanisms and their failure in relation to thymic anatomic compartments, and with special emphasis on human monogenic and polygenic autoimmune diseases and the related thymic pathologies, if known; (c) polymorphisms and mutations of tolerance-related genes with an impact on positive selection (e.g. the gene encoding the thymoproteasome-specific subunit, PSMB11), promiscuous gene expression (e.g. AIRE, PRKDC, FEZF2, CHD4), Treg development (e.g. SATB1, FOXP3), T-cell migration (e.g. TAGAP) and egress from the thymus (e.g. MTS1, CORO1A); (d) myasthenia gravis as the prototypic outcome of an inflamed or disordered neoplastic ‘sick thymus’.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, 93042, Regensburg, Germany
| | - Nick Willcox
- Neurosciences Group, Nuffield Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttigen, 37075, Göttingen, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
25
|
James KD, Legler DF, Purvanov V, Ohigashi I, Takahama Y, Parnell SM, White AJ, Jenkinson WE, Anderson G. Medullary stromal cells synergize their production and capture of CCL21 for T-cell emigration from neonatal mouse thymus. Blood Adv 2021; 5:99-112. [PMID: 33570638 PMCID: PMC7805325 DOI: 10.1182/bloodadvances.2020003192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/31/2020] [Indexed: 01/16/2023] Open
Abstract
The release of newly selected αβT cells from the thymus is key in establishing a functional adaptive immune system. Emigration of the first cohorts of αβT cells produced during the neonatal period is of particular importance, because it initiates formation of the peripheral αβT-cell pool and provides immune protection early in life. Despite this, the cellular and molecular mechanisms of thymus emigration are poorly understood. We examined the involvement of diverse stromal subsets and individual chemokine ligands in this process. First, we demonstrated functional dichotomy in the requirement for CCR7 ligands and identified CCL21, but not CCL19, as an important regulator of neonatal thymus emigration. To explain this ligand-specific requirement, we examined sites of CCL21 production and action and found Ccl21 gene expression and CCL21 protein distribution occurred within anatomically distinct thymic areas. Although Ccl21 transcription was limited to subsets of medullary epithelium, CCL21 protein was captured by mesenchymal stroma consisting of integrin α7+ pericytes and CD34+ adventitial cells at sites of thymic exit. This chemokine compartmentalization involved the heparan sulfate-dependent presentation of CCL21 via its C-terminal extension, explaining the absence of a requirement for CCL19, which lacks this domain and failed to be captured by thymic stroma. Collectively, we identified an important role for CCL21 in neonatal thymus emigration, revealing the importance of this chemokine in initial formation of the peripheral immune system. Moreover, we identified an intrathymic mechanism involving cell-specific production and presentation of CCL21, which demonstrated a functional synergy between thymic epithelial and mesenchymal cells for αβT-cell emigration.
Collapse
Affiliation(s)
- Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Daniel F Legler
- Biotechnology Institute Thurgau, University of Konstanz, Kreuzlingen, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | | | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; and
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sonia M Parnell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Andrea J White
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
26
|
Chang H, Cong H, Wang H, Du L, Tian DC, Ma Y, Xu Y, Wang Y, Yin L, Zhang X. Thymic Involution and Altered Naive CD4 T Cell Homeostasis in Neuromyelitis Optica Spectrum Disorder. Front Immunol 2021; 12:645277. [PMID: 34335563 PMCID: PMC8322781 DOI: 10.3389/fimmu.2021.645277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Circulating T helper cells with a type 17-polarized phenotype (TH17) and expansion of aquaporin-4 (AQP4)-specific T cells are frequently observed in patients with neuromyelitis optica spectrum disorder (NMOSD). However, naive T cell populations, which give rise to T helper cells, and the primary site of T cell maturation, namely the thymus, have not been studied in these patients. Here, we report the alterations of naive CD4 T cell homeostasis and the changes in thymic characteristics in NMOSD patients. Flow cytometry was performed to investigate the naive CD4+ T cell subpopulations in 44 NMOSD patients and 21 healthy controls (HC). On immunological evaluation, NMOSD patients exhibited increased counts of CD31+thymic naive CD4+ T cells and CD31-cental naive CD4+ T cells along with significantly higher fraction and absolute counts of peripheral blood CD45RA+ CD62L+ naive CD4+ T cells. Chest computed tomography (CT) images of 60 NMOSD patients and 65 HCs were retrospectively reviewed to characterize the thymus in NMOSD. Thymus gland of NMOSD patients exhibited unique morphological characteristics with respect to size, shape, and density. NMOSD patients showed exacerbated age-dependent thymus involution than HC, which showed a significant association with disease duration. These findings broaden our understanding of the immunological mechanisms that drive severe disease in NMOSD.
