1
|
Fujisawa M, Onodera T, Kuroda D, Kewcharoenwong C, Sasaki M, Itakura Y, Yumoto K, Nithichanon A, Ito N, Takeoka S, Suzuki T, Sawa H, Lertmemongkolchai G, Takahashi Y. Molecular convergence of neutralizing antibodies in human revealed by repeated rabies vaccination. NPJ Vaccines 2025; 10:39. [PMID: 39988605 PMCID: PMC11847937 DOI: 10.1038/s41541-025-01073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Rabies vaccines require repeated immunization to robustly elicit neutralizing antibodies that prevent fatal diseases. Here, we analyzed rabies glycoprotein antibody repertoires at both polyclonal and monoclonal levels following repeated vaccination. Booster vaccination dramatically elevated the neutralizing activity of recalled antibodies, primarily targeting an immunodominant site III epitope with hydrophilic and rugged structures. Strikingly, the majority of site III-directed antibodies in the recall response used a convergent VH gene (IGHV3-30), and they exhibited more hydrophilic and shorter paratopes than non-site III antibodies, providing physicochemical advantages for binding to site III. Additionally, several amino acids on heavy chain CDR3 were identified as key sites for acquiring an ultrapotent neutralizing activity through site III binding. Our in-depth analysis of antibody repertoires revealed the molecular signatures of neutralizing antibodies generated by repeated rabies vaccination, possibly as a result of adaptive convergence.
Collapse
Affiliation(s)
- Mizuki Fujisawa
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Chidchamai Kewcharoenwong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Ching Mai, Thailand
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control (IIZC), Hokkaido University, Hokkaido, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Kohei Yumoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Arnone Nithichanon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
| | - Ganjana Lertmemongkolchai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Ching Mai, Thailand
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan.
| |
Collapse
|
2
|
Zhu Z, Ashrafian H, Tabrizi NM, Matas E, Girard L, Ma H, Nice EC. Antibody numbering schemes: advances, comparisons and tools for antibody engineering. Protein Eng Des Sel 2025; 38:gzaf005. [PMID: 40169149 PMCID: PMC11997657 DOI: 10.1093/protein/gzaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/10/2025] [Accepted: 03/31/2025] [Indexed: 04/03/2025] Open
Abstract
The evolution of antibody engineering has significantly enhanced the development of antibody-based therapeutics, enabling the creation of novel antibody formats tailored for specific applications. Since the introduction of the Kabat numbering scheme in 1977, various schemes have been developed and modified, forming the foundation for multiple antibody engineering projects. The tools associated with these schemes further facilitate the engineering process. However, discrepancies among current numbering schemes can lead to confusion. This study examines various numbering schemes and related tools, providing new insights into antibody variable domains. Improved understanding of antibody numbering and related tools holds significant potential for more precise and efficient antibody design, thereby advancing antibody-based therapeutics and diagnostics.
Collapse
Affiliation(s)
- Zirui Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
- Chemistry Graduate Program, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Hossein Ashrafian
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
- Chemistry Graduate Program, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Navid Mohammadian Tabrizi
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
- Chemistry Graduate Program, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Emily Matas
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Louisa Girard
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Haowei Ma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106, United States of America
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
3
|
Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Exploiting the Fc base of IgG antibodies to create functional nanoparticle conjugates. Sci Rep 2024; 14:14832. [PMID: 38937649 PMCID: PMC11211340 DOI: 10.1038/s41598-024-65822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
The structures of the Fc base of various IgG antibodies have been examined with a view to understanding how this region can be used to conjugate IgG to nanoparticles. The base structure is found to be largely consistent across a range of species and subtypes, comprising a hydrophobic region surrounded by hydrophilic residues, some of which are charged at physiological conditions. In addition, atomistic Molecular Dynamics simulations were performed to explore how model nanoparticles interact with the base using neutral and negatively charged gold nanoparticles. Both types of nanoparticle interacted readily with the base, leading to an adaptation of the antibody base surface to enhance the interactions. Furthermore, these interactions left the rest of the domain at the base of the Fc region structurally intact. This implies that coupling nanoparticles to the base of an IgG molecule is both feasible and desirable, since it leaves the antibody free to interact with its surroundings so that antigen-binding functionality can be retained. These results will therefore help guide future attempts to develop new nanotechnologies that exploit the unique properties of both antibodies and nanoparticles.
Collapse
Affiliation(s)
- Mohammed M Al Qaraghuli
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow, UK.
- SiMologics Ltd. The Enterprise Hub, Level 6 Graham Hills Building, 50 Richmond Street, Glasgow, G1 1XP, UK.
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK.
| | - Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
- Archie-West, Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Paul A Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| |
Collapse
|
4
|
LariMojarad I, Mousavi M, Moeini Manesh MM, Bouloorchi Tabalvandani M, Badieirostami M. Electric Field-Assisted Molecularly Imprinted Polymer-Modified QCM Sensor for Enhanced Detection of Immunoglobulin. ACS OMEGA 2024; 9:16026-16034. [PMID: 38617614 PMCID: PMC11007686 DOI: 10.1021/acsomega.3c09511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/24/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
In this study, an electric-field-assisted molecularly imprinted polymer (EFAMIP) as an enhanced form of MIP was developed to improve the MIP-modified quartz crystal microbalance (QCM) biosensors. While exerting a vertical electric field, polymerization of methacrylic acid in the presence of immunoglobulin G (IgG) as the template was initiated, and later, after the template removal process, the EFAMIPs were obtained. The polymer surface characterization was conducted by using a scanning electron microscope. The impact of electric field direction on IgG binding sites, forming either EFAMIP-Fab or EFAMIP-Fc, was assessed. Next, the static measurement results in liquid for EFAMIP-modified QCM and MIP-modified QCM were compared. While encompassing IgG, EFAMIP-modified QCMs exhibited up to a 113.5% higher frequency shift than typical MIP in time-limited detection. The final frequency shift of EFAMIP, which determines the detection limit of IgG, was improved up to 12.5% compared to typical MIP. Moreover, the EFAMIP-Fab performance was promising for the selective detection of IgG in a solution containing different types of immunoglobulins.
Collapse
Affiliation(s)
- Iliya LariMojarad
- MEMS Lab, School of Electrical
and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - MirBehrad Mousavi
- MEMS Lab, School of Electrical
and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - Mohammad Mahdi Moeini Manesh
- MEMS Lab, School of Electrical
and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | | | - Majid Badieirostami
- MEMS Lab, School of Electrical
and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| |
Collapse
|
5
|
Zheng P, Liao B, Yang J, Cheng H, Cheng ZJ, Huang H, Luo W, Sun Y, Zhu Q, Deng Y, Yang L, Zhou Y, Wu W, Wu S, Cai W, Li Y, Mo X, Tan X, Li L, Ma H, Sun B. Utilizing Protein-Peptide Hybrid Microarray for Time-Resolved Diagnosis and Prognosis of COVID-19. Microorganisms 2023; 11:2436. [PMID: 37894092 PMCID: PMC10609375 DOI: 10.3390/microorganisms11102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The COVID-19 pandemic has highlighted the urgent need for accurate, rapid, and cost-effective diagnostic methods to identify and track the disease. Traditional diagnostic methods, such as PCR and serological assays, have limitations in terms of sensitivity, specificity, and timeliness. To investigate the potential of using protein-peptide hybrid microarray (PPHM) technology to track the dynamic changes of antibodies in the serum of COVID-19 patients and evaluate the prognosis of patients over time. A discovery cohort of 20 patients with COVID-19 was assembled, and PPHM technology was used to track the dynamic changes of antibodies in the serum of these patients. The results were analyzed to classify the patients into different disease severity groups, and to predict the disease progression and prognosis of the patients. PPHM technology was found to be highly effective in detecting the dynamic changes of antibodies in the serum of COVID-19 patients. Four polypeptide antibodies were found to be particularly useful for reflecting the actual status of the patient's recovery process and for accurately predicting the disease progression and prognosis of the patients. The findings of this study emphasize the multi-dimensional space of peptides to analyze the high-volume signals in the serum samples of COVID-19 patients and monitor the prognosis of patients over time. PPHM technology has the potential to be a powerful tool for tracking the dynamic changes of antibodies in the serum of COVID-19 patients and for improving the diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Baolin Liao
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Jiao Yang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
| | - Hu Cheng
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Zhangkai J. Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Huimin Huang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Wenting Luo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Yiyue Sun
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences, Guangzhou 510530, China;
| | - Yi Deng
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Lan Yang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
| | - Yuxi Zhou
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
| | - Wenya Wu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Shanhui Wu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Weiping Cai
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Yueping Li
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Xiaoneng Mo
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Xinghua Tan
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Linghua Li
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| |
Collapse
|
6
|
Wang W, Bi Z, Liu Y, Xia X, Qian J, Tan Y, Zhu Y, Song S, Yan L. Development of a monoclonal antibody recognizing novel linear neutralizing epitope on H protein of canine distemper virus vaccine strains (America-1 genotype). Int J Biol Macromol 2023; 246:125584. [PMID: 37391002 DOI: 10.1016/j.ijbiomac.2023.125584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Canine distemper virus (CDV) is an economically important virus responsible for canine distemper (CD), a highly contagious disease that afflicts various animal species worldwide. The hemagglutinin (H) protein is the major neutralizing target of virus. Therefore, it is often considered as immunogen to prepare neutralizing antibodies. The accurate identification of neutralizing epitope will provide important antigenic information and extend the knowledge of mechanisms of virus neutralization. In this study, we generated a neutralizing monoclonal antibody (mAb) 4C6 against CDV H protein, and defined the minimal linear epitope 238DIEREFDT245, which was highly conserved in America-1 genotype of CDV strains (vaccines). The mAb 4C6 could not react with a CDV strain that had two substitutions of D238Y and R241G in the epitope, which appeared in most CDV strains of the other genotypes. Besides, a few different amino acid mutations in the epitope were also included. Collectively, the epitope 238DIEREFDT245 was variable in the other genotypes of CDV strains. The epitope 238DIEREFDT245 was exposed to the surface of CDV H protein, showing good antigenicity. These data will provide insights into structure, function and antigenicity of H protein and lay the foundation for the development of diagnostic technologies and vaccine design for CDV.
