1
|
Cheung JKW, Li KK, Zhou L, To CH, Lam TC. Identification of Potential Growth-Related Proteins in Chick Vitreous during Emmetropization Using SWATH-MS and Targeted-Based Proteomics (MRMHR). Int J Mol Sci 2024; 25:10644. [PMID: 39408973 PMCID: PMC11476992 DOI: 10.3390/ijms251910644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The vitreous humor (VH) is a transparent gelatin-like substance that occupies two-thirds of the eyeball and undergoes the most significant changes during eye elongation. Quantitative proteomics on the normal growth period in the VH could provide new insights into understanding its progression mechanism in the early stages of myopia. In this study, a data-independent acquisition (SWATH-MS) was combined with targeted LC-ESI-MS/MS to identify and quantify the relative protein changes in the vitreous during the normal growth period (4, 7, 14, 21 and 28 days old) in the chick model. Chicks were raised under normal growing conditions (12/12 h Dark/light cycle) for 28 days, where ocular measurements, including refractive and biometric measurements, were performed on days 4 (baseline), 7, 14, 21 and 28 (n = 6 chicks at each time point). Extracted vitreous proteins from individual animals were digested and pooled into a left eye pool and a right pool at each time point for protein analysis. The vitreous proteome for chicks was generated using an information-dependent acquisition (IDA) method by combining injections from individual time points. Using individual pool samples, SWATH-MS was employed to quantify proteins between each time point. DEPs were subsequently confirmed in separate batches of animals individually on random eyes (n = 4) using MRMHR between day 7 and day 14. Refraction and vitreous chamber depth (VCD) were found to be significantly changed (p < 0.05, n = 6 at each time point) during the period. A comprehensive vitreous protein ion library was built with 1576 non-redundant proteins (22987 distinct peptides) identified at a 1% false discovery rate (FDR). A total of 12 up-regulated and 26 down-regulated proteins were found across all time points compared to day 7 using SWATH-MS. Several DEPs, such as alpha-fetoprotein, the cadherin family group, neurocan, and reelin, involved in structural and growth-related pathways, were validated for the first time using MRMHR under this experimental condition. This study provided the first comprehensive spectral library of the vitreous for chicks during normal growth as well as a list of potential growth-related protein biomarker candidates using SWATH-MS and MRMHR during the emmetropization period.
Collapse
Affiliation(s)
- Jimmy Ka-Wai Cheung
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
| | - King-Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
| | - Lei Zhou
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
| | - Chi-Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
2
|
Aragoneses-Cazorla G, Machuca A, Buendia-Nacarino MP, Anunciação DS, Garcia-Calvo E, Luque-Garcia JL. Super-SILAC Quantitative Proteome Profiling of Zebrafish Larvae. Methods Mol Biol 2023; 2603:199-207. [PMID: 36370281 DOI: 10.1007/978-1-0716-2863-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The super-SILAC approach enables the quantitative proteome profiling of highly complex samples such as biological tissues or whole organisms. In this approach, a super-SILAC mix consisting of heavy isotope-labeled cells representative of the tissue or organism to be analyzed is mixed with the unlabeled samples of interest, such that the labeled proteins act as a spike-in standard, thus allowing the relative quantification of proteins between the samples of interest. In this chapter, we thoroughly describe the protocol to carry out the super-SILAC approach using a common in vivo model such as zebrafish larvae.
Collapse
Affiliation(s)
| | - Andres Machuca
- Analytical Chemistry Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, Spain
| | - M Pilar Buendia-Nacarino
- Analytical Chemistry Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, Spain
| | - Daniela S Anunciação
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Estefania Garcia-Calvo
- Analytical Chemistry Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, Spain.
| | - Jose L Luque-Garcia
- Analytical Chemistry Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Thomas MJ, Chan HYH, Palacio Lozano DC, Barrow MP. Solvent and Flow Rate Effects on the Observed Compositional Profiles and the Relative Intensities of Radical and Protonated Species in Atmospheric Pressure Photoionization Mass Spectrometry. Anal Chem 2022; 94:4954-4960. [PMID: 35286808 PMCID: PMC8969439 DOI: 10.1021/acs.analchem.1c03463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
Sample preparation and instrument parameters have regularly been demonstrated to impact upon the observed results in atmospheric pressure photoionization, mass spectrometry (MS), and analytical techniques in general but may be overlooked when such methods are applied to the characterization of real-world samples. An initial investigation into different solvent systems demonstrated that the inclusion of ethyl acetate inverted the ratio of relative intensities of radical and protonated species (R/P). Design of experiments was performed and indicated that the injection flow rate is also a significant factor. The impact of the solvent system and flow rate on signal intensity, the observed compositional profile, and R/P of selected molecular groups is demonstrated further. An inversion of R/P is observed at higher flow rates in solvent systems commonly used in petroleomics studies, effecting a loss of molecular speciation. The findings presented reiterate the critical importance in considering experimental parameters when interpreting the results of analytical procedures.
Collapse
Affiliation(s)
- Mary J. Thomas
- Molecular
Analytical Sciences Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, England
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, England
| | - Ho Yi Holly Chan
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, England
| | | | - Mark P. Barrow
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, England
| |
Collapse
|
4
|
Lemke N, El-Khatib AH, Tchipilov T, Jakubowski N, Weller MG, Vogl J. Procedure providing SI-traceable results for the calibration of protein standards by sulfur determination and its application on tau. Anal Bioanal Chem 2022; 414:4441-4455. [PMID: 35316347 PMCID: PMC9142460 DOI: 10.1007/s00216-022-03974-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/20/2022]
Abstract
Quantitative proteomics is a growing research area and one of the most important tools in the life sciences. Well-characterized and quantified protein standards are needed to achieve accurate and reliable results. However, only a limited number of sufficiently characterized protein standards are currently available. To fill this gap, a method for traceable protein quantification using sulfur isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) was developed in this study. Gel filtration and membrane filtration were tested for the separation of non-protein-bound sulfur in the protein solution. Membrane filtration demonstrated a better performance due to the lower workload and the very low sulfur blanks of 11 ng, making it well suited for high-purity proteins such as NIST SRM 927, a bovine serum albumin (BSA). The method development was accomplished with NIST SRM 927e and a commercial avidin. The quantified mass fraction of NIST SRM 927e agreed very well with the certified value and showed similar uncertainties (3.6%) as established methods while requiring less sample preparation and no species-specific standards. Finally, the developed procedure was applied to the tau protein, which is a biomarker for a group of neurodegenerative diseases denoted “tauopathies” including, e.g., Alzheimer’s disease and frontotemporal dementia. For the absolute quantification of tau in the brain of transgenic mice overexpressing human tau, a well-defined calibration standard was needed. Therefore, a pure tau solution was quantified, yielding a protein mass fraction of (0.328 ± 0.036) g/kg, which was confirmed by amino acid analysis.
Collapse
Affiliation(s)
- Nora Lemke
- , Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany
| | - Ahmed H El-Khatib
- , Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Teodor Tchipilov
- , Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | | | - Michael G Weller
- , Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Jochen Vogl
- , Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany.
| |
Collapse
|
5
|
Zhu Y, Bian JF, Lu DQ, To CH, Lam CSY, Li KK, Yu FJ, Gong BT, Wang Q, Ji XW, Zhang HM, Nian H, Lam TC, Wei RH. Alteration of EIF2 Signaling, Glycolysis, and Dopamine Secretion in Form-Deprived Myopia in Response to 1% Atropine Treatment: Evidence From Interactive iTRAQ-MS and SWATH-MS Proteomics Using a Guinea Pig Model. Front Pharmacol 2022; 13:814814. [PMID: 35153787 PMCID: PMC8832150 DOI: 10.3389/fphar.2022.814814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose: Atropine, a non-selective muscarinic antagonist, effectively slows down myopia progression in human adolescents and several animal models. However, the underlying molecular mechanism is unclear. The current study investigated retinal protein changes of form-deprived myopic (FDM) guinea pigs in response to topical administration of 1% atropine gel (10 g/L). Methods: At the first stage, the differentially expressed proteins were screened using fractionated isobaric tags for a relative and absolute quantification (iTRAQ) approach, coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) (n = 24, 48 eyes) using a sample pooling technique. At the second stage, retinal tissues from another cohort with the same treatment (n = 12, 24 eyes) with significant ocular changes were subjected to label-free sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics for orthogonal protein target confirmation. The localization of Alpha-synuclein was verified using immunohistochemistry and confocal imaging. Results: A total of 1,695 proteins (8,875 peptides) were identified with 479 regulated proteins (FC ≥ 1.5 or ≤0.67) found from FDM eyes and atropine-treated eyes receiving 4-weeks drug treatment using iTRAQ-MS proteomics. Combining the iTRAQ-MS and SWATH-MS datasets, a total of 29 confident proteins at 1% FDR were consistently quantified and matched, comprising 12 up-regulated and 17 down-regulated proteins which differed between FDM eyes and atropine treated eyes (iTRAQ: FC ≥ 1.5 or ≤0.67, SWATH: FC ≥ 1.4 or ≤0.71, p-value of ≤0.05). Bioinformatics analysis using IPA and STRING databases of these commonly regulated proteins revealed the involvement of the three commonly significant pathways: EIF2 signaling; glycolysis; and dopamine secretion. Additionally, the most significantly regulated proteins were closely connected to Alpha-synuclein (SNCA). Using immunostaining (n = 3), SNCA was further confirmed in the inner margin of the inner nuclear layer (INL) and spread throughout the inner plexiform layer (IPL) of the retina of guinea pigs. Conclusion: The molecular evidence using next-generation proteomics (NGP) revealed that retinal EIF2 signaling, glycolysis, and dopamine secretion through SNCA are implicated in atropine treatment of myopia in the FDM-induced guinea pig model.
Collapse
Affiliation(s)
- Ying Zhu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jing Fang Bian
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Da Qian Lu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chi Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Carly Siu-Yin Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - King Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Feng Juan Yu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bo Teng Gong
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiong Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiao Wen Ji
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Mei Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- *Correspondence: Rui Hua Wei, ; Thomas Chuen Lam,
| | - Rui Hua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- *Correspondence: Rui Hua Wei, ; Thomas Chuen Lam,
| |
Collapse
|
6
|
Biochemical Mapping of Pyrodinium bahamense Unveils Molecular Underpinnings behind Organismal Processes. Int J Mol Sci 2021; 22:ijms222413332. [PMID: 34948131 PMCID: PMC8706660 DOI: 10.3390/ijms222413332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Proteins, lipids, and carbohydrates from the harmful algal bloom (HAB)-causing organism Pyrodinium bahamense were characterized to obtain insights into the biochemical processes in this environmentally relevant dinoflagellate. Shotgun proteomics using label-free quantitation followed by proteome mapping using the P. bahamense transcriptome and translated protein databases of Marinovum algicola, Alexandrium sp., Cylindrospermopsis raciborskii, and Symbiodinium kawagutii for annotation enabled the characterization of the proteins in P. bahamense. The highest number of annotated hits were obtained from M. algicola and highlighted the contribution of microorganisms associated with P. bahamense. Proteins involved in dimethylsulfoniopropionate (DMSP) degradation such as propionyl CoA synthethase and acryloyl-CoA reductase were identified, suggesting the DMSP cleavage pathway as the preferred route in this dinoflagellate. Most of the annotated proteins were involved in amino acid biosynthesis and carbohydrate degradation and metabolism, indicating the active roles of these molecules in the vegetative stage of P. bahamense. This characterization provides baseline information on the cellular machinery and the molecular basis of the ecophysiology of P. bahamense.
Collapse
|
7
|
Kulyyassov A, Fresnais M, Longuespée R. Targeted liquid chromatography-tandem mass spectrometry analysis of proteins: Basic principles, applications, and perspectives. Proteomics 2021; 21:e2100153. [PMID: 34591362 DOI: 10.1002/pmic.202100153] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is now the main analytical method for the identification and quantification of peptides and proteins in biological samples. In modern research, identification of biomarkers and their quantitative comparison between samples are becoming increasingly important for discovery, validation, and monitoring. Such data can be obtained following specific signals after fragmentation of peptides using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) methods, with high specificity, accuracy, and reproducibility. In addition, these methods allow measurement of the amount of post-translationally modified forms and isoforms of proteins. This review article describes the basic principles of MRM assays, guidelines for sample preparation, recent advanced MRM-based strategies, applications and illustrative perspectives of MRM/PRM methods in clinical research and molecular biology.
Collapse
Affiliation(s)
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
8
|
Carbonara K, Andonovski M, Coorssen JR. Proteomes Are of Proteoforms: Embracing the Complexity. Proteomes 2021; 9:38. [PMID: 34564541 PMCID: PMC8482110 DOI: 10.3390/proteomes9030038] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Proteomes are complex-much more so than genomes or transcriptomes. Thus, simplifying their analysis does not simplify the issue. Proteomes are of proteoforms, not canonical proteins. While having a catalogue of amino acid sequences provides invaluable information, this is the Proteome-lite. To dissect biological mechanisms and identify critical biomarkers/drug targets, we must assess the myriad of proteoforms that arise at any point before, after, and between translation and transcription (e.g., isoforms, splice variants, and post-translational modifications [PTM]), as well as newly defined species. There are numerous analytical methods currently used to address proteome depth and here we critically evaluate these in terms of the current 'state-of-the-field'. We thus discuss both pros and cons of available approaches and where improvements or refinements are needed to quantitatively characterize proteomes. To enable a next-generation approach, we suggest that advances lie in transdisciplinarity via integration of current proteomic methods to yield a unified discipline that capitalizes on the strongest qualities of each. Such a necessary (if not revolutionary) shift cannot be accomplished by a continued primary focus on proteo-genomics/-transcriptomics. We must embrace the complexity. Yes, these are the hard questions, and this will not be easy…but where is the fun in easy?
Collapse
Affiliation(s)
| | | | - Jens R. Coorssen
- Faculties of Applied Health Sciences and Mathematics & Science, Departments of Health Sciences and Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (K.C.); (M.A.)
| |
Collapse
|
9
|
Thomas S, Kumar R, Sharma K, Barpanda A, Sreelakshmi Y, Sharma R, Srivastava S. iTRAQ-based proteome profiling revealed the role of Phytochrome A in regulating primary metabolism in tomato seedling. Sci Rep 2021; 11:7540. [PMID: 33824368 PMCID: PMC8024257 DOI: 10.1038/s41598-021-87208-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
In plants, during growth and development, photoreceptors monitor fluctuations in their environment and adjust their metabolism as a strategy of surveillance. Phytochromes (Phys) play an essential role in plant growth and development, from germination to fruit development. FR-light (FR) insensitive mutant (fri) carries a recessive mutation in Phytochrome A and is characterized by the failure to de-etiolate in continuous FR. Here we used iTRAQ-based quantitative proteomics along with metabolomics to unravel the role of Phytochrome A in regulating central metabolism in tomato seedlings grown under FR. Our results indicate that Phytochrome A has a predominant role in FR-mediated establishment of the mature seedling proteome. Further, we observed temporal regulation in the expression of several of the late response proteins associated with central metabolism. The proteomics investigations identified a decreased abundance of enzymes involved in photosynthesis and carbon fixation in the mutant. Profound accumulation of storage proteins in the mutant ascertained the possible conversion of sugars into storage material instead of being used or the retention of an earlier profile associated with the mature embryo. The enhanced accumulation of organic sugars in the seedlings indicates the absence of photomorphogenesis in the mutant.
Collapse
Affiliation(s)
- Sherinmol Thomas
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, 400076, India
| | - Rakesh Kumar
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
- Deptartment of Life Science, Central University of Karnataka, Kadaganchi, Kalaburagi, Karnataka, 585367, India
| | - Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Abhilash Barpanda
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, 400076, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sanjeeva Srivastava
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, 400076, India.
| |
Collapse
|
10
|
Cozzolino F, Landolfi A, Iacobucci I, Monaco V, Caterino M, Celentano S, Zuccato C, Cattaneo E, Monti M. New label-free methods for protein relative quantification applied to the investigation of an animal model of Huntington Disease. PLoS One 2020; 15:e0238037. [PMID: 32886703 PMCID: PMC7473538 DOI: 10.1371/journal.pone.0238037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022] Open
Abstract
Spectral Counts approaches (SpCs) are largely employed for the comparison of protein expression profiles in label-free (LF) differential proteomics applications. Similarly, to other comparative methods, also SpCs based approaches require a normalization procedure before Fold Changes (FC) calculation. Here, we propose new Complexity Based Normalization (CBN) methods that introduced a variable adjustment factor (f), related to the complexity of the sample, both in terms of total number of identified proteins (CBN(P)) and as total number of spectral counts (CBN(S)). Both these new methods were compared with the Normalized Spectral Abundance Factor (NSAF) and the Spectral Counts log Ratio (Rsc), by using standard protein mixtures. Finally, to test the robustness and the effectiveness of the CBNs methods, they were employed for the comparative analysis of cortical protein extract from zQ175 mouse brains, model of Huntington Disease (HD), and control animals (raw data available via ProteomeXchange with identifier PXD017471). LF data were also validated by western blot and MRM based experiments. On standard mixtures, both CBN methods showed an excellent behavior in terms of reproducibility and coefficients of variation (CVs) in comparison to the other SpCs approaches. Overall, the CBN(P) method was demonstrated to be the most reliable and sensitive in detecting small differences in protein amounts when applied to biological samples.
Collapse
Affiliation(s)
- Flora Cozzolino
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Alfredo Landolfi
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | | | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | | | - Chiara Zuccato
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
- * E-mail:
| |
Collapse
|
11
|
Monteiro WM, Contreras-Bernal JC, Bisneto PF, Sachett J, Mendonça da Silva I, Lacerda M, Guimarães da Costa A, Val F, Brasileiro L, Sartim MA, Silva-de-Oliveira S, Bernarde PS, Kaefer IL, Grazziotin FG, Wen FH, Moura-da-Silva AM. Bothrops atrox, the most important snake involved in human envenomings in the amazon: How venomics contributes to the knowledge of snake biology and clinical toxinology. Toxicon X 2020; 6:100037. [PMID: 32550592 PMCID: PMC7285970 DOI: 10.1016/j.toxcx.2020.100037] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 01/22/2023] Open
Abstract
Bothrops atrox snakes are mostly endemic of the Amazon rainforest and is certainly the South American pit viper responsible for most of the snakebites in the region. The composition of B. atrox venom is significantly known and has been used to trace the relevance of the venom phenotype for snake biology and for the impacts in the clinics of human patients involved in accidents by B. atrox. However, in spite of the wide distribution and the great medical relevance of B. atrox snakes, B. atrox taxonomy is not fully resolved and the impacts of the lack of taxonomic resolution on the studies focused on venom or envenoming are currently unknown. B. atrox venom presents different degrees of compositional variability and is generally coagulotoxic, inducing systemic hematological disturbances and local tissue damage in snakebite patients. Antivenoms are the effective therapy for attenuating the clinical signs. This review brings a comprehensive discussion of the literature concerning B. atrox snakes encompassing from snake taxonomy, diet and venom composition, towards clinical aspects of snakebite patients and efficacy of the antivenoms. This discussion is highly supported by the contributions that venomics and antivenomics added for the advancement of knowledge of B. atrox snakes, their venoms and the treatment of accidents they evoke.
Collapse
Affiliation(s)
- Wuelton Marcelo Monteiro
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Jorge Carlos Contreras-Bernal
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Pedro Ferreira Bisneto
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Jacqueline Sachett
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Alfredo da Matta, Manaus, Brazil
| | - Iran Mendonça da Silva
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Marcus Lacerda
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas & Maria Deane, Manaus, Brazil
| | - Allyson Guimarães da Costa
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
| | - Fernando Val
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Lisele Brasileiro
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Marco Aurélio Sartim
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Sâmella Silva-de-Oliveira
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Paulo Sérgio Bernarde
- Laboratório de Herpetologia, Centro Multidisciplinar, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, AC, Brazil
| | - Igor L. Kaefer
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | | | | | - Ana Maria Moura-da-Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
12
|
Xu L, Gimple RC, Lau WB, Lau B, Fei F, Shen Q, Liao X, Li Y, Wang W, He Y, Feng M, Bu H, Wang W, Zhou S. THE PRESENT AND FUTURE OF THE MASS SPECTROMETRY-BASED INVESTIGATION OF THE EXOSOME LANDSCAPE. MASS SPECTROMETRY REVIEWS 2020; 39:745-762. [PMID: 32469100 DOI: 10.1002/mas.21635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023]
Abstract
Exosomes are critical intercellular messengers released upon the fusion of multivesicular bodies with the cellular plasma membrane that deliver their cargo in the form of extracellular vesicles. Containing numerous nonrandomly packed functional proteins, lipids, and RNAs, exosomes are vital intercellular messengers that contribute to the physiologic processes of the healthy organism. During the post-genome era, exosome-oriented proteomics have garnered great interest. Since its establishment, mass spectrometry (MS) has been indispensable for the field of proteomics research and has advanced rapidly to interrogate biological samples at a higher resolution and sensitivity. Driven by new methodologies and more advanced instrumentation, MS-based approaches have revolutionized our understanding of protein biology. As the access to online proteomics database platforms has blossomed, experimental data processing occurs with more speed and accuracy. Here, we review recent advances in the technological progress of MS-based proteomics and several new detection strategies for MS-based proteomics research. We also summarize the use of integrated online databases for proteomics research in the era of big data. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ryan C Gimple
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Bonnie Lau
- Department of Emergency Medicine, Kaiser Permanente Santa Clara Medical Center, Affiliate of Stanford University, Stanford, CA
| | - Fan Fei
- Department of Neurosurgery, Sichuan People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qiuhong Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China.,School of Biological Sciences, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Xiaolin Liao
- Department of Neurosurgery, Sichuan People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, People's Republic of China
| | - Wei Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ying He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Min Feng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hong Bu
- Laboratory of Pathology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wei Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China
| | - Shengtao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
13
|
Cunsolo V, Foti S, Ner‐Kluza J, Drabik A, Silberring J, Muccilli V, Saletti R, Pawlak K, Harwood E, Yu F, Ciborowski P, Anczkiewicz R, Altweg K, Spoto G, Pawlaczyk A, Szynkowska MI, Smoluch M, Kwiatkowska D. Mass Spectrometry Applications. Mass Spectrom (Tokyo) 2019. [DOI: 10.1002/9781119377368.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Bąchor R, Waliczek M, Stefanowicz P, Szewczuk Z. Trends in the Design of New Isobaric Labeling Reagents for Quantitative Proteomics. Molecules 2019; 24:molecules24040701. [PMID: 30781343 PMCID: PMC6412310 DOI: 10.3390/molecules24040701] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
Modern mass spectrometry is one of the most frequently used methods of quantitative proteomics, enabling determination of the amount of peptides in a sample. Although mass spectrometry is not inherently a quantitative method due to differences in the ionization efficiency of various analytes, the application of isotope-coded labeling allows relative quantification of proteins and proteins. Over the past decade, a new method for derivatization of tryptic peptides using isobaric labels has been proposed. The labels consist of reporter and balanced groups. They have the same molecular weights and chemical properties, but differ in the distribution of stable heavy isotopes. These tags are designed in such a way that during high energy collision induced dissociation (CID) by tandem mass spectrometry, the isobaric tag is fragmented in the specific linker region, yielding reporter ions with different masses. The mass shifts among the reporter groups are compensated by the balancing groups so that the overall mass is the same for all forms of the reagent. Samples of peptides are labeled with the isobaric mass tags in parallel and combined for analysis. Quantification of individual peptides is achieved by comparing the intensity of reporter ions in the tandem mass (MS/MS) spectra. Isobaric markers have found a wide range of potential applications in proteomics. However, the currently available isobaric labeling reagents have some drawbacks, such as high cost of production, insufficient selectivity of the derivatization, and relatively limited enhancement of sensitivity of the analysis. Therefore, efforts have been devoted to the development of new isobaric markers with increased usability. The search for new isobaric markers is focused on developing a more selective method of introducing a tag into a peptide molecule, increasing the multiplexicity of markers, lowering the cost of synthesis, and increasing the sensitivity of measurement by using ionization tags containing quaternary ammonium salts. Here, the trends in the design of new isobaric labeling reagents for quantitative proteomics isobaric derivatization strategies in proteomics are reviewed, with a particular emphasis on isobaric ionization tags. The presented review focused on different types of isobaric reagents used in quantitative proteomics, their chemistry, and advantages offer by their application.
Collapse
Affiliation(s)
- Remigiusz Bąchor
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Zbigniew Szewczuk
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
15
|
Abstract
This tutorial highlights some issues in the experimental design of clinical 'omics biomarker discovery, how to avoid bias and get as true quantities as possible from biochemical analyses, and how to select samples to improve the chance of answering the clinical question at issue. This includes the importance of defining clinical aim and end point, knowing the variability in the results, randomization of samples, sample size, statistical power, and how to avoid confounding factors by including clinical data in the sample selection, that is, how to avoid unpleasant surprises at the point of statistical analysis. The aim of this Tutorial is to help translational clinical and preclinical biomarker candidate research and to improve the validity and potential of future biomarker candidate findings.
Collapse
Affiliation(s)
- Jenny Forshed
- Department of Oncology-Pathology, Karolinska Institutet , BOX 1031, SE-171 21, Stockholm, Sweden
| |
Collapse
|
16
|
Wang H, Barbieri CE, He J, Gao Y, Shi T, Wu C, Schepmoes AA, Fillmore TL, Chae SS, Huang D, Mosquera JM, Qian WJ, Smith RD, Srivastava S, Kagan J, Camp DG, Rodland KD, Rubin MA, Liu T. Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics. J Transl Med 2017; 15:175. [PMID: 28810879 PMCID: PMC5557563 DOI: 10.1186/s12967-017-1276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Speckle-type POZ protein (SPOP) is an E3 ubiquitin ligase adaptor protein that functions as a potential tumor suppressor, and SPOP mutations have been identified in ~10% of human prostate cancers. However, it remains unclear if mutant SPOP proteins can be utilized as biomarkers for early detection, diagnosis, prognosis or targeted therapy of prostate cancer. Moreover, the SPOP mutation sites are distributed in a relatively short region with multiple lysine residues, posing significant challenges for bottom-up proteomics analysis of the SPOP mutations. METHODS To address this issue, PRISM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing)-SRM (selected reaction monitoring) mass spectrometry assays have been developed for quantifying wild-type SPOP protein and 11 prostate cancer-derived SPOP mutations. RESULTS Despite inherent limitations due to amino acid sequence constraints, all the PRISM-SRM assays developed using Arg-C digestion showed a linear dynamic range of at least two orders of magnitude, with limits of quantification ranged from 0.1 to 1 fmol/μg of total protein in the cell lysate. Applying these SRM assays to analyze HEK293T cells with and without expression of the three most frequent SPOP mutations in prostate cancer (Y87N, F102C or F133V) led to confident detection of all three SPOP mutations in corresponding positive cell lines but not in the negative cell lines. Expression of the F133V mutation and wild-type SPOP was at much lower levels compared to that of F102C and Y87N mutations; however, at present, it is unknown if this also affects the biological activity of the SPOP protein. CONCLUSIONS In summary, PRISM-SRM enables multiplexed, isoform-specific detection of mutant SPOP proteins in cell lysates, providing significant potential in biomarker development for prostate cancer.
Collapse
Affiliation(s)
- Hui Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Christopher E. Barbieri
- Institute of Precision Medicine of Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY USA
| | - Jintang He
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Chaochao Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Thomas L. Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Sung-Suk Chae
- Institute of Precision Medicine of Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY USA
| | - Dennis Huang
- Institute of Precision Medicine of Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY USA
| | - Juan Miguel Mosquera
- Institute of Precision Medicine of Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, Cancer Biomarkers Research Group, National Cancer Institute, Bethesda, MD USA
| | - Jacob Kagan
- Division of Cancer Prevention, Cancer Biomarkers Research Group, National Cancer Institute, Bethesda, MD USA
| | - David G. Camp
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Karin D. Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Mark A. Rubin
- Institute of Precision Medicine of Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| |
Collapse
|
17
|
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ. Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris. Microbiology (Reading) 2017; 163:1117-1144. [DOI: 10.1099/mic.0.000473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jessica Schneider
- Bioinformatics Resource Facility, Centrum für Biotechnologie, Universität Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Karsten Niehaus
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Frank-Jörg Vorhölter
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| |
Collapse
|
18
|
Comparative proteomic analysis of eggplant (Solanum melongena L.) heterostylous pistil development. PLoS One 2017; 12:e0179018. [PMID: 28586360 PMCID: PMC5460878 DOI: 10.1371/journal.pone.0179018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/23/2017] [Indexed: 11/19/2022] Open
Abstract
Heterostyly is a common floral polymorphism, but the proteomic basis of this trait is still largely unexplored. In this study, self- and cross-pollination of L-morph and S-morph flowers and comparison of embryo sac development in eggplant (Solanum melongena L.) suggested that lower fruit set from S-morph flowers results from stigma-pollen incompatibility. To explore the molecular mechanism underlying heterostyly development, we conducted isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis of eggplant pistils for L- and S-morph flowers. A total of 5,259 distinct proteins were identified during heterostyly development. Compared S-morph flowers with L-morph, we discovered 57 and 184 differentially expressed proteins (DEPs) during flower development and maturity, respectively. Quantitative real time polymerase chain reactions were used for nine genes to verify DEPs from the iTRAQ approach. During flower development, DEPs were mainly involved in morphogenesis, biosynthetic processes, and metabolic pathways. At flower maturity, DEPs primarily participated in biosynthetic processes, metabolic pathways, and the formation of ribosomes and proteasomes. Additionally, some proteins associated with senescence and programmed cell death were found to be upregulated in S-morph pistils, which may lead to the lower fruit set in S-morph flowers. Although the exact roles of these related proteins are not yet known, this was the first attempt to use an iTRAQ approach to analyze proteomes of heterostylous eggplant flowers, and these results will provide insights into biochemical events taking place during the development of heterostyly.
Collapse
|
19
|
Anders F, Teister J, Funke S, Pfeiffer N, Grus F, Solon T, Prokosch V. Proteomic profiling reveals crucial retinal protein alterations in the early phase of an experimental glaucoma model. Graefes Arch Clin Exp Ophthalmol 2017; 255:1395-1407. [PMID: 28536832 DOI: 10.1007/s00417-017-3678-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/12/2017] [Accepted: 04/18/2017] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Clinical glaucoma is difficult to assess in terms of molecular pathophysiology, prompting studies in experimental models of glaucoma. The purpose of this study was to investigate quantitative changes in retinal protein expression at the onset of experimental glaucoma in rats. Analyzing the proteome provides a suitable tool to decipher the pathophysiological processes in glaucomatous degeneration. METHODS Thermic cauterization of episcleral veins was utilized to elevate the intraocular pressure in Sprague Dawley rats. Morphological changes were surveyed on a cellular level with a staining of Brn3a-positive cells. The retinal nerve fiber layer was investigated using optical coherence tomography (OCT, Heidelberg Engineering) and the optic nerve was analyzed by an axonal grading system. Mass spectrometry-featured quantitative proteomics and immunohistochemical staining was used to identify specifically altered proteins in the course of intraocular pressure elevation and initial neurodegeneration. Proteomic data were further analyzed with Ingenuity Pathway Analysis and Cytoscape to analyze further molecular associations. RESULTS The intraocular pressure rose significantly (p < 0.001) for the follow-up period of 3 weeks after which animals were sacrificed. Eyes exposed to an elevated intraocular pressure showed an initial decrease of retinal ganglion cells, retinal nerve fiber layer (p < 0.05) and an impairment of the optic nerve (p < 0.01). Mass spectrometry led to the identification and quantification of 931 retinal proteins, whereas 32 were considerably altered. Bioinformatics-assisted clustering revealed that a majority of these proteins are functionally associated with cell differentiation, apoptosis and stress response. The creation of an interactive protein network showed that numerous altered proteins are connected regarding their cellular function. Protein kinase b, mitogen-activated protein kinase 1 and the NF-κB complex seem to be essential molecules in this context. CONCLUSIONS In conclusion, these results provide further lines of evidence that substantial molecular changes occur at the onset of the disease, identifying potential key players, which might be useful as biomarkers for diagnostics and development of medical treatment in the future.
Collapse
Affiliation(s)
- Fabian Anders
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Julia Teister
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Sebstian Funke
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany.,University Eye Hospital Mainz, School of Medicine, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Thanos Solon
- Department of Experimental Ophthalmology, University Medical Center, Domagkstraße 15, 48149, Münster, Germany
| | - Verena Prokosch
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany. .,University Eye Hospital Mainz, School of Medicine, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
20
|
Calvete JJ, Petras D, Calderón-Celis F, Lomonte B, Encinar JR, Sanz-Medel A. Protein-species quantitative venomics: looking through a crystal ball. J Venom Anim Toxins Incl Trop Dis 2017; 23:27. [PMID: 28465678 PMCID: PMC5408492 DOI: 10.1186/s40409-017-0116-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
In this paper we discuss recent significant developments in the field of venom research, specifically the emergence of top-down proteomic applications that allow achieving compositional resolution at the level of the protein species present in the venom, and the absolute quantification of the venom proteins (the term “protein species” is used here to refer to all the different molecular forms in which a protein can be found. Please consult the special issue of Jornal of Proteomics “Towards deciphering proteomes via the proteoform, protein speciation, moonlighting and protein code concepts” published in 2016, vol. 134, pages 1-202). Challenges remain to be solved in order to achieve a compact and automated platform with which to routinely carry out comprehensive quantitative analysis of all toxins present in a venom. This short essay reflects the authors’ view of the immediate future in this direction for the proteomic analysis of venoms, particularly of snakes.
Collapse
Affiliation(s)
- Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, C.S.I.C, Jaime Roig 11, 46010 Valencia, Spain
| | - Daniel Petras
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA USA
| | | | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
21
|
Lomonte B, Calvete JJ. Strategies in 'snake venomics' aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. J Venom Anim Toxins Incl Trop Dis 2017; 23:26. [PMID: 28465677 PMCID: PMC5408369 DOI: 10.1186/s40409-017-0117-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
This work offers a general overview on the evolving strategies for the proteomic analysis of snake venoms, and discusses how these may be combined through diverse experimental approaches with the goal of achieving a more comprehensive knowledge on the compositional, toxic, and immunological characteristics of venoms. Some recent developments in this field are summarized, highlighting how strategies have evolved from the mere cataloguing of venom components (proteomics/venomics), to a broader exploration of their immunological (antivenomics) and functional (toxicovenomics) characteristics. Altogether, the combination of these complementary strategies is helping to build a wider, more integrative view of the life-threatening protein cocktails produced by venomous snakes, responsible for thousands of deaths every year.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501 Costa Rica
| | - Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| |
Collapse
|
22
|
Rai V, Muthuraj M, Gandhi MN, Das D, Srivastava S. Real-time iTRAQ-based proteome profiling revealed the central metabolism involved in nitrogen starvation induced lipid accumulation in microalgae. Sci Rep 2017; 7:45732. [PMID: 28378827 PMCID: PMC5381106 DOI: 10.1038/srep45732] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
To understand the post-transcriptional molecular mechanisms attributing to oleaginousness in microalgae challenged with nitrogen starvation (N-starvation), the longitudinal proteome dynamics of Chlorella sp. FC2 IITG was investigated using multipronged quantitative proteomics and multiple reaction monitoring assays. Physiological data suggested a remarkably enhanced lipid accumulation with concomitant reduction in carbon flux towards carbohydrate, protein and chlorophyll biosynthesis. The proteomics-based investigations identified the down-regulation of enzymes involved in chlorophyll biosynthesis (porphobilinogen deaminase) and photosynthetic carbon fixation (sedoheptulose-1,7 bisphosphate and phosphoribulokinase). Profound up-regulation of hydroxyacyl-ACP dehydrogenase and