Collapse
Affiliation(s)
- Haoxiao Chang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hengri Cong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huabing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Cai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuetao Ma
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yupeng Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing, China
- *Correspondence: Linlin Yin, ; Xinghu Zhang,
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Linlin Yin, ; Xinghu Zhang,
| |
Collapse
|
27
|
Du X, Zeng H, Liu S, Guy C, Dhungana Y, Neale G, Bergo MO, Chi H. Mevalonate metabolism-dependent protein geranylgeranylation regulates thymocyte egress. J Exp Med 2020; 217:jem.20190969. [PMID: 31722972 PMCID: PMC7041713 DOI: 10.1084/jem.20190969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/01/2019] [Accepted: 10/10/2019] [Indexed: 01/10/2023] Open
Abstract
Thymocyte egress is a critical determinant of T cell homeostasis and adaptive immunity. Du et al. describe unexpected roles of mevalonate metabolism–fueled protein geranylgeranylation, but not farnesylation, in driving thymocyte egress through modulating Cdc42 and Pak activities. Thymocyte egress is a critical determinant of T cell homeostasis and adaptive immunity. Despite the roles of G protein–coupled receptors in thymocyte emigration, the downstream signaling mechanism remains poorly defined. Here, we report the discrete roles for the two branches of mevalonate metabolism–fueled protein prenylation pathway in thymocyte egress and immune homeostasis. The protein geranylgeranyltransferase Pggt1b is up-regulated in single-positive thymocytes, and loss of Pggt1b leads to marked defects in thymocyte egress and T cell lymphopenia in peripheral lymphoid organs in vivo. Mechanistically, Pggt1b bridges sphingosine-1-phosphate and chemokine-induced migratory signals with the activation of Cdc42 and Pak signaling and mevalonate-dependent thymocyte trafficking. In contrast, the farnesyltransferase Fntb, which mediates a biochemically similar process of protein farnesylation, is dispensable for thymocyte egress but contributes to peripheral T cell homeostasis. Collectively, our studies establish context-dependent effects of protein prenylation and unique roles of geranylgeranylation in thymic egress and highlight that the interplay between cellular metabolism and posttranslational modification underlies immune homeostasis.
Collapse
Affiliation(s)
- Xingrong Du
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Hu Zeng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Shaofeng Liu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN
| | - Martin O Bergo
- Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
28
|
Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman ME, Handel AE, Maynard A, Chen S, Green F, Sit RV, Neff NF, Darmanis S, Tan W, May AP, Marioni JC, Ponting CP, Holländer GA. Ageing compromises mouse thymus function and remodels epithelial cell differentiation. eLife 2020; 9:e56221. [PMID: 32840480 PMCID: PMC7490013 DOI: 10.7554/elife.56221] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022] Open
Abstract
Ageing is characterised by cellular senescence, leading to imbalanced tissue maintenance, cell death and compromised organ function. This is first observed in the thymus, the primary lymphoid organ that generates and selects T cells. However, the molecular and cellular mechanisms underpinning these ageing processes remain unclear. Here, we show that mouse ageing leads to less efficient T cell selection, decreased self-antigen representation and increased T cell receptor repertoire diversity. Using a combination of single-cell RNA-seq and lineage-tracing, we find that progenitor cells are the principal targets of ageing, whereas the function of individual mature thymic epithelial cells is compromised only modestly. Specifically, an early-life precursor cell population, retained in the mouse cortex postnatally, is virtually extinguished at puberty. Concomitantly, a medullary precursor cell quiesces, thereby impairing maintenance of the medullary epithelium. Thus, ageing disrupts thymic progenitor differentiation and impairs the core immunological functions of the thymus.