Collapse
Affiliation(s)
- Wenjie Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenwei Bi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu 225300, China.
| | - Yakun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Xingxia Xia
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Yeping Tan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Yumei Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
7
|
Zhang Y, Li Q, Luo L, Duan C, Shen J, Wang Z. Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnol Adv 2023; 65:108143. [PMID: 37023966 DOI: 10.1016/j.biotechadv.2023.108143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Although the efficacy and commercial success of vaccines and therapeutic antibodies have been tremendous, designing and discovering new drug candidates remains a labor-, time- and cost-intensive endeavor with high risks. The main challenges of vaccine development are inducing a strong immune response in broad populations and providing effective prevention against a group of highly variable pathogens. Meanwhile, antibody discovery faces several great obstacles, especially the blindness in antibody screening and the unpredictability of the developability and druggability of antibody drugs. These challenges are largely due to poorly understanding of germline antibodies and the antibody responses to pathogen invasions. Thanks to the recent developments in high-throughput sequencing and structural biology, we have gained insight into the germline immunoglobulin (Ig) genes and germline antibodies and then the germline antibody features associated with antigens and disease manifestation. In this review, we firstly outline the broad associations between germline antibodies and antigens. Moreover, we comprehensively review the recent applications of antigen-specific germline antibody features, physicochemical properties-associated germline antibody features, and disease manifestation-associated germline antibody features on vaccine development, antibody discovery, antibody optimization, and disease diagnosis. Lastly, we discuss the bottlenecks and perspectives of current and potential applications of germline antibody features in the biotechnology field.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
8
|
Boron VA, Martin ACR. abYpap: improvements to the prediction of antibody VH/VL packing using gradient boosted regression. Protein Eng Des Sel 2023; 36:gzad021. [PMID: 38015984 PMCID: PMC10719492 DOI: 10.1093/protein/gzad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
The Fv region of the antibody (comprising VH and VL domains) is the area responsible for target binding and thus the antibody's specificity. The orientation, or packing, of these two domains relative to each other influences the topography of the Fv region, and therefore can influence the antibody's binding affinity. We present abYpap, an improved method for predicting the packing angle between the VH and VL domains. With the large data set now available, we were able to expand greatly the number of features that could be used compared with our previous work. The machine-learning model was tuned for improved performance using 37 selected residues (previously 13) and also by including the lengths of the most variable 'complementarity determining regions' (CDR-L1, CDR-L2 and CDR-H3). Our method shows large improvements from the previous version, and also against other modeling approaches, when predicting the packing angle.
Collapse
Affiliation(s)
- Veronica A Boron
- Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew C R Martin
- Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
9
|
Abstract
The immune systems protect vertebrates from foreign molecules or antigens, and antibodies are important mediators of this system. The sequences and structural features of antibodies vary depending on species. Many of antibodies from vertebrates, including camelids, have both heavy and light chain variable domains, but camelids also have antibodies that lack the light chains. In antibodies that lack light chains, the C-terminal variable region is called the VHH domain. Antibodies recognize antigens through six complementarity-determining regions (CDRs). The third CDR of the heavy chain (CDR-H3) is at the center of the antigen-binding site and is diverse in terms of sequence and structure. Due to the importance of antibodies in basic science as well as in medical applications, there have been many studies of CDR-H3s of antibodies that possess both light and heavy chains. However, nature of CDR-H3s of single-domain VHH antibodies is less well studied. In this chapter, we describe current knowledge of sequence-structure-function correlations of single-domain VHH antibodies with emphasis on CDR-H3. Based on the 370 crystal structures in the Protein Data Bank, we also attempt structural classification of CDR-H3 in single-domain VHH antibodies and discuss lessons learned from the ever-increasing number of the structures.
Collapse
Affiliation(s)
- Daisuke Kuroda
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kouhei Tsumoto
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Bai Y, Fei J, Wu W, Dou L, Liu M, Shao S, Yu W, Wen K, Shen J, Wang Z. Minimum Distance Between Two Epitopes in Sandwich Immunoassays for Small Molecules. Anal Chem 2022; 94:17843-17852. [PMID: 36519948 DOI: 10.1021/acs.analchem.2c03592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pursuit of the limit between dimensionalities is a scientific goal with high applicability. Sandwich immunoassay, usually based on two antibodies binding two epitopes, is one of the most popular mainstay tools in both academic and industrial fields. Herein, we determined and evaluated the minimum distance of two epitopes in sandwich immunoassays for small molecules. Briefly, nine model analytes comprising two hapten epitopes, that is, melamine (MEL) and p-nitroaniline (NIA), were designed by increasing the linear chain linkers brick by brick. Two groups of monoclonal antibodies (mAbs) were produced with different recognition properties toward MEL and NIA using 12 new haptens with different spacer arms. The results indicated that two epitopes of the analyte with a distance of only 2.4 Å could be simultaneously bound by two mAbs, which is the known limit of epitope distance in sandwich immunoassays thus far. We further found that an epitope distance of below 8.8 Å for the analyte generally induces noticeable steric hindrance of antibodies, preventing a sandwich immunoassay with high probability. These observations were investigated and evaluated by molecular docking, molecular dynamics, and surface plasmon resonance and using model and real analytes. Altogether, we determined the minimum distance of two epitopes and explored the molecular mechanism of the antibody-analyte-antibody ternary complex in sandwich immunoassays, providing a theoretical basis for hapten design, antibody discovery and development, and sandwich immunoassay establishment for small molecules.
Collapse
Affiliation(s)
- Yuchen Bai
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.,Department of Nutrition and Food Hygiene, College of Public Health, Shanxi Medical University, 030001 Taiyuan, People's Republic of China
| | - Jie Fei
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Weilin Wu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Minggang Liu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Shibei Shao
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| |
Collapse
|
11
|
Shraim AS, Abdel Majeed BA, Al-Binni M, Hunaiti A. Therapeutic Potential of Aptamer-Protein Interactions. ACS Pharmacol Transl Sci 2022; 5:1211-1227. [PMID: 36524009 PMCID: PMC9745894 DOI: 10.1021/acsptsci.2c00156] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 11/06/2022]
Abstract
Aptamers are single-stranded oligonucleotides (RNA or DNA) with a typical length between 25 and 100 nucleotides which fold into three-dimensional structures capable of binding to target molecules. Specific aptamers can be isolated against a large variety of targets through efficient and relatively cheap methods, and they demonstrate target-binding affinities that sometimes surpass those of antibodies. Consequently, interest in aptamers has surged over the past three decades, and their application has shown promise in advancing knowledge in target analysis, designing therapeutic interventions, and bioengineering. With emphasis on their therapeutic applications, aptamers are emerging as a new innovative class of therapeutic agents with promising biochemical and biological properties. Aptamers have the potential of providing a feasible alternative to antibody- and small-molecule-based therapeutics given their binding specificity, stability, low toxicity, and apparent non-immunogenicity. This Review examines the general properties of aptamers and aptamer-protein interactions that help to understand their binding characteristics and make them important therapeutic candidates.
Collapse
Affiliation(s)
- Ala’a S. Shraim
- Department
of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological
and Diagnostic Research Center (PDRC), Al-Ahliyya
Amman University, 19328 Amman, Jordan
| | - Bayan A. Abdel Majeed
- Department
of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological
and Diagnostic Research Center (PDRC), Al-Ahliyya
Amman University, 19328 Amman, Jordan
| | - Maysaa’
Adnan Al-Binni
- Department
of Clinical Laboratory Sciences, School of Science, The University of Jordan, 11942 Amman, Jordan
| | - Abdelrahim Hunaiti
- Department
of Clinical Laboratory Sciences, School of Science, The University of Jordan, 11942 Amman, Jordan
| |
Collapse
|
12
|
Fever as an evolutionary agent to select immune complexes interfaces. Immunogenetics 2022; 74:465-474. [PMID: 35545703 PMCID: PMC9094598 DOI: 10.1007/s00251-022-01263-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/08/2022] [Indexed: 11/10/2022]
Abstract
We herein analyzed all available protein–protein interfaces of the immune complexes from the Protein Data Bank whose antigens belong to pathogens or cancers that are modulated by fever in mammalian hosts. We also included, for comparison, protein interfaces from immune complexes that are not significantly modulated by the fever response. We highlight the distribution of amino acids at these viral, bacterial, protozoan and cancer epitopes, and at their corresponding paratopes that belong strictly to monoclonal antibodies. We identify the “hotspots”, i.e. residues that are highly connected at such interfaces, and assess the structural, kinetic and thermodynamic parameters responsible for complex formation. We argue for an evolutionary pressure for the types of residues at these protein interfaces that may explain the role of fever as a selective force for optimizing antibody binding to antigens.
Collapse
|
13
|
Li L, Wang X, Hou R, Wang Y, Wang X, Xie C, Chen Y, Wu S, Peng D. Single-chain variable fragment antibody-based ic-ELISA for rapid detection of macrolides in porcine muscle and computational simulation of its interaction mechanism. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Frick R, Høydahl LS, Hodnebrug I, Vik ES, Dalhus B, Sollid LM, Gray JJ, Sandlie I, Løset GÅ. Affinity maturation of TCR-like antibodies using phage display guided by structural modeling. Protein Eng Des Sel 2022; 35:gzac005. [PMID: 35871543 PMCID: PMC9536190 DOI: 10.1093/protein/gzac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022] Open
Abstract
TCR-like antibodies represent a unique type of engineered antibodies with specificity toward pHLA, a ligand normally restricted to the sensitive recognition by T cells. Here, we report a phage display-based sequential development path of such antibodies. The strategy goes from initial lead identification through in silico informed CDR engineering in combination with framework engineering for affinity and thermostability optimization, respectively. The strategy allowed the identification of HLA-DQ2.5 gluten peptide-specific TCR-like antibodies with low picomolar affinity. Our method outlines an efficient and general method for development of this promising class of antibodies, which should facilitate their utility including translation to human therapy.
Collapse
Affiliation(s)
- Rahel Frick
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Lene S Høydahl
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Ina Hodnebrug
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Erik S Vik
- Nextera AS, Gaustadalléen 21, 0349 Oslo, Norway
| | - Bjørn Dalhus
- Department for Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway
- Department for Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Jeffrey J Gray
- Program in Molecular Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Inger Sandlie
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Geir Åge Løset
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
- Nextera AS, Gaustadalléen 21, 0349 Oslo, Norway
| |
Collapse
|
15
|
Pedraza-Escalona M, Guzmán-Bringas O, Arrieta-Oliva HI, Gómez-Castellano K, Salinas-Trujano J, Torres-Flores J, Muñoz-Herrera JC, Camacho-Sandoval R, Contreras-Pineda P, Chacón-Salinas R, Pérez-Tapia SM, Almagro JC. Isolation and characterization of high affinity and highly stable anti-Chikungunya virus antibodies using ALTHEA Gold Libraries™. BMC Infect Dis 2021; 21:1121. [PMID: 34717584 PMCID: PMC8556770 DOI: 10.1186/s12879-021-06717-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/22/2021] [Indexed: 09/08/2024] Open
Abstract
BACKGROUND More than 3 million infections were attributed to Chikungunya virus (CHIKV) in the 2014-2016 outbreak in Mexico, Central and South America, with over 500 deaths directly or indirectly related to this viral disease. CHIKV outbreaks are recurrent and no vaccine nor approved therapeutics exist to prevent or treat CHIKV infection. Reliable and robust diagnostic methods are thus critical to control future CHIKV outbreaks. Direct CHIKV detection in serum samples via highly specific and high affinity anti-CHIKV antibodies has shown to be an early and effective clinical diagnosis. METHODS To isolate highly specific and high affinity anti-CHIKV, Chikungunya virions were isolated from serum of a patient in Veracruz, México. After purification and characterization via electron microscopy, SDS-PAGE and binding to well-characterized anti-CHIKV antibodies, UV-inactivated particles were utilized as selector in a solid-phase panning in combination with ALTHEA Gold Libraries™, as source of antibodies. The screening was based on ELISA and Next-Generation Sequencing. RESULTS The CHIKV isolate showed the typical morphology of the virus. Protein bands in the SDS-PAGE were consistent with the size of CHIKV capsid proteins. UV-inactivated CHIKV particles bound tightly the control antibodies. The lead antibodies here obtained, on the other hand, showed high expression yield, > 95% monomeric content after a single-step Protein A purification, and importantly, had a thermal stability above 75 °C. Most of the antibodies recognized linear epitopes on E2, including the highest affinity antibody called C7. A sandwich ELISA implemented with C7 and a potent neutralizing antibody isolated elsewhere, also specific for E2 but recognizing a discontinuous epitope, showed a dynamic range of 0.2-40.0 mg/mL of UV-inactivated CHIKV purified preparation. The number of CHIKV particles estimated based on the concentration of E2 in the extract suggested that the assay could detect clinically meaningful amounts of CHIKV in serum. CONCLUSIONS The newly discovered antibodies offer valuable tools for characterization of CHIKV isolates. Therefore, the strategy here followed using whole viral particles and ALTHEA Gold Libraries™ could expedite the discovery and development of antibodies for detection and control of emergent and quickly spreading viral outbreaks.
Collapse
Affiliation(s)
- M Pedraza-Escalona
- CONACyT-Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - O Guzmán-Bringas
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - H I Arrieta-Oliva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - K Gómez-Castellano
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - J Salinas-Trujano
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - J Torres-Flores
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México
| | - J C Muñoz-Herrera
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - R Camacho-Sandoval
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - P Contreras-Pineda
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - R Chacón-Salinas
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), México City, México
| | - S M Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), México City, México
| | - J C Almagro
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México. .,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México. .,GlobalBio, Inc, 320 Concord Ave., 02138, Cambridge, MA, USA.
| |
Collapse
|
16
|
Di Rienzo L, Milanetti E, Ruocco G, Lepore R. Quantitative Description of Surface Complementarity of Antibody-Antigen Interfaces. Front Mol Biosci 2021; 8:749784. [PMID: 34660699 PMCID: PMC8514621 DOI: 10.3389/fmolb.2021.749784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Antibodies have the remarkable ability to recognise their cognate antigens with extraordinary affinity and specificity. Discerning the rules that define antibody-antigen recognition is a fundamental step in the rational design and engineering of functional antibodies with desired properties. In this study we apply the 3D Zernike formalism to the analysis of the surface properties of the antibody complementary determining regions (CDRs). Our results show that shape and electrostatic 3DZD descriptors of the surface of the CDRs are predictive of antigen specificity, with classification accuracy of 81% and area under the receiver operating characteristic curve (AUC) of 0.85. Additionally, while in terms of surface size, solvent accessibility and amino acid composition, antibody epitopes are typically not distinguishable from non-epitope, solvent-exposed regions of the antigen, the 3DZD descriptors detect significantly higher surface complementarity to the paratope, and are able to predict correct paratope-epitope interaction with an AUC = 0.75.
Collapse
Affiliation(s)
- Lorenzo Di Rienzo
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| | - Rosalba Lepore
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Structural Analysis of Anti-Hapten Antibodies to Identify Long-Range Structural Movements Induced by Hapten Binding. Front Mol Biosci 2021; 8:633526. [PMID: 33869281 PMCID: PMC8044860 DOI: 10.3389/fmolb.2021.633526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
Antibodies are well known for their high specificity that has enabled them to be of significant use in both therapeutic and diagnostic applications. Antibodies can recognize different antigens, including proteins, carbohydrates, peptides, nucleic acids, lipids, and small molecular weight haptens that are abundantly available as hormones, pharmaceuticals, and pesticides. Here we focus on a structural analysis of hapten-antibody couples and identify potential structural movements originating from the hapten binding by comparison with unbound antibody, utilizing 40 crystal structures from the Protein Data Bank. Our analysis reveals three binding surface trends; S1 where a pocket forms to accommodate the hapten, S2 where a pocket is removed when the hapten binds, and S3 where no pockets changes are found. S1 and S2 are expected for induced-fit binding, whereas S3 indicates that a pre-existing population of optimal binding antibody conformation exists. The structural analysis reveals four classifications of structural reorganization, some of which correlate to S2 but not to the other binding surface changes. These observations demonstrate the complexity of the antibody-antigen interaction, where structural changes can be restricted to the binding sites, or extend through the constant domains to propagate structural changes. This highlights the importance of structural analysis to ensure successful and compatible transformation of small antibody fragments at the early discovery stage into full antibodies during the subsequent development stages, where long-range structural changes are required for an Fc effector response.
Collapse
Affiliation(s)
- Mohammed M Al Qaraghuli
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom.,SiMologics Ltd., The Enterprise Hub, Glasgow, United Kingdom
| | - Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom.,Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul A Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
18
|
Akbar R, Robert PA, Pavlović M, Jeliazkov JR, Snapkov I, Slabodkin A, Weber CR, Scheffer L, Miho E, Haff IH, Haug DTT, Lund-Johansen F, Safonova Y, Sandve GK, Greiff V. A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. Cell Rep 2021; 34:108856. [PMID: 33730590 DOI: 10.1016/j.celrep.2021.108856] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/29/2020] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Antibody-antigen binding relies on the specific interaction of amino acids at the paratope-epitope interface. The predictability of antibody-antigen binding is a prerequisite for de novo antibody and (neo-)epitope design. A fundamental premise for the predictability of antibody-antigen binding is the existence of paratope-epitope interaction motifs that are universally shared among antibody-antigen structures. In a dataset of non-redundant antibody-antigen structures, we identify structural interaction motifs, which together compose a commonly shared structure-based vocabulary of paratope-epitope interactions. We show that this vocabulary enables the machine learnability of antibody-antigen binding on the paratope-epitope level using generative machine learning. The vocabulary (1) is compact, less than 104 motifs; (2) distinct from non-immune protein-protein interactions; and (3) mediates specific oligo- and polyreactive interactions between paratope-epitope pairs. Our work leverages combined structure- and sequence-based learning to demonstrate that machine-learning-driven predictive paratope and epitope engineering is feasible.
Collapse
Affiliation(s)
- Rahmad Akbar
- Department of Immunology, University of Oslo, Oslo, Norway.
| | | | - Milena Pavlović
- Department of Informatics, University of Oslo, Oslo, Norway; Centre for Bioinformatics, University of Oslo, Norway; K.G. Jebsen Centre for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Igor Snapkov
- Department of Immunology, University of Oslo, Oslo, Norway
| | | | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Lonneke Scheffer
- Department of Informatics, University of Oslo, Oslo, Norway; Centre for Bioinformatics, University of Oslo, Norway
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | | | | | | | - Yana Safonova
- Computer Science and Engineering Department, University of California, San Diego, La Jolla, CA, USA
| | - Geir K Sandve
- Department of Informatics, University of Oslo, Oslo, Norway; Centre for Bioinformatics, University of Oslo, Norway; K.G. Jebsen Centre for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway.
| |
Collapse
|
19
|
Hsiao YC, Chen YJJ, Goldstein LD, Wu J, Lin Z, Schneider K, Chaudhuri S, Antony A, Bajaj Pahuja K, Modrusan Z, Seshasayee D, Seshagiri S, Hötzel I. Restricted epitope specificity determined by variable region germline segment pairing in rodent antibody repertoires. MAbs 2021; 12:1722541. [PMID: 32041466 PMCID: PMC7039645 DOI: 10.1080/19420862.2020.1722541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibodies from B-cell clonal lineages share sequence and structural properties as well as epitope specificity. Clonally unrelated antibodies can similarly share sequence and specificity properties and are said to be convergent. Convergent antibody responses against several antigens have been described in humans and mice and include different classes of shared sequence features. In particular, some antigens and epitopes can induce convergent responses of clonally unrelated antibodies with restricted heavy (VH) and light (VL) chain variable region germline segment usage without similarity in the heavy chain third complementarity-determining region (CDR H3), a critical specificity determinant. Whether these V germline segment-restricted responses reflect a general epitope specificity restriction of antibodies with shared VH/VL pairing is not known. Here, we investigated this question by determining patterns of antigen binding competition between clonally unrelated antigen-specific rat antibodies from paired-chain deep sequencing datasets selected based solely on VH/VL pairing. We found that antibodies with shared VH/VL germline segment pairings but divergent CDR H3 sequences almost invariably have restricted epitope specificity indicated by shared binding competition patterns. This epitope restriction included 82 of 85 clonally unrelated antibodies with 13 different VH/VL pairings binding in 8 epitope groups in 2 antigens. The corollary that antibodies with shared VH/VL pairing and epitope-restricted binding can accommodate widely divergent CDR H3 sequences was confirmed by in vitro selection of variants of anti-human epidermal growth factor receptor 2 antibodies known to mediate critical antigen interactions through CDR H3. Our results show that restricted epitope specificity determined by VH/VL germline segment pairing is a general property of rodent antigen-specific antibodies.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Ying-Jiun J Chen
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Leonard D Goldstein
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA.,Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Jia Wu
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Zhonghua Lin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kellen Schneider
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Subhra Chaudhuri
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Aju Antony
- Department of Molecular Biology, SciGenom Labs, Cochin, India
| | | | - Zora Modrusan
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | | | - Isidro Hötzel
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| |
Collapse
|
20
|
Sivaccumar J, Sandomenico A, Vitagliano L, Ruvo M. Monoclonal Antibodies: A Prospective and Retrospective View. Curr Med Chem 2021; 28:435-471. [PMID: 32072887 DOI: 10.2174/0929867327666200219142231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoclonal Antibodies (mAbs) represent one of the most important classes of biotherapeutic agents. They are used to cure many diseases, including cancer, autoimmune diseases, cardiovascular diseases, angiogenesis-related diseases and, more recently also haemophilia. They can be highly varied in terms of format, source, and specificity to improve efficacy and to obtain more targeted applications. This can be achieved by leaving substantially unchanged the basic structural components for paratope clustering. OBJECTIVES The objective was to trace the most relevant findings that have deserved prestigious awards over the years, to report the most important clinical applications and to emphasize their latest emerging therapeutic trends. RESULTS We report the most relevant milestones and new technologies adopted for antibody development. Recent efforts in generating new engineered antibody-based formats are briefly reviewed. The most important antibody-based molecules that are (or are going to be) used for pharmacological practice have been collected in useful tables. CONCLUSION The topics here discussed prove the undisputed role of mAbs as innovative biopharmaceuticals molecules and as vital components of targeted pharmacological therapies.
Collapse
Affiliation(s)
- Jwala Sivaccumar
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
21
|
Park S, Pascua E, Lindquist KC, Kimberlin C, Deng X, Mak YSL, Melton Z, Johnson TO, Lin R, Boldajipour B, Abraham RT, Pons J, Sasu BJ, Van Blarcom TJ, Chaparro-Riggers J. Direct control of CAR T cells through small molecule-regulated antibodies. Nat Commun 2021; 12:710. [PMID: 33514714 PMCID: PMC7846603 DOI: 10.1038/s41467-020-20671-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023] Open
Abstract
Antibody-based therapeutics have experienced a rapid growth in recent years and are now utilized in various modalities spanning from conventional antibodies, antibody-drug conjugates, bispecific antibodies to chimeric antigen receptor (CAR) T cells. Many next generation antibody therapeutics achieve enhanced potency but often increase the risk of adverse events. Antibody scaffolds capable of exhibiting inducible affinities could reduce the risk of adverse events by enabling a transient suspension of antibody activity. To demonstrate this, we develop conditionally activated, single-module CARs, in which tumor antigen recognition is directly modulated by an FDA-approved small molecule drug. The resulting CAR T cells demonstrate specific cytotoxicity of tumor cells comparable to that of traditional CARs, but the cytotoxicity is reversibly attenuated by the addition of the small molecule. The exogenous control of conditional CAR T cell activity allows continual modulation of therapeutic activity to improve the safety profile of CAR T cells across all disease indications.
Collapse
Affiliation(s)
- Spencer Park
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Lyell Immunopharma, South San Francisco, CA USA
| | - Edward Pascua
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA
| | | | - Christopher Kimberlin
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Asher Bio, South San Francisco, CA USA
| | - Xiaodi Deng
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Dren Bio, San Carlos, CA USA
| | - Yvonne S. L. Mak
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | - Zea Melton
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | | | - Regina Lin
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | - Bijan Boldajipour
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Lyell Immunopharma, South San Francisco, CA USA
| | - Robert T. Abraham
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Vividion Therapeutics, San Diego, CA USA
| | - Jaume Pons
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: ALX Oncology, Burlingame, CA USA
| | - Barbra Johnson Sasu
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | - Thomas J. Van Blarcom
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | | |
Collapse
|
22
|
Richardson E, Galson JD, Kellam P, Kelly DF, Smith SE, Palser A, Watson S, Deane CM. A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies. MAbs 2021; 13:1869406. [PMID: 33427589 PMCID: PMC7808390 DOI: 10.1080/19420862.2020.1869406] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Due to their shared genetic history, antibodies from the same clonotype often bind to the same epitope. This knowledge is used in immune repertoire mining, where known binders are used to search bulk sequencing repertoires to identify new binders. However, current computational methods cannot identify epitope convergence between antibodies from different clonotypes, limiting the sequence diversity of antigen-specific antibodies that can be identified. We describe how the antibody binding site, the paratope, can be used to cluster antibodies with common antigen reactivity from different clonotypes. Our method, paratyping, uses the predicted paratope to identify these novel cross clonotype matches. We experimentally validated our predictions on a pertussis toxoid dataset. Our results show that even the simplest abstraction of the antibody binding site, using only the length of the loops involved and predicted binding residues, is sufficient to group antigen-specific antibodies and provide additional information to conventional clonotype analysis. Abbreviations: BCR: B-cell receptor; CDR: complementarity-determining region; PTx: pertussis toxoid
Collapse
Affiliation(s)
- Eve Richardson
- Department of Statistics, University of Oxford , Oxford, UK
| | - Jacob D Galson
- Alchemab Therapeutics Ltd , London, UK.,Division of Immunology, University Children's Hospital, University of Zurich, Zurich , Switzerland
| | - Paul Kellam
- Kymab Ltd , Cambridge, UK.,Department of Infectious Diseases, Faculty of Medicine, Imperial College London , London, UK
| | - Dominic F Kelly
- Department of Paediatrics, University of Oxford , Oxford, UK.,Oxford University Hospitals NHS Foundation Trust , Oxford, UK
| | | | | | | | | |
Collapse
|
23
|
Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Antibody-protein binding and conformational changes: identifying allosteric signalling pathways to engineer a better effector response. Sci Rep 2020; 10:13696. [PMID: 32792612 PMCID: PMC7426963 DOI: 10.1038/s41598-020-70680-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous monoclonal antibodies have been developed successfully for the treatment of various diseases. Nevertheless, the development of biotherapeutic antibodies is complex, expensive, and time-consuming, and to facilitate this process, careful structural analysis beyond the antibody binding site is required to develop a more efficacious antibody. In this work, we focused on protein antigens, since they induce the largest antibody changes, and provide interesting cases to compare and contrast. The structures of 15 anti-protein antibodies were analysed to compare the antigen-bound/unbound forms. Surprisingly, three different classes of binding-induced changes were identified. In class (B1), the antigen binding fragment distorted significantly, and we found changes in the loop region of the heavy chain's constant domain; this corresponds well with expected allosteric movements. In class (B2), we found changes in the same loop region without the overall distortion. In class (B3), these changes did not present, and only local changes at the complementarity determining regions were found. Consequently, structural analysis of antibodies is crucial for therapeutic development. Careful evaluation of allosteric movements must be undertaken to develop better effector responses, especially during the transformation of these antibodies from small fragments at the discovery stage to full antibodies at the subsequent development stages.
Collapse
Affiliation(s)
- Mohammed M Al Qaraghuli
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK.
- SiMologics Ltd. The Enterprise Hub, Level 6 Graham Hills Building, 50 Richmond Street, Glasgow, G1 1XP, UK.
| | - Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
- Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Paul A Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
| |
Collapse
|
24
|
van der Kant R, Bauer J, Karow-Zwick AR, Kube S, Garidel P, Blech M, Rousseau F, Schymkowitz J. Adaption of human antibody λ and κ light chain architectures to CDR repertoires. Protein Eng Des Sel 2020; 32:109-127. [PMID: 31535139 PMCID: PMC6908821 DOI: 10.1093/protein/gzz012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies bind with high specificity to a wide range of diverse antigens, primarily mediated by their hypervariable complementarity determining regions (CDRs). The defined antigen binding loops are supported by the structurally conserved β-sandwich framework of the light chain (LC) and heavy chain (HC) variable regions. The LC genes are encoded by two separate loci, subdividing the entity of antibodies into kappa (LCκ) and lambda (LCλ) isotypes that exhibit distinct sequence and conformational preferences. In this work, a diverse set of techniques were employed including machine learning, force field analysis, statistical coupling analysis and mutual information analysis of a non-redundant antibody structure collection. Thereby, it was revealed how subtle changes between the structures of LCκ and LCλ isotypes increase the diversity of antibodies, extending the predetermined restrictions of the general antibody fold and expanding the diversity of antigen binding. Interestingly, it was found that the characteristic framework scaffolds of κ and λ are stabilized by diverse amino acid clusters that determine the interplay between the respective fold and the embedded CDR loops. In conclusion, this work reveals how antibodies use the remarkable plasticity of the beta-sandwich Ig fold to incorporate a large diversity of CDR loops.
Collapse
Affiliation(s)
- Rob van der Kant
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box, B-3000 Leuven, Belgium
| | - Joschka Bauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | | | - Sebastian Kube
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box, B-3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box, B-3000 Leuven, Belgium
| |
Collapse
|
25
|
Abstract
In vertebrates, immunoglobulins (Igs), commonly known as antibodies, play an integral role in the armamentarium of immune defense against various pathogens. After an antigenic challenge, antibodies are secreted by differentiated B cells called plasma cells. Antibodies have two predominant roles that involve specific binding to antigens to launch an immune response, along with activation of other components of the immune system to fight pathogens. The ability of immunoglobulins to fight against innumerable and diverse pathogens lies in their intrinsic ability to discriminate between different antigens. Due to this specificity and high affinity for their antigens, antibodies have been a valuable and indispensable tool in research, diagnostics and therapy. Although seemingly a simple maneuver, the association between an antibody and its antigen, to make an antigen-antibody complex, is comprised of myriads of non-covalent interactions. Amino acid residues on the antigen binding site, the epitope, and on the antibody binding site, the paratope, intimately contribute to the energetics needed for the antigen-antibody complex stability. Structural biology methods to study antigen-antibody complexes are extremely valuable tools to visualize antigen-antibody interactions in detail; this helps to elucidate the basis of molecular recognition between an antibody and its specific antigen. The main scope of this chapter is to discuss the structure and function of different classes of antibodies and the various aspects of antigen-antibody interactions including antigen-antibody interfaces-with a special focus on paratopes, complementarity determining regions (CDRs) and other non-CDR residues important for antigen binding and recognition. Herein, we also discuss methods used to study antigen-antibody complexes, antigen recognition by antibodies, types of antigens in complexes, and how antigen-antibody complexes play a role in modern day medicine and human health. Understanding the molecular basis of antigen binding and recognition by antibodies helps to facilitate the production of better and more potent antibodies for immunotherapy, vaccines and various other applications.
Collapse
Affiliation(s)
- A Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
26
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
27
|
Karadag M, Arslan M, Kaleli NE, Kalyoncu S. Physicochemical determinants of antibody-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:85-114. [PMID: 32312427 DOI: 10.1016/bs.apcsb.2019.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antibodies are specialized proteins generated by immune system for high specificity and affinity binding to target antigens. Because of their essential roles in immune system, antibodies have been successfully developed and engineered as biopharmaceuticals for treatment of various diseases. Analysis of antibody-protein interactions is always required to get detailed information on effectivity of such antibody-based therapeutics. Although physicochemical rules cannot be generalized for every antibody-protein interaction, there are some features which should be taken into account during antibody development and engineering efforts. In this chapter, physicochemical analysis of antibody paratope-protein epitope interactions will be discussed to highlight important characteristics. First, paratope and non-paratope regions of antibodies will be described and important roles of these regions on binding and biophysical features of antibodies will be discussed. Then, general features of epitope regions of protein antigens will be introduced along with several computational/experimental tools to identify them. Lastly, a rising star of antibody biopharmaceuticals, nanobodies, will be described to show importance of next-generation antibody fragment based biopharmaceuticals in drug development.
Collapse
Affiliation(s)
- Murat Karadag
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Merve Arslan
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Nazli Eda Kaleli
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | | |
Collapse
|
28
|
Hu FJ, Lundqvist M, Uhlén M, Rockberg J. SAMURAI (Solid-phase Assisted Mutagenesis by Uracil Restriction for Accurate Integration) for antibody affinity maturation and paratope mapping. Nucleic Acids Res 2019; 47:e34. [PMID: 30715449 PMCID: PMC6451119 DOI: 10.1093/nar/gkz050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Mutagenesis libraries are essential for combinatorial protein engineering. Despite improvements in gene synthesis and directed mutagenesis, current methodologies still have limitations regarding the synthesis of complete antibody single-chain variable fragment (scFv) genes and simultaneous diversification of all six CDRs. Here, we describe the generation of mutagenesis libraries for antibody affinity maturation using a cell-free solid-phase technique for annealing of single-strand mutagenic oligonucleotides. The procedure consists of PCR-based incorporation of uracil into a wild-type template, bead-based capture, elution of single-strand DNA, and in vitro uracil excision enzyme based degradation of the template DNA. Our approach enabled rapid (8 hours) mutagenesis and automated cloning of 50 position-specific alanine mutants for mapping of a scFv antibody paratope. We further exemplify our method by generating affinity maturation libraries with diversity introduced in critical, nonessential, or all CDR positions randomly. Assessment with Illumina deep sequencing showed less than 1% wild-type in two libraries and the ability to diversify all CDR positions simultaneously. Selections of the libraries with bacterial display and deep sequencing evaluation of the selection output showed that diversity introduced in non-essential positions allowed for a more effective enrichment of improved binders compared to the other two diversification strategies.
Collapse
Affiliation(s)
- Francis Jingxin Hu
- KTH - Royal Institute of Technology, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Magnus Lundqvist
- KTH - Royal Institute of Technology, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Mathias Uhlén
- KTH - Royal Institute of Technology, Department of Protein Science, 106 91 Stockholm, Sweden.,KTH - Royal Institute of Technology, Science for Life Laboratory, Solna 171 65, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Hørsholm, Denmark
| | - Johan Rockberg
- KTH - Royal Institute of Technology, Department of Protein Science, 106 91 Stockholm, Sweden
| |
Collapse
|
29
|
Almagro JC, Pedraza-Escalona M, Arrieta HI, Pérez-Tapia SM. Phage Display Libraries for Antibody Therapeutic Discovery and Development. Antibodies (Basel) 2019; 8:antib8030044. [PMID: 31544850 PMCID: PMC6784186 DOI: 10.3390/antib8030044] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/24/2023] Open
Abstract
Phage display technology has played a key role in the remarkable progress of discovering and optimizing antibodies for diverse applications, particularly antibody-based drugs. This technology was initially developed by George Smith in the mid-1980s and applied by John McCafferty and Gregory Winter to antibody engineering at the beginning of 1990s. Here, we compare nine phage display antibody libraries published in the last decade, which represent the state of the art in the discovery and development of therapeutic antibodies using phage display. We first discuss the quality of the libraries and the diverse types of antibody repertoires used as substrates to build the libraries, i.e., naïve, synthetic, and semisynthetic. Second, we review the performance of the libraries in terms of the number of positive clones per panning, hit rate, affinity, and developability of the selected antibodies. Finally, we highlight current opportunities and challenges pertaining to phage display platforms and related display technologies.
Collapse
Affiliation(s)
- Juan C Almagro
- GlobalBio, Inc., 320, Cambridge, MA 02138, USA.
- UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico.
| | - Martha Pedraza-Escalona
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Hugo Iván Arrieta
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Sonia Mayra Pérez-Tapia
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
30
|
Valadon P, Pérez-Tapia SM, Nelson RS, Guzmán-Bringas OU, Arrieta-Oliva HI, Gómez-Castellano KM, Pohl MA, Almagro JC. ALTHEA Gold Libraries™: antibody libraries for therapeutic antibody discovery. MAbs 2019; 11:516-531. [PMID: 30663541 PMCID: PMC6512909 DOI: 10.1080/19420862.2019.1571879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We describe here the design, construction and validation of ALTHEA Gold Libraries™. These single-chain variable fragment (scFv), semisynthetic libraries are built on synthetic human well-known IGHV and IGKV germline genes combined with natural human complementarity-determining region (CDR)-H3/JH (H3J) fragments. One IGHV gene provided a universal VH scaffold and was paired with two IGKV scaffolds to furnish different topographies for binding distinct epitopes. The scaffolds were diversified at positions identified as in contact with antigens in the known antigen-antibody complex structures. The diversification regime consisted of high-usage amino acids found at those positions in human antibody sequences. Functionality, stability and diversity of the libraries were improved throughout a three-step construction process. In a first step, fully synthetic primary libraries were generated by combining the diversified scaffolds with a set of synthetic neutral H3J germline gene fragments. The second step consisted of selecting the primary libraries for enhanced thermostability based on the natural capacity of Protein A to bind the universal VH scaffold. In the third and final step, the resultant stable synthetic antibody fragments were combined with natural H3J fragments obtained from peripheral blood mononuclear cells of a large pool of 200 donors. Validation of ALTHEA Gold Libraries™ with seven targets yielded specific antibodies in all the cases. Further characterization of the isolated antibodies indicated KD values as human IgG1 molecules in the single-digit and sub-nM range. The thermal stability (Tm) of all the antigen-binding fragments was 75°C–80°C, demonstrating that ALTHEA Gold Libraries™ are a valuable source of specific, high affinity and highly stable antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary Ann Pohl
- c Tri-Institutional Therapeutics Discovery Institute , New York , NY , USA
| | | |
Collapse
|
31
|
Vousden KA, Lundqvist T, Popovic B, Naiman B, Carruthers AM, Newton P, Johnson DJD, Pomowski A, Wilkinson T, Dufner P, de Mendez I, Mallinder PR, Murray C, Strain M, Connor J, Murray LA, Sleeman MA, Lowe DC, Huntington JA, Vaughan TJ. Discovery and characterisation of an antibody that selectively modulates the inhibitory activity of plasminogen activator inhibitor-1. Sci Rep 2019; 9:1605. [PMID: 30733557 PMCID: PMC6367345 DOI: 10.1038/s41598-019-38842-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/10/2019] [Indexed: 01/21/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor (serpin) that regulates fibrinolysis, cell adhesion and cell motility via its interactions with plasminogen activators and vitronectin. PAI-1 has been shown to play a role in a number of diverse pathologies including cardiovascular diseases, obesity and cancer and is therefore an attractive therapeutic target. However the multiple patho-physiological roles of PAI-1, and understanding the relative contributions of these in any one disease setting, make the development of therapeutically relevant molecules challenging. Here we describe the identification and characterisation of fully human antibody MEDI-579, which binds with high affinity and specificity to the active form of human PAI-1. MEDI-579 specifically inhibits serine protease interactions with PAI-1 while conserving vitronectin binding. Crystallographic analysis reveals that this specificity is achieved through direct binding of MEDI-579 Fab to the reactive centre loop (RCL) of PAI-1 and at the same exosite used by both tissue and urokinase plasminogen activators (tPA and uPA). We propose that MEDI-579 acts by directly competing with proteases for RCL binding and as such is able to modulate the interaction of PAI-1 with tPA and uPA in a way not previously described for a human PAI-1 inhibitor.
Collapse
Affiliation(s)
| | - Tomas Lundqvist
- AstraZeneca AB R&D, Pepparedsleden 1, 431 50, Mölndal, Sweden
| | | | - Brian Naiman
- MedImmune LLC, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | | | | | - Daniel J D Johnson
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anja Pomowski
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | | | | | | | | | - Clare Murray
- AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK
| | | | - Jane Connor
- MedImmune LLC, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | | | | | | | - James A Huntington
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | | |
Collapse
|
32
|
Jian JW, Chen HS, Chiu YK, Peng HP, Tung CP, Chen IC, Yu CM, Tsou YL, Kuo WY, Hsu HJ, Yang AS. Effective binding to protein antigens by antibodies from antibody libraries designed with enhanced protein recognition propensities. MAbs 2019; 11:373-387. [PMID: 30526270 PMCID: PMC6380391 DOI: 10.1080/19420862.2018.1550320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antibodies provide immune protection by recognizing antigens of diverse chemical properties, but elucidating the amino acid sequence-function relationships underlying the specificity and affinity of antibody-antigen interactions remains challenging. We designed and constructed phage-displayed synthetic antibody libraries with enriched protein antigen-recognition propensities calculated with machine learning predictors, which indicated that the designed single-chain variable fragment variants were encoded with enhanced distributions of complementarity-determining region (CDR) hot spot residues with high protein antigen recognition propensities in comparison with those in the human antibody germline sequences. Antibodies derived directly from the synthetic antibody libraries, without affinity maturation cycles comparable to those in in vivo immune systems, bound to the corresponding protein antigen through diverse conformational or linear epitopes with specificity and affinity comparable to those of the affinity-matured antibodies from in vivo immune systems. The results indicated that more densely populated CDR hot spot residues were sustainable by the antibody structural frameworks and could be accompanied by enhanced functionalities in recognizing protein antigens. Our study results suggest that synthetic antibody libraries, which are not limited by the sequences found in antibodies in nature, could be designed with the guidance of the computational machine learning algorithms that are programmed to predict interaction propensities to molecules of diverse chemical properties, leading to antibodies with optimal characteristics pertinent to their medical applications.
Collapse
Affiliation(s)
- Jhih-Wei Jian
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan.,b Institute of Biomedical Informatics, National Yang-Ming University , Taipei , Taiwan.,c Bioinformatics Program, Taiwan International Graduate Program , Institute of Information Science, Academia Sinica , Taipei , Taiwan
| | - Hong-Sen Chen
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Yi-Kai Chiu
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Hung-Pin Peng
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Chao-Ping Tung
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Ing-Chien Chen
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Chung-Ming Yu
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Yueh-Liang Tsou
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Wei-Ying Kuo
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Hung-Ju Hsu
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - An-Suei Yang
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| |
Collapse
|
33
|
Murphy C, Stack E, Krivelo S, Breheny M, Ma H, O'Kennedy R. Enhancing recombinant antibody performance by optimally engineering its format. J Immunol Methods 2018; 463:127-133. [DOI: 10.1016/j.jim.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022]
|
34
|
Kumar R, Kumari R, Khan L, Sankhyan A, Parray HA, Tiwari A, Wig N, Sinha S, Luthra K. Isolation and Characterization of Cross-Neutralizing Human Anti-V3 Single-Chain Variable Fragments (scFvs) Against HIV-1 from an Antigen Preselected Phage Library. Appl Biochem Biotechnol 2018; 187:1011-1027. [DOI: 10.1007/s12010-018-2862-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
35
|
Lee W, Syed A. A, Leow CY, Tan SC, Leow CH. Isolation and characterization of a novel anti-salbutamol chicken scFv for human doping urinalysis. Anal Biochem 2018; 555:81-93. [DOI: 10.1016/j.ab.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 01/13/2023]
|
36
|
Shiroishi M, Ito Y, Shimokawa K, Lee JM, Kusakabe T, Ueda T. Structure-function analyses of a stereotypic rheumatoid factor unravel the structural basis for germline-encoded antibody autoreactivity. J Biol Chem 2018. [PMID: 29523691 DOI: 10.1074/jbc.m117.814475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid factors (RFs) are autoantibodies against the fragment-crystallizable (Fc) region of IgG. In individuals with hematological diseases such as cryoglobulinemia and certain B cell lymphoma forms, the RFs derived from specific heavy- and light-chain germline pairs, so-called "stereotypic RFs," are frequently produced in copious amounts and form immune complexes with IgG in serum. Of note, many structural details of the antigen recognition mechanisms in RFs are unclear. Here we report the crystal structure of the RF YES8c derived from the IGHV1-69/IGKV3-20 germline pair, the most common of the stereotypic RFs, in complex with human IgG1-Fc at 2.8 Å resolution. We observed that YES8c binds to the CH2-CH3 elbow in the canonical antigen-binding manner involving a large antigen-antibody interface. On the basis of this observation, combined with mutational analyses, we propose a recognition mechanism common to IGHV1-69/IGKV3-20 RFs: (1) the interaction of the Leu432-His435 region of Fc enables the highly variable complementarity-determining region (CDR)-H3 to participate in the binding, (2) the hydrophobic tip in the CDR-H2 typical of IGHV1-69 antibodies recognizes the hydrophobic patch on Fc, and (3) the interaction of the highly conserved RF light chain with Fc is important for RF activity. These features may determine the putative epitope common to the IGHV1-69/IGKV3-20 RFs. We also showed that some mutations in the binding site of RF increase the affinity to Fc, which may aggravate hematological diseases. Our findings unravel the structural basis for germline-encoded antibody autoreactivity.
Collapse
Affiliation(s)
- Mitsunori Shiroishi
- From the Laboratory of Protein Structure, Function, and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan and
| | - Yuji Ito
- From the Laboratory of Protein Structure, Function, and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan and
| | - Kenta Shimokawa
- From the Laboratory of Protein Structure, Function, and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan and
| | - Jae Man Lee
- the Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Takahiro Kusakabe
- the Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Tadashi Ueda
- From the Laboratory of Protein Structure, Function, and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan and
| |
Collapse
|
37
|
Van Blarcom T, Lindquist K, Melton Z, Cheung WL, Wagstrom C, McDonough D, Valle Oseguera C, Ding S, Rossi A, Potluri S, Sundar P, Pitts S, Sirota M, Galindo Casas M, Yan Y, Jones J, Roe-Zurz Z, Srivatsa Srinivasan S, Zhai W, Pons J, Rajpal A, Chaparro-Riggers J. Productive common light chain libraries yield diverse panels of high affinity bispecific antibodies. MAbs 2017; 10:256-268. [PMID: 29227213 PMCID: PMC5825193 DOI: 10.1080/19420862.2017.1406570] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The commercial success of bispecific antibodies generally has been hindered by the complexities associated with generating appropriate molecules for both research scale and large scale manufacturing purposes. Bispecific IgG (BsIgG) based on two antibodies that use an identical common light chain can be combined with a minimal set of Fc mutations to drive heavy chain heterodimerization in order to address these challenges. However, the facile generation of common light chain antibodies with properties similar to traditional monoclonal antibodies has not been demonstrated and they have only been used sparingly. Here, we describe the design of a synthetic human antibody library based on common light chains to generate antibodies with biochemical and biophysical properties that are indistinguishable to traditional therapeutic monoclonal antibodies. We used this library to generate diverse panels of well-behaved, high affinity antibodies toward a variety of epitopes across multiple antigens, including mouse 4-1BB, a therapeutically important T cell costimulatory receptor. Over 200 BsIgG toward 4-1BB were generated using an automated purification method we developed that enables milligram-scale production of BsIgG. This approach allowed us to identify antibodies with a wide range of agonistic activity that are being used to further investigate the therapeutic potential of antibodies targeting one or more epitopes of 4-1BB.
Collapse
Affiliation(s)
- Thomas Van Blarcom
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Kevin Lindquist
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Zea Melton
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Wai Ling Cheung
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Chris Wagstrom
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Dan McDonough
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Cendy Valle Oseguera
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Sheng Ding
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Andrea Rossi
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Shobha Potluri
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Purnima Sundar
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Steven Pitts
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Marina Sirota
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Meri Galindo Casas
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Yu Yan
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Jeffrey Jones
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Zygy Roe-Zurz
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | | | - Wenwu Zhai
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Jaume Pons
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Arvind Rajpal
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | | |
Collapse
|
38
|
Kim S, Park I, Park SG, Cho S, Kim JH, Ipper NS, Choi SS, Lee ES, Hong HJ. Generation, Diversity Determination, and Application to Antibody Selection of a Human Naïve Fab Library. Mol Cells 2017; 40:655-666. [PMID: 28927259 PMCID: PMC5638773 DOI: 10.14348/molcells.2017.0106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/29/2022] Open
Abstract
We constructed a large naïve human Fab library (3 × 1010 colonies) from the lymphocytes of 809 human donors, assessed available diversities of the heavy-chain variable (VH) and κ light-chain variable (VK) domain repertoires, and validated the library by selecting Fabs against 10 therapeutically relevant antigens by phage display. We obtained a database of unique 7,373 VH and 41,804 VK sequences by 454 pyrosequencing, and analyzed the repertoires. The distribution of VH and VK subfamilies and germline genes in our antibody repertoires slightly differed from those in earlier published natural antibody libraries. The frequency of somatic hypermutations (SHMs) in heavy-chain complementarity determining region (HCDR)1 and HCDR2 are higher compared with the natural IgM repertoire. Analysis of position-specific SHMs in CDRs indicates that asparagine, threonine, arginine, aspartate and phenylalanine are the most frequent non-germline residues on the antibody-antigen interface and are converted mostly from the germline residues, which are highly represented in germline SHM hotspots. The amino acid composition and length-dependent changes in amino acid frequencies of HCDR3 are similar to those in previous reports, except that frequencies of aspartate and phenylalanine are a little higher in our repertoire. Taken together, the results show that this antibody library shares common features of natural antibody repertoires and also has unique features. The antibody library will be useful in the generation of human antibodies against diverse antigens, and the information about the diversity of natural antibody repertoires will be valuable in the future design of synthetic human antibody libraries with high functional diversity.
Collapse
Affiliation(s)
- Sangkyu Kim
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Insoo Park
- Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141,
Korea
| | - Seung Gu Park
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Seulki Cho
- Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141,
Korea
| | - Jin Hong Kim
- Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141,
Korea
| | - Nagesh S. Ipper
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341,
Korea
| | - Sun Shim Choi
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Eung Suk Lee
- Scripps Korea Antibody Institute, Chuncheon 24341,
Korea
| | - Hyo Jeong Hong
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
39
|
Superposition-free comparison and clustering of antibody binding sites: implications for the prediction of the nature of their antigen. Sci Rep 2017; 7:45053. [PMID: 28338016 PMCID: PMC5364466 DOI: 10.1038/srep45053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/13/2017] [Indexed: 11/08/2022] Open
Abstract
We describe here a superposition free method for comparing the surfaces of antibody binding sites based on the Zernike moments and show that they can be used to quickly compare and cluster sets of antibodies. The clusters provide information about the nature of the bound antigen that, when combined with a method for predicting the number of direct antibody antigen contacts, allows the discrimination between protein and non-protein binding antibodies with an accuracy of 76%. This is of relevance in several aspects of antibody science, for example to select the framework to be used for a combinatorial antibody library.
Collapse
|
40
|
Abstract
Nucleotide modifications constitute marks in RNA and DNA that contribute to gene regulation, development and other cellular processes. The understanding of their intricate molecular roles has been hampered by the high number of different modifications, the lack of effective methods and tools for their detection and quantification as well as by their complex structure-function relationship. The recent development of RNA and DNA immunoprecipitation followed by high-throughput sequencing (RIP- and DIP-seq) initiated detailed transcriptome- and genome-wide studies. Both techniques depend on highly specific and sensitive antibodies to specifically enrich the targeted modified nucleotides without background or potential biases. Here, we review the challenges and developments when generating and validating antibodies targeting modified nucleotides. We discuss antibody-antigen interactions, different strategies of antigen generation and compare different binder formats suitable for state-of-the-art high resolution mapping and imaging technologies.
Collapse
Affiliation(s)
- Regina Feederle
- a Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , München , Germany
| | - Aloys Schepers
- a Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , München , Germany
| |
Collapse
|
41
|
Marillet S, Lefranc MP, Boudinot P, Cazals F. Novel Structural Parameters of Ig-Ag Complexes Yield a Quantitative Description of Interaction Specificity and Binding Affinity. Front Immunol 2017; 8:34. [PMID: 28232828 PMCID: PMC5298999 DOI: 10.3389/fimmu.2017.00034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Antibody–antigen complexes challenge our understanding, as analyses to date failed to unveil the key determinants of binding affinity and interaction specificity. We partially fill this gap based on novel quantitative analyses using two standardized databases, the IMGT/3Dstructure-DB and the structure affinity benchmark. First, we introduce a statistical analysis of interfaces which enables the classification of ligand types (protein, peptide, and chemical; cross-validated classification error of 9.6%) and yield binding affinity predictions of unprecedented accuracy (median absolute error of 0.878 kcal/mol). Second, we exploit the contributions made by CDRs in terms of position at the interface and atomic packing properties to show that in general, VH CDR3 and VL CDR3 make dominant contributions to the binding affinity, a fact also shown to be consistent with the enthalpy–entropy compensation associated with preconfiguration of CDR3. Our work suggests that the affinity prediction problem could be partially solved from databases of high resolution crystal structures of complexes with known affinity.
Collapse
Affiliation(s)
- Simon Marillet
- VIM, INRA and Université Paris-Saclay, Jouy-en-josas, France; Université Côte d'Azur and Inria, Sophia Antipolis, France
| | | | - Pierre Boudinot
- VIM, INRA and Université Paris-Saclay , Jouy-en-josas , France
| | - Frédéric Cazals
- Université Côte d'Azur and Inria , Sophia Antipolis , France
| |
Collapse
|
42
|
Zhang YF, Ho M. Humanization of rabbit monoclonal antibodies via grafting combined Kabat/IMGT/Paratome complementarity-determining regions: Rationale and examples. MAbs 2017; 9:419-429. [PMID: 28165915 DOI: 10.1080/19420862.2017.1289302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rabbit monoclonal antibodies (RabMAbs) can recognize diverse epitopes, including those poorly immunogenic in mice and humans. However, there have been only a few reports on RabMAb humanization, an important antibody engineering step usually done before clinical applications are investigated. To pursue a general method for humanization of RabMAbs, we analyzed the complex structures of 5 RabMAbs with their antigens currently available in the Protein Data Bank, and identified antigen-contacting residues on the rabbit Fv within the 6 Angstrom distance to its antigen. We also analyzed the supporting residues for antigen-contacting residues on the same heavy or light chain. We identified "HV4" and "LV4" in rabbit Fvs, non-complementarity-determining region (CDR) loops that are structurally close to the antigen and located in framework 3 of the heavy chain and light chain, respectively. Based on our structural and sequence analysis, we designed a humanization strategy by grafting the combined Kabat/IMGT/Paratome CDRs, which cover most antigen-contacting residues, into a human germline framework sequence. Using this strategy, we humanized 4 RabMAbs that recognize poorly immunogenic epitopes in the cancer target mesothelin. Three of the 4 humanized rabbit Fvs have similar or improved functional binding affinity for mesothelin-expressing cells. Interestingly, 4 immunotoxins composed of the humanized scFvs fused to a clinically used fragment of Pseudomonas exotoxin (PE38) showed stronger cytotoxicity against tumor cells than the immunotoxins derived from their original rabbit scFvs. Our data suggest that grafting the combined Kabat/IMGT/Paratome CDRs to a stable human germline framework can be a general approach to humanize RabMAbs.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- a Laboratory of Molecular Biology , National Cancer Institute , Bethesda , MD , USA
| | - Mitchell Ho
- a Laboratory of Molecular Biology , National Cancer Institute , Bethesda , MD , USA
| |
Collapse
|
43
|
Detanico T, Phillips M, Wysocki LJ. Functional Versatility of AGY Serine Codons in Immunoglobulin Variable Region Genes. Front Immunol 2016; 7:525. [PMID: 27920779 PMCID: PMC5118421 DOI: 10.3389/fimmu.2016.00525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/10/2016] [Indexed: 11/13/2022] Open
Abstract
In systemic autoimmunity, autoantibodies directed against nuclear antigens (Ags) often arise by somatic hypermutation (SHM) that converts AGT and AGC (AGY) Ser codons into Arg codons. This can occur by three different single-base changes. Curiously, AGY Ser codons are far more abundant in complementarity-determining regions (CDRs) of IgV-region genes than expected for random codon use or from species-specific codon frequency data. CDR AGY codons are also more abundant than TCN Ser codons. We show that these trends hold even in cartilaginous fishes. Because AGC is a preferred target for SHM by activation-induced cytidine deaminase, we asked whether the AGY abundance was solely due to a selection pressure to conserve high mutability in CDRs regardless of codon context but found that this was not the case. Instead, AGY triplets were selectively enriched in the Ser codon reading frame. Motivated by reports implicating a functional role for poly/autoreactive specificities in antiviral antibodies, we also analyzed mutations at AGY in antibodies directed against a number of different viruses and found that mutations producing Arg codons in antiviral antibodies were indeed frequent. Unexpectedly, however, we also found that AGY codons mutated often to encode nearly all of the amino acids that are reported to provide the most frequent contacts with Ag. In many cases, mutations producing codons for these alternative amino acids in antiviral antibodies were more frequent than those producing Arg codons. Mutations producing each of these key amino acids required only single-base changes in AGY. AGY is the only codon group in which two-thirds of random mutations generate codons for these key residues. Finally, by directly analyzing X-ray structures of immune complexes from the RCSB protein database, we found that Ag-contact residues generated via SHM occurred more often at AGY than at any other codon group. Thus, preservation of AGY codons in antibody genes appears to have been driven by their exceptional functional versatility, despite potential autoreactive consequences.
Collapse
Affiliation(s)
- Thiago Detanico
- Department of Biomedical Research, National Jewish Health , Denver, CO , USA
| | - Matthew Phillips
- Department of Biomedical Research, National Jewish Health , Denver, CO , USA
| | - Lawrence J Wysocki
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA; Department of Immunology University of Colorado School of Medicine, Denver, CO, USA
| |
Collapse
|
44
|
Al Qaraghuli MM, Ferro VA. Analysis of the binding loops configuration and surface adaptation of different crystallized single-domain antibodies in response to various antigens. J Mol Recognit 2016; 30. [PMID: 27862476 DOI: 10.1002/jmr.2592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/10/2016] [Accepted: 10/23/2016] [Indexed: 11/08/2022]
Abstract
Monoclonal antibodies have revolutionized the biomedical field through their ubiquitous utilization in different diagnostics and therapeutic applications. Despite this widespread use, their large size and structural complexity have limited their versatility in specific applications. The antibody variable region that is responsible for binding antigen is embodied within domains that can be rescued individually as single-domain antibody (sdAb) fragments. Because of the unique characteristics of sdAbs, such as low molecular weight, high physicochemical stability, and the ability to bind antigens inaccessible to conventional antibodies, they represent a viable alternative to full-length antibodies. Consequently, 149 crystal structures of sdAbs, originating from human (VH), camelids (VHH), or sharks (VNAR), were retrieved from the Protein Data Bank, and their structures were compared. The 3 types of sdAbs displayed complementarity determining regions (CDRs) with different lengths and configurations. CDR3 of the VHH and VNAR domains were dominated by pleated and extended orientations, respectively. Although VNAR showed the smallest average molecular weight and molecular surface area compared with VHH and VH antibodies. However, the solvent accessible surface area measurements of the 3 tested sdAbs types were very similar. All the antihapten VHH antibodies showed pleated CDR3, which were sufficient to create a binding pocket to accommodate haptens (methotrexate and azo dyes) in terms of shape and electrostatic potential. The sdAbs that recognized lysozyme showed more diversity in their CDR3 orientation to enable them to recognize various topographies of lysozyme. Subsequently, the three sdAb classes were different in size and surface area and have shown distinguishable ability to optimize their CDR length and orientation to recognize different antigen classes.
Collapse
Affiliation(s)
- Mohammed M Al Qaraghuli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
45
|
Van Regenmortel MHV. Structure-Based Reverse Vaccinology Failed in the Case of HIV Because it Disregarded Accepted Immunological Theory. Int J Mol Sci 2016; 17:E1591. [PMID: 27657055 PMCID: PMC5037856 DOI: 10.3390/ijms17091591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/14/2022] Open
Abstract
Two types of reverse vaccinology (RV) should be distinguished: genome-based RV for bacterial vaccines and structure-based RV for viral vaccines. Structure-based RV consists in trying to generate a vaccine by first determining the crystallographic structure of a complex between a viral epitope and a neutralizing monoclonal antibody (nMab) and then reconstructing the epitope by reverse molecular engineering outside the context of the native viral protein. It is based on the unwarranted assumption that the epitope designed to fit the nMab will have acquired the immunogenic capacity to elicit a polyclonal antibody response with the same protective capacity as the nMab. After more than a decade of intensive research using this type of RV, this approach has failed to deliver an effective, preventive HIV-1 vaccine. The structure and dynamics of different types of HIV-1 epitopes and of paratopes are described. The rational design of an anti-HIV-1 vaccine is shown to be a misnomer since investigators who claim that they design a vaccine are actually only improving the antigenic binding capacity of one epitope with respect to only one paratope and not the immunogenic capacity of an epitope to elicit neutralizing antibodies. Because of the degeneracy of the immune system and the polyspecificity of antibodies, each epitope studied by the structure-based RV procedure is only one of the many epitopes that the particular nMab is able to recognize and there is no reason to assume that this nMab must have been elicited by this one epitope of known structure. Recent evidence is presented that the trimeric Env spikes of the virus possess such an enormous plasticity and intrinsic structural flexibility that it is it extremely difficult to determine which Env regions are the best candidate vaccine immunogens most likely to elicit protective antibodies.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- UMR 7242 Biotechnologie et Signalisation Cellulaire, Université de Strasbourg-CNRS, 300, Boulevard Sébastien Brant, CS 10413, 67412 Illkirch Cedex, France.
| |
Collapse
|
46
|
Chiu ML, Gilliland GL. Engineering antibody therapeutics. Curr Opin Struct Biol 2016; 38:163-73. [PMID: 27525816 DOI: 10.1016/j.sbi.2016.07.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023]
Abstract
The successful introduction of antibody-based protein therapeutics into the arsenal of treatments for patients has within a few decades fostered intense innovation in the production and engineering of antibodies. Reviewed here are the methods currently used to produce antibodies along with how our knowledge of the structural and functional characterization of immunoglobulins has resulted in the engineering of antibodies to produce protein therapeutics with unique properties, both biological and biophysical, that are leading to novel therapeutic approaches. Antibody engineering includes the introduction of the antibody combining site (variable regions) into a host of architectures including bi and multi-specific formats that further impact the therapeutic properties leading to further advantages and successes in patient treatment.
Collapse
Affiliation(s)
- Mark L Chiu
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Gary L Gilliland
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| |
Collapse
|
47
|
Epitope Mapping of Avian Influenza M2e Protein: Different Species Recognise Various Epitopes. PLoS One 2016; 11:e0156418. [PMID: 27362795 PMCID: PMC4928777 DOI: 10.1371/journal.pone.0156418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/14/2016] [Indexed: 12/12/2022] Open
Abstract
A common approach for developing diagnostic tests for influenza virus detection is the use of mouse or rabbit monoclonal and/or polyclonal antibodies against a target antigen of the virus. However, comparative mapping of the target antigen using antibodies from different animal sources has not been evaluated before. This is important because identification of antigenic determinants of the target antigen in different species plays a central role to ensure the efficiency of a diagnostic test, such as competitive ELISA or immunohistochemistry-based tests. Interest in the matrix 2 ectodomain (M2e) protein of avian influenza virus (AIV) as a candidate for a universal vaccine and also as a marker for detection of virus infection in vaccinated animals (DIVA) is the rationale for the selection of this protein for comparative mapping evaluation. This study aimed to map the epitopes of the M2e protein of avian influenza virus H5N1 using chicken, mouse and rabbit monoclonal or monospecific antibodies. Our findings revealed that rabbit antibodies (rAbs) recognized epitope 6EVETPTRN13 of the M2e, located at the N-terminal of the protein, while mouse (mAb) and chicken antibodies (cAbs) recognized epitope 10PTRNEWECK18, located at the centre region of the protein. The findings highlighted the difference between the M2e antigenic determinants recognized by different species that emphasized the importance of comparative mapping of antibody reactivity from different animals to the same antigen, especially in the case of multi-host infectious agents such as influenza. The findings are of importance for antigenic mapping, as well as diagnostic test and vaccine development.
Collapse
|
48
|
Huang ZQ, Raska M, Stewart TJ, Reily C, King RG, Crossman DK, Crowley MR, Hargett A, Zhang Z, Suzuki H, Hall S, Wyatt RJ, Julian BA, Renfrow MB, Gharavi AG, Novak J. Somatic Mutations Modulate Autoantibodies against Galactose-Deficient IgA1 in IgA Nephropathy. J Am Soc Nephrol 2016; 27:3278-3284. [PMID: 26966014 DOI: 10.1681/asn.2014101044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies against galactose-deficient IgA1 drive formation of pathogenic immune complexes in IgA nephropathy. IgG autoantibodies against galactose-deficient IgA1 in patients with IgA nephropathy have a specific amino-acid sequence, Y1CS3, in the complementarity-determining region 3 of the heavy chain variable region compared with a Y1CA3 sequence in similar isotype-matched IgG from healthy controls. We previously found that the S3 residue is critical for binding galactose-deficient IgA1. To determine whether this difference is due to a rare germline sequence, we amplified and sequenced the corresponding germline variable region genes from peripheral blood mononuclear cells of seven patients with IgA nephropathy and six healthy controls from whom we had cloned single-cell lines secreting monoclonal IgG specific for galactose-deficient IgA1. Sanger DNA sequencing revealed that complementarity-determining region 3 in the variable region of the germline genes encoded the Y1C(A/V)3 amino-acid sequence. Thus, the A/V>S substitution in the complementarity-determining region 3 of anti-galactose-deficient-IgA1 autoantibodies of the patients with IgA nephropathy is not a rare germline gene variant. Modeling analyses indicated that the S3 hydroxyl group spans the complementarity-determining region 3 loop stem, stabilizing the adjacent β-sheet and stem structure, important features for effective binding to galactose-deficient IgA1. Understanding processes leading to production of the autoantibodies may offer new approaches to treat IgA nephropathy.
Collapse
Affiliation(s)
| | - Milan Raska
- University of Alabama at Birmingham, Birmingham, Alabama.,Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | | | - Colin Reily
- University of Alabama at Birmingham, Birmingham, Alabama
| | - R Glenn King
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Audra Hargett
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhixin Zhang
- University of Nebraska Medical Center, Omaha, Nebraska.,West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Hitoshi Suzuki
- University of Alabama at Birmingham, Birmingham, Alabama.,Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Stacy Hall
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert J Wyatt
- University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Bruce A Julian
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Jan Novak
- University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
49
|
Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies. Proc Natl Acad Sci U S A 2015; 112:15354-9. [PMID: 26621728 DOI: 10.1073/pnas.1510944112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process.
Collapse
|
50
|
Chen HS, Hou SC, Jian JW, Goh KS, Shen ST, Lee YC, You JJ, Peng HP, Kuo WC, Chen ST, Peng MC, Wang AHJ, Yu CM, Chen IC, Tung CP, Chen TH, Ping Chiu K, Ma C, Yuan Wu C, Lin SW, Yang AS. Predominant structural configuration of natural antibody repertoires enables potent antibody responses against protein antigens. Sci Rep 2015. [PMID: 26202883 PMCID: PMC5378893 DOI: 10.1038/srep12411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Humoral immunity against diverse pathogens is rapidly elicited from natural antibody repertoires of limited complexity. But the organizing principles underlying the antibody repertoires that facilitate this immunity are not well-understood. We used HER2 as a model immunogen and reverse-engineered murine antibody response through constructing an artificial antibody library encoded with rudimentary sequence and structural characteristics learned from high throughput sequencing of antibody variable domains. Antibodies selected in vitro from the phage-displayed synthetic antibody library bound to the model immunogen with high affinity and specificities, which reproduced the specificities of natural antibody responses. We conclude that natural antibody structural repertoires are shaped to allow functional antibodies to be encoded efficiently, within the complexity limit of an individual antibody repertoire, to bind to diverse protein antigens with high specificity and affinity. Phage-displayed synthetic antibody libraries, in conjunction with high-throughput sequencing, can thus be designed to replicate natural antibody responses and to generate novel antibodies against diverse antigens.
Collapse
Affiliation(s)
- Hong-Sen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Shin-Chen Hou
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Jhih-Wei Jian
- 1] Genomics Research Center, Academia Sinica, Taipei, Taiwan 115 [2] Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan 112 [3] Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan 115
| | - King-Siang Goh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - San-Tai Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Yu-Ching Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Jhong-Jhe You
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Hung-Pin Peng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Wen-Chih Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 115
| | - Shui-Tsung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 115
| | - Ming-Chi Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 115
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 115
| | - Chung-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Ing-Chien Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Chao-Ping Tung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Tzu-Han Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Kuo Ping Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Chih Yuan Wu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 115
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| |
Collapse
|