1
|
Duan H, Yang X, Cai S, Zhang L, Qiu Z, Wang J, Wang S, Li Z, Li X. Nrf2 mitigates sepsis-associated encephalopathy-induced hippocampus ferroptosis via modulating mitochondrial dynamic homeostasis. Int Immunopharmacol 2024; 143:113331. [PMID: 39396427 DOI: 10.1016/j.intimp.2024.113331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a serious neurological complication accompanied with acute and long-term cognitive dysfunction. Ferroptosis is a newly discovered type of cell death that is produced by iron-dependent lipid peroxidation. Emerging evidence suggests that ferroptosis is involved in SAE. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a mitochondria related gene involved in ferroptosis. However, the role of Nrf2 in SAE and the mechanisms remains elusive. In this study, we found that Nrf2 knockout aggravated cognitive and emotional dysfunction and promoted caecal ligation and puncture (CLP)-induced brain injury and hippocampus ferroptosis as indicated by the increase of ROS, Fe2+ and the levels of proinflammatory cytokines. Meanwhile, the levels of glutathione peroxidase 4 (GPX4), SLC7A11 and glutathionewere downregulatedin Nrf2 knockout group. In vitro experiments showed that mitochondrial ROS, Fe2+ and the expression of Fis1 and Drp1 decreased, and the level of Mfn1 and Opa-1 increased after Nrf2 overexpression. The silence of Nrf2 increased the expression of ROS, MDA and Fe2+, while decreased glutathione, mitochondrial membrane potential (MMP) and cell viability in vitro, indicating Nrf2 improved LPS-induced mitochondrial dysfunction and mitigated hippocampal cells ferroptosis. These results suggest that Nrf2 could inhibit ferroptosis and neuroinflammation in hippocampus and reduce cognitive dysfunction in SAE mice, making it a potential therapeutic target in the treatment of SAE. The protective effects of Nrf2 on the brain may be mediated by maintaining mitochondrial dynamic homeostasis.
Collapse
Affiliation(s)
- Haifeng Duan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Xin Yang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Shuhan Cai
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Lei Zhang
- Department of Anesthesiology, the First Clinical College of Hubei University of Medicine, Shiyan, Hubei, China
| | - Zebao Qiu
- Department of Anesthesiology, Suizhou Zengdu Hospital, Suizhou, Hubei, China
| | - Jin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China.
| |
Collapse
|
2
|
Bannazadeh Baghi H, Bayat M, Mehrasa P, Alavi SMA, Lotfalizadeh MH, Memar MY, Taghavi SP, Zarepour F, Hamblin MR, Sadri Nahand J, Hashemian SMR, Mirzaei H. Regulatory role of microRNAs in virus-mediated inflammation. J Inflamm (Lond) 2024; 21:43. [PMID: 39497125 PMCID: PMC11536602 DOI: 10.1186/s12950-024-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Viral infections in humans often cause excessive inflammation. In some viral infections, inflammation can be serious and even fatal, while in other infections it can promote viral clearance. Viruses can escape from the host immune system via regulating inflammatory pathways, thus worsening the illness. MicroRNAs (miRNAs) are tiny non-coding RNA molecules expressed within diverse tissues as well as cells and are engaged in different normal pathological and physiological pathways. Emerging proof suggests that miRNAs can impact innate and adaptive immunity, inflammatory responses, cell invasion, and the progression of viral infections. We discuss some intriguing new findings in the current work, focusing on the impacts of different miRNAs on host inflammatory responses and virus-mediated inflammation. A better understanding of dysregulated miRNAs in viral infections could improve the identification, prevention, and treatment of several serious diseases.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Sakwe NI, Vuong NB, Black PJ, Ball DD, Thomas P, Beasley HK, Hinton A, Ochieng J, Sakwe AM. Annexin A6 modulates the secretion of pro-inflammatory cytokines and exosomes via interaction with SNAP23 in triple negative breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619710. [PMID: 39484394 PMCID: PMC11527025 DOI: 10.1101/2024.10.22.619710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Pro-inflammatory cytokines are secreted via the classical pathway from secretory vesicles or the non-classical pathway via extracellular vesicles (EVs), that together, play critical roles in triple-negative breast cancer (TNBC) progression. Annexin A6 (AnxA6) is a Ca 2+ -dependent membrane-binding protein that in TNBC is implicated in cell growth and invasiveness. AnxA6 is associated with EVs, but whether it affects the secretion of proinflammatory cytokines and/or EVs remains to be fully elucidated. To assess if AnxA6 influences the secretion of cytokines and extracellular vesicles, we used cytokine arrays to analyze secreted factors in cleared culture supernatants from control AnxA6 expressing and AnxA6 downregulated MDA-MB-468 TNBC cells. This revealed the diminished secretion of monocyte chemoattractant protein 1 (MCP-1/CCL2), interleukin 8 (IL-8), dickkopf1 (DKK1), throbospondin-1 (TSP-1), and osteopontin (OPN) following AnxA6 downregulation. We also show that the secretion of small EVs is strongly reduced in AnxA6 downregulated cells and that upregulation of AnxA6 promoted the secretion of treatment was also associated with increased EVs associated Rab7, cholesterol, and MCP-1 levels. Moreover, cholesterol content in EVs was significantly higher in AnxA6-expressing cells than in AnxA6 downregulated cells and following chronic lapatinib induced upregulation of AnxA6. Mechanistically, we demonstrate that the secretion of MCP-1 and/or EVs is AnxA6 dependent and that this requires the translocation of AnxA6 to cellular membranes and its interaction with SNAP23. AnxA6 neutralizing antibodies strongly diminished the survival of AnxA6 low TNBC cells but had minimal effects on the survival of TNBC cells expressing relatively high levels of the protein. Together, these data suggest that AnxA6 facilitates the secretion of EVs and proinflammatory cytokines that may be critical for TNBC progression.
Collapse
|
4
|
Cai T, Dai J, Lin Y, Bai Z, Li J, Meng W. N-acetyltransferase 10 affects the proliferation of intrahepatic cholangiocarcinoma and M2-type polarization of macrophages by regulating C-C motif chemokine ligand 2. J Transl Med 2024; 22:875. [PMID: 39350174 PMCID: PMC11440763 DOI: 10.1186/s12967-024-05664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND N-acetyltransferase 10 (NAT10) plays a crucial role in the occurrence and development of various tumors. However, the current regulatory mechanism of NAT10 in tumors is limited to its presence in tumor cells. Here, we aimed to reveal the role of NAT10 in intrahepatic cholangiocarcinoma (ICC) and investigate its effect on macrophage polarization in the tumor microenvironment (TME). METHODS The correlation between NAT10 and ICC clinicopathology was analyzed using tissue microarray (TMA), while the effect of NAT10 on ICC proliferation was verified in vitro and in vivo. Additionally, the downstream target of NAT10, C-C motif chemokine ligand 2 (CCL2), was identified by Oxford Nanopore Technologies full-length transcriptome sequencing, RNA immunoprecipitation-quantitative polymerase chain reaction, and coimmunoprecipitation experiments. It was confirmed by co-culture that ICC cells could polarize macrophages towards M2 type through the influence of NAT10 on CCL2 protein expression level. Through RNA-sequencing, molecular docking, and surface plasmon resonance (SPR) assays, it was confirmed that berberine (BBR) can specifically bind CCL2 to inhibit ICC development. RESULTS High expression level of NAT10 was associated with poor clinicopathological manifestations of ICC. In vitro, the knockdown of NAT10 inhibited the proliferative activity of ICC cells and tumor growth in vivo, while its overexpression promoted ICC proliferation. Mechanically, by binding to CCL2 messenger RNA, NAT10 increased CCL2 protein expression level in ICC and their extracellular matrix, thereby promoting the proliferation of ICC cells and M2-type polarization of macrophages. BBR can target CCL2, inhibit ICC proliferation, and reduce M2-type polarization of macrophages. CONCLUSIONS NAT10 promotes ICC proliferation and M2-type polarization of macrophages by up-regulating CCL2, whereas BBR inhibits ICC proliferation and M2-type polarization of macrophages by inhibiting CCL2.
Collapse
Affiliation(s)
- Teng Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yanyan Lin
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zhongtian Bai
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China.
| | - Wenbo Meng
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Haller SD, Essani K. Oncolytic Tanapoxvirus Variants Expressing mIL-2 and mCCL-2 Regress Human Pancreatic Cancer Xenografts in Nude Mice. Biomedicines 2024; 12:1834. [PMID: 39200298 PMCID: PMC11351728 DOI: 10.3390/biomedicines12081834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer-related death and presents the lowest 5-year survival rate of any form of cancer in the US. Only 20% of PDAC patients are suitable for surgical resection and adjuvant chemotherapy, which remains the only curative treatment. Chemotherapeutic and gene therapy treatments are associated with adverse effects and lack specificity/efficacy. In this study, we assess the oncolytic potential of immuno-oncolytic tanapoxvirus (TPV) recombinants expressing mouse monocyte chemoattractant protein (mMCP-1 or mCCL2) and mouse interleukin (mIL)-2 in human pancreatic BxPc-3 cells using immunocompromised and CD-3+ T-cell-reconstituted mice. Intratumoral treatment with TPV/∆66R/mCCL2 and TPV/∆66R/mIL-2 resulted in a regression in BxPc-3 xenograft volume compared to control in immunocompromised mice; mCCL-2 expressing TPV OV resulted in a significant difference from control at p < 0.05. Histological analysis of immunocompromised mice treated with TPV/∆66R/mCCL2 or TPV/∆66R/mIL-2 demonstrated multiple biomarkers indicative of increased severity of chronic, active inflammation compared to controls. In conclusion, TPV recombinants expressing mCCL2 and mIL-2 demonstrated a therapeutic effect via regression in BxPc-3 tumor xenografts. Considering the enhanced oncolytic potency of TPV recombinants demonstrated against PDAC in this study, further investigation as an alternative or combination treatment option for human PDAC may be warranted.
Collapse
Affiliation(s)
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA;
| |
Collapse
|
6
|
Jahanbani F, Sing JC, Maynard RD, Jahanbani S, Dafoe J, Dafoe W, Jones N, Wallace KJ, Rastan A, Maecker HT, Röst HL, Snyder MP, Davis RW. Longitudinal cytokine and multi-modal health data of an extremely severe ME/CFS patient with HSD reveals insights into immunopathology, and disease severity. Front Immunol 2024; 15:1369295. [PMID: 38650940 PMCID: PMC11033372 DOI: 10.3389/fimmu.2024.1369295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) presents substantial challenges in patient care due to its intricate multisystem nature, comorbidities, and global prevalence. The heterogeneity among patient populations, coupled with the absence of FDA-approved diagnostics and therapeutics, further complicates research into disease etiology and patient managment. Integrating longitudinal multi-omics data with clinical, health,textual, pharmaceutical, and nutraceutical data offers a promising avenue to address these complexities, aiding in the identification of underlying causes and providing insights into effective therapeutics and diagnostic strategies. Methods This study focused on an exceptionally severe ME/CFS patient with hypermobility spectrum disorder (HSD) during a period of marginal symptom improvements. Longitudinal cytokine profiling was conducted alongside the collection of extensive multi-modal health data to explore the dynamic nature of symptoms, severity, triggers, and modifying factors. Additionally, an updated severity assessment platform and two applications, ME-CFSTrackerApp and LexiTime, were introduced to facilitate real-time symptom tracking and enhance patient-physician/researcher communication, and evaluate response to medical intervention. Results Longitudinal cytokine profiling revealed the significance of Th2-type cytokines and highlighted synergistic activities between mast cells and eosinophils, skewing Th1 toward Th2 immune responses in ME/CFS pathogenesis, particularly in cognitive impairment and sensorial intolerance. This suggests a potentially shared underlying mechanism with major ME/CFS comorbidities such as HSD, Mast cell activation syndrome, postural orthostatic tachycardia syndrome (POTS), and small fiber neuropathy. Additionally, the data identified potential roles of BCL6 and TP53 pathways in ME/CFS etiology and emphasized the importance of investigating adverse reactions to medication and supplements and drug interactions in ME/CFS severity and progression. Discussion Our study advocates for the integration of longitudinal multi-omics with multi-modal health data and artificial intelligence (AI) techniques to better understand ME/CFS and its major comorbidities. These findings highlight the significance of dysregulated Th2-type cytokines in patient stratification and precision medicine strategies. Additionally, our results suggest exploring the use of low-dose drugs with partial agonist activity as a potential avenue for ME/CFS treatment. This comprehensive approach emphasizes the importance of adopting a patient-centered care approach to improve ME/CFS healthcare management, disease severity assessment, and personalized medicine. Overall, these findings contribute to our understanding of ME/CFS and offer avenues for future research and clinical practice.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - Rajan Douglas Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, CA, United States
| | - Janet Dafoe
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Whitney Dafoe
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Nathan Jones
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Kelvin J. Wallace
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Azuravesta Rastan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Holden T. Maecker
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Pulmonary and Critical Care Medicine, Institute of Immunity, Transplantation, and Infectious Diseases, Stanford University, Palo Alto, CA, United States
| | - Hannes L. Röst
- Department of Molecular Genetics, Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
7
|
Sharma P, Venkatachalam K, Binesh A. Decades Long Involvement of THP-1 Cells as a Model for Macrophage Research: A Comprehensive Review. Antiinflamm Antiallergy Agents Med Chem 2024; 23:85-104. [PMID: 38676532 DOI: 10.2174/0118715230294413240415054610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Over the years, researchers have endeavored to identify dependable and reproducible in vitro models for examining macrophage behavior under controlled conditions. The THP-1 cell line has become a significant and widely employed tool in macrophage research within these models. Originating from the peripheral blood of individuals with acute monocytic leukemia, this human monocytic cell line can undergo transformation into macrophage-like cells, closely mirroring primary human macrophages when exposed to stimulants. Macrophages play a vital role in the innate immune system, actively regulating inflammation, responding to infections, and maintaining tissue homeostasis. A comprehensive understanding of macrophage biology and function is crucial for gaining insights into immunological responses, tissue healing, and the pathogenesis of diseases such as viral infections, autoimmune disorders, and neoplastic conditions. This review aims to thoroughly evaluate and emphasize the extensive history of THP-1 cells as a model for macrophage research. Additionally, it will delve into the significance of THP-1 cells in advancing our comprehension of macrophage biology and their invaluable contributions to diverse scientific domains.
Collapse
Affiliation(s)
- Prakhar Sharma
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| | - Ambika Binesh
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| |
Collapse
|
8
|
Pei CZ, Seok J, Kim GJ, Choi BC, Baek KH. Deficiency of HtrA4 in BeWo cells downregulates angiogenesis through IL-6/JAK/STAT3 signaling. Biomed Pharmacother 2023; 166:115288. [PMID: 37579694 DOI: 10.1016/j.biopha.2023.115288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
In a previous study, we investigated the effects of high-temperature requirement factor A4 (HtrA4) deficiency on trophoblasts using the BeWo KO cell line. However, the effects of this deficiency on angiogenesis remain unclear. To explore the role of HtrA4 in angiogenesis, HUVECs were co-cultured with wild-type BeWo cells (BeWo WT), BeWo KO, and HtrA4-rescued BeWo KO (BeWo KO-HtrA4 rescue) cells. Dil staining and dextran analysis revealed that HUVECs co-cultured with BeWo KO formed tubes, but they were often disjointed compared to those co-cultured with BeWo WT, BeWo KO-HtrA4 rescue, and HUVECs controls. RT-PCR, ELISA, and western blot analysis were performed to assess angiogenesis-related factors at the mRNA and protein levels. HtrA4 deficiency inhibited IL-6 expression in trophoblasts, and the reduced secretion of IL-6 decreases VEGFA expression in HUVECs by modulating the JAK2/STAT3 signaling pathway to prevent tube formation. Moreover, rescuing HtrA4 expression restored the HUVEC tube formation ability. Interestingly, IL-6 expression was lower in supernatants with only cultured HUVECs than in co-cultured HUVECs with BeWo WT cells, but the HUVEC tube formation ability was similar. These findings suggest that the promoting angiogenesis-related signaling pathway differs between only HUVECs and co-cultured HUVECs, and that the deficiency of HtrA4 weakens the activation of the IL-6/JAK/STAT3/VEGFA signaling pathway, reducing the ability of tube formation in HUVECs. HtrA4 deficiency in trophoblasts hinders angiogenesis and may contribute to placental dysfunction.
Collapse
Affiliation(s)
- Chang-Zhu Pei
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, the Republic of Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, the Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, the Republic of Korea
| | - Bum-Chae Choi
- Department of Obstetrics and Gynecology, CL Women's Hospital, Gwangju 61917, the Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, the Republic of Korea; Department of Bioconvergence, CHA University, Gyeonggi-Do 13488, the Republic of Korea.
| |
Collapse
|
9
|
Schneble D, El-Gazzar A, Kargarpour Z, Kramer M, Metekol S, Stoshikj S, Idzko M. Cell-type-specific role of P2Y2 receptor in HDM-driven model of allergic airway inflammation. Front Immunol 2023; 14:1209097. [PMID: 37790940 PMCID: PMC10543084 DOI: 10.3389/fimmu.2023.1209097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Allergic airway inflammation (AAI) is a chronic respiratory disease that is considered a severe restriction in daily life and is accompanied by a constant risk of acute aggravation. It is characterized by IgE-dependent activation of mast cells, infiltration of eosinophils, and activated T-helper cell type 2 (Th2) lymphocytes into airway mucosa. Purinergic receptor signaling is known to play a crucial role in inducing and maintaining allergic airway inflammation. Previous studies in an ovalbumin (OVA)-alum mouse model demonstrated a contribution of the P2Y2 purinergic receptor subtype (P2RY2) in allergic airway inflammation. However, conflicting data concerning the mechanism by which P2RY2 triggers AAI has been reported. Thus, we aimed at elucidating the cell-type-specific role of P2RY2 signaling in house dust mite (HDM)-driven model of allergic airway inflammation. Thereupon, HDM-driven AAI was induced in conditional knockout mice, deficient or intact for P2ry2 in either alveolar epithelial cells, hematopoietic cells, myeloid cells, helper T cells, or dendritic cells. To analyze the functional role of P2RY2 in these mice models, flow cytometry of bronchoalveolar lavage fluid (BALF), cytokine measurement of BALF, invasive lung function measurement, HDM re-stimulation of mediastinal lymph node (MLN) cells, and lung histology were performed. Mice that were subjected to an HDM-based model of allergic airway inflammation resulted in reduced signs of acute airway inflammation including eosinophilia in BALF, peribronchial inflammation, Th2 cytokine production, and bronchial hyperresponsiveness in mice deficient for P2ry2 in alveolar epithelial cells, hematopoietic cells, myeloid cells, or dendritic cells. Furthermore, the migration of bone-marrow-derived dendritic cells and bone-marrow-derived monocytes, both deficient in P2ry2, towards ATP was impaired. Additionally, we found reduced levels of MCP-1/CCL2 and IL-8 homologues in the BALF of mice deficient in P2ry2 in myeloid cells and lower concentrations of IL-33 in the lung tissue of mice deficient in P2ry2 in alveolar epithelial cells. In summary, our results show that P2RY2 contributes to HDM-induced airway inflammation by mediating proinflammatory cytokine production in airway epithelial cells, monocytes, and dendritic cells and drives the recruitment of lung dendritic cells and monocytes.
Collapse
Affiliation(s)
- Dominik Schneble
- Department of Pneumology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Ahmed El-Gazzar
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Zahra Kargarpour
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Markus Kramer
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Seda Metekol
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Slagjana Stoshikj
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Marco Idzko
- Department of Pneumology, Medical Center – University of Freiburg, Freiburg, Germany
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Fang X, Weng Y, Zheng X. Involvement of CCL2 and CH25H Genes and TNF signaling pathways in mast cell activation and pathogenesis of chronic spontaneous urticaria. Front Immunol 2023; 14:1247432. [PMID: 37646031 PMCID: PMC10461452 DOI: 10.3389/fimmu.2023.1247432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Chronic spontaneous urticaria (CSU), a mast cell-driven disease, substantially affects the quality of life. While genetics affect CSU susceptibility and severity, the specific genetic factors associated with mast cell activation in CSU remain elusive. We aimed to identify key genetic factors and investigate their roles in CSU pathogenesis. Two gene expression datasets from the Gene Expression Omnibus were merged and validated using principal component analysis and boxplots. The merged dataset was subjected to limma and weighted gene co-expression network analyses. Genes whose expression correlated highly with CSU were identified and analyzed using Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. As GSEA, GO, and KEGG analyses highlighted the importance of chemokine (C-C motif) ligand 2 (CCL2) and cholesterol 25-hydroxylase (CH25H) gene and tumor necrosis factor (TNF) signaling pathways in CSU; the three corresponding genes were knocked down in human mast cell line-1 (HMC-1), followed by incubation with thrombin to mimic CSU pathogenesis. CCL2, CH25H, and TNF knockdown reduced excitability and cytokine production in HMC-1. Our findings suggest that genes involved in the CCL2, CH25H, and TNF pathways play crucial roles in CSU pathogenesis, providing insights into potential therapeutic targets for CSU treatment.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yueyi Weng
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Critical Medicine, Fuzhou, Fujian, China
- Fujian Provincial Co-constructed Laboratory of “Belt and Road”, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Fay LY, Kuo CH, Chang HK, Yeh MY, Chang CC, Ko CC, Tu TH, Kuo YH, Hsu WY, Hung CH, Chen CJ, Wu JC, Tsai MJ, Huang WC, Cheng H, Lee MJ. Comparative Study of the Cytokine Profiles of Serum and Tissues from Patients with the Ossification of the Posterior Longitudinal Ligament. Biomedicines 2023; 11:2021. [PMID: 37509659 PMCID: PMC10377187 DOI: 10.3390/biomedicines11072021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The ossification of the posterior longitudinal ligament (OPLL) is one of the contributing factors leading to severe cervical spondylotic myelopathy (CSM). The mechanism causing ossification is still unclear. The current study was designed to analyze the specimens of patients with or without OPLL. METHODS The study collected 51 patients with cervical spondylosis. There were six serum samples in both the non-OPLL (NOPLL) and OPLL groups. For tissue analysis, there were seven samples in the NOPLL group and five samples in the OPLL group. The specimens of serum and tissue were analyzed by using Human Cytokine Antibody Arrays to differentiate biomarkers between the OPLL and NOPLL groups, as well as between serum and OPLL tissue. Immunohistochemical staining of the ligament tissue was undertaken for both groups. RESULTS For OPLL vs. NOPLL, the serum leptin levels are higher in the OPLL group, corroborating others' observations that it may serve as a disease marker. In the tissue, angiogenin (ANG), osteopontin (OPN), and osteopro-tegerin (OPG) are higher than they are in the OPLL group (p < 0.05). For serum vs. OPLL tissue, many chemotactic cytokines demonstrated elevated levels of MIP1 delta, MCP-1, and RANTES in the serum, while many cytokines promoting or regulating bone genesis were up-regulated in tissue (oncostatin M, FGF-9, LIF, osteopontin, osteoprotegerin, TGF-beta2), as well as the factor that inhibits osteoclastogenesis (IL-10), with very few cytokines responsible for osteoclastogenesis. Molecules promoting angiogenesis, including angiotensin, vEGF, and osteoprotegerin, are abundant in the OPLL tissue, which paves the way for robust bone growth.
Collapse
Affiliation(s)
- Li-Yu Fay
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Chao-Hung Kuo
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, and National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
| | - Hsuan-Kan Chang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Mei-Yin Yeh
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Chih-Chang Chang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Chin-Chu Ko
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Tsung-Hsi Tu
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Yi-Hsuan Kuo
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Wang-Yu Hsu
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Chien-Hui Hung
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Ching-Jung Chen
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Jau-Ching Wu
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Wen-Cheng Huang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Henrich Cheng
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, 168, Jifeng E. Rd., Taichung 413310, Taiwan
| |
Collapse
|
12
|
Hu P, Armato U, Freddi G, Chiarini A, Dal Prà I. Human Keratinocytes and Fibroblasts Co-Cultured on Silk Fibroin Scaffolds Exosomally Overrelease Angiogenic and Growth Factors. Cells 2023; 12:1827. [PMID: 37508492 PMCID: PMC10378127 DOI: 10.3390/cells12141827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Objectives: The optimal healing of skin wounds, deep burns, and chronic ulcers is an important clinical problem. Attempts to solve it have been driving the search for skin equivalents based on synthetic or natural polymers. Methods: Consistent with this endeavor, we used regenerated silk fibroin (SF) from Bombyx mori to produce a novel compound scaffold by welding a 3D carded/hydroentangled SF-microfiber-based nonwoven layer (C/H-3D-SFnw; to support dermis engineering) to an electrospun 2D SF nanofiber layer (ESFN; a basal lamina surrogate). Next, we assessed-via scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, mono- and co-cultures of HaCaT keratinocytes and adult human dermal fibroblasts (HDFs), dsDNA assays, exosome isolation, double-antibody arrays, and angiogenesis assays-whether the C/H-3D-SFnws/ESFNs would allow the reconstitution of a functional human skin analog in vitro. Results: Physical analyses proved that the C/H-3D-SFnws/ESFNs met the requirements for human soft-tissue-like implants. dsDNA assays revealed that co-cultures of HaCaTs (on the 2D ESFN surface) and HDFs (inside the 3D C/H-3D-SFnws) grew more intensely than did the respective monocultures. Double-antibody arrays showed that the CD9+/CD81+ exosomes isolated from the 14-day pooled growth media of HDF and/or HaCaT mono- or co-cultures conveyed 35 distinct angiogenic/growth factors (AGFs). However, versus monocultures' exosomes, HaCaT/HDF co-cultures' exosomes (i) transported larger amounts of 15 AGFs, i.e., PIGF, ANGPT-1, bFGF, Tie-2, Angiogenin, VEGF-A, VEGF-D, TIMP-1/-2, GRO-α/-β/-γ, IL-1β, IL-6, IL-8, MMP-9, and MCP-1, and (ii) significantly more strongly stimulated human dermal microvascular endothelial cells to migrate and assemble tubes/nodes in vitro. Conclusions: Our results showed that both cell-cell and cell-SF interactions boosted the exosomal release of AGFs from HaCaTs/HDFs co-cultured on C/H-3D-SFnws/ESFNs. Hence, such exosomes are an asset for prospective clinical applications as they advance cell growth and neoangiogenesis and consequently graft take and skin healing. Moreover, this new integument analog could be instrumental in preclinical and translational studies on human skin pathophysiology and regeneration.
Collapse
Affiliation(s)
- Peng Hu
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | - Ubaldo Armato
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | | | - Anna Chiarini
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | - Ilaria Dal Prà
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| |
Collapse
|
13
|
Ye XL, Tian SS, Tang CC, Jiang XR, Liu D, Yang GZ, Zhang H, Hu Y, Li TT, Jiang X, Li HK, Peng YC, Zheng NN, Ge GB, Liu W, Lv AP, Wang HK, Chen HZ, Ho LP, Zhang WD, Zheng YJ. Cytokine Storm in Acute Viral Respiratory Injury: Role of Qing-Fei-Pai-Du Decoction in Inhibiting the Infiltration of Neutrophils and Macrophages through TAK1/IKK/NF-[Formula: see text]B Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1153-1188. [PMID: 37403214 DOI: 10.1142/s0192415x23500532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
COVID-19 has posed unprecedented challenges to global public health since its outbreak. The Qing-Fei-Pai-Du decoction (QFPDD), a Chinese herbal formula, is widely used in China to treat COVID-19. It exerts an impressive therapeutic effect by inhibiting the progression from mild to critical disease in the clinic. However, the underlying mechanisms remain obscure. Both SARS-CoV-2 and influenza viruses elicit similar pathological processes. Their severe manifestations, such as acute respiratory distress syndrome (ARDS), multiple organ failure (MOF), and viral sepsis, are correlated with the cytokine storm. During flu infection, QFPDD reduced the lung indexes and downregulated the expressions of MCP-1, TNF-[Formula: see text], IL-6, and IL-1[Formula: see text] in broncho-alveolar lavage fluid (BALF), lungs, or serum samples. The infiltration of neutrophils and inflammatory monocytes in lungs was decreased dramatically, and lung injury was ameliorated in QFPDD-treated flu mice. In addition, QFPDD also inhibited the polarization of M1 macrophages and downregulated the expressions of IL-6, TNF-[Formula: see text], MIP-2, MCP-1, and IP-10, while also upregulating the IL-10 expression. The phosphorylated TAK1, IKK[Formula: see text]/[Formula: see text], and I[Formula: see text]B[Formula: see text] and the subsequent translocation of phosphorylated p65 into the nuclei were decreased by QFPDD. These findings indicated that QFPDD reduces the intensity of the cytokine storm by inhibiting the NF-[Formula: see text]B signaling pathway during severe viral infections, thereby providing theoretical and experimental support for its clinical application in respiratory viral infections.
Collapse
Affiliation(s)
- Xiao-Lan Ye
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - Sai-Sai Tian
- School of Pharmacy Second Military Medical University, Shanghai 200433, P. R. China
| | - Chen-Chen Tang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - Xin-Ru Jiang
- School of Pharmacy Second Military Medical University, Shanghai 200433, P. R. China
| | - Dan Liu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - Gui-Zhen Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - Huan Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - You Hu
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - Tian-Tian Li
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xin Jiang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - Hou-Kai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yan-Chun Peng
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ning-Ning Zheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Ai-Ping Lv
- Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Hong-Zhuan Chen
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Ling-Pei Ho
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Wei-Dong Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- School of Pharmacy Second Military Medical University, Shanghai 200433, P. R. China
| | - Yue-Juan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
14
|
Lund JM, Hladik F, Prlic M. Advances and challenges in studying the tissue-resident T cell compartment in the human female reproductive tract. Immunol Rev 2023; 316:52-62. [PMID: 37140024 PMCID: PMC10524394 DOI: 10.1111/imr.13212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 05/05/2023]
Abstract
Tissue-resident memory T cells (TRM ) are considered to be central to maintaining mucosal barrier immunity and tissue homeostasis. Most of this knowledge stems from murine studies, which provide access to all organs. These studies also allow for a thorough assessment of the TRM compartment for each tissue and across tissues with well-defined experimental and environmental variables. Assessing the functional characteristics of the human TRM compartment is substantially more difficult; thus, notably, there is a paucity of studies profiling the TRM compartment in the human female reproductive tract (FRT). The FRT is a mucosal barrier tissue that is naturally exposed to a wide range of commensal and pathogenic microbes, including several sexually transmitted infections of global health significance. We provide an overview of studies describing T cells within the lower FRT tissues and highlight the challenges of studying TRM cells in the FRT: different sampling methods of the FRT greatly affect immune cell recovery, especially of TRM cells. Furthermore, menstrual cycle, menopause, and pregnancy affect FRT immunity, but little is known about changes in the TRM compartment. Finally, we discuss the potential functional plasticity of the TRM compartment during inflammatory episodes in the human FRT to maintain protection and tissue homeostasis, which are required to ensure reproductive fitness.
Collapse
Affiliation(s)
- Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA, 98195
| | - Florian Hladik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, 98195
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA, 98195
- Department of Immunology, University of Washington, Seattle, WA, 98109
| |
Collapse
|
15
|
Montero DA, Vidal RM, Velasco J, George S, Lucero Y, Gómez LA, Carreño LJ, García-Betancourt R, O’Ryan M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front Med (Lausanne) 2023; 10:1155751. [PMID: 37215733 PMCID: PMC10196187 DOI: 10.3389/fmed.2023.1155751] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Sergio George
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yalda Lucero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Pediatría y Cirugía Infantil, Hospital Dr. Roberto del Rio, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leonardo A. Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel O’Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Monaco ML, Idris OA, Essani K. Triple-Negative Breast Cancer: Basic Biology and Immuno-Oncolytic Viruses. Cancers (Basel) 2023; 15:cancers15082393. [PMID: 37190321 DOI: 10.3390/cancers15082393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. TNBC diagnoses account for approximately one-fifth of all breast cancer cases globally. The lack of receptors for estrogen, progesterone, and human epidermal growth factor 2 (HER-2, CD340) results in a lack of available molecular-based therapeutics. This increases the difficulty of treatment and leaves more traditional as well as toxic therapies as the only available standards of care in many cases. Recurrence is an additional serious problem, contributing substantially to its higher mortality rate as compared to other breast cancers. Tumor heterogeneity also poses a large obstacle to treatment approaches. No driver of tumor development has been identified for TNBC, and large variations in mutational burden between tumors have been described previously. Here, we describe the biology of six different subtypes of TNBC, based on differential gene expression. Subtype differences can have a large impact on metastatic potential and resistance to treatment. Emerging antibody-based therapeutics, such as immune checkpoint inhibitors, have available targets for small subsets of TNBC patients, leading to partial responses and relatively low overall efficacy. Immuno-oncolytic viruses (OVs) have recently become significant in the pursuit of effective treatments for TNBC. OVs generally share the ability to ignore the heterogeneous nature of TNBC cells and allow infection throughout a treated tumor. Recent genetic engineering has allowed for the enhancement of efficacy against certain tumor types while avoiding the most common side effects in non-cancerous tissues. In this review, TNBC is described in order to address the challenges it presents to potential treatments. The OVs currently described preclinically and in various stages of clinical trials are also summarized, as are their strategies to enhance therapeutic potential.
Collapse
Affiliation(s)
- Michael L Monaco
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Omer A Idris
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| |
Collapse
|
17
|
Franzoni G, Pedrera M, Sánchez-Cordón PJ. African Swine Fever Virus Infection and Cytokine Response In Vivo: An Update. Viruses 2023; 15:233. [PMID: 36680273 PMCID: PMC9864779 DOI: 10.3390/v15010233] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
African swine fever (ASF) is a hemorrhagic viral disease of domestic pigs and wild suids (all Sus scrofa) caused by the ASF virus (ASFV). The disease is spreading worldwide without control, threatening pig production due to the absence of licensed vaccine or commercially available treatments. A thorough understanding of the immunopathogenic mechanisms behind ASFV infection is required to better fight the disease. Cytokines are small, non-structural proteins, which play a crucial role in many aspects of the immune responses to viruses, including ASFV. Infection with virulent ASFV isolates often results in exacerbated immune responses, with increased levels of serum pro-inflammatory interleukins (IL-1α, IL-1β, IL-6), TNF and chemokines (CCL2, CCL5, CXCL10). Increased levels of IL-1, IL-6 and TNF are often detected in several tissues during acute ASFV infections and associated with lymphoid depletion, hemorrhages and oedemas. IL-1Ra is frequently released during ASFV infection to block further IL-1 activity, with its implication in ASFV immunopathology having been suggested. Increased levels of IFN-α and of the anti-inflammatory IL-10 seem to be negatively correlated with animal survival, whereas some correlation between virus-specific IFN-γ-producing cells and protection has been suggested in different studies where different vaccine candidates were tested, although future works should elucidate whether IFN-γ release by specific cell types is related to protection or disease development.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Miriam Pedrera
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
18
|
Armero-Gimenez J, Wilbers R, Schots A, Williams C, Finnern R. Rapid screening and scaled manufacture of immunogenic virus-like particles in a tobacco BY-2 cell-free protein synthesis system. Front Immunol 2023; 14:1088852. [PMID: 36776898 PMCID: PMC9909599 DOI: 10.3389/fimmu.2023.1088852] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Several vaccine platforms have been developed to fight pathogenic threats, with Virus-Like Particles (VLPs) representing a very promising alternative to traditional platforms. VLPs trigger strong and lasting humoral and cellular immune responses with fewer safety concerns and higher stability than other platforms. The use of extensively characterized carrier VLPs modified with heterologous antigens was proposed to circumvent the viral complexity of specific viruses that could lead to poor VLP assembly and yields. Although carrier VLPs have been successfully produced in a wide variety of cell-based systems, these are limited by low protein yields and protracted clone selection and optimization workflows that limit VLP screening approaches. In response, we have demonstrated the cell-free protein synthesis (CFPS) of several variants of the hepatitis B core (HBc) carrier VLP using a high-yielding tobacco BY-2 lysate (BYL). High VLP yields in the BYL system allowed in-depth characterization of HBc variants. Insertion of heterologous sequences at the spike region of the HBc monomer proved more structurally demanding than at the N-terminus but removal of the C-terminal domain allowed higher particle flexibility and insert acceptance, albeit at the expense of thermal and chemical stability. We also proved the possibility to scale the CFPS reaction up to 1L in batch mode to produce 0.45 grams of the native HBc VLP within a 48-hour reaction window. A maximum yield of 820 µg/ml of assembled VLP particles was observed at the 100µl scale and most remarkably the CFPS reaction was successfully scaled from 50µl to 1L without any reduction in protein yield across this 20,000-fold difference in reaction volumes. We subsequently proved the immunogenicity of BYL-derived VLPs, as flow cytometry and microscopy clearly showed prompt recognition and endocytosis of fluorescently labelled VLPs by human dendritic cells. Triggering of inflammatory cytokine production in human peripheral blood mononuclear cells was also quantitated using a multiplex assay. This research establishes BYL as a tool for rapid production and microscale screening of VLP variants with subsequent manufacturing possibilities across scales, thus accelerating discovery and implementation of new vaccine candidates using carrier VLPs.
Collapse
Affiliation(s)
- Jorge Armero-Gimenez
- Technology center, LenioBio GmbH, Dusseldorf, Germany.,Laboratory of Nematology, Wageningen University, Wageningen, Netherlands
| | - Ruud Wilbers
- Laboratory of Nematology, Wageningen University, Wageningen, Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Wageningen University, Wageningen, Netherlands
| | | | | |
Collapse
|
19
|
Ranjbar M, Rahimi A, Baghernejadan Z, Ghorbani A, Khorramdelazad H. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible Treatments: All options on the Table. Int Immunopharmacol 2022; 113:109325. [PMID: 36252475 PMCID: PMC9561120 DOI: 10.1016/j.intimp.2022.109325] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is cause of the novel coronavirus disease (COVID-19). In the last two years, SARS-CoV-2 has infected millions of people worldwide with different waves, resulting in the death of many individuals. The evidence disclosed that the host immune responses to SARS-CoV-2 play a pivotal role in COVID-19 pathogenesis and clinical manifestations. In addition to inducing antiviral immune responses, SARS-CoV-2 can also cause dysregulated inflammatory responses characterized by the noticeable release of proinflammatory mediators in COVID-19 patients. Among these proinflammatory mediators, chemokines are considered a subset of cytokines that participate in the chemotaxis process to recruit immune and non-immune cells to the site of inflammation and infection. Researchers have demonstrated that monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor (CCR2) are involved in the recruitment of monocytes and infiltration of these cells into the lungs of patients suffering from COVID-19. Moreover, elevated levels of CCL2 have been reported in the bronchoalveolar lavage fluid (BALF) obtained from patients with severe COVID-19, initiating cytokine storm and promoting CD163+ myeloid cells infiltration in the airways and further alveolar damage. Therefore, CCL2/CCR axis plays a key role in the immunopathogenesis of COVID-19 and targeted therapy of involved molecules in this axis can be a potential therapeutic approach for these patients. This review discusses the biology of the CCL2/CCR2 axis as well as the role of this axis in COVID-19 immunopathogenesis, along with therapeutic options aimed at inhibiting CCL2/CCR2 and modulating dysregulated inflammatory responses in patients with severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mitra Ranjbar
- Department of Infectious Disease, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
20
|
Blockade of the BLT1-LTB 4 axis does not affect mast cell migration towards advanced atherosclerotic lesions in LDLr -/- mice. Sci Rep 2022; 12:18362. [PMID: 36319730 PMCID: PMC9626554 DOI: 10.1038/s41598-022-23162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
Abstract
Mast cells have been associated with the progression and destabilization of advanced atherosclerotic plaques. Reducing intraplaque mast cell accumulation upon atherosclerosis progression could be a potent therapeutic strategy to limit plaque destabilization. Leukotriene B4 (LTB4) has been reported to induce mast cell chemotaxis in vitro. Here, we examined whether antagonism of the LTB4-receptor BLT1 could inhibit mast cell accumulation in advanced atherosclerosis. Expression of genes involved in LTB4 biosynthesis was determined by single-cell RNA sequencing of human atherosclerotic plaques. Subsequently, Western-type diet fed LDLr-/- mice with pre-existing atherosclerosis were treated with the BLT1-antagonist CP105,696 or vehicle control three times per week by oral gavage. In the spleen, a significant reduction in CD11b+ myeloid cells was observed, including Ly6Clo and Ly6Chi monocytes as well as dendritic cells. However, atherosclerotic plaque size, collagen and macrophage content in the aortic root remained unaltered upon treatment. Finally, BLT1 antagonism did not affect mast cell numbers in the aortic root. Here, we show that human intraplaque leukocytes may be a source of locally produced LTB4. However, BLT1-antagonism during atherosclerosis progression does not affect either local mast cell accumulation or plaque size, suggesting that other mechanisms participate in mast cell accumulation during atherosclerosis progression.
Collapse
|
21
|
Saas P, Vetter M, Maraux M, Bonnefoy F, Perruche S. Resolution therapy: Harnessing efferocytic macrophages to trigger the resolution of inflammation. Front Immunol 2022; 13:1021413. [PMID: 36389733 PMCID: PMC9651061 DOI: 10.3389/fimmu.2022.1021413] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 09/03/2023] Open
Abstract
Several chronic inflammatory diseases are associated with non-resolving inflammation. Conventional anti-inflammatory drugs fail to completely cure these diseases. Resolution pharmacology is a new therapeutic approach based on the use of pro-resolving mediators that accelerate the resolution phase of inflammation by targeting the productive phase of inflammation. Indeed, pro-resolving mediators prevent leukocyte recruitment and induce apoptosis of accumulated leukocytes. This approach is now called resolution therapy with the introduction of complex biological drugs and cell-based therapies. The main objective of resolution therapy is to specifically reduce the duration of the resolution phase to accelerate the return to homeostasis. Under physiological conditions, macrophages play a critical role in the resolution of inflammation. Indeed, after the removal of apoptotic cells (a process called efferocytosis), macrophages display anti-inflammatory reprogramming and subsequently secrete multiple pro-resolving factors. These factors can be used as resolution therapy. Here, we review the different mechanisms leading to anti-inflammatory reprogramming of macrophages after efferocytosis and the pro-resolving factors released by these efferocytic macrophages. We classify these mechanisms in three different categories: macrophage reprogramming induced by apoptotic cell-derived factors, by molecules expressed by apoptotic cells (i.e., "eat-me" signals), and induced by the digestion of apoptotic cell-derived materials. We also evoke that macrophage reprogramming may result from cooperative mechanisms, for instance, implicating the apoptotic cell-induced microenvironment (including cellular metabolites, specific cytokines or immune cells). Then, we describe a new drug candidate belonging to this resolution therapy. This candidate, called SuperMApo, corresponds to the secretome of efferocytic macrophages. We discuss its production, the pro-resolving factors present in this drug, as well as the results obtained in experimental models of chronic (e.g., arthritis, colitis) and acute (e.g., peritonitis or xenogeneic graft-versus-host disease) inflammatory diseases.
Collapse
Affiliation(s)
- Philippe Saas
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Mathieu Vetter
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Melissa Maraux
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Francis Bonnefoy
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| | - Sylvain Perruche
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| |
Collapse
|
22
|
Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022; 13:958790. [PMID: 36045667 PMCID: PMC9420855 DOI: 10.3389/fimmu.2022.958790] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a chronic, inflammatory disease affecting millions of diabetic patients worldwide. DN is associated with proteinuria and progressive slowing of glomerular filtration, which often leads to end-stage kidney diseases. Due to the complexity of this metabolic disorder and lack of clarity about its pathogenesis, it is often more difficult to diagnose and treat than other kidney diseases. Recent studies have highlighted that the immune system can inadvertently contribute to DN pathogenesis. Cells involved in innate and adaptive immune responses can target the kidney due to increased expression of immune-related localization factors. Immune cells then activate a pro-inflammatory response involving the release of autocrine and paracrine factors, which further amplify inflammation and damage the kidney. Consequently, strategies to treat DN by targeting the immune responses are currently under study. In light of the steady rise in DN incidence, this timely review summarizes the latest findings about the role of the immune system in the pathogenesis of DN and discusses promising preclinical and clinical therapies.
Collapse
Affiliation(s)
| | | | - Jinhan He
- *Correspondence: Jinhan He, ; Yanping Li,
| | - Yanping Li
- *Correspondence: Jinhan He, ; Yanping Li,
| |
Collapse
|
23
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
24
|
Luo L, Deng S, Tang W, Hu X, Yin F, Ge H, Tang J, Liao Z, Feng J, Li X, Mo B. Monocytes subtypes from pleural effusion reveal biomarker candidates for the diagnosis of tuberculosis and malignancy. J Clin Lab Anal 2022; 36:e24579. [PMID: 35819097 PMCID: PMC9396188 DOI: 10.1002/jcla.24579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background Pleural effusion is a common clinical condition caused by several respiratory diseases, including tuberculosis and malignancy. However, rapid and accurate diagnoses of tuberculous pleural effusion (TPE) and malignant pleural effusion (MPE) remain challenging. Although monocytes have been confirmed as an important immune cell in tuberculosis and malignancy, little is known about the role of monocytes subpopulations in the diagnosis of pleural effusion. Methods Pleural effusion samples and peripheral blood samples were collected from 40 TPE patients, 40 MPE patients, and 24 transudate pleural effusion patients, respectively. Chemokines (CCL2, CCL7, and CX3CL1) and cytokines (IL‐1β, IL‐17, IL‐27, and IFN‐γ) were measured by ELISA. The monocytes phenotypes were analyzed by flow cytometry. The chemokines receptors (CCR2 and CX3CR1) and cytokines above in different monocytes subsets were analyzed by real‐time PCR. Receiver operating characteristic curve analysis was performed for displaying differentiating power of intermediate and nonclassical subsets between tuberculous and malignant pleural effusions. Results CCL7 and CX3CL1 levels in TPE were significantly elevated in TPE compared with MPE and transudate pleural effusion. Cytokines, such as IL‐1β, IL‐17, IL‐27, and IFN‐γ, in TPE were much higher than in other pleural effusions. Moreover, CD14+CD16++ nonclassical subset frequency in TPE was remarkably higher than that in MPE, while CD14++CD16+ intermediate subset proportion in MPE was found elevated. Furthermore, CX3CL1‐CX3CR1 axis‐mediated infiltration of nonclassical monocytes in TPE was related to CX3CL1 and IFN‐γ expression in TPE. Higher expression of cytokines (IL‐1β, IL‐17, IL‐27, and IFN‐γ) were found in nonclassical monocytes compared with other subsets. Additionally, the proportions of intermediate and nonclassical monocytes in pleural effusion have the power in discriminating tuberculosis from malignant pleural effusion. Conclusions CD14 and CD16 markers on monocytes could be potentially used as novel diagnostic markers for diagnosing TPE and MPE.
Collapse
Affiliation(s)
- Lisha Luo
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yin
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ge
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Jiale Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhonghua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Juntao Feng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.,Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin, China
| |
Collapse
|
25
|
Chemokines and NSCLC: Emerging role in prognosis, heterogeneity, and therapeutics. Semin Cancer Biol 2022; 86:233-246. [PMID: 35787939 DOI: 10.1016/j.semcancer.2022.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022]
Abstract
Lung cancer persists to contribute to one-quarter of cancer-associated deaths. Among the different histologies, non-small cell lung cancer (NSCLC) alone accounts for 85% of the cases. The development of therapies involving immune checkpoint inhibitors and angiogenesis inhibitors has increased patients' survival probability and reduced mortality rates. Developing targeted therapies against essential genetic alterations also translates to better treatment strategies. But the benefits still seem farfetched due to the development of drug resistance and refractory tumors. In this review, we have highlighted the interplay of different tumor microenvironment components, essentially discussing the chemokine families (CC, CXC, C, and CX3C) that regulate the tumor biology in NSCLC and promote tumor growth, metastasis, and associated heterogeneity. The development of therapeutics and prognostic markers is a complex and multipronged approach. However, some essential chemokines can act as critical players for being considered potential prognostic markers and therapeutic targets.
Collapse
|
26
|
Park S, Ku J, Lee SM, Hwang H, Lee N, Kim H, Yoon KJ, Kim Y, Choi SQ. Potential toxicity of inorganic ions in particulate matter: Ion permeation in lung and disruption of cell metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153818. [PMID: 35157864 DOI: 10.1016/j.scitotenv.2022.153818] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Exposure to ambient particulate matter (PM) is associated with adverse health effects. Yet, due to the complexity of its chemical composition, the molecular effects of PM exposure and the mechanism of PM-mediated toxicity remain largely unknown. Here, we show that water-soluble inorganics such as nitrate and sulfate ions, rather than PM itself, rapidly penetrate the lung surfactant barrier to the alveolar region and perturb gene expression in the lungs. Through high-throughput sequencing of lung adenocarcinoma cells, we find that exposure to nitrate and sulfate ions activates the cholesterol biosynthetic metabolism and induces the expression of genes related to tumorigenesis. Transcriptome analysis of mouse lungs exposed to nitrate/sulfate aerosols reveals interferon gamma-associated immune response. Interestingly, we find that exposure to a nitrate/sulfate mixture leads to a unique gene expression pattern that is not observed when nitrate or sulfate is treated alone. Our work suggests that the water-soluble ions are a potential source of PM-mediated toxicity and provides a roadmap to unveil the molecular mechanism of health hazards from PM exposure.
Collapse
Affiliation(s)
- Sujin Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sung-Min Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Huiseon Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Namseok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hanul Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
27
|
Lee DH, Lee JY, Hong DY, Lee EC, Park SW, Jo YN, Park YJ, Cho JY, Cho YJ, Chae SH, Lee MR, Oh JS. ROCK and PDE-5 Inhibitors for the Treatment of Dementia: Literature Review and Meta-Analysis. Biomedicines 2022; 10:biomedicines10061348. [PMID: 35740369 PMCID: PMC9219677 DOI: 10.3390/biomedicines10061348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Dementia is a disease in which memory, thought, and behavior-related disorders progress gradually due to brain damage caused by injury or disease. It is mainly caused by Alzheimer’s disease or vascular dementia and several other risk factors, including genetic factors. It is difficult to treat as its incidence continues to increase worldwide. Many studies have been performed concerning the treatment of this condition. Rho-associated kinase (ROCK) and phosphodiesterase-5 (PDE-5) are attracting attention as pharmacological treatments to improve the symptoms. This review discusses how ROCK and PDE-5 affect Alzheimer’s disease, vascular restructuring, and exacerbation of neuroinflammation, and how their inhibition helps improve cognitive function. In addition, the results of the animal behavior analysis experiments utilizing the Morris water maze were compared through meta-analysis to analyze the effects of ROCK inhibitors and PDE-5 inhibitors on cognitive function. According to the selection criteria, 997 publications on ROCK and 1772 publications on PDE-5 were screened, and conclusions were drawn through meta-analysis. Both inhibitors showed good improvement in cognitive function tests, and what is expected of the synergy effect of the two drugs was confirmed in this review.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Ji Young Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
| | - Dong-Yong Hong
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Eun Chae Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Sang-Won Park
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Yu Na Jo
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Yu Jin Park
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Jae Young Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Yoo Jin Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Su Hyun Chae
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (M.R.L.); (J.S.O.)
| | - Jae Sang Oh
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (M.R.L.); (J.S.O.)
| |
Collapse
|
28
|
Samson A, West EJ, Carmichael J, Scott KJ, Turnbull S, Kuszlewicz B, Dave RV, Peckham-Cooper A, Tidswell E, Kingston J, Johnpulle M, da Silva B, Jennings VA, Bendjama K, Stojkowitz N, Lusky M, Prasad K, Toogood GJ, Auer R, Bell J, Twelves CJ, Harrington KJ, Vile RG, Pandha H, Errington-Mais F, Ralph C, Newton DJ, Anthoney A, Melcher AA, Collinson F. Neoadjuvant Intravenous Oncolytic Vaccinia Virus Therapy Promotes Anticancer Immunity in Patients. Cancer Immunol Res 2022; 10:745-756. [PMID: 35439304 PMCID: PMC9381099 DOI: 10.1158/2326-6066.cir-21-0171] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/09/2021] [Accepted: 04/15/2022] [Indexed: 01/07/2023]
Abstract
Improving the chances of curing patients with cancer who have had surgery to remove metastatic sites of disease is a priority area for cancer research. Pexa-Vec (Pexastimogene Devacirepvec; JX-594, TG6006) is a principally immunotherapeutic oncolytic virus that has reached late-phase clinical trials. We report the results of a single-center, nonrandomized biological end point study (trial registration: EudraCT number 2012-000704-15), which builds on the success of the presurgical intravenous delivery of oncolytic viruses to tumors. Nine patients with either colorectal cancer liver metastases or metastatic melanoma were treated with a single intravenous infusion of Pexa-Vec ahead of planned surgical resection of the metastases. Grade 3 and 4 Pexa-Vec-associated side effects were lymphopaenia and neutropaenia. Pexa-Vec was peripherally carried in plasma and was not associated with peripheral blood mononuclear cells. Upon surgical resection, Pexa-Vec was found in the majority of analyzed tumors. Pexa-Vec therapy associated with IFNα secretion, chemokine induction, and resulted in transient innate and long-lived adaptive anticancer immunity. In the 2 patients with significant and complete tumor necrosis, a reduction in the peripheral T-cell receptor diversity was observed at the time of surgery. These results support the development of presurgical oncolytic vaccinia virus-based therapies to stimulate anticancer immunity and increase the chances to cure patients with cancer.
Collapse
Affiliation(s)
- Adel Samson
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom.,Corresponding Author: Adel Samson, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom. Phone: 011-3343-8449; E-mail:
| | - Emma J. West
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Jonathan Carmichael
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Karen J. Scott
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Samantha Turnbull
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Bethany Kuszlewicz
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Rajiv V. Dave
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Emma Tidswell
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | | | | | - Barbara da Silva
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Victoria A. Jennings
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | | | | | | | - K.R. Prasad
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Rebecca Auer
- Ontario Health Research Institute, Ottawa, Canada
| | - John Bell
- Ontario Health Research Institute, Ottawa, Canada
| | - Chris J. Twelves
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | | | | | | | - Fiona Errington-Mais
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Christy Ralph
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Darren J. Newton
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Alan Anthoney
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | | | - Fiona Collinson
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
29
|
Fang X, Li M, He C, Liu Q, Li J. Plasma-derived exosomes in chronic spontaneous urticaria induce the production of mediators by human mast cells. J Invest Dermatol 2022; 142:2998-3008.e5. [PMID: 35659940 DOI: 10.1016/j.jid.2022.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/08/2023]
Abstract
Mast cell activation and inflammatory mediators play central roles in the pathogenesis of chronic spontaneous urticaria (CSU). The factors that induce mast cell activation in CSU are still largely unknown. Exosomes are extracellular vesicles that activate mast cells. Here, we enriched exosomes derived from the plasma of healthy volunteers and CSU patients with antihistamine sensitivity (EXs-CSU-S) or resistance (EXs-CSU-R) using ultracentrifugation. We then incubated these exosomes with HMC-1 human mast cells. Notably, EXs-CSU-S and EXs-CSU-R increased tryptase-1 expression; histamine production; inflammatory mediator production; and Toll-like receptor-2 (TLR-2), TLR-4, and phospho-mitogen-activated protein kinase (MAPK) levels in HMC-1 cells. These effects were more significant in the EXs-CSU-R group than in the EXs-CSU-S group. TLR-2, TLR-4, and MAPK inhibitors (CC-401, TAK-715, and SCH772984, respectively) reduced EXs-CSU-Stimulated production of inflammatory mediators in HMC-1 cells. Overall, exosomes in the plasma of patients with CSU were found to activate mast cells and elicit the production of multiple inflammatory mediators, partly via the TLR-2, TLR-4, and MAPK pathways. Additionally, EXs-CSU-R had more powerful mast cell-activating and histamine-release abilities. Thus, these exosomes may be involved in the pathogenesis of CSU with antihistamine resistance.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Unit of West China (2018RU012), Chinese Academy of Medical Science, Chengdu, Sichuan, 610041, China.
| | - Mengmeng Li
- Department of Dermatovenereology, West China Hospital of Sichuan University. Chengdu, 610041, China.
| | - Chun He
- Department of Dermatovenereology, West China Hospital of Sichuan University. Chengdu, 610041, China.
| | - Qingfeng Liu
- Department of Dermatovenereology, West China Hospital of Sichuan University. Chengdu, 610041, China.
| | - Jingyi Li
- Department of Dermatovenereology, West China Hospital of Sichuan University. Chengdu, 610041, China.
| |
Collapse
|
30
|
Gao Y, Li J, Cai G, Wang Y, Yang W, Li Y, Zhao X, Li R, Gao Y, Tuo W, Baldwin RL, Li CJ, Fang L, Liu GE. Single-cell transcriptomic and chromatin accessibility analyses of dairy cattle peripheral blood mononuclear cells and their responses to lipopolysaccharide. BMC Genomics 2022; 23:338. [PMID: 35501711 PMCID: PMC9063233 DOI: 10.1186/s12864-022-08562-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Gram-negative bacteria are important pathogens in cattle, causing severe infectious diseases, including mastitis. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and crucial mediators of chronic inflammation in cattle. LPS modulations of bovine immune responses have been studied before. However, the single-cell transcriptomic and chromatin accessibility analyses of bovine peripheral blood mononuclear cells (PBMCs) and their responses to LPS stimulation were never reported. Results We performed single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) in bovine PBMCs before and after LPS treatment and demonstrated that seven major cell types, which included CD4 T cells, CD8 T cells, and B cells, monocytes, natural killer cells, innate lymphoid cells, and dendritic cells. Bioinformatic analyses indicated that LPS could increase PBMC cell cycle progression, cellular differentiation, and chromatin accessibility. Gene analyses further showed significant changes in differential expression, transcription factor binding site, gene ontology, and regulatory interactions during the PBMC responses to LPS. Consistent with the findings of previous studies, LPS induced activation of monocytes and dendritic cells, likely through their upregulated TLR4 receptor. NF-κB was observed to be activated by LPS and an increased transcription of an array of pro-inflammatory cytokines, in agreement that NF-κB is an LPS-responsive regulator of innate immune responses. In addition, by integrating LPS-induced differentially expressed genes (DEGs) with large-scale GWAS of 45 complex traits in Holstein, we detected trait-relevant cell types. We found that selected DEGs were significantly associated with immune-relevant health, milk production, and body conformation traits. Conclusion This study provided the first scRNAseq and scATAC-seq data for cattle PBMCs and their responses to the LPS stimulation to the best of our knowledge. These results should also serve as valuable resources for the future study of the bovine immune system and open the door for discoveries about immune cell roles in complex traits like mastitis at single-cell resolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08562-0.
Collapse
Affiliation(s)
- Yahui Gao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.,Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Jianbin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.
| | - Gaozhan Cai
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.,Shandong Ox Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Yujiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Wenjing Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanqin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Xiuxin Zhao
- Shandong Ox Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Rongling Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Yundong Gao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA.
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA.
| |
Collapse
|
31
|
Lack of association between methylation status of CpG in the MCP-1 promoter and type 2 diabetes mellitus and its complications in a Moroccan population. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Li X, He G, Liu J, Yan M, Shen M, Xu L, An M, Huang J, Gao Z. CCL2-mediated monocytes regulate immune checkpoint blockade resistance in pancreatic cancer. Int Immunopharmacol 2022; 106:108598. [PMID: 35183036 DOI: 10.1016/j.intimp.2022.108598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 12/21/2022]
Abstract
The immunosuppressive microenvironment of pancreatic ductal adenocarcinoma (PDAC) contributes to resistance to immune checkpoint blockade. C-C motif chemokine ligand 2 (CCL2) is believed to participate in pancreatic tumorigenesis, but its role in PDAC progression and resistance to immune checkpoint blockade remains unclear. We hypothesized that CCL2 contributes to the pancreatic immunosuppressive microenvironment. In this study, we found that CCL2 recruits monocytes to and decrease CD8+ T cell infiltration in pancreatic tumors. CCL2 inhibition and monocyte neutralization increased the sensitivity of PDAC to immune checkpoint blockade. The findings of our study suggest the potential of CCL2-mediated monocytes as a target for PDAC treatment.
Collapse
Affiliation(s)
- Xiaocui Li
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Guijun He
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Jican Liu
- Department of Pathology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Meizhu Yan
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Manru Shen
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Linfang Xu
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Min An
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Jiying Huang
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China.
| | - Zhenjun Gao
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China.
| |
Collapse
|
33
|
Wang H, Zhang Q, Kaplan FS, Pignolo RJ. Clearance of Senescent Cells From Injured Muscle Abrogates Heterotopic Ossification in Mouse Models of Fibrodysplasia Ossificans Progressiva. J Bone Miner Res 2022; 37:95-107. [PMID: 34633114 PMCID: PMC8770661 DOI: 10.1002/jbmr.4458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 11/10/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease caused by mutations in activin A receptor type I/activin-like kinase 2 (ACVR1/ALK2), a bone morphogenetic protein (BMP) type I receptor, resulting in the formation of extraskeletal or heterotopic ossification (HO) and other features consistent with premature aging. During the first decade of life, episodic bouts of inflammatory swellings (flare-ups) occur, which are typically triggered by soft tissue trauma. Through an endochondral process, these exacerbations ultimately result in skeletal muscles, tendons, ligaments, fascia, and aponeuroses transforming into ectopic bone, rendering movement impossible. We have previously shown that soft tissue injury causes early FOP lesions characterized by cellular hypoxia, cellular damage, and local inflammation. Here we show that muscle injury in FOP also results in senescent cell accumulation, and that senescence promotes tissue reprogramming toward a chondrogenic fate in FOP muscle but not wild-type (WT) muscle. Using a combination of senolytic drugs we show that senescent cell clearance and reduction in the senescence associated secretory phenotype (SASP) ameliorate HO in mouse models of FOP. We conclude that injury-induced senescent cell burden and the SASP contribute to FOP lesion formation and that tissue reprogramming in FOP is mediated by cellular senescence, altering myogenic cell fate toward a chondrogenic cell fate. Furthermore, pharmacological removal of senescent cells abrogates tissue reprogramming and HO formation. Here we provide proof-of-principle evidence for senolytic drugs as a future therapeutic strategy in FOP. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Haitao Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Qiang Zhang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP & Related Disorders, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Pignolo
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Shirazinia R, Golabchifar AA, Fazeli MR. Efficacy of probiotics for managing infantile colic due to their anti-inflammatory properties: a meta-analysis and systematic review. Clin Exp Pediatr 2021; 64:642-651. [PMID: 33848417 PMCID: PMC8650819 DOI: 10.3345/cep.2020.01676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/06/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Infantile colic (IC) is excessive crying in otherwise healthy children. Despite vast research efforts, its etiology remains unknown. PURPOSE Most treatments for IC carry various side effects. The collection of evidence may inform researchers of new strategies for the management and treatment of IC as well as new clues for understanding its pathogenesis. This review and meta-analysis aimed to evaluate the efficacy and possible mechanisms of probiotics for mananaging IC. METHODS Ten papers met the study inclusion and exclusion criteria, and the meta-analysis was conducted using Review Manager (RevMan) software and a random-effects model. RESULTS This meta-analysis revealed that probiotics are effective for treating infantile colic, while the review showed that this efficacy may be due to their anti-inflammatory effects. CONCLUSION Probiotics may be an important treatment option for managing infantile colic due to their anti-inflammatory properties.
Collapse
Affiliation(s)
- Reza Shirazinia
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Akbar Golabchifar
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Reza Fazeli
- Pharmaceutical Quality Assurance Research Center, The institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Liu J, Tan M, Xu X, Shen T, Zhou Z, Hunt PW, Zhang R. From innate to adaptive immunity: Abomasal transcriptomic responses of merino sheep to Haemonchus contortus infection. Mol Biochem Parasitol 2021; 246:111424. [PMID: 34626695 DOI: 10.1016/j.molbiopara.2021.111424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
Although many important mediators and critical pathways are found to be involved in host immune responses to Haemonchus contortus infection, the initial responses to infection in the naïve and in the previously exposed state have not been compared at the transcriptional level. To further understand the development of adaptive immunity to H. contortus infection, we compared the early abomasal gene expression patterns between a primary and a tertiary challenge for four lines of sheep to discover differentially expressed genes (DEGs). The sheep were from the resistant (R) and susceptible (S) lines of two flocks of sheep selected for divergent responses to gastro-intestinal parasites (HSF and TSF). The flocks have separate origins and were initiated using two different strains of Merino sheep. One of the DEGs, mast cell proteinase 1, had significantly lower expression in tertiary compared to primary infections for all four lines of sheep. This gene was not identified in previous studies where resistant and susceptible sheep samples were compared within infection time points. Comparing the differentially expressed genes (DEGs) for the two R lines reveals that responses differed very little between the primary and tertiary challenges for HSFR and only two genes were identified, in contrast to the TSFR where there were 134 genes identified including the two identified using the HSFR animals. Similarly, comparing the primary and tertiary challenges for HSFS identified 15 DEGs, whilst for TSFS there were 128 DEGs identified. It is surprising that so few genes respond similarly between the two challenge regimes across the four lines of sheep, and suggests significant differences in immune mechanisms between the two flocks (across the lines) and also between the lines within flocks. Our results offer a quantitative snapshot comparing the transcriptome in the ovine abomasum between primary and tertiary infections with H. contortus in both genetically resistant and susceptible sheep.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science, Hubei Normal University, Huangshi, Hubei, 435002, China.
| | - Min Tan
- College of Life Science, Hubei Normal University, Huangshi, Hubei, 435002, China.
| | - Xiangdong Xu
- College of Life Science, Hubei Normal University, Huangshi, Hubei, 435002, China.
| | - Tingbo Shen
- College of Life Science, Hubei Normal University, Huangshi, Hubei, 435002, China.
| | - Zihao Zhou
- College of Life Science, Hubei Normal University, Huangshi, Hubei, 435002, China.
| | - Peter W Hunt
- CSIRO Agriculture and Food, Armidale, NSW, Australia.
| | - Runfeng Zhang
- College of Life Science, Hubei Normal University, Huangshi, Hubei, 435002, China.
| |
Collapse
|
36
|
Epigenetic states of genes controlling immune responsiveness in bovine chronic mastitis. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Mastitis is a common disease in dairy cows, causing substantial economic losses. The leading cause of elevated milk somatic cell count (SCC), which is the best indicator for detecting mastitis, is the invasion of pathogens. A major pathogen responsible for bovine mastitis is Staphylococcus aureus, a member of the coagulase-positive staphylococci. Some strains of coagulase-negative staphylococci can also be a cause of clinical or subclinical mastitis. Our study used bisulfite sequencing PCR (BSP) to detect the methylation status of nine candidate genes (CCL2, HCK, F11R, CD8A, PDIA3, LGMN, HSPA1A, IL18 and NFKBIA). We investigated the mechanisms associated with overexpression of these genes, in the mammary gland secretory tissue of cows diagnosed with mastitis and infected with coagulase-positive or coagulase-negative staphylococci. The results showed no changes at the DNA methylation level between the mastitis (CoPS and CoNS) and control groups (H), except for in the HCK region, where the observed differences between the CoPS and H groups were statistically significant. The low methylation level of the CpG sequence seems not to correspond to the previously observed increased activity of these genes, suggesting that mechanisms other than DNA methylation may control mRNA expression at the analyzed loci.
Collapse
|
37
|
Yang L, Li N, Yang D, Chen A, Tang J, Jing Y, Kang D, Jiang P, Dai X, Luo L, Chen Q, Chang J, Liu J, Gu H, Huang Y, Chen Q, Li Z, Zhu Y, Miller H, Chen Y, Qiu L, Mei H, Hu Y, Gong Q, Liu C. CCL2 regulation of MST1-mTOR-STAT1 signaling axis controls BCR signaling and B-cell differentiation. Cell Death Differ 2021; 28:2616-2633. [PMID: 33879857 PMCID: PMC8408168 DOI: 10.1038/s41418-021-00775-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
Chemokines are important regulators of the immune system, inducing specific cellular responses by binding to receptors on immune cells. In SLE patients, decreased expression of CCL2 on mesenchymal stem cells (MSC) prevents inhibition of B-cell proliferation, causing the characteristic autoimmune phenotype. Nevertheless, the intrinsic role of CCL2 on B-cell autoimmunity is unknown. In this study using Ccl2 KO mice, we found that CCL2 deficiency enhanced BCR signaling by upregulating the phosphorylation of the MST1-mTORC1-STAT1 axis, which led to reduced marginal zone (MZ) B cells and increased germinal center (GC) B cells. The abnormal differentiation of MZ and GC B cells were rescued by in vivo inhibition of mTORC1. Additionally, the inhibition of MST1-mTORC1-STAT1 with specific inhibitors in vitro also rescued the BCR signaling upon antigenic stimulation. The deficiency of CCL2 also enhanced the early activation of B cells including B-cell spreading, clustering and signalosome recruitment by upregulating the DOCK8-WASP-actin axis. Our study has revealed the intrinsic role and underlying molecular mechanism of CCL2 in BCR signaling, B-cell differentiation, and humoral response.
Collapse
Affiliation(s)
- Lu Yang
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Di Yang
- grid.488412.3Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3Ministry of Education Key Laboratory of Child Development and Disorder, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Anwei Chen
- grid.488412.3Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3Ministry of Education Key Laboratory of Child Development and Disorder, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3Department of Dermatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlong Tang
- grid.33199.310000 0004 0368 7223Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panpan Jiang
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Dai
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Luo
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Chen
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jiang Chang
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju Liu
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Gu
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Huang
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianglin Chen
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Zhenzhen Li
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzi Zhu
- grid.33199.310000 0004 0368 7223Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- grid.94365.3d0000 0001 2297 5165Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Yan Chen
- grid.413390.cThe Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liru Qiu
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Mei
- grid.33199.310000 0004 0368 7223Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- grid.33199.310000 0004 0368 7223Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Eight-year longitudinal study of whole blood gene expression profiles in individuals undergoing long-term medical follow-up. Sci Rep 2021; 11:16564. [PMID: 34400700 PMCID: PMC8368195 DOI: 10.1038/s41598-021-96078-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Blood circulates throughout the body via the peripheral tissues, contributes to host homeostasis and maintains normal physiological functions, in addition to responding to lesions. Previously, we revealed that gene expression analysis of peripheral blood cells is a useful approach for assessing diseases such as diabetes mellitus and cancer because the altered gene expression profiles of peripheral blood cells can reflect the presence and state of diseases. However, no chronological assessment of whole gene expression profiles has been conducted. In the present study, we collected whole blood RNA from 61 individuals (average age at registration, 50 years) every 4 years for 8 years and analyzed gene expression profiles using a complementary DNA microarray to examine whether these profiles were stable or changed over time. We found that the genes with very stable expression were related mostly to immune system pathways, including antigen cell presentation and interferon-related signaling. Genes whose expression was altered over the 8-year study period were principally involved in cellular machinery pathways, including development, signal transduction, cell cycle, apoptosis, and survival. Thus, this chronological examination study showed that the gene expression profiles of whole blood can reveal unmanifested physiological changes.
Collapse
|
39
|
Wu Y, Lin H, Lu Y, Huang Y, Dasanayaka BP, Ahmed I, Chen G, Chen Y, Li Z. Allergenicity determination of Turbot parvalbumin for safety of fish allergy via dendritic cells, RBL‐2H3 cell and mouse model. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03763-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Kumar V, Kiran S, Shamran HA, Singh UP. Differential Expression of microRNAs Correlates With the Severity of Experimental Autoimmune Cystitis. Front Immunol 2021; 12:716564. [PMID: 34335632 PMCID: PMC8317613 DOI: 10.3389/fimmu.2021.716564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
Interstitial cystitis (IC)/bladder pain syndrome (BPS) primarily affects women. It varies in its severity and currently has no effective treatment. The symptoms of IC include pelvic pain, urgency and frequency of urination, and discomfort or pain in the bladder and lower abdomen. The bladders of IC patients exhibit infiltration by immune cells, which lends credence to the hypothesis that immune mechanisms also play a role in the etiology and pathophysiology of IC. The Differentially expressed microRNAs (miRs) in immune cells may serve as crucial immunoregulators in the IC. Therefore, we sought to determine whether miRs might play a regulatory role in the progression and pathogenesis of IC, using experimental autoimmune cystitis (EAC) model. In the present study, we observed differential expression of a specific subset of miRs in iliac lymph nodes (ILNs) and urinary bladders (UB) of IC mice compared to that in control mice. Microarray analysis of 96 miRs from the bladder and 135 miRs from ILNs allowed us to identify 50 that exhibited at least a 1.5-fold greater difference in expression in EAC mice compared to control mice. Hierarchical cluster analysis of the microarray data was used to search available databases to predict molecular pathways with which the miRs might interact. Four miRs from each organ that exhibited altered expression in EAC mice and that were predicted to have roles in inflammation (miR-146a, -181, -1931, and -5112) were selected for further analysis by reverse transcription-polymerase chain reaction (RT-PCR). All were confirmed to be elevated in EAC mice. Histological inflammatory scores, systemic chemokines, and cytokines expressed by T helper type 1 (Th1) lymphocytes were also elevated in EAC mice as compared to control animals. We hypothesize that the mechanism of EAC induction might involve the modulation of specific miRs that increase local and systemic levels of chemokines and cytokines. The present study identifies novel miRs expressed in UB and ILNs that will allow us to highlight mechanisms of EAC pathogenesis and may provide potential biomarkers and/or serve as the basis of new therapies for the treatment of IC.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Haidar A Shamran
- Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
41
|
Ghafouri-Fard S, Shahir M, Taheri M, Salimi A. A review on the role of chemokines in the pathogenesis of systemic lupus erythematosus. Cytokine 2021; 146:155640. [PMID: 34252872 DOI: 10.1016/j.cyto.2021.155640] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Chemokines are a group of cytokines with low molecular weight that principally direct chemotaxis of target cells. They have prominent roles in the pathogenesis systemic lupus erythematosus (SLE) and related complications particularly lupus nephritis. These molecules not only induce autoimmune responses in the organs of patients, but also can amplify the induced inflammatory responses. Although chemokine family has at least 46 identified members, the role of a number of these molecules have been more clarified in SLE patients or animal models of this disorder. In the current paper, we review the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehri Shahir
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Salimi
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Govindasamy V, Rajendran A, Lee ZX, Ooi GC, Then KY, Then KL, Gayathri M, Kumar Das A, Cheong SK. The potential role of mesenchymal stem cells in modulating antiageing process. Cell Biol Int 2021; 45:1999-2016. [PMID: 34245637 DOI: 10.1002/cbin.11652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Ageing and age-related diseases share some basic origin that largely converges on inflammation. Precisely, it boils down to a common pathway characterised by the appearance of a fair amount of proinflammatory cytokines known as inflammageing. Among the proposed treatment for antiageing, MSCs gained attention in recent years. Since mesenchymal stem cells (MSCs) can differentiate itself into a myriad of terminal cells, previously it was believed that these cells migrate to the site of injury and perform their therapeutic effect. However, with the more recent discovery of huge amounts of paracrine factors secreted by MSCs, it is now widely accepted that these cells do not engraft upon transplantation but rather unveil their benefits through excretion of bioactive molecules namely those involved in inflammatory and immunomodulatory activities. Conversely, the true function of these paracrine changes has not been thoroughly investigated all these years. Hence, this review will describe in detail on ways MSCs may capitalize its paracrine properties in modulating antiageing process. Through a comprehensive literature search various elements in the antiageing process, we aim to provide a novel treatment perspective of MSCs in antiageing related clinical conditions.
Collapse
Affiliation(s)
- Vijayendran Govindasamy
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Abilashini Rajendran
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Zhi-Xin Lee
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Ghee-Chien Ooi
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Kong-Yong Then
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia.,Brighton Healthcare (Bio-X Healthcare Sdn Bhd), Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Khong-Lek Then
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Merilynn Gayathri
- Brighton Healthcare (Bio-X Healthcare Sdn Bhd), Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Anjan Kumar Das
- Deparment of Surgery, IQ City Medical College, Durgapur, West Bengal, India
| | - Soon-Keng Cheong
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman (UTAR), Kajang, Selangor, Malaysia
| |
Collapse
|
43
|
Hua R, Edey LF, O'Dea KP, Howe L, Herbert BR, Cheng W, Zheng X, MacIntyre DA, Bennett PR, Takata M, Johnson MR. CCR2 mediates the adverse effects of LPS in the pregnant mouse. Biol Reprod 2021; 102:445-455. [PMID: 31599921 DOI: 10.1093/biolre/ioz188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 08/14/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
In our earlier work, we found that intrauterine (i.u.) and intraperitoneal (i.p.) injection of LPS (10-μg serotype 0111:B4) induced preterm labor (PTL) with high pup mortality, marked systemic inflammatory response and hypotension. Here, we used both i.u. and i.p. LPS models in pregnant wild-type (wt) and CCR2 knockout (CCR2-/-) mice on E16 to investigate the role played by the CCL2/CCR2 system in the response to LPS. Basally, lower numbers of monocytes and macrophages and higher numbers of neutrophils were found in the myometrium, placenta, and blood of CCR2-/- vs. wt mice. After i.u. LPS, parturition occurred at 14 h in both groups of mice. At 7 h post-injection, 70% of wt pups were dead vs. 10% of CCR2-/- pups, but at delivery 100% of wt and 90% of CCR2-/- pups were dead. Myometrial and placental monocytes and macrophages were generally lower in CCR2-/- mice, but this was less consistent in the circulation, lung, and liver. At 7 h post-LPS, myometrial ERK activation was greater and JNK and p65 lower and the mRNA levels of chemokines were higher and of inflammatory cytokines lower in CCR2-/- vs. wt mice. Pup brain and placental inflammation were similar. Using the IP LPS model, we found that all measures of arterial pressure increased in CCR2-/- but declined in wt mice. These data suggest that the CCL2/CCR2 system plays a critical role in the cardiovascular response to LPS and contributes to pup death but does not influence the onset of inflammation-induced PTL.
Collapse
Affiliation(s)
- Renyi Hua
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK.,The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Lydia F Edey
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Laura Howe
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Bronwen R Herbert
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Weiwei Cheng
- The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xia Zheng
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, London, UK
| | - Philip R Bennett
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, London, UK
| | - Masao Takata
- The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Mark R Johnson
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
44
|
Wei C, Hu S, Luo M, Chen C, Wang W, Zhang W, Zhou D. A Novel Mechanism of Action of Histone Deacetylase Inhibitor Chidamide: Enhancing the Chemotaxis Function of Circulating PD-1(+) Cells From Patients With PTCL. Front Oncol 2021; 11:682436. [PMID: 34141623 PMCID: PMC8204089 DOI: 10.3389/fonc.2021.682436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Background Peripheral T‐cell lymphomas (PTCLs) are a heterogeneous group of neoplasms characterized by a poor prognosis. Histone deacetylase (HDAC) inhibitors have emerged as novel therapeutic agents for PTCLs. In this study, we aimed to explore the immunomodulatory effect of the HDAC inhibitor chidamide on circulating PD-1(+) cells from patients with PTCL, as well as its correlation with treatment response. Methods We enrolled newly diagnosed patients with PTCLs treated with a combination of chidamide and chemotherapy. Gene expression profile analysis was performed on peripheral blood PD-1(+) cells, both at baseline and at the end of treatment. A list of differentially expressed genes (DEGs) was identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to annotate the biological implications of the DEGs. A gene concept network was constructed to identify the key DEGs for further PCR verification. Results A total of 302 DEGs were identified in the complete remission (CR) group, including 162 upregulated and 140 downregulated genes. In contrast, only 12 DEGs were identified in the non-CR group. GO analysis revealed that these upregulated DEGs were mainly involved in chemokine activity, cell chemotaxis, and cellular response to interleukin-1 and interferon-γ. Furthermore, KEGG pathway analysis showed that these DEGs were enriched in cytokine-cytokine receptor interaction and chemokine signaling pathways. The innate immune signaling pathways, including the Toll-like and NOD-like receptor signaling pathways, were also influenced. The gene concept network revealed that the key upregulated genes belonged to the C-C chemokine family. Conclusion Our results showed that chidamide treatment notably enhanced the expression of genes associated with chemokine activity and chemotaxis function of circulating PD-1(+) cells. By recruiting immune cells and improving the innate immune function of PD-1(+) cells, chidamide may reshape the tumor microenvironment to an anti-tumor phenotype and synergize with checkpoint inhibitors.
Collapse
Affiliation(s)
- Chong Wei
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shaoxuan Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mingjie Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Choi JM, Baek SE, Kim JO, Jeon EY, Jang EJ, Kim CD. 5-LO-derived LTB4 plays a key role in MCP-1 expression in HMGB1-exposed VSMCs via a BLTR1 signaling axis. Sci Rep 2021; 11:11100. [PMID: 34045591 PMCID: PMC8160259 DOI: 10.1038/s41598-021-90636-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) plays an important role in initiating vascular inflammation; however, its cellular source in the injured vasculatures is unclear. Given the importance of high mobility group box 1 (HMGB1) in tissue injury, we investigated the role of vascular smooth muscle cells (VSMCs) in MCP-1 production in response to HMGB1. In primary cultured rat aortic VSMCs stimulated with HMGB1, the expression of MCP-1 and 5-lipoxygenase (LO) was increased. The increased MCP-1 expression in HMGB1 (30 ng/ml)-stimulated cells was significantly attenuated in 5-LO-deficient cells as well as in cells treated with zileuton, a 5-LO inhibitor. Likewise, MCP-1 expression and production were also increased in cells stimulated with exogenous leukotriene B4 (LTB4), but not exogenous LTC4. LTB4-induced MCP-1 expression was attenuated in cells treated with U75302, a LTB4 receptor 1 (BLTR1) inhibitor as well as in BLTR1-deficient cells, but not in 5-LO-deficient cells. Moreover, HMGB1-induced MCP-1 expression was attenuated in BLTR1-deficient cells or by treatment with a BLTR1 inhibitor, but not other leukotriene receptor inhibitors. In contrast to MCP-1 expression in response to LTB4, the increased MCP-1 production in HMGB1-stimulated VSMC was markedly attenuated in 5-LO-deficient cells, indicating a pivotal role of LTB4-BLTR1 signaling in MCP-1 expression in VSMCs. Taken together, 5-LO-derived LTB4 plays a key role in MCP-1 expression in HMGB1-exposed VSMCs via BLTR1 signaling, suggesting the LTB4-BLTR1 signaling axis as a potential therapeutic target for vascular inflammation in the injured vasculatures.
Collapse
Affiliation(s)
- Jong Min Choi
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Seung Eun Baek
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Ji On Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Eun Yeong Jeon
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Eun Jeong Jang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.
- Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|
46
|
Jiang H, Li Z, Yu L, Zhang Y, Zhou L, Wu J, Yuan J, Han M, Xu T, He J, Wang S, Yu C, Pan S, Wu M, Liu H, Zeng H, Song Z, Wang Q, Qu S, Zhang J, Huang Y, Han J. Immune Phenotyping of Patients With Acute Vogt-Koyanagi-Harada Syndrome Before and After Glucocorticoids Therapy. Front Immunol 2021; 12:659150. [PMID: 33995378 PMCID: PMC8113950 DOI: 10.3389/fimmu.2021.659150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have established that disturbed lymphocytes are involved in the pathogenesis of Vogt-Koyanagi-Harada (VKH) syndrome. Accordingly, glucocorticoids (GCs), with their well-recognized immune-suppressive function, have been widely used for treatment of VKH patients with acute relapses. However, the systemic response of diverse immune cells to GC therapy in VKH is poorly characterized. To address this issue, we analyzed immune cell subpopulations and their phenotype, as well as cytokine profiles in peripheral blood from VKH patients (n=25) and health controls (HCs, n=21) by flow cytometry and luminex technique, respectively. For 16 patients underwent GC therapy (methylprednisolone, MP), the aforementioned measurements as well as the transcriptome data from patients before and after one-week’s GC therapy were also compared to interrogate the systemic immune response to GC therapy. Lymphocyte composition in the blood was different in VKH patients and HCs. VKH patients had significantly higher numbers of T cells with more activated, polarized and differentiated phenotype, more unswitched memory B cells and monocytes, as compared to HCs. MP treatment resulted in decreased frequencies of T cells and NK cells, inhibited NK cell activation and T cell differentiation, and more profoundly, a marked shift in the distribution of monocyte subsets. Collectively, our findings suggest that advanced activation and differentiation, as well as dysregulated numbers of peripheral lymphocytes are the major immunological features of VKH, and GC therapy with MP not only inhibits T cell activation directly, but also affects monocyte subsets, which might combinatorically result in the inhibition of the pathogenic immune response.
Collapse
Affiliation(s)
- Han Jiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Li
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Long Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Ophthalmic Imaging Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Li Zhou
- Cataract Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Jianhua Wu
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Jing Yuan
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Mengyao Han
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Tao Xu
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Junwen He
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Shan Wang
- Ophthalmic Imaging Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Chengfeng Yu
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Sha Pan
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Min Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hangyu Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haihong Zeng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhu Song
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiangqiang Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Qu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwei Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyan Han
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Kanemitsu N, Kiyonaga F, Mizukami K, Maeno K, Nishikubo T, Yoshida H, Ito H. Chronic treatment with the (iso-)glutaminyl cyclase inhibitor PQ529 is a novel and effective approach for glomerulonephritis in chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:751-761. [PMID: 33159802 PMCID: PMC8007495 DOI: 10.1007/s00210-020-02013-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
Glomeruli and renal tubule injury in chronic kidney disease (CKD) is reported to involve induction of macrophage activation through the CCL2/CCR2 axis. The effects of inhibitors of the CCL2/CCR2 axis, such as anti-CCL2 antibody and CCR2 antagonist, on kidney function in animal models or humans with kidney dysfunction have been demonstrated. The N-terminal glutamine on immature CCL2 is replaced with pyroglutamate (pE) by glutaminyl cyclase (QC) and isoQC. pE-CCL2 is stable and resistant to peptidases. We hypothesized that inhibiting QC/isoQC activity would lead to the degradation of CCL2, thereby ameliorating CKD and reducing kidney inflammation. To test this hypothesis, we investigated the renoprotective properties of the QC/isoQC inhibitor PQ529 in anti-glomerular basement membrane (GBM) antibody-induced glomerulonephritis Wistar Kyoto (WKY) rats. Three-week repeated administration of PQ529 (30 and 100 mg/kg, twice daily) significantly reduced the serum and urine CCL2 and urinary protein excretion in a dose-dependent manner. Correlations between the urinary protein level and serum or urinary CCL2 levels were confirmed in tested animals. Repeated administration of PQ529 significantly reduced the expression of CD68, a macrophage marker, in the kidney cortex and mononuclear infiltration into the tubulointerstitium. In addition, decreased levels of urinary KIM-1, β2 microglobulin, and clusterin were detected, suggesting the inhibition of inflammation in both the proximal and distal tubules. These results suggest that PQ529 suppresses the progression of inflammation-induced renal dysfunction by inhibiting the CCL2/CCR2 axis. Inhibition of QC/isoQC may thus be a viable alternative therapeutic approach for treating glomerulonephritis and CKD patients.
Collapse
MESH Headings
- Aminoacyltransferases/antagonists & inhibitors
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Benzimidazoles/pharmacokinetics
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Cell Adhesion Molecules/urine
- Chemokine CCL2/antagonists & inhibitors
- Chemokine CCL2/blood
- Chemokine CCL2/metabolism
- Chemokine CCL2/urine
- Clusterin/urine
- Glomerulonephritis/blood
- Glomerulonephritis/drug therapy
- Glomerulonephritis/metabolism
- Glomerulonephritis/urine
- Imidazolines/pharmacokinetics
- Imidazolines/pharmacology
- Imidazolines/therapeutic use
- Interferon-gamma/metabolism
- Kidney/drug effects
- Kidney/metabolism
- Male
- Protective Agents/pharmacokinetics
- Protective Agents/pharmacology
- Protective Agents/therapeutic use
- Rats, Inbred WKY
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/urine
- beta 2-Microglobulin/urine
- Rats
Collapse
Affiliation(s)
- Naotoshi Kanemitsu
- Development, Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo, 103-8411, Japan.
| | - Fumiko Kiyonaga
- Corporate Advocacy, Astellas Pharma Inc., Chuo-ku, Tokyo, 103-8411, Japan
| | - Kazuhiko Mizukami
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Kyoichi Maeno
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Takashi Nishikubo
- Astellas Innovation Management LLC, 1030 Massachusetts Ave. Suite 310, Cambridge, MA, 02138, USA
| | - Hiroyuki Yoshida
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Hiroyuki Ito
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, 305-8585, Japan
| |
Collapse
|
48
|
Valverde A. Fluid Resuscitation for Refractory Hypotension. Front Vet Sci 2021; 8:621696. [PMID: 33778035 PMCID: PMC7987676 DOI: 10.3389/fvets.2021.621696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022] Open
Abstract
Hypotension is a common occurrence, especially in anesthetized patients and in critical patients suffering from hypovolemia due to shock and sepsis. Hypotension can also occur in normovolemic animals, anesthetized or conscious, under conditions of vasodilation or decreased cardiac function. The main consequence of hypotension is decreased organ perfusion and tissue injury/dysfunction. In the human literature there is no consensus on what is the threshold value for hypotension, and ranges from < 80 to < 100 mmHg for systolic blood pressure and from < 50 to < 70 mmHg for mean arterial blood pressure have been referenced for intraoperative hypotension. In veterinary medicine, similar values are referenced, despite marked differences in normal arterial blood pressure between species and with respect to humans. Therapeutic intervention involves fluid therapy to normalize volemia and use of sympathomimetics to enhance cardiac function and regulate peripheral vascular resistance. Despite these therapeutic measures, there is a subset of patients that are seemingly refractory and exhibit persistent hypotension. This review covers the physiological aspects that govern arterial blood pressure control and blood flow to tissues/organs, the pathophysiological mechanisms involved in hypotension and refractory hypotension, and therapeutic considerations and expectations that include proper interpretation of cardiovascular parameters, fluid recommendations and therapy rates, use of sympathomimetics and vasopressors, and newer approaches derived from the human literature.
Collapse
Affiliation(s)
- Alexander Valverde
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
49
|
Lu CC, Ho CJ, Huang HT, Lin SY, Chou SH, Chou PH, Ho ML, Tien YC. Effect of Freshly Isolated Bone Marrow Mononuclear Cells and Cultured Bone Marrow Stromal Cells in Graft Cell Repopulation and Tendon-Bone Healing after Allograft Anterior Cruciate Ligament Reconstruction. Int J Mol Sci 2021; 22:ijms22062791. [PMID: 33801860 PMCID: PMC7998102 DOI: 10.3390/ijms22062791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 01/07/2023] Open
Abstract
Graft cell repopulation and tendon-bone tunnel healing are important after allograft anterior cruciate ligament reconstruction (ACLR). Freshly isolated bone marrow mononuclear cells (BMMNCs) have the advantage of short isolation time during surgery and may enhance tissue regeneration. Thus, we hypothesized that the effect of intra-articular BMMNCs in post-allograft ACLR treatment is comparable to that of cultured bone marrow stromal cells (BMSCs). A rabbit model of hamstring allograft ACLR was used in this study. Animals were randomly assigned to the BMMNC, BMSC, and control groups. Fresh BMMNCs isolated from the iliac crest during surgery and cultured BMSCs at passage four were used in this study. A total of 1 × 107 BMMNCs or BMSCs in 100 µL phosphate-buffered saline were injected into the knee joint immediately after ACLR. The control group was not injected with cells. At two and six weeks post operation, we assessed graft cell repopulation with histological and cell tracking staining (PKH26), and tendon-bone healing with histological micro-computed tomography and immunohistochemical analyses for collagen I and monocyte chemoattractant protein-1 (MCP1). At two weeks post operation, there was no significant difference in the total cell population within the allograft among the three groups. However, the control group showed significantly higher cell population within the allograft than that of BM cell groups at six weeks. Histological examination of proximal tibia revealed that the intra-articular delivered cells infiltrated into the tendon-bone interface. Compared to the control group, the BM cell groups showed broader gaps with interfacial fibrocartilage healing, similar collagen I level, and higher MCP1 expression in the early stage. Micro-CT did not reveal any significant difference among the three groups. BMMNCs and BMSCs had comparable effects on cell repopulation and interfacial allograft-bone healing. Intra-articular BM cells delivery had limited benefits on graft cell repopulation and caused higher inflammation than that in the control group in the early stage, with fibrocartilage formation in the tendon-bone interface after allograft ACLR.
Collapse
Affiliation(s)
- Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan;
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-T.H.); (S.-Y.L.); (P.-H.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Cheng-Jung Ho
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-J.H.); (S.-H.C.)
| | - Hsuan-Ti Huang
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-T.H.); (S.-Y.L.); (P.-H.C.)
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sung-Yen Lin
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-T.H.); (S.-Y.L.); (P.-H.C.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-J.H.); (S.-H.C.)
| | - Shih-Hsiang Chou
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-J.H.); (S.-H.C.)
| | - Pei-Hsi Chou
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-T.H.); (S.-Y.L.); (P.-H.C.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-J.H.); (S.-H.C.)
| | - Mei-Ling Ho
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yin-Chun Tien
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-T.H.); (S.-Y.L.); (P.-H.C.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-J.H.); (S.-H.C.)
- Correspondence: ; Tel.: +886-7-3121101-5751
| |
Collapse
|
50
|
Żychowska M, Grzybkowska A, Zasada M, Piotrowska A, Dworakowska D, Czerwińska-Ledwig O, Pilch W, Antosiewicz J. Effect of six weeks 1000 mg/day vitamin C supplementation and healthy training in elderly women on genes expression associated with the immune response - a randomized controlled trial. J Int Soc Sports Nutr 2021; 18:19. [PMID: 33653365 PMCID: PMC7923494 DOI: 10.1186/s12970-021-00416-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background In this study, we investigated the effects of supplementation and exercise on the expression of genes associated with inflammation like CCL2, CRP, IL1, IL6, IL10 mRNA in elderly women. Methods Twenty four participants divided randomly into two groups were subjected to 6 weeks of the same health training program (three times per week). SUP group (supplemented, n = 12, mean age 72.8 ± 5.26 years and mean body mass 68.1 ± 8.3 kg) received 1000 mg of Vitamin C/day during the training period, while CON group (control, n = 12, mean age 72.4 ± 5.5 years and body mass 67.7 ± 7.5 kg) received placebo. Results No significant changes in IL-1, IL-6, IL-10 and CRP mRNA were observed within and between groups. However, there was a clear tendency of a decrease in IL-6 (two-way ANOVA, significant between investigated time points) and an increase in IL-10 mRNA noted in the supplemented group. A significant decrease in CCL2 mRNA was observed only in the CON group (from 2^0.2 to 2^0.1, p = 0.01). Conclusions It can be concluded, that 6 weeks of supplementation and exercise was too short to obtain significant changes in gene expression in leukocytes, but supplementation of 1000 mg vitamin C positively affected IL-6 and IL-10 expression – which are key changes in the adaptation to training. However, changes in body mass, IL1 and CCL2 were positive in CON group. It is possible that Vitamin C during 6 weeks of supplementation could have different effects on the expression of individual genes involved in the immune response. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Małgorzata Żychowska
- Department of Sport, Faculty of Physical Education, Kazimierz Wielki University in Bydgoszcz, Jana Karola Chodkiewicza 30, 85-064, Bydgoszcz, Poland. .,Department of Biochemistry, Faculty of Physical Education, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336, Gdansk, Poland.
| | - Agata Grzybkowska
- Department of Biochemistry, Faculty of Physical Education, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336, Gdansk, Poland
| | - Mariusz Zasada
- Department of Sport, Faculty of Physical Education, Kazimierz Wielki University in Bydgoszcz, Jana Karola Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Anna Piotrowska
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II 78, 31-571, Krakow, Poland
| | - Danuta Dworakowska
- Department of Sport, Faculty of Physical Education, Kazimierz Wielki University in Bydgoszcz, Jana Karola Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Olga Czerwińska-Ledwig
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II 78, 31-571, Krakow, Poland
| | - Wanda Pilch
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II 78, 31-571, Krakow, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Exercise Physiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|