Collapse
Affiliation(s)
| | - Michael D Morgan
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Cancer Research United Kingdom - Cambridge Institute, Li Ka Shing Centre, University of CambridgeCambridgeUnited Kingdom
| | - Stefano Maio
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
| | - Fatima Dhalla
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
| | - Irene Calvo-Asensio
- Department of Biomedicine, University of Basel, and University Children’s HospitalBaselSwitzerland
| | - Mary E Deadman
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
| | - Adam E Handel
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | | | - Steven Chen
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Foad Green
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Rene V Sit
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Norma F Neff
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - Weilun Tan
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Andy P May
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Cancer Research United Kingdom - Cambridge Institute, Li Ka Shing Centre, University of CambridgeCambridgeUnited Kingdom
- EMBL-EBI, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Chris P Ponting
- MRC Human Genetics Unit, University of EdinburghEdinburghUnited Kingdom
| | - Georg A Holländer
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
- Department of Biomedicine, University of Basel, and University Children’s HospitalBaselSwitzerland
- Department of Biosystems Science and Engineering, ETH ZurichBaselSwitzerland
| |
Collapse
|
29
|
Guha I, Bhuniya A, Nandi P, Dasgupta S, Sarkar A, Saha A, Das J, Ganguly N, Ghosh S, Ghosh T, Sarkar M, Ghosh S, Majumdar S, Baral R, Bose A. Neem leaf glycoprotein reverses tumor-induced and age-associated thymic involution to maintain peripheral CD8 + T cell pool. Immunotherapy 2020; 12:799-818. [PMID: 32698648 DOI: 10.2217/imt-2019-0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aim: As tumor causes atrophy in the thymus to target effector-T cells, this study is aimed to decipher the efficacy of neem leaf glycoprotein (NLGP) in tumor- and age-associated thymic atrophy. Materials & methods: Different thymus parameters were studied using flow cytometry, reverse transcriptase PCR and immunocyto-/histochemistry in murine melanoma and sarcoma models. Results: Longitudinal NLGP therapy in tumor hosts show tumor-reduction along with significant normalization of thymic alterations. NLGP downregulates intrathymic IL-10, which eventually promotes Notch1 to rescue blockade in CD25+CD44+c-Kit+DN2 to CD25+CD44-c-Kit-DN3 transition in T cell maturation and suppress Ikaros/IRF8/Pu.1 to prevent DN2-T to DC differentiation in tumor hosts. The CD5intTCRαβhigh DP3 population was also increased to endorse CD8+ T cell generation. Conclusion: NLGP rescues tumor-induced altered thymic events to generate more effector T cells to restrain tumor.
Collapse
Affiliation(s)
- Ipsita Guha
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Partha Nandi
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Shayani Dasgupta
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Anirban Sarkar
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Akata Saha
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Juhina Das
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Nilanjan Ganguly
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Tithi Ghosh
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Madhurima Sarkar
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Sweta Ghosh
- Department of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Rathindranath Baral
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Anamika Bose
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| |
Collapse
|
30
|
Lins MP, Viana IMMN, Smaniotto S, Reis MDDS. Interactions between thymic endothelial cells and thymocytes are influenced by growth hormone. Growth Factors 2020; 38:177-188. [PMID: 34028312 DOI: 10.1080/08977194.2021.1924699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Growth hormone (GH), in addition to its classic actions on growth and metabolism in the body, exerts pleiotropic effects on the immune system, particularly on the thymus. The aim of this study was to evaluate the influence of GH on the interactions between mature thymocytes and the thymic endothelium involved in the migratory process. To this end, fresh thymocytes (C57BL/6 mice) and the thymic endothelial cell line (tEnd.1) were used. In the cell adhesion assay, the GH-treated thymocytes adhered more to tEnd.1 cells. Additionally, there was an improvement in the deposition of fibronectin by tEnd.1 cells when co-cultured with GH-pre-treated thymocytes. Furthermore, GH induced thymocyte F-actin polymerization. In the transendothelial migration assay, a large number of GH-treated thymocytes, mainly the CD4-CD8+ subset, migrated towards the endothelium under the stimulus of insulin-like growth factor 1. In conclusion, we demonstrated the positive actions of GH in thymocyte/thymic endothelium interactions, including transendothelial migration.
Collapse
Affiliation(s)
- Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | | | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Maria Danielma Dos Santos Reis
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Lämmermann T, Kastenmüller W. Concepts of GPCR-controlled navigation in the immune system. Immunol Rev 2020; 289:205-231. [PMID: 30977203 PMCID: PMC6487968 DOI: 10.1111/imr.12752] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
G‐protein–coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR‐controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non‐hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR‐controlled leukocyte navigation by intravital microscopy of immune cells in mice.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
32
|
Calvo J, Fahy L, Uzan B, Pflumio F. Desperately seeking a home marrow niche for T-cell acute lymphoblastic leukaemia. Adv Biol Regul 2019; 74:100640. [PMID: 31378700 DOI: 10.1016/j.jbior.2019.100640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
T-cell acute leukemia is a hematologic malignancy that results from the progressive acquisition of genomic abnormalities in T-cell progenitors/precursors. T-ALL is commonly thought to originate from the thymus albeit recent literature describes the possible acquisition of the first oncogenic hits in hematopoietic progenitor cells of the bone marrow (BM). The journey of T-ALL from its arising to full blown expansion meets different microenvironments, including the BM in which leukemic cells settle down early after the disease spreading. We take advantage of recent literature to give an overview of important cells and factors that participate in T-ALL, especially in the BM, arguing in favor of a home marrow niche for this rare leukemia.
Collapse
Affiliation(s)
- Julien Calvo
- UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, F-92260 Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia, Team Niche and Cancer in Hematopoiesis, U1274, Inserm, CEA, 18 route du panorama, 92260, Fontenay-aux-Roses, France; Laboratoire labellisé par l'Association pour la Recherche sur le Cancer, France
| | - Lucine Fahy
- UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, F-92260 Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia, Team Niche and Cancer in Hematopoiesis, U1274, Inserm, CEA, 18 route du panorama, 92260, Fontenay-aux-Roses, France; Laboratoire labellisé par l'Association pour la Recherche sur le Cancer, France
| | - Benjamin Uzan
- UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, F-92260 Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia, Team Niche and Cancer in Hematopoiesis, U1274, Inserm, CEA, 18 route du panorama, 92260, Fontenay-aux-Roses, France; Laboratoire labellisé par l'Association pour la Recherche sur le Cancer, France
| | - Françoise Pflumio
- UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, F-92260 Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia, Team Niche and Cancer in Hematopoiesis, U1274, Inserm, CEA, 18 route du panorama, 92260, Fontenay-aux-Roses, France; Laboratoire labellisé par l'Association pour la Recherche sur le Cancer, France.
| |
Collapse
|
33
|
Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput Struct Biotechnol J 2018; 17:1-13. [PMID: 30581539 PMCID: PMC6297055 DOI: 10.1016/j.csbj.2018.11.004] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/24/2022] Open
Abstract
Studies have reported a positive correlation between elevated CD8+ T cells in the tumor microenvironment (TME) and good prognosis in cancer. However, the mechanisms linking T cell tumor-infiltration and tumor rejection are yet to be fully understood. The cells and factors of the TME facilitate tumor development in various ways. CD8+ T cell function is influenced by a number of factors, including CD8+ T cell trafficking and localization into tumor sites; as well as CD8+ T cell growth and differentiation. This review highlights recent literature as well as currently evolving concepts regarding the fates of CD8+ T cells in the TME from three different aspects CD8+ T cell trafficking, differentiation and function. A thorough understanding of factors contributing to the fates of CD8+ T cells will allow researchers to develop new strategies and improve on already existing strategies to facilitate CD8+ T cell mediated anti-tumor function, impede T cell dysfunction and modulate the TME into a less immunosuppressive TME.
Collapse
Affiliation(s)
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou 450052, China
| |
Collapse
|
34
|
Oltra E, Caicedo A. Real Time In Vivo Tracking of Thymocytes in the Anterior Chamber of the Eye by Laser Scanning Microscopy. J Vis Exp 2018:58236. [PMID: 30346412 PMCID: PMC6235380 DOI: 10.3791/58236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The purpose of the method being presented is to show, for the first time, the transplant of newborn thymi into the anterior eye chamber of isogenic adult mice for in vivo longitudinal real-time monitoring of thymocytes´ dynamics within a vascularized thymus segment. Following the transplantation, laser scanning microscopy (LSM) through the cornea allows in vivo noninvasive repeated imaging at cellular resolution level. Importantly, the approach adds to previous intravital T-cell maturation imaging models the possibility for continuous progenitor cell recruitment and mature T-cell egress recordings in the same animal. Additional advantages of the system are the transparency of the grafted area, permitting macroscopic rapid monitoring of the implanted tissue, and the accessibility to the implant allowing for localized in addition to systemic treatments. The main limitation being the volume of the tissue that fits in the reduced space of the eye chamber which demands for lobe trimming. Organ integrity is maximized by dissecting thymus lobes in patterns previously shown to be functional for mature T-cell production. The technique is potentially suited to interrogate a milieu of medically relevant questions related to thymus function that include autoimmunity, immunodeficiency and central tolerance; processes which remain mechanistically poorly defined. The fine dissection of mechanisms guiding thymocyte migration, differentiation and selection should lead to novel therapeutic strategies targeting developing T cells.
Collapse
Affiliation(s)
- Elisa Oltra
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente Mártir; Unidad Mixta CIPF-UCV, Centro de Investigación Príncipe Felipe;
| | | |
Collapse
|
35
|
James KD, Jenkinson WE, Anderson G. T-cell egress from the thymus: Should I stay or should I go? J Leukoc Biol 2018; 104:275-284. [PMID: 29485734 PMCID: PMC6174998 DOI: 10.1002/jlb.1mr1217-496r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 02/02/2023] Open
Abstract
T‐cells bearing the αβTCR play a vital role in defending the host against foreign pathogens and malignant transformation of self. Importantly, T‐cells are required to remain tolerant to the host's own cells and tissues in order to prevent self‐reactive responses that can lead to autoimmune disease. T‐cells achieve the capacity for self/nonself discrimination by undergoing a highly selective and rigorous developmental program during their maturation in the thymus. This organ is unique in its ability to support a program of T‐cell development that ensures the establishment of a functionally diverse αβTCR repertoire within the peripheral T‐cell pool. The thymus achieves this by virtue of specialized stromal microenvironments that contain heterogeneous cell types, whose organization and function underpins their ability to educate, support, and screen different thymocyte subsets through various stages of development. These stages range from the entry of early T‐cell progenitors into the thymus, through to the positive and negative selection of the αβTCR repertoire. The importance of the thymus medulla as a site for T‐cell tolerance and the exit of newly generated T‐cells into the periphery is well established. In this review, we summarize current knowledge on the developmental pathways that take place during αβT‐cell development in the thymus. In addition, we focus on the mechanisms that regulate thymic egress and contribute to the seeding of peripheral tissues with newly selected self‐tolerant αβT‐cells. Review on thymic microenvironments regulation of thymocyte maturation and egress of mature self‐tolerant T cells.
Collapse
Affiliation(s)
- Kieran D James
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
36
|
Antunes DA, Abella JR, Devaurs D, Rigo MM, Kavraki LE. Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes. Curr Top Med Chem 2018; 18:2239-2255. [PMID: 30582480 PMCID: PMC6361695 DOI: 10.2174/1568026619666181224101744] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022]
Abstract
Understanding the mechanisms involved in the activation of an immune response is essential to many fields in human health, including vaccine development and personalized cancer immunotherapy. A central step in the activation of the adaptive immune response is the recognition, by T-cell lymphocytes, of peptides displayed by a special type of receptor known as Major Histocompatibility Complex (MHC). Considering the key role of MHC receptors in T-cell activation, the computational prediction of peptide binding to MHC has been an important goal for many immunological applications. Sequence- based methods have become the gold standard for peptide-MHC binding affinity prediction, but structure-based methods are expected to provide more general predictions (i.e., predictions applicable to all types of MHC receptors). In addition, structural modeling of peptide-MHC complexes has the potential to uncover yet unknown drivers of T-cell activation, thus allowing for the development of better and safer therapies. In this review, we discuss the use of computational methods for the structural modeling of peptide-MHC complexes (i.e., binding mode prediction) and for the structure-based prediction of binding affinity.
Collapse
Affiliation(s)
| | - Jayvee R. Abella
- Computer Science Department, Rice University, Houston, Texas, USA
| | - Didier Devaurs
- Computer Science Department, Rice University, Houston, Texas, USA
| | - Maurício M. Rigo
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lydia E. Kavraki
- Computer Science Department, Rice University, Houston, Texas, USA
| |
Collapse
|