1
|
Li M, Sun X, Zeng L, Sun A, Ge J. Metabolic Homeostasis of Immune Cells Modulates Cardiovascular Diseases. RESEARCH (WASHINGTON, D.C.) 2025; 8:0679. [PMID: 40270694 PMCID: PMC12015101 DOI: 10.34133/research.0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025]
Abstract
Recent investigations into the mechanisms underlying inflammation have highlighted the pivotal role of immune cells in regulating cardiac pathophysiology. Notably, these immune cells modulate cardiac processes through alternations in intracellular metabolism, including glycolysis and oxidative phosphorylation, whereas the extracellular metabolic environment is changed during cardiovascular disease, influencing function of immune cells. This dynamic interaction between immune cells and their metabolic environment has given rise to the novel concept of "immune metabolism". Consequently, both the extracellular and intracellular metabolic environment modulate the equilibrium between anti- and pro-inflammatory responses. This regulatory mechanism subsequently influences the processes of myocardial ischemia, cardiac fibrosis, and cardiac remodeling, ultimately leading to a series of cardiovascular events. This review examines how local microenvironmental and systemic environmental changes induce metabolic reprogramming in immune cells and explores the subsequent effects of aberrant activation or polarization of immune cells in the progression of cardiovascular disease. Finally, we discuss potential therapeutic strategies targeting metabolism to counteract abnormal immune activation.
Collapse
Affiliation(s)
- Mohan Li
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Linqi Zeng
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Institutes of Biomedical Sciences,
Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Institutes of Biomedical Sciences,
Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Navarro-Ledesma S. Frozen Shoulder as a Metabolic and Immune Disorder: Potential Roles of Leptin Resistance, JAK-STAT Dysregulation, and Fibrosis. J Clin Med 2025; 14:1780. [PMID: 40095902 PMCID: PMC11901274 DOI: 10.3390/jcm14051780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Frozen shoulder (FS) is a complex and multifactorial condition characterized by persistent inflammation, fibrosis, and metabolic dysregulation. Despite extensive research, the underlying drivers of FS remain poorly understood. Recent findings indicate the coexistence of pro-inflammatory and fibrosis-resolving macrophages within affected tissues, suggesting a dysregulated immune response influenced by metabolic and neuroendocrine factors. This review proposes that leptin resistance, a hallmark of metabolic syndrome and chronic inflammation, may play a central role in FS pathogenesis by impairing macrophage polarization, perpetuating inflammation, and disrupting fibrosis resolution. The JAK-STAT signaling pathway, critically modulated by leptin resistance, may further contribute to immune dysregulation by sustaining inflammatory macrophage activation and interfering with tissue remodeling. Additionally, FS shares pathogenic features with fibrotic diseases driven by TGF-β signaling, mitochondrial dysfunction, and circadian disruption, further linking systemic metabolic dysfunction to localized fibrotic pathology. Beyond immune and metabolic regulation, alterations in gut microbiota, bacterial translocation, and chronic psychosocial stress may further exacerbate systemic inflammation and neuroendocrine imbalances, intensifying JAK-STAT dysregulation and leptin resistance. By examining the intricate interplay between metabolism, immune function, and fibrotic remodeling, this review highlights targeting leptin sensitivity, JAK-STAT modulation, and mitochondrial restoration as novel therapeutic strategies for FS treatment. Future research should explore these interconnections to develop integrative interventions that address both the metabolic and immune dysregulation underlying FS, ultimately improving clinical outcomes.
Collapse
Affiliation(s)
- Santiago Navarro-Ledesma
- Department of Physiotherapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, Querol Street 5, 52004 Melilla, Spain
| |
Collapse
|
3
|
da Silva Pereira JA, de Souza GP, Virgilio-da-Silva JV, Prodonoff JS, de Castro G, Pimentel LF, Mousovich-Neto F, Davanzo GG, Aguiar CF, Breda CNS, Guereschi MG, Araújo RC, Mori MA, Câmara NOS, Souza DP, Basso AS, Moraes-Vieira PM. LXR regulation of adipose tissue inflammation during obesity is associated with dysregulated macrophage function. Obesity (Silver Spring) 2025; 33:78-90. [PMID: 39632389 DOI: 10.1002/oby.24158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Liver X receptors (LXRs) play essential roles in cholesterol homeostasis and immune response. In obesity, elevated cholesterol levels trigger proinflammatory responses; however, the specific contributions of LXRs to adipose tissue (AT) macrophage (ATM) phenotype and metabolic programming are not fully understood. In this study, we determine the role of LXR isoforms in diet-induced obesity AT inflammation and insulin resistance. METHODS For in vivo studies, to evaluate the effects of LXR activation on AT inflammation, obese and insulin-resistant wild-type mice were treated with 10 mg/kg of the LXR modulator naringenin (NAR) for 4 weeks, and systemic insulin sensitivity and AT inflammation were assessed. To evaluate the effects of LXR deficiency on AT inflammation, we used LXRα, LXRβ, and LXRαβ knockout (KO) mice. For in vitro studies, to assess the role of LXRs specifically in macrophages, bone marrow-derived macrophages from wild-type, LXRαKO, LXRβKO, and LXRαβKO mice were treated with 0.5μM NAR 1 h prior to lipopolysaccharide (LPS) stimulation (100 ng/mL), and the effects on macrophage function and metabolism were evaluated 24 h after LPS stimulation. RESULTS We found that LXR deletion intensifies AT inflammation in an LXRβ-dependent manner. LXR deficiency in immune cells exacerbates obesity-induced AT inflammation, increasing the numbers of CD11c+, TNF-α+, and IL-1β+ ATMs. We also identified NAR as a novel LXR agonist in macrophages that reduces proinflammatory cytokine secretion by mitigating glycolysis and mitochondrial dysfunction in LPS - and LPS + IFNγ-activated macrophages. Furthermore, NAR-treated obese mice display reduced AT inflammation, characterized by decreased CD11c+, IL-1β+, and TNF-α+ ATM numbers and monocyte infiltration compared with vehicle-treated obese mice. CONCLUSIONS Our study highlights distinct roles for each LXR isoform in AT inflammation regulation, with LXRβ being crucial for maintaining the anti- and proinflammatory balance in ATMs. Thus, LXRβ holds therapeutic potential as a target to treat AT inflammation and insulin resistance.
Collapse
Affiliation(s)
- Jessica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
- Graduate Program in Immunology, University of São Paulo Institute of Biomedical Sciences, São Paulo, Brazil
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerson Profeta de Souza
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - João V Virgilio-da-Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
- Graduate Program in Immunology, University of São Paulo Institute of Biomedical Sciences, São Paulo, Brazil
| | - Juliana S Prodonoff
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Gisele de Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
- Graduate Program in Immunology, University of São Paulo Institute of Biomedical Sciences, São Paulo, Brazil
| | - Leonardo F Pimentel
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Felippe Mousovich-Neto
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Gustavo G Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Cristhiane F Aguiar
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Cristiane N S Breda
- Graduate Program in Immunology, University of São Paulo Institute of Biomedical Sciences, São Paulo, Brazil
- Laboratory of Transplant Immunobiology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Marcia G Guereschi
- Laboratory of Neuroimmunology, Department of Microbiology, Immunology and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Ronaldo C Araújo
- Laboratory of Exercise Genetics and Metabolism, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Marcelo A Mori
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, State University of Campinas Institute of Biology, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), State University of Campinas, Campinas, Brazil
| | - Niels O S Câmara
- Graduate Program in Immunology, University of São Paulo Institute of Biomedical Sciences, São Paulo, Brazil
- Laboratory of Transplant Immunobiology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Diorge P Souza
- Division of Cell Biology, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandre S Basso
- Laboratory of Neuroimmunology, Department of Microbiology, Immunology and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), State University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), State University of Campinas, Campinas, Brazil
| |
Collapse
|
4
|
Cardamone A, Coppoletta AR, Macrì R, Nucera S, Ruga S, Scarano F, Mollace R, Mollace A, Maurotti S, Micotti E, Carresi C, Musolino V, Gliozzi M, Mollace V. Targeting leptin/CCL3-CCL4 axes in NAFLD/MAFLD: A novel role for BPF in counteracting thalamic inflammation and white matter degeneration. Pharmacol Res 2024; 209:107417. [PMID: 39276957 DOI: 10.1016/j.phrs.2024.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), redefined as Metabolic Associated Fatty Liver Disease (MAFLD), is characterized by an extensive multi-organ involvement. MAFLD-induced systemic inflammatory status and peripheral metabolic alteration lead to an impairment of cerebral function. Herein, we investigated a panel of leptin-related inflammatory mediators as predictive biomarkers of neuroinflammation and evaluated the possible role of Bergamot Polyphenolic Fraction (BPF) in counteracting this MAFLD-induced inflammatory cascade. Male DIAMOND mice were randomly assigned to fed chow diet and tap water or high fat diet with sugar water. Starting from week 16, mice were further divided and treated with vehicle or BPF (50 mg/kg/day), via gavage, until week 30. Magnetic resonance imaging was performed at the baseline and at week 30. Correlation and regression analyses were performed to discriminate the altered lipid metabolism in the onset of cerebral alterations. Steatohepatitis led to an increase in leptin levels, resulting in a higher expression of proinflammatory mediators. The inflammatory biomarkers involved in leptin/CCL3-CCL4 axes were correlated with the altered thalamus energetic metabolism and the white matter degeneration. BPF administration restored leptin level, improved glucose and lipid metabolism, and reduced chronic low-grade inflammatory mediators, resulting in a prevention of white matter degeneration, alterations of thalamus metabolism and brain atrophy. The highlighted positive effect of BPF, mediated by the downregulation of the inflammatory biomarkers involved in leptin/CCL3-CCL4 axes, affording novel elements to candidate BPF for the development of a therapeutic strategy aimed at counteracting MAFLD-related brain inflammation.
Collapse
Affiliation(s)
- Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Rocco Mollace
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Annachiara Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy.
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
5
|
Sinha SK, Carpio MB, Nicholas SB. Fiery Connections: Macrophage-Mediated Inflammation, the Journey from Obesity to Type 2 Diabetes Mellitus and Diabetic Kidney Disease. Biomedicines 2024; 12:2209. [PMID: 39457523 PMCID: PMC11503991 DOI: 10.3390/biomedicines12102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high prevalence of diabetes mellitus (DM) poses a significant public health challenge, with diabetic kidney disease (DKD) as one of its most serious consequences. It has become increasingly clear that type 2 DM (T2D) and the complications of DKD are not purely metabolic disorders. This review outlines emerging evidence related to the step-by-step contribution of macrophages to the development and progression of DKD in individuals who specifically develop T2D as a result of obesity. The macrophage is a prominent inflammatory cell that contributes to obesity, where adipocyte hypertrophy leads to macrophage recruitment and eventually to the expansion of adipose tissue. The recruited macrophages secrete proinflammatory cytokines, which cause systemic inflammation, glucose dysregulation, and insulin sensitivity, ultimately contributing to the development of T2D. Under such pathological changes, the kidney is susceptible to elevated glucose and thereby activates signaling pathways that ultimately drive monocyte recruitment. In particular, the early recruitment of proinflammatory macrophages in the diabetic kidney produces inflammatory cytokines/chemokines that contribute to inflammation and tissue damage associated with DKD pathology. Macrophage activation and recruitment are crucial inciting factors that also persist as DKD progresses. Thus, targeting macrophage activation and function could be a promising therapeutic approach, potentially offering significant benefits for managing DKD at all stages of progression.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
6
|
Diao Z, Guo D, Zhang J, Zhang R, Li C, Chen H, Ma Y. Causal relationship between modifiable risk factors and knee osteoarthritis: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1405188. [PMID: 39286647 PMCID: PMC11402680 DOI: 10.3389/fmed.2024.1405188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 09/19/2024] Open
Abstract
Background While several risk factors for knee osteoarthritis (KOA) have been recognized, the pathogenesis of KOA and the causal relationship between modifiable risk factors and KOA in genetic epidemiology remain unclear. This study aimed to determine the causal relationship between KOA and its risk factors. Methods Data were obtained from published Genome-Wide Association study (GWAS) databases. A two-sample Mendelian randomization (MR) analysis was performed with genetic variants associated with risk factors as instrumental variables and KOA as outcome. First, inverse variance weighting was used as the main MR analysis method, and then a series of sensitivity analyses were conducted to comprehensively evaluate the causal relationship between them. Results Univariate forward MR analysis revealed that genetically predicted hypothyroidism, hyperthyroidism/thyrotoxicosis, educational level, income level, metabolic syndrome (MS), essential hypertension, height, hot drink temperature, diet (abstaining from sugar-sweetened or wheat products), and psychological and psychiatric disorders (stress, depression, and anxiety) were causally associated with KOA. Reverse MR exhibits a causal association between KOA and educational attainment. Multivariate MR analysis adjusted for the inclusion of potential mediators, such as body mass index (BMI), smoking, alcohol consumption, and sex, exhibited some variation in causal effects. However, hyperthyroidism/thyrotoxicosis had a significant causal effect on KOA, and there was good evidence that height, hypothyroidism, educational level, psychological and psychiatric disorders (stress, depression, and anxiety), and abstaining from wheat products had an independent causal relationship. The mediating effect of BMI as a mediator was also identified. Conclusion This study used MR to validate the causal relationship between KOA and its risk factors, providing new insights for preventing and treating KOA in clinical practice and for developing public health policies.
Collapse
Affiliation(s)
- Zhihao Diao
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Guo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingzhi Zhang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruiyu Zhang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjing Li
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Chen
- Complutense University of Madrid, Madrid, Spain
| | - Yuxia Ma
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Khan MM, Khan ZA, Khan MA. Metabolic complications of psychotropic medications in psychiatric disorders: Emerging role of de novo lipogenesis and therapeutic consideration. World J Psychiatry 2024; 14:767-783. [PMID: 38984346 PMCID: PMC11230099 DOI: 10.5498/wjp.v14.i6.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/19/2024] Open
Abstract
Although significant advances have been made in understanding the patho-physiology of psychiatric disorders (PDs), therapeutic advances have not been very convincing. While psychotropic medications can reduce classical symptoms in patients with PDs, their long-term use has been reported to induce or exaggerate various pre-existing metabolic abnormalities including diabetes, obesity and non-alcoholic fatty liver disease (NAFLD). The mechanism(s) underlying these metabolic abnormalities is not clear; however, lipid/fatty acid accumulation due to enhanced de novo lipogenesis (DNL) has been shown to reduce membrane fluidity, increase oxidative stress and inflammation leading to the development of the aforementioned metabolic abnormalities. Intriguingly, emerging evidence suggest that DNL dysregulation and fatty acid accumulation could be the major mechanisms associated with the development of obesity, diabetes and NAFLD after long-term treatment with psychotropic medications in patients with PDs. In support of this, several adjunctive drugs comprising of anti-oxidants and anti-inflammatory agents, that are used in treating PDs in combination with psychotropic medications, have been shown to reduce insulin resistance and development of NAFLD. In conclusion, the above evidence suggests that DNL could be a potential pathological factor associated with various metabolic abnormalities, and a new avenue for translational research and therapeutic drug designing in PDs.
Collapse
Affiliation(s)
- Mohammad M Khan
- Laboratory of Translational Neurology and Molecular Psychiatry, Department of Biotechnology, Era’s Lucknow Medical College and Hospital, and Faculty of Science, Era University, Lucknow 226003, India
| | - Zaw Ali Khan
- Era’s Lucknow Medical College and Hospital, Era University, Lucknow 226003, India
| | - Mohsin Ali Khan
- Era’s Lucknow Medical College and Hospital, Era University, Lucknow 226003, India
| |
Collapse
|
8
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
9
|
Qiao K, Jiang R, Contreras GA, Xie L, Pascottini OB, Opsomer G, Dong Q. The Complex Interplay of Insulin Resistance and Metabolic Inflammation in Transition Dairy Cows. Animals (Basel) 2024; 14:832. [PMID: 38539930 PMCID: PMC10967290 DOI: 10.3390/ani14060832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
During the transition period, dairy cows exhibit heightened energy requirements to sustain fetal growth and lactogenesis. The mammary gland and the growing fetus increase their demand for glucose, leading to the mobilization of lipids to support the function of tissues that can use fatty acids as energy substrates. These physiological adaptations lead to negative energy balance, metabolic inflammation, and transient insulin resistance (IR), processes that are part of the normal homeorhetic adaptations related to parturition and subsequent lactation. Insulin resistance is characterized by a reduced biological response of insulin-sensitive tissues to normal physiological concentrations of insulin. Metabolic inflammation is characterized by a chronic, low-level inflammatory state that is strongly associated with metabolic disorders. The relationship between IR and metabolic inflammation in transitioning cows is intricate and mutually influential. On one hand, IR may play a role in the initiation of metabolic inflammation by promoting lipolysis in adipose tissue and increasing the release of free fatty acids. Metabolic inflammation, conversely, triggers inflammatory signaling pathways by pro-inflammatory cytokines, thereby leading to impaired insulin signaling. The interaction of these factors results in a harmful cycle in which IR and metabolic inflammation mutually reinforce each other. This article offers a comprehensive review of recent advancements in the research on IR, metabolic inflammation, and their intricate interrelationship. The text delves into multiple facets of physiological regulation, pathogenesis, and their consequent impacts.
Collapse
Affiliation(s)
- Kaixi Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| | - Renjiao Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| | - Genaro Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Lei Xie
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Qiang Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| |
Collapse
|
10
|
Cristodoro M, Zambella E, Fietta I, Inversetti A, Di Simone N. Dietary Patterns and Fertility. BIOLOGY 2024; 13:131. [PMID: 38392349 PMCID: PMC10886842 DOI: 10.3390/biology13020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Diet has a key role in the reproductive axis both in males and females. This review aims to analyze the impacts of different dietary patterns on fertility. It appears that the Mediterranean diet has a predominantly protective role against infertility, while the Western diet seems to be a risk factor for infertility. Moreover, we focus attention also on dietary patterns in different countries of the World (Middle Eastern diet, Asian diet). In particular, when analyzing single nutrients, a diet rich in saturated fatty acids, cholesterol, animal proteins, and carbohydrates with high glycemic index is highly associated with male and female infertility. Finally, we evaluate the effects of vegetarian, vegan, and ketogenic diets on fertility, which seem to be still unclear. We believe that comprehension of the molecular mechanisms involved in infertility will lead to more effective and targeted treatments for infertile couples.
Collapse
Affiliation(s)
- Martina Cristodoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
| | - Enrica Zambella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
| | - Ilaria Fietta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
| | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
11
|
Nan K, Zhang M, Hu S, Shao X, Liu L, Zhi Y, Xu P. Relationship of weight change patterns from young to middle adulthood with incident rheumatoid arthritis and osteoarthritis: a retrospective cohort study. Front Endocrinol (Lausanne) 2024; 14:1308254. [PMID: 38234426 PMCID: PMC10791826 DOI: 10.3389/fendo.2023.1308254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
Background The relationship between weight change patterns and arthritis onset, specifically rheumatoid arthritis (RA) and osteoarthritis (OA), is unclear. We examined the association between weight changes from young adulthood to midlife and arthritis onset. Methods Using data from NHANES 1999-2018, participants with self-reported arthritis were selected. Age at diagnosis determined arthritis onset. Weight change patterns were based on BMI at age 25 and 10 years before the survey. Patterns were categorized as stable non-obese, non-obese to obese, obese to non-obese, and stable obese. Cox regression models and restricted cubic spline (RCS) analysis were employed, calculating hazard ratios (HRs) and 95% confidence intervals (CIs) considering covariates. Results Out of 20,859 participants (male 11,017, 52.82%), 4922 developed arthritis over a mean 8.66-year follow-up. Compared to stable non-obese individuals, the HRs for arthritis were 1.55 (95% CI=1.45 to 1.66, P < 0.0001) for non-obese to obese and 1.74 (95% CI=1.56 to 1.95, P < 0.0001) for stable obese. Those gaining 10-20 kg had a HR of 1.33 (95% CI=1.22 to 1.46, P < 0.0001), and gains >20 kg had a HR of 1.56 (95% CI=1.42 to 1.71, P < 0.0001), compared to stable weight (change within 2.5 kg). Identical results observed for OA and RA. RCS showed a nonlinear relationship between weight change and arthritis (all P < 0.01). Conclusions Stable obesity and weight gain during adulthood increase arthritis risk. Maintaining a non-obese weight throughout adult years might reduce arthritis risk in later life.
Collapse
Affiliation(s)
- Kai Nan
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ming Zhang
- Department of General Practice, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shouye Hu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaolong Shao
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yang Zhi
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
12
|
Engin AB, Engin ED, Engin A. Macrophage Activation Syndrome in Coinciding Pandemics of Obesity and COVID-19: Worse than Bad. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:919-954. [PMID: 39287877 DOI: 10.1007/978-3-031-63657-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing β-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey
| | - Evren Doruk Engin
- Biotechnology Institute, Ankara University, Gumusdere Campus, Gumusdere, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
13
|
Krause BJ, Vega-Tapia FA, Soto-Carrasco G, Lefever I, Letelier C, Saez CG, Castro-Rodriguez JA. Maternal obesity and high leptin levels prime pro-inflammatory pathways in human cord blood leukocytes. Placenta 2023; 142:75-84. [PMID: 37651852 DOI: 10.1016/j.placenta.2023.08.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Maternal obesity alters the immune function in the offspring. We hypothesize that maternal obesity and pro-inflammatory pathways induce leptin-related genes in neonatal monocytes, whereby high leptin levels enhance their inflammatory response. METHODS Transcriptional profiles of cord blood leukocytes (CBL) in basal and pro-inflammatory conditions were studied to determine differentially expressed genes (DEG). The DNA methylation profile of CB monocytes (CBM) of neonates born to control BMI mothers and women with obesity was assayed to identify differentially methylated probes (DMP). CBM-derived macrophages were cultured with or without leptin (10-100 ng/ml) and then stimulated with lipopolysaccharide (LPS, 100 ng/ml) and interferon-gamma (20 ng/ml) to assess the induction of TNF-α and IL-10 transcripts. RESULTS CBL from pregnancies with obesity (CBL-Ob) showed 12,183 DEG, affecting 49 out of 78 from the leptin pathway. Control CBM exposed to LPS showed 45 leptin-related DEG, an effect prevented by the co-exposure to LPS and IL-10. Conversely, CBM-Ob showed 5279 DMP enriched in insulin- and leptin-related genes, and Lasso regression of leptin-related DMP showed high predictive value for plasma leptin levels (r2 = 0.9897) and maternal BMI categories (AUC = 1). Chronic exposure to leptin increased TNF-α and decreased IL-10 levels in control BMI samples but not in Ob-CBM. Enhanced TNF-α induction after proinflammatory stimulation was observed in leptin-treated control BMI samples. DISCUSSION Obesity in pregnancy is associated with a distinctive expression and DNA methylation profile of leptin-related genes in cord blood monocytes, meanwhile, leptin enhances the expression of pro-inflammatory cytokines upon stimulation with M1-skewing agents.
Collapse
Affiliation(s)
- Bernardo J Krause
- Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile.
| | - Fabian A Vega-Tapia
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gustavo Soto-Carrasco
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora Lefever
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Letelier
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia G Saez
- Hematology-Oncology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jose A Castro-Rodriguez
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
14
|
Hammad R, Abdel Wahab MA, Farouk N, Zakaria MY, Eldosoky MA, Elmadbouly AA, Tahoun SA, Mahmoud E, Khirala SK, Mohammed AR, Emam WA, Abo Elqasem AA, Kotb FM, Abd Elghany RAE. Non-classical monocytes frequency and serum vitamin D 3 levels are linked to diabetic foot ulcer associated with peripheral artery disease. J Diabetes Investig 2023; 14:1192-1201. [PMID: 37394883 PMCID: PMC10512914 DOI: 10.1111/jdi.14048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
AIMS/INTRODUCTION Peripheral artery disease (PAD) serves as a risk factor for diabetic foot ulcers (DFUs). PAD pathology involves atherosclerosis and impaired immunity. Non-classical monocytes are believed to have an anti-inflammatory role. 1,25-Dihydroxy vitamin D (vitamin D3 ) is claimed to have immune-modulating and lipid-regulating roles. Vitamin D receptor is expressed on monocytes. We aimed to investigate if circulating non-classical monocytes and vitamin D3 were implicated in DFUs associated with PAD. MATERIALS AND METHODS There were two groups of DFU patients: group 1 (n = 40) included patients with first-degree DFUs not associated with PAD, and group 2 (n = 50) included patients with DFU with PAD. The monocyte phenotypes were detected using flow cytometry. Vitamin D3 was assessed by enzyme-linked immunosorbent assay. RESULTS DFU patients with PAD showed a significant reduction in the frequency of non-classical monocytes and vitamin D3 levels, when compared with DFU patients without PAD. The percentage of non-classical monocytes positively correlated with vitamin D3 level (r = 0.4, P < 0.01) and high-density lipoprotein (r = 0.5, P < 0.001), whereas it was negatively correlated with cholesterol (r = -0.5, P < 0.001). Vitamin D3 was negatively correlated with triglyceride/high-density lipoprotein (r = -0.4, P < 0.01). Regression analysis showed that a high vitamin D3 serum level was a protective factor against PAD occurrence. CONCLUSIONS Non-classical monocytes frequency and vitamin D3 levels were significantly reduced in DFU patients with PAD. Non-classical monocytes frequency was associated with vitamin D3 in DFUs patients, and both parameters were linked to lipid profile. Vitamin D3 upregulation was a risk-reducing factor for PAD occurrence.
Collapse
Affiliation(s)
- Reham Hammad
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Maisa A Abdel Wahab
- Vascular Surgery, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Nehal Farouk
- Vascular Surgery, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | | | - Mona A Eldosoky
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Asmaa A Elmadbouly
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Sara A Tahoun
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Eman Mahmoud
- Endocrinology and Metabolism Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Seham K Khirala
- Medical Microbiology and Immunology, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Amena Rezk Mohammed
- Biochemistry Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Wafaa Abdelaziz Emam
- Biochemistry Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Asmaa A Abo Elqasem
- Immunology, Zoology and Entomology Department, Faculty of Science (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Fatma M Kotb
- Internal Medicine Department, Faculty of Medicine (Girls)Al‐Azhar UniversityCairoEgypt
| | | |
Collapse
|
15
|
Pan D, Li G, Jiang C, Hu J, Hu X. Regulatory mechanisms of macrophage polarization in adipose tissue. Front Immunol 2023; 14:1149366. [PMID: 37283763 PMCID: PMC10240406 DOI: 10.3389/fimmu.2023.1149366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
In adipose tissue, macrophages are the most abundant immune cells with high heterogeneity and plasticity. Depending on environmental cues and molecular mediators, adipose tissue macrophages (ATMs) can be polarized into pro- or anti-inflammatory cells. In the state of obesity, ATMs switch from the M2 polarized state to the M1 state, which contributes to chronic inflammation, thereby promoting the pathogenic progression of obesity and other metabolic diseases. Recent studies show that multiple ATM subpopulations cluster separately from the M1 or M2 polarized state. Various factors are related to ATM polarization, including cytokines, hormones, metabolites and transcription factors. Here, we discuss our current understanding of the potential regulatory mechanisms underlying ATM polarization induced by autocrine and paracrine factors. A better understanding of how ATMs polarize may provide new therapeutic strategies for obesity-related diseases.
Collapse
Affiliation(s)
- Dun Pan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunlin Jiang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jinfeng Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiangming Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Králová A, Kubátová H, Kauerová S, Janoušek L, Froněk J, Králová Lesná I, Poledne R. Cholesterol efflux and macrophage polarization in human adipose tissue. Physiol Res 2022. [DOI: 10.33549/physiolres.934926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The pro-inflammatory status of adipose tissue (AT) has been found to be related to reverse cholesterol transport (RCT) from peritoneal macrophages. However, this finding was made in experimental models using induced peritonitis and isolated peritoneal macrophages of animals. This experimental relationship is in agreement with RCT changes in man in two extreme situations, sepsis or cardiovascular complications.
Given the above, we sought to test RTC in relationship to macrophage polarization in the visceral AT (VAT) of living kidney donors (LKDs) and the effect of conditioned media obtained from their AT. The influence of ATCM on CE capacity was first assessed in an experiment where standard plasma was used as cholesterol acceptor from [14C] cholesterol labeled THP-1 cells. Conditioned media as a product of LKDs’ incubated AT showed no effect on CE. Likewise, we did not find any effect of individual plasma of LKDs on CE when individual plasma of LKDs were used as acceptors. On the other hand, we documented an effect of LKDs’ adipose cell size on CE. Our results indicate that the pro-inflammatory status of human AT is not likely induced by disrupted RCT but might be influenced by the metabolic status of LKDs’ adipose tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - R Poledne
- Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| |
Collapse
|
17
|
Chen H, Liu N, Zhuang S. Macrophages in Renal Injury, Repair, Fibrosis Following Acute Kidney Injury and Targeted Therapy. Front Immunol 2022; 13:934299. [PMID: 35911736 PMCID: PMC9326079 DOI: 10.3389/fimmu.2022.934299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a renal disease with a high incidence and mortality. Currently, there are no targeted therapeutics for preventing and treating AKI. Macrophages, important players in mammalian immune response, are involved in the multiple pathological processes of AKI. They are dynamically activated and exhibit a diverse spectrum of functional phenotypes in the kidney after AKI. Targeting the mechanisms of macrophage activation significantly improves the outcomes of AKI in preclinical studies. In this review, we summarize the role of macrophages and the underlying mechanisms of macrophage activation during kidney injury, repair, regeneration, and fibrosis and provide strategies for macrophage-targeted therapies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
18
|
Monteiro LDB, Prodonoff JS, Favero de Aguiar C, Correa-da-Silva F, Castoldi A, Bakker NVT, Davanzo GG, Castelucci B, Pereira JADS, Curtis J, Büscher J, Reis LMD, Castro G, Ribeiro G, Virgílio-da-Silva JV, Adamoski D, Dias SMG, Consonni SR, Donato J, Pearce EJ, Câmara NOS, Moraes-Vieira PM. Leptin Signaling Suppression in Macrophages Improves Immunometabolic Outcomes in Obesity. Diabetes 2022; 71:1546-1561. [PMID: 35377454 DOI: 10.2337/db21-0842] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022]
Abstract
Obesity is a major concern for global health care systems. Systemic low-grade inflammation in obesity is a major risk factor for insulin resistance. Leptin is an adipokine secreted by the adipose tissue that functions by controlling food intake, leading to satiety. Leptin levels are increased in obesity. Here, we show that leptin enhances the effects of LPS in macrophages, intensifying the production of cytokines, glycolytic rates, and morphological and functional changes in the mitochondria through an mTORC2-dependent, mTORC1-independent mechanism. Leptin also boosts the effects of IL-4 in macrophages, leading to increased oxygen consumption, expression of macrophage markers associated with a tissue repair phenotype, and wound healing. In vivo, hyperleptinemia caused by diet-induced obesity increases the inflammatory response by macrophages. Deletion of leptin receptor and subsequently of leptin signaling in myeloid cells (ObR-/-) is sufficient to improve insulin resistance in obese mice and decrease systemic inflammation. Our results indicate that leptin acts as a systemic nutritional checkpoint to regulate macrophage fitness and contributes to obesity-induced inflammation and insulin resistance. Thus, specific interventions aimed at downstream modulators of leptin signaling may represent new therapeutic targets to treat obesity-induced systemic inflammation.
Collapse
Affiliation(s)
- Lauar de Brito Monteiro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Juliana Silveira Prodonoff
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Cristhiane Favero de Aguiar
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Felipe Correa-da-Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Angela Castoldi
- Laboratory Keizo Asami, Immunopathology Laboratory, Federal University of Pernambuco, Pernambuco, Brazil
| | - Nikki van Teijlingen Bakker
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Bianca Castelucci
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Jonathan Curtis
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
- Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jörg Büscher
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Larissa Menezes Dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Gisele Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Guilherme Ribeiro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - João Victor Virgílio-da-Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Silvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
- Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, São Paulo, Brazil
| |
Collapse
|
19
|
Khan MM. Disrupted leptin-fatty acid biosynthesis is an early manifestation of metabolic abnormalities in schizophrenia. World J Psychiatry 2022; 12:827-842. [PMID: 35978970 PMCID: PMC9258274 DOI: 10.5498/wjp.v12.i6.827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/03/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) and impaired energy expenditure (IEE) are irreparable metabolic comorbidities in schizophrenia. Although mechanism(s) underlying IR and IEE remains unclear, leptin and fatty acid signaling, which has profound influence on insulin secretion/sensitivity, glucose metabolism and energy expenditure, could be disrupted. However, no association of plasma leptin with erythrocyte membrane fatty acids, body mass index (BMI), and psychotic symptoms in the same cohort of untreated patients with first-episode psychosis (FEP) or medicated patients with chronic schizophrenia (CSZ) is presented before. These studies are crucial for deciphering the role of leptin and fatty acids in the development of IR and IEE in schizophrenia. AIM To determine the association between plasma leptin, erythrocyte membrane fatty acids, particularly, saturated fatty acids (SFAs), BMI and psychotic symptoms in patients with FEP and CSZ. METHODS In this study, twenty-two drug naive patients with FEP, twenty-one CSZ patients treated with atypical antipsychotic drugs, and fourteen healthy control (CNT) subjects were analyzed. Plasma leptin was measured using sandwich mode enzyme-linked immunosorbent assay. Erythrocyte membrane SFAs were measured using ultrathin capillary gas chromatography. BMI was calculated by using the formula: weight (kg)/height (m2). Psychiatric symptoms were evaluated at baseline using brief psychiatric rating scale (BPRS), and positive and negative syndrome scale (PANSS). The total BPRS scores, positive and negative symptom scores (PANSS-PSS and PANSS-NSS, respectively) were recorded. Pearson correlation coefficient (r) analyses were performed to find the nature and strength of association between plasma leptin, PANSS scores, BMI and SFAs, particularly, palmitic acid (PA). RESULTS In patients with FEP, plasma leptin not BMI was significantly lower (P = 0.034), whereas, erythrocyte membrane SFAs were significantly higher (P < 0.005) compared to the CNT subjects. Further, plasma leptin showed negative correlation with erythrocyte membrane SFAs-PA (r = -0.4972, P = 0.001), PANSS-PSS (r = -0.4034, P = 0.028), and PANSS-NSS (r = -0.3487, P = 0.048). However, erythrocyte membrane SFAs-PA showed positive correlation with PANSS-PSS (r = 0.5844, P = 0.0034) and PANSS-NSS (r = 0.5380, P = 0.008). In CSZ patients, plasma leptin, BMI, and erythrocyte membrane SFAs, all were significantly higher (P < 0.05) compared to the CNT subjects. Plasma leptin showed positive correlation with BMI (r = 0.312, P = 0.032) but not with PANSS scores or erythrocyte membrane SFAs-PA. However, erythrocyte membrane SFAs-PA showed positive correlation with PANSS-NSS only (r = 0.4729, P = 0.031). Similar changes in the plasma leptin and erythrocyte membrane SFAs have also been reported in individuals at ultra-high risk of developing psychosis; therefore, the above findings suggest that leptin-fatty acid biosynthesis could be disrupted before the onset of psychosis in schizophrenia. CONCLUSION Disrupted leptin-fatty acid biosynthesis/signaling could be an early manifestation of metabolic comorbidities in schizophrenia. Large-scale studies are warranted to validate the above findings.
Collapse
Affiliation(s)
- Mohammad M Khan
- Laboratory of Translational Neurology and Molecular Psychiatry, Department of Biotechnology, Era's Lucknow Medical College and Hospital, and Faculty of Science, Era University, Lucknow 226003, India
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
20
|
Wang K, Wang YY, Wu LL, Jiang LY, Hu Y, Xiao XH, Wang YD. Paracrine Regulation of Adipose Tissue Macrophages by Their Neighbors in the Microenvironment of Obese Adipose Tissue. Endocrinology 2022; 163:bqac062. [PMID: 35536227 DOI: 10.1210/endocr/bqac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/19/2022]
Abstract
Obesity has recently been defined as a chronic low-grade inflammatory disease. Obesity-induced inflammation of adipose tissue (AT) is an essential trigger for insulin resistance (IR) and related metabolic diseases. Although the underlying molecular basis of this inflammation has not been fully identified, there is consensus that the recruited and activated macrophages in AT are the most important culprits of AT chronic inflammation. Adipose tissue macrophages (ATMs) are highly plastic and could be polarized from an anti-inflammatory M2 to proinflammatory M1 phenotypes on stimulation by microenvironmental signals from obese AT. Many efforts have been made to elucidate the molecular signaling pathways of macrophage polarization; however, the upstream drivers governing and activating macrophage polarization have rarely been summarized, particularly regulatory messages from the AT microenvironment. In addition to adipocytes, the AT bed also contains a variety of immune cells, stem cells, as well as vascular, neural, and lymphatic tissues throughout, which together orchestrate the AT microenvironment. Here, we summarize how the aforesaid neighbors of ATMs in the AT microenvironment send messages to ATMs and thus regulate its phenotype during obesity. Deciphering the biology and polarization of ATMs in the obese environment is expected to provide a precise immunotherapy for adipose inflammation and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Kai Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang-Liang Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Li-Yan Jiang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yin Hu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
21
|
Lima-Silva LF, Lee J, Moraes-Vieira PM. Soluble Carrier Transporters and Mitochondria in the Immunometabolic Regulation of Macrophages. Antioxid Redox Signal 2022; 36:906-919. [PMID: 34555943 PMCID: PMC9271333 DOI: 10.1089/ars.2021.0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Immunometabolic regulation of macrophages is a growing area of research across many fields. Here, we review the contribution of solute carriers (SLCs) in regulating macrophage metabolism. We also highlight key mechanisms that regulate SLC function, their effects on mitochondrial activity, and how these intracellular activities contribute to macrophage fitness in health and disease. Recent Advances: SLCs serve as a major drug absorption pathway and represent a novel category of therapeutic drug targets. SLC dynamics affect cellular nutritional sensors, such as AMP-activated protein kinase and mammalian target of rapamycin, and consequently alter the cellular metabolism and mitochondrial dynamics within macrophages to adapt to a new functional phenotype. Critical Issues: SLC function affects macrophage phenotype, but their mechanisms of action and how their functions contribute to host health remain incompletely defined. Future Directions: Few studies focus on the impact of solute transporters on macrophage function. Identifying which SLCs are present in macrophages and determining their functional roles may reveal novel therapeutic targets with which to treat metabolic and inflammatory diseases. Antioxid. Redox Signal. 36, 906-919.
Collapse
Affiliation(s)
- Lincon Felipe Lima-Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,Post Graduate Program in Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jennifer Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil.,Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
22
|
Caldari-Torres C, Beck J. Effects of co-incubation of LPS-stimulated RAW 264.7 macrophages on leptin production by 3T3-L1 adipocytes: a method for co-incubating distinct adipose tissue cell lines. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:57. [PMID: 35283620 PMCID: PMC8899443 DOI: 10.1186/s42269-022-00747-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Adipose tissue is a major endocrine organ capable of releasing inflammatory adipokines that are linked to changes occurring in the overfed state, where tissue remodeling results in hypertrophic adipocytes that recruit monocytes to infiltrate the tissue and take on an inflammatory phenotype. Increases in macrophage-specific inflammatory mediator levels contribute to the inflamed state and worsen the inflammatory loop between the macrophages and adipocytes. Although most inflammatory adipokines are released by macrophages, adipocytes can also release immunomodulatory adipokines, such as leptin. The objective of this research was to determine if co-incubation of activated macrophages with mature adipocytes, using transwell inserts, affected adipocyte leptin release. We also examined if there were differences in levels of cell-secreted products quantified in cell-conditioned media collected from macrophage-containing (transwell insert) and adipocyte-containing (well) compartments. METHODS Mature adipocytes were co-incubated with control and lipopolysaccharide-stimulated (0.01 mg/ml) murine macrophages, and nitric oxide, interleukin-6, and leptin levels were quantified in the cell-conditioned media from both compartments. RESULTS Activation status of the macrophages did not affect leptin release by the adipocytes. We observed higher amounts of leptin in wells compared to transwells. Nitric oxide and interleukin-6 levels were similar between transwells and wells, suggesting that these adipokines travel through the transwell inserts and are reaching equilibrium between the two compartments. CONCLUSION Our results suggest that co-incubating activated macrophages and adipocytes using transwell inserts can result in distinct microenvironments in the different cellular compartments and that separate sampling of these compartments is required to detect the subtle signaling dynamics that exist between these cells. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s42269-022-00747-7.
Collapse
Affiliation(s)
| | - Jordan Beck
- Department of Biology, Denison University, Granville, OH USA
| |
Collapse
|
23
|
Heintzman DR, Fisher EL, Rathmell JC. Microenvironmental influences on T cell immunity in cancer and inflammation. Cell Mol Immunol 2022; 19:316-326. [PMID: 35039633 PMCID: PMC8762638 DOI: 10.1038/s41423-021-00833-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
T cell metabolism is dynamic and highly regulated. While the intrinsic metabolic programs of T cell subsets are integral to their distinct differentiation and functional patterns, the ability of cells to acquire nutrients and cope with hostile microenvironments can limit these pathways. T cells must function in a wide variety of tissue settings, and how T cells interpret these signals to maintain an appropriate metabolic program for their demands or if metabolic mechanisms of immune suppression restrain immunity is an area of growing importance. Both in inflamed and cancer tissues, a wide range of changes in physical conditions and nutrient availability are now acknowledged to shape immunity. These include fever and increased temperatures, depletion of critical micro and macro-nutrients, and accumulation of inhibitory waste products. Here we review several of these factors and how the tissue microenvironment both shapes and constrains immunity.
Collapse
Affiliation(s)
- Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37205, USA
| | - Emilie L Fisher
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37205, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37205, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, 37205, USA.
| |
Collapse
|
24
|
Dai M, Yang X, Yu Y, Pan W. Helminth and Host Crosstalk: New Insight Into Treatment of Obesity and Its Associated Metabolic Syndromes. Front Immunol 2022; 13:827486. [PMID: 35281054 PMCID: PMC8913526 DOI: 10.3389/fimmu.2022.827486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity and its associated Metabolic Syndromes (Mets) represent a global epidemic health problem. Metabolic inflammation, lipid accumulation and insulin resistance contribute to the progression of these diseases, thereby becoming targets for drug development. Epidemiological data have showed that the rate of helminth infection negatively correlates with the incidence of obesity and Mets. Correspondingly, numerous animal experiments and a few of clinic trials in human demonstrate that helminth infection or its derived molecules can mitigate obesity and Mets via induction of macrophage M2 polarization, inhibition of adipogenesis, promotion of fat browning, and improvement of glucose tolerance, insulin resistance and metabolic inflammation. Interestingly, sporadic studies also uncover that several helminth infections can reshape gut microbiota of hosts, which is intimately implicated in the pathogenesis of obesity and Mets. Overall, these findings indicate that the crosstalk between helminth and hosts may be a novel direction for obesity and Mets therapy. The present article reviews the molecular mechanism of how helminth masters immunity and metabolism in obesity.
Collapse
Affiliation(s)
- Mengyu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The Second Clinical Medicine, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| |
Collapse
|
25
|
Wang YY, Wang YD, Qi XY, Liao ZZ, Mai YN, Xiao XH. Organokines and Exosomes: Integrators of Adipose Tissue Macrophage Polarization and Recruitment in Obesity. Front Endocrinol (Lausanne) 2022; 13:839849. [PMID: 35273574 PMCID: PMC8902818 DOI: 10.3389/fendo.2022.839849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity is escalating and has become a worldwide health challenge coinciding with the development of metabolic diseases. Emerging evidence has shown that obesity is accompanied by the infiltration of macrophages into adipose tissue, contributing to a state of low-grade chronic inflammation and dysregulated metabolism. Moreover, in the state of obesity, the phenotype of adipose tissue macrophages switches from the M2 polarized state to the M1 state, thereby contributing to chronic inflammation. Notably, multiple metabolic organs (adipose tissue, gut, skeletal muscle, and the liver) communicate with adipose tissue macrophages via secreting organokines or exosomes. In this review, we systematically summarize how the organokines (adipokines, gut microbiota and its metabolites, gut cytokines, myokines, and hepatokines) and exosomes (adipocyte-, skeletal muscle-, and hepatocyte-derived exosomes) act as important triggers for macrophage recruitment in adipose tissue and adipose tissue macrophage polarization, thus providing further insight into obesity treatment. In addition, we also highlight the complex interaction of organokines with organokines and organokines with exosomes, revealing new paths in understanding adipose tissue macrophage recruitment and polarization.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin-Hua Xiao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
26
|
Abstract
Leptin is a hormone primarily produced by the adipose tissue in proportion to the size of fat stores, with a primary function in the control of lipid reserves. Besides adipose tissue, leptin is also produced by other tissues, such as the stomach, placenta, and mammary gland. Altogether, leptin exerts a broad spectrum of short, medium, and long-term regulatory actions at the central and peripheral levels, including metabolic programming effects that condition the proper development and function of the adipose organ, which are relevant for its main role in energy homeostasis. Comprehending how leptin regulates adipose tissue may provide important clues to understand the pathophysiology of obesity and related diseases, such as type 2 diabetes, as well as its prevention and treatment. This review focuses on the physiological and long-lasting regulatory effects of leptin on adipose tissue, the mechanisms and pathways involved, its main outcomes on whole-body physiological homeostasis, and its consequences on chronic diseases.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
27
|
Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, Griffiths HR, Gao D. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Front Endocrinol (Lausanne) 2022; 13:873699. [PMID: 35909571 PMCID: PMC9329830 DOI: 10.3389/fendo.2022.873699] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic low-grade inflammation in adipose tissue (AT) is a hallmark of obesity and contributes to various metabolic disorders, such as type 2 diabetes and cardiovascular diseases. Inflammation in ATs is characterized by macrophage infiltration and the activation of inflammatory pathways mediated by NF-κB, JNK, and NLRP3 inflammasomes. Adipokines, hepatokines and myokines - proteins secreted from AT, the liver and skeletal muscle play regulatory roles in AT inflammation via endocrine, paracrine, and autocrine pathways. For example, obesity is associated with elevated levels of pro-inflammatory adipokines (e.g., leptin, resistin, chemerin, progranulin, RBP4, WISP1, FABP4, PAI-1, Follistatin-like1, MCP-1, SPARC, SPARCL1, and SAA) and reduced levels of anti-inflammatory adipokines such as adiponectin, omentin, ZAG, SFRP5, CTRP3, vaspin, and IL-10. Moreover, some hepatokines (Fetuin A, DPP4, FGF21, GDF15, and MANF) and myokines (irisin, IL-6, and DEL-1) also play pro- or anti-inflammatory roles in AT inflammation. This review aims to provide an updated understanding of these organokines and their role in AT inflammation and related metabolic abnormalities. It serves to highlight the molecular mechanisms underlying the effects of these organokines and their clinical significance. Insights into the roles and mechanisms of these organokines could provide novel and potential therapeutic targets for obesity-induced inflammation.
Collapse
Affiliation(s)
- Yakun Ren
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
| | - Hao Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xi Lan
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Litao Wu
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaojuan Du
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Dan Gao
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
- *Correspondence: Dan Gao,
| |
Collapse
|
28
|
Moharami S, Nourazarian A, Nikanfar M, Laghousi D, Shademan B, Joodi Khanghah O, Khaki-Khatibi F. Investigation of serum levels of orexin-A, transforming growth factor β, and leptin in patients with multiple sclerosis. J Clin Lab Anal 2021; 36:e24170. [PMID: 34894407 PMCID: PMC8761413 DOI: 10.1002/jcla.24170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
Background Multiple sclerosis (MS) is a chronic inflammatory and autoimmune disease affecting various inflammatory and nutritional parameters. Therefore, this study aimed to investigate the relationship between the Body Mass Index (BMI) of MS patients and the serum levels of leptin, orexin‐A, and Transforming Growth Factor β (TGF‐β). Methods This cross‐sectional study included 25 patients suffering from MS and 40 healthy individuals as the case and control groups, respectively. The serum levels of leptin, orexin‐A, and TGF‐β were assessed in the participants using the Enzyme‐Linked Immunosorbent Assay methods. Moreover, data were analyzed using the descriptive statistical indices, t‐test, chi‐square test, and linear regression test. Results According to our results, the participants’ mean age was 38.04 ± 7.53 and 40.23 ± 5.88 in the case and control groups, respectively. Also, the groups were not significantly different in gender, age, alcohol consumption, and smoking (p > 0.05). It was found that the mean serum levels of orexin‐A and TGF‐β were significantly lower in the MS patients compared to the control group, while the mean serum leptin levels were significantly higher (42.8 vs. 18.9 ng/ml, p < 0.001). Moreover, there was no significant relationship between the BMI of the MS patients and their serum levels of orexin‐A, TGF‐β, and leptin (p > 0.05). Conclusions In conclusion, we found significantly lower levels of orexin‐A and TGF‐β and a significantly higher level of leptin in the MS patients compared to the control group. In addition, there was no significant relationship between the BMI and the serum levels of orexin‐A, TGF‐β, and leptin in MS patients.
Collapse
Affiliation(s)
- Sepideh Moharami
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinant of Health Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Omid Joodi Khanghah
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Khaki-Khatibi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Shinjyo N, Kita K. Infection and Immunometabolism in the Central Nervous System: A Possible Mechanistic Link Between Metabolic Imbalance and Dementia. Front Cell Neurosci 2021; 15:765217. [PMID: 34795562 PMCID: PMC8592913 DOI: 10.3389/fncel.2021.765217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes are frequently associated with dementia, suggesting that the dysregulation of energy metabolism can increase the risk of neurodegeneration and cognitive impairment. In addition, growing evidence suggests the link between infections and brain disorders, including Alzheimer's disease. The immune system and energy metabolism are in an intricate relationship. Infection triggers immune responses, which are accompanied by imbalance in cellular and organismal energy metabolism, while metabolic disorders can lead to immune dysregulation and higher infection susceptibility. In the brain, the activities of brain-resident immune cells, including microglia, are associated with their metabolic signatures, which may be affected by central nervous system (CNS) infection. Conversely, metabolic dysregulation can compromise innate immunity in the brain, leading to enhanced CNS infection susceptibility. Thus, infection and metabolic imbalance can be intertwined to each other in the etiology of brain disorders, including dementia. Insulin and leptin play pivotal roles in the regulation of immunometabolism in the CNS and periphery, and dysfunction of these signaling pathways are associated with cognitive impairment. Meanwhile, infectious complications are often comorbid with diabetes and obesity, which are characterized by insulin resistance and leptin signaling deficiency. Examples include human immunodeficiency virus (HIV) infection and periodontal disease caused by an oral pathogen Porphyromonas gingivalis. This review explores potential interactions between infectious agents and insulin and leptin signaling pathways, and discuss possible mechanisms underlying the relationship between infection, metabolic dysregulation, and brain disorders, particularly focusing on the roles of insulin and leptin.
Collapse
Affiliation(s)
- Noriko Shinjyo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
30
|
Wilburn D, Ismaeel A, Machek S, Fletcher E, Koutakis P. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review. Ageing Res Rev 2021; 71:101463. [PMID: 34534682 DOI: 10.1016/j.arr.2021.101463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
Maintenance of skeletal muscle mass and function is an incredibly nuanced balance of anabolism and catabolism that can become distorted within different pathological conditions. In this paper we intend to discuss the distinct intracellular signaling events that regulate muscle protein atrophy for a given clinical occurrence. Aside from the common outcome of muscle deterioration, several conditions have at least one or more distinct mechanisms that creates unique intracellular environments that facilitate muscle loss. The subtle individuality to each of these given pathologies can provide both researchers and clinicians with specific targets of interest to further identify and increase the efficacy of medical treatments and interventions.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Steven Machek
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
31
|
Marques CG, Dos Santos Quaresma MVL, Nakamoto FP, Magalhães ACO, Lucin GA, Thomatieli-Santos RV. Does Modern Lifestyle Favor Neuroimmunometabolic Changes? A Path to Obesity. Front Nutr 2021; 8:705545. [PMID: 34621773 PMCID: PMC8490681 DOI: 10.3389/fnut.2021.705545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022] Open
Abstract
Factors linked to modern lifestyles, such as physical inactivity, Western diet, and poor sleep quality have been identified as key contributors to the positive energy balance (PEB). PEB rises adipose tissue hypertrophy and dysfunction over the years, affecting cells and tissues that are metabolically critical for energy homeostasis regulation, especially skeletal muscle, hypothalamic-pituitary-adrenal axis, and gut microbiota. It is known that the interaction among lifestyle factors and tissue metabolic dysfunction increases low-grade chronic systemic inflammation, leading to insulin resistance and other adverse metabolic disorders. Although immunometabolic mechanisms are widely discussed in obesity, neuroimmunoendocrine pathways have gained notoriety, as a link to neuroinflammation and central nervous system disorders. Hypothalamic inflammation has been associated with food intake dysregulation, which comprises homeostatic and non-homeostatic mechanisms, promoting eating behavior changes related to the obesity prevalence. The purpose of this review is to provide an updated and integrated perspective on the effects of Western diet, sleep debt, and physical exercise on the regulation of energy homeostasis and low-grade chronic systemic inflammation. Subsequently, we discuss the intersection between systemic inflammation and neuroinflammation and how it can contribute to energy imbalance, favoring obesity. Finally, we propose a model of interactions between systemic inflammation and neuroinflammation, providing new insights into preventive and therapeutic targets for obesity.
Collapse
Affiliation(s)
- Camila Guazzelli Marques
- Programa de Pós-graduação em Psicobiologia, Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Ana Carolina Oumatu Magalhães
- Programa de Pós-graduação em Psicobiologia, Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Nutrição, Centro Universitário São Camilo, São Paulo, Brazil
| | | | - Ronaldo Vagner Thomatieli-Santos
- Programa de Pós-graduação em Psicobiologia, Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| |
Collapse
|
32
|
Leptin Reduces Plin5 m 6A Methylation through FTO to Regulate Lipolysis in Piglets. Int J Mol Sci 2021; 22:ijms221910610. [PMID: 34638947 PMCID: PMC8508756 DOI: 10.3390/ijms221910610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Perilipin5 (Plin5) is a scaffold protein that plays an important role in lipid droplets (LD) formation, but the regulatory effect of leptin on it is unclear. Our study aimed to explore the underlying mechanisms by which leptin reduces the N6-methyladenosine (m6A) methylation of Plin5 through fat mass and obesity associated genes (FTO) and regulates the lipolysis. To this end, 24 Landrace male piglets (7.73 ± 0.38 kg) were randomly sorted into two groups, either a control group (Control, n = 12) or a 1 mg/kg leptin recombinant protein treatment group (Leptin, n = 12). After 4 weeks of treatment, the results showed that leptin treatment group had lower body weight, body fat percentage and blood lipid levels, but the levels of Plin5 mRNA and protein increased significantly in adipose tissue (p < 0.05). Leptin promotes the up-regulation of FTO expression level in vitro, which in turn leads to the decrease of Plin5 M6A methylation (p < 0.05). In in vitro porcine adipocytes, overexpression of FTO aggravated the decrease of M6A methylation and increased the expression of Plin5 protein, while the interference fragment of FTO reversed the decrease of m6A methylation (p < 0.05). Finally, the overexpression in vitro of Plin5 significantly reduces the size of LD, promotes the metabolism of triglycerides and the operation of the mitochondrial respiratory chain, and increases thermogenesis. This study clarified that leptin can regulate Plin5 M6A methylation by promoting FTO to affect the lipid metabolism and energy consumption, providing a theoretical basis for treating diseases related to obesity.
Collapse
|
33
|
Bernardi O, Estienne A, Reverchon M, Bigot Y, Froment P, Dupont J. Adipokines in metabolic and reproductive functions in birds: An overview of current knowns and unknowns. Mol Cell Endocrinol 2021; 534:111370. [PMID: 34171419 DOI: 10.1016/j.mce.2021.111370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
Adipose tissue is now recognized as an active endocrine organ, which synthesizes and secretes numerous peptides factors called adipokines. In mammals, they exert pleiotropic effects affecting energy metabolism but also fertility. In mammals, secretion of adipokines is altered in adipose tissue dysfunctions and may participate to obesity-associated disorders. Thus, adipokines are promising candidates both for novel pharmacological treatment strategies and as diagnostic tools. As compared to mammals, birds exhibit several unique physiological features, which make them an interesting model for comparative studies on endocrine control of metabolism and adiposity and reproductive functions. Some adipokines such as leptin and visfatin may have different roles in avian species as compared to mammals. In addition, some of them found in mammals such as CCL2 (chemokine ligand 2), resistin, omentin and FGF21 (Fibroblast Growth factor 21) have not yet been mapped to the chicken genome model and among its annotated gene models. This brief review aims to summarize data (structure, metabolic and reproductive roles and molecular mechanisms involved) related to main avian adipokines (leptin, adiponectin, visfatin, and chemerin) and we will briefly discuss the adipokines that are still lacking in avian species.
Collapse
Affiliation(s)
- Ophélie Bernardi
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France; SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Yves Bigot
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
34
|
Souza-Almeida G, Palhinha L, Liechocki S, da Silva Pereira JA, Reis PA, Dib PRB, Hottz ED, Gameiro J, Vallochi AL, de Almeida CJ, Castro-Faria-Neto H, Bozza PT, Maya-Monteiro CM. Peripheral leptin signaling persists in innate immune cells during diet-induced obesity. J Leukoc Biol 2021; 109:1131-1138. [PMID: 33070353 DOI: 10.1002/jlb.3ab0820-092rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Leptin is a pleiotropic adipokine that regulates immunometabolism centrally and peripherally. Obese individuals present increased levels of leptin in the blood and develop hypothalamic resistance to this adipokine. Here we investigated whether leptin effects on the periphery are maintained despite the hypothalamic resistance. We previously reported that leptin injection induces in vivo neutrophil migration and peritoneal macrophage activation in lean mice through TNF-α- and CXCL1-dependent mechanisms. However, leptin effects on leukocyte biology during obesity remain unclear. In this study, we investigated the in vivo responsiveness of leukocytes to i.p. injected leptin in mice with diet-induced obesity (DIO). After 14-16 wk, high-sucrose, high-fat diet (HFD)-fed mice showed hyperglycemia, hyperleptinemia, and dyslipidemia compared to normal-sucrose, normal-fat diet (ND). Exogenous leptin did not reduce food intake in DIO mice in contrast to control mice, indicating that DIO mice were centrally resistant to leptin. Regardless of the diet, we found increased levels of TNF-α and CXCL1 in the animals injected with leptin, alongside a pronounced neutrophil migration to the peritoneal cavity and enhanced biogenesis of lipid droplets in peritoneal macrophages. Supporting our in vivo results, data from ex vivo leptin stimulation experiments confirmed hypothalamic resistance in DIO mice, whereas bone marrow cells responded to leptin stimulation through mTOR signaling despite obesity. Altogether, our results show that leukocytes responded equally to leptin in ND- or HFD-fed mice. These results support a role for leptin in the innate immune response also in obesity, contributing to the inflammatory status that leads to the development of metabolic disease.
Collapse
Affiliation(s)
- Glaucia Souza-Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Current address: Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sally Liechocki
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Patrícia Alves Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- Laboratory of Immunology, Infectious Disease and Obesity, Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Jacy Gameiro
- Laboratory of Immunology, Infectious Disease and Obesity, Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Adriana Lima Vallochi
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecília Jacques de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa Menezes Maya-Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Davanzo GG, Castro G, Moraes-Vieira PMM. Immunometabolic regulation of adipose tissue resident immune cells. Curr Opin Pharmacol 2021; 58:44-51. [PMID: 33878567 DOI: 10.1016/j.coph.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
Adipose tissue (AT) performs immunoregulatory functions beyond fat storage. In addition to adipocytes, AT has a diverse spectrum of resident and infiltrating immune cells in health and disease. Immune cells contribute to the homeostatic function of AT by adapting their metabolism in accordance with the microenvironment. However, how the metabolic reprogramming of immune cells affects their inflammatory profile and the subsequent implication for adipocyte function is not completely elucidated. Here, we discuss the available data on metabolic regulatory processes implicated in the control of adipose tissue-resident immune cells and their crosstalk with adipocytes.
Collapse
Affiliation(s)
- Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, SP, Brazil
| | - Gisele Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Pedro Manoel M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, SP, Brazil.
| |
Collapse
|
36
|
Abstract
Leptin is a pluripotent peptide hormone produced mainly by adipocytes, as well as by other tissues such as the stomach. Leptin primarily acts on the central nervous system, particularly the hypothalamus, where this hormone regulates energy homeostasis and neuroendocrine function. Owing to this, disruption of leptin signaling has been linked with numerous pathological conditions. Recent studies have also highlighted the diverse roles of leptin in the digestive system including immune regulation, cell proliferation, tissue healing, and glucose metabolism. Of note, leptin acts differently under physiological and pathological conditions. Here, we review the current knowledge on the functions of leptin and its downstream signaling in the gastrointestinal tract and accessory digestive organs, with an emphasis on its physiological and pathological implications. We also discuss the current therapeutic uses of recombinant leptin, as well as its limitations.
Collapse
Affiliation(s)
- Min-Hyun Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
37
|
Rehman A, Pacher P, Haskó G. Role of Macrophages in the Endocrine System. Trends Endocrinol Metab 2021; 32:238-256. [PMID: 33455863 DOI: 10.1016/j.tem.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
Macrophages are cells of the innate immune system that play myriad roles in the body. Macrophages are known to reside in endocrine glands, and a body of evidence now suggests that these cells interact closely with endocrine cells. Immune-endocrine interactions are important in the development of endocrine glands and their functioning during physiological states, and also become key players in pathophysiological states. Through gene expression profiling, diverse subpopulations of tissue macrophages have been discovered within endocrine organs; this has important implications for disease pathogenesis and potential pharmacotherapy. The molecular basis for the crosstalk between macrophages and endocrine cells is being unraveled, and allows the identification of multiple points for pharmacologic intervention. Macrophages in adipose tissue and pancreatic islets are key players in the process of metaflammation (metabolic inflammation) that underlies the development of insulin resistance, metabolic syndrome, diabetes mellitus, and non-alcoholic fatty liver disease. In the ovary, they play important roles in ovarian folliculogenesis and ovulation, whereas in the male reproductive tract they regulate spermatogenesis through the regulation of steroidogenesis by Leydig cells. We summarize the diverse roles played by macrophages in the endocrine system and identify potential targets for pharmacotherapy in endocrine disorders.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA.
| |
Collapse
|
38
|
Liang W, Zhou K, Jian P, Chang Z, Zhang Q, Liu Y, Xiao S, Zhang L. Ginsenosides Improve Nonalcoholic Fatty Liver Disease via Integrated Regulation of Gut Microbiota, Inflammation and Energy Homeostasis. Front Pharmacol 2021; 12:622841. [PMID: 33679403 PMCID: PMC7928318 DOI: 10.3389/fphar.2021.622841] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Ginseng, the root and rhizome of Panax ginseng C. A. Mey., is a famous herbal medicine, and its major ginsenosides exert beneficial effects on nonalcoholic fatty liver disease (NAFLD). Due to the multicomponent and multitarget features of ginsenosides, their detailed mechanisms remain unclear. This study aimed to explore the role of ginsenosides on NAFLD and the potential mechanisms mediated by the gut microbiota and related molecular processes. C57BL/6J mice were fed a high-fat diet (HFD) supplemented or not supplemented with ginsenoside extract (GE) for 12 weeks. A strategy that integrates bacterial gene sequencing, serum pharmacochemistry and network pharmacology was applied. The results showed that GE significantly alleviated HFD-induced NAFLD symptoms in a dose-dependent manner. Furthermore, GE treatment modulated the HFD-induced imbalance in the gut microbiota and alleviated dysbiosis-mediated gut leakage and metabolic endotoxemia. Additionally, 20 components were identified in the mouse plasma after the oral administration of GE, and they interacted with 82 NAFLD-related targets. A network analysis revealed that anti-inflammatory effects and regulation of the metabolic balance might be responsible for the effects of GE on NAFLD. A validation experiment was then conducted, and the results suggested that GE suppressed NF-κB/IκB signaling activation and decreased the release and mRNA levels of proinflammatory factors (TNF-α, IL-1β and IL-6). Additionally, GE promoted hepatic lipolytic genes (CPT-1a), inhibited lipogenic genes (SREBP-1c, FAS, ACC-1) and improved leptin resistance. These findings imply that the benefits of GE are involved in modulating the gut microbiota, enhancing the gut barrier function, restoring the energy balance, and alleviating metabolic inflammation. Moreover, GE might serve as a potential agent for the prevention of NAFLD through the integration of prebiotic, anti-inflammatory and energy-regulatory effects.
Collapse
Affiliation(s)
- Wenyi Liang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Jian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihao Chang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiunan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqi Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanzhen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Sun AR, Udduttula A, Li J, Liu Y, Ren PG, Zhang P. Cartilage tissue engineering for obesity-induced osteoarthritis: Physiology, challenges, and future prospects. J Orthop Translat 2021; 26:3-15. [PMID: 33437618 PMCID: PMC7773977 DOI: 10.1016/j.jot.2020.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Osteoarthritis (OA) is a multifactorial joint disease with pathological changes that affect whole joint tissue. Obesity is acknowledged as the most influential risk factor for both the initiation and progression of OA in weight-bearing and non-weight-bearing joints. Obesity-induced OA is a newly defined phenotypic group in which chronic low-grade inflammation has a central role. Aside from persistent chronic inflammation, abnormal mechanical loading due to increased body weight on weight-bearing joints is accountable for the initiation and progression of obesity-induced OA. The current therapeutic approaches for OA are still evolving. Tissue-engineering-based strategy for cartilage regeneration is one of the most promising treatment breakthroughs in recent years. However, patients with obesity-induced OA are often excluded from cartilage repair attempts due to the abnormal mechanical demands, altered biomechanical and biochemical activities of cells, persistent chronic inflammation, and other obesity-associated factors. With the alarming increase in the number of obese populations globally, the need for an innovative therapeutic approach that could effectively repair and restore the damaged synovial joints is of significant importance for this sub-population of patients. In this review, we discuss the involvement of the systemic and localized inflammatory response in obesity-induced OA and the impact of altered mechanical loading on pathological changes in the synovial joint. Moreover, we examine the current strategies in cartilage tissue engineering and address the critical challenges of cell-based therapies for OA. Besides, we provide examples of innovative ways and potential strategies to overcome the obstacles in the treatment of obesity-induced OA. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Altogether, this review delivers insight into obesity-induced OA and offers future research direction on the creation of tissue engineering-based therapies for obesity-induced OA.
Collapse
Affiliation(s)
- Antonia RuJia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Anjaneyulu Udduttula
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Yanzhi Liu
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
40
|
Hsieh CC, Wang YF, Lin PY, Peng SH, Chou MJ. Seed peptide lunasin ameliorates obesity-induced inflammation and regulates immune responses in C57BL/6J mice fed high-fat diet. Food Chem Toxicol 2020; 147:111908. [PMID: 33290807 DOI: 10.1016/j.fct.2020.111908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 11/15/2022]
Abstract
Obesity causes immune cells to infiltrate into adipose tissues and secrete proinflammatory mediators, promoting the development of chronic diseases. The seed peptide lunasin has been reported to have several bioactivities. We aimed to investigate the immunomodulatory properties of lunasin in obese models. Female and male C57BL/6J mice were divided into three groups: low-fat diet (LF), high-fat diet (HF), and HF with an intraperitoneal injection of lunasin (HFL). In females, lunasin decreased the levels of monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, and tumor necrosis factor (TNF-α) produced in peritoneal macrophages, indicating a decrease in F4/80+ macrophage infiltration, especially the CD11c + M1 phenotype. Serum leptin and tissue-oxidized lipid malondialdehyde levels were decreased in the HFL group. In males, lunasin normalized the obesity-induced increase in spleen size and splenocyte numbers. Moreover, lunasin inhibited IL-6 secretion while promoting interferon gamma (IFN-γ) and IL-2 production in the splenocytes. In vitro, lunasin increased EL-4 T-cell proliferation and IL-2 production in activated T cells under obese conditions. Thus, lunasin is a potential natural compound that promotes immunomodulation in both female and male obese mice in a sex-dependent manner. Furthermore, lunasin mediates the anti-inflammatory response and enhances the T helper type 1 cell response to obesity-related immune disorders.
Collapse
Affiliation(s)
- Chia-Chien Hsieh
- Undergraduate and Graduate Programs of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, 10610, Taiwan.
| | - Yen-Fang Wang
- Undergraduate and Graduate Programs of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, 10610, Taiwan.
| | - Pin-Yu Lin
- Undergraduate and Graduate Programs of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, 10610, Taiwan.
| | - Shih-Han Peng
- Undergraduate and Graduate Programs of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, 10610, Taiwan.
| | - Mei-Jia Chou
- Undergraduate and Graduate Programs of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, 10610, Taiwan.
| |
Collapse
|
41
|
Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications. J Nutr Biochem 2020; 89:108561. [PMID: 33249183 DOI: 10.1016/j.jnutbio.2020.108561] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 09/11/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
In obesity, an elevated accumulation and dysregulation of adipose tissue, due to an imbalance between energy intake and energy expenditure, usually coexists with the loss of responsiveness to leptin in central nervous system, and subsequently with hyperleptinemia. Leptin, a peptide hormone mainly produced by white adipose tissue, regulates energy homeostasis by stimulating energy expenditure and inhibiting food intake. Human obesity is characterized by increased plasma leptin levels, which have been related with different obesity-associated complications, such as chronic inflammatory state (risk factor for diabetes, cardiovascular and autoimmune diseases), as well as infertility and different types of cancer. Besides, leptin is also produced by placenta, and high leptin levels during pregnancy may be related with some pathological conditions such as gestational diabetes. This review focuses on the current insights and emerging concepts on potentially valuable nutrients and food components that may modulate leptin metabolism. Notably, several dietary food components, such as phenols, peptides, and vitamins, are able to decrease inflammation and improve leptin sensitivity by up- or down-regulation of leptin signaling molecules. On the other hand, some food components, such as saturated fatty acids may worsen chronic inflammation increasing the risk for pathological complications. Future research into nutritional mechanisms that restore leptin metabolism and signals of energy homeostasis may inspire new treatment options for obesity-related disorders.
Collapse
|
42
|
Retinol binding protein 4 primes the NLRP3 inflammasome by signaling through Toll-like receptors 2 and 4. Proc Natl Acad Sci U S A 2020; 117:31309-31318. [PMID: 33214151 DOI: 10.1073/pnas.2013877117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue (AT) inflammation contributes to systemic insulin resistance. In obesity and type 2 diabetes (T2D), retinol binding protein 4 (RBP4), the major retinol carrier in serum, is elevated in AT and has proinflammatory effects which are mediated partially through Toll-like receptor 4 (TLR4). We now show that RBP4 primes the NLRP3 inflammasome for interleukin-1β (IL1β) release, in a glucose-dependent manner, through the TLR4/MD2 receptor complex and TLR2. This impairs insulin signaling in adipocytes. IL1β is elevated in perigonadal white AT (PGWAT) of chow-fed RBP4-overexpressing mice and in serum and PGWAT of high-fat diet-fed RBP4-overexpressing mice vs. wild-type mice. Holo- or apo-RBP4 injection in wild-type mice causes insulin resistance and elevates PGWAT inflammatory markers, including IL1β. TLR4 inhibition in RBP4-overexpressing mice reduces PGWAT inflammation, including IL1β levels and improves insulin sensitivity. Thus, the proinflammatory effects of RBP4 require NLRP3-inflammasome priming. These studies may provide approaches to reduce AT inflammation and insulin resistance in obesity and diabetes.
Collapse
|
43
|
Biomimetic 3D Models for Investigating the Role of Monocytes and Macrophages in Atherosclerosis. Bioengineering (Basel) 2020; 7:bioengineering7030113. [PMID: 32947976 PMCID: PMC7552756 DOI: 10.3390/bioengineering7030113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis, the inflammation of artery walls due to the accumulation of lipids, is the most common underlying cause for cardiovascular diseases. Monocytes and macrophages are major cells that contribute to the initiation and progression of atherosclerotic plaques. During this process, an accumulation of LDL-laden macrophages (foam cells) and an alteration in the extracellular matrix (ECM) organization leads to a local vessel stiffening. Current in vitro models are carried out onto two-dimensional tissue culture plastic and cannot replicate the relevant microenvironments. To bridge the gap between in vitro and in vivo conditions, we utilized three-dimensional (3D) collagen matrices that allowed us to mimic the ECM stiffening during atherosclerosis by increasing collagen density. First, human monocytic THP-1 cells were embedded into 3D collagen matrices reconstituted at low and high density. Cells were subsequently differentiated into uncommitted macrophages (M0) and further activated into pro- (M1) and anti-inflammatory (M2) phenotypes. In order to mimic atherosclerotic conditions, cells were cultured in the presence of oxidized LDL (oxLDL) and analyzed in terms of oxLDL uptake capability and relevant receptors along with their cytokine secretomes. Although oxLDL uptake and larger lipid size could be observed in macrophages in a matrix dependent manner, monocytes showed higher numbers of oxLDL uptake cells. By analyzing major oxLDL uptake receptors, both monocytes and macrophages expressed lectin-like oxidized low-density lipoprotein receptor-1 (LOX1), while enhanced expression of scavenger receptor CD36 could be observed only in M2. Notably, by analyzing the secretome of macrophages exposed to oxLDL, we demonstrated that the cells could, in fact, secrete adipokines and growth factors in distinct patterns. Besides, oxLDL appeared to up-regulate MHCII expression in all cells, while an up-regulation of CD68, a pan-macrophage marker, was found only in monocytes, suggesting a possible differentiation of monocytes into a pro-inflammatory macrophage. Overall, our work demonstrated that collagen density in the plaque could be one of the major factors driving atherosclerotic progression via modulation of monocyte and macrophages behaviors.
Collapse
|
44
|
Teper Y, Eibl G. Pancreatic Macrophages: Critical Players in Obesity-Promoted Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12071946. [PMID: 32709161 PMCID: PMC7409049 DOI: 10.3390/cancers12071946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a known risk factor for the development of pancreatic cancer, one of the deadliest types of malignancies. In recent years it has become clear that the pancreatic microenvironment is critically involved and a contributing factor in accelerating pancreatic neoplasia. In this context obesity-associated chronic inflammation plays an important role. Among several immune cells, macrophages have been shown to contribute to obesity-induced tissue inflammation. This review article summarizes the current knowledge about the role of pancreatic macrophages in early pancreatic cancer development. It describes the heterogenous origin and mixture of pancreatic macrophages, their role in pancreatic endocrine and exocrine pathology, and the impact of obesity on islet and stromal macrophages. A model is postulated, by which during obesity monocytes are recruited into the pancreas, where they are polarized into pro-inflammatory macrophages that drive early pancreatic neoplasia. This occurs in the presence of local inflammatory, metabolic, and endocrine signals. A stronger appreciation and more detailed knowledge about the role of macrophages in early pancreatic cancer development will lead to innovative preventive or interceptive strategies.
Collapse
|
45
|
Role of the Nox4/AMPK/mTOR signaling axe in adipose inflammation-induced kidney injury. Clin Sci (Lond) 2020; 134:403-417. [PMID: 32095833 DOI: 10.1042/cs20190584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022]
Abstract
Diabetic kidney disease is one of the most serious complications of diabetes worldwide and is the leading cause of end-stage renal disease. While research has primarily focused on hyperglycemia as a key player in the pathophysiology of diabetic complications, recently, increasing evidence have underlined the role of adipose inflammation in modulating the development and/or progression of diabetic kidney disease. This review focuses on how adipose inflammation contribute to diabetic kidney disease. Furthermore, it discusses in detail the underlying mechanisms of adipose inflammation, including pro-inflammatory cytokines, oxidative stress, and AMPK/mTOR signaling pathway and critically describes their role in diabetic kidney disease. This in-depth understanding of adipose inflammation and its impact on diabetic kidney disease highlights the need for novel interventions in the treatment of diabetic complications.
Collapse
|
46
|
Liddle DM, Kavanagh ME, Wright AJ, Robinson LE. Apple Flavonols Mitigate Adipocyte Inflammation and Promote Angiogenic Factors in LPS- and Cobalt Chloride-Stimulated Adipocytes, in Part by a Peroxisome Proliferator-Activated Receptor-γ-Dependent Mechanism. Nutrients 2020; 12:nu12051386. [PMID: 32408695 PMCID: PMC7284758 DOI: 10.3390/nu12051386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue (AT) expansion induces local hypoxia, a key contributor to the chronic low-grade inflammation that drives obesity-associated disease. Apple flavonols phloretin (PT) and phlorizin (PZ) are suggested anti-inflammatory molecules but their effectiveness in obese AT is inadequately understood. Using in vitro models designed to reproduce the obese AT microenvironment, 3T3-L1 adipocytes were cultured for 24 h with PT or PZ (100 μM) concurrent with the inflammatory stimulus lipopolysaccharide (LPS; 10 ng/mL) and/or the hypoxia mimetic cobalt chloride (CoCl2; 100 μM). Within each condition, PT was more potent than PZ and its effects were partially mediated by peroxisome proliferator-activated receptor (PPAR)-γ (p < 0.05), as tested using the PPAR-γ antagonist bisphenol A diglycidyl ether (BADGE). In LPS-, CoCl2-, or LPS + CoCl2-stimulated adipocytes, PT reduced mRNA expression and/or secreted protein levels of inflammatory and macrophage chemotactic adipokines, and increased that of anti-inflammatory and angiogenic adipokines, which was consistent with reduced mRNA expression of M1 polarization markers and increased M2 markers in RAW 264.7 macrophages cultured in media collected from LPS + CoCl2-simulated adipocytes (p < 0.05). Further, within LPS + CoCl2-stimulated adipocytes, PT reduced reactive oxygen species accumulation, nuclear factor-κB activation, and apoptotic protein expression (p < 0.05). Overall, apple flavonols attenuate critical aspects of the obese AT phenotype.
Collapse
|
47
|
Oishi Y, Manabe I. Organ System Crosstalk in Cardiometabolic Disease in the Age of Multimorbidity. Front Cardiovasc Med 2020; 7:64. [PMID: 32411724 PMCID: PMC7198858 DOI: 10.3389/fcvm.2020.00064] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
The close association among cardiovascular, metabolic, and kidney diseases suggests a common pathological basis and significant interaction among these diseases. Metabolic syndrome and cardiorenal syndrome are two examples that exemplify the interlinked development of disease or dysfunction in two or more organs. Recent studies have been sorting out the mechanisms responsible for the crosstalk among the organs comprising the cardiovascular, metabolic, and renal systems, including heart-kidney and adipose-liver signaling, among many others. However, it is also becoming clear that this crosstalk is not limited to just pairs of organs, and in addition to organ-organ crosstalk, there are also organ-system and organ-body interactions. For instance, heart failure broadly impacts various organs and systems, including the kidney, liver, lung, and nervous system. Conversely, systemic dysregulation of metabolism, immunity, and nervous system activity greatly affects heart failure development and prognosis. This is particularly noteworthy, as more and more patients present with two or more coexisting chronic diseases or conditions (multimorbidity) due in part to the aging of society. Advances in treatment also contribute to the increase in multimorbidity, as exemplified by cardiovascular disease in cancer survivors. To understand the mechanisms underlying the increasing burden of multimorbidity, it is vital to elucidate the multilevel crosstalk and communication within the body at the levels of organ systems, tissues, and cells. In this article, we focus on chronic inflammation as a key common pathological basis of cardiovascular and metabolic diseases, and discuss emerging mechanisms that drive chronic inflammation in the context of multimorbidity.
Collapse
Affiliation(s)
- Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
48
|
Efficacy of continuous positive airway pressure on subcutaneous adipose tissue in patients with obstructive sleep apnea: a meta-analysis of randomized controlled trials. Sleep Breath 2020; 25:1-8. [PMID: 32333260 DOI: 10.1007/s11325-020-02078-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE It remains inconclusive whether continuous positive airway pressure (CPAP) therapy can significantly reduce subcutaneous adipose tissue (SAT) in patients with obstructive sleep apnea (OSA). This meta-analysis of randomized controlled trials (RCTs) aimed to evaluate the impact of CPAP treatment on SAT in patients with OSA. METHODS We searched Pubmed, Cochrane, Web of Science, and Embase for RCTs, which investigated the effectiveness of CPAP treatment in reducing SAT among patients with OSA. Following the PRISMA guidelines, we extracted information on the study and patient characteristics, and pre- and post-CPAP measures of SAT. We then calculated the overall effects using the standardized mean difference (SMD) with a 95% confidence interval (CI). RESULTS A total of 5 RCTs (comprising 153 patients) met inclusion criteria for the meta-analysis. We found that the SAT did not change before and after CPAP treatment in patients with OSA (SMD = - 0.02, 95% CI - 0.25 to 0.2, z = 0.19, p = 0.85). Subgroup analyses indicated that the outcome was not affected by age, CPAP therapy duration, baseline body mass index, and measure utilized. CONCLUSION This meta-analysis of RCTs suggests that CPAP therapy does not significantly decrease the level of SAT among patients with OSA. Further large-scale, and high-quality randomized controlled trials are needed to better address this issue.
Collapse
|
49
|
Figueroa-Vega N, Marín-Aragón CI, López-Aguilar I, Ibarra-Reynoso L, Pérez-Luque E, Malacara JM. Analysis of the percentages of monocyte subsets and ILC2s, their relationships with metabolic variables and response to hypocaloric restriction in obesity. PLoS One 2020; 15:e0228637. [PMID: 32074122 PMCID: PMC7029876 DOI: 10.1371/journal.pone.0228637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/21/2020] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Obesity results from excess energy intake over expenditure and is characterized by chronic low-grade inflammation involving circulating monocytes (Mo) and group 2 innate lymphoid cells (ILC2s) imbalance. We analyzed circulating Mo subsets and ILC2s percentages and β2-adrenergic receptor (β2AR) expression in lean and obese subjects, and the possible effect of hypocaloric restriction on these innate immune cells. METHODS In 139 individuals aged 45 to 57 years, classified in 74 lean individuals (>18.9kg/m2 BMI <24.9kg/m2) and 65 with obesity (n = 65), we collected fasting blood samples to detect Mo subsets, ILC2s number, and β2AR expression by flow cytometry. Lipids, insulin, leptin, and acylated-ghrelin concentrations were quantified. Resting energy expenditure (REE) was estimated by indirect calorimetry. These measurements were repeated in obese subjects after 7-weeks of hypocaloric restriction. RESULTS Non-classical monocytes (NCM) and β2AR expression on intermediate Mo (IM) were increased in obese individuals (p<0.001, in both cases), whereas the percent of ILC2s was decreased (p<0.0001). Stepwise regression analysis showed significantly negative associations of ILC2s with caloric intake, β2AR expression on IM with REE, but a positive relationship between NCM and HOMA-IR. Caloric restriction allowed a significant diminution of NCM and the β2AR expression on IM, as well as, an increase in the percent of classical Mo (CM), and ILC2s. ΔREE was related to ΔCD16+/CD16- ratio. CONCLUSIONS These findings show that in obesity occur changes in NCM, ILC2s and β2AR expression, which contribute to the low-grade inflammation linked to obesity and might revert with caloric restriction.
Collapse
Affiliation(s)
- Nicté Figueroa-Vega
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| | | | - Itzel López-Aguilar
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| | - Lorena Ibarra-Reynoso
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| | - Elva Pérez-Luque
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| | - Juan Manuel Malacara
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| |
Collapse
|
50
|
Dickson BM, Roelofs AJ, Rochford JJ, Wilson HM, De Bari C. The burden of metabolic syndrome on osteoarthritic joints. Arthritis Res Ther 2019; 21:289. [PMID: 31842972 PMCID: PMC6915944 DOI: 10.1186/s13075-019-2081-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background The prevalence of osteoarthritis (OA) increases with obesity, with up to two thirds of the elderly obese population affected by OA of the knee. The metabolic syndrome (MetS), frequently associated with central obesity and characterised by elevated waist circumference, raised fasting plasma glucose concentration, raised triglycerides, reduced high-density lipoproteins, and/or hypertension, is implicated in the pathogenesis of OA. This narrative review discusses the mechanisms involved in the influence of MetS on OA, with a focus on the effects on macrophages and chondrocytes. Main text A skewing of macrophages towards a pro-inflammatory M1 phenotype within synovial and adipose tissues is thought to play a role in OA pathogenesis. The metabolic perturbations typical of MetS are important drivers of pro-inflammatory macrophage polarisation and activity. This is mediated via alterations in the levels and activities of the cellular nutrient sensors 5′ adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin complex 1 (mTORC1), intracellular accumulation of metabolic intermediates such as succinate and citrate, and increases in free fatty acids (FFAs) and hyperglycaemia-induced advanced glycation end-products (AGEs) that bind to receptors on the macrophage surface. Altered levels of adipokines, including leptin and adiponectin, further influence macrophage polarisation. The metabolic alterations in MetS also affect the cartilage through direct effects on chondrocytes by stimulating the production of pro-inflammatory and catabolic factors and possibly by suppressing autophagy and promoting cellular senescence. Conclusions The influence of MetS on OA pathogenesis involves a wide range of metabolic alterations that directly affect macrophages and chondrocytes. The relative burden of intra-articular versus systemic adipose tissue in the MetS-associated OA remains to be clarified. Understanding how altered metabolism interacts with joints affected by OA is crucial for the development of further strategies for treating this debilitating condition, such as supplementing existing therapies with metformin and utilising ω-3 fatty acid derivatives to restore imbalances in ω-3 and ω-6 fatty acids.
Collapse
Affiliation(s)
- Bruce M Dickson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Anke J Roelofs
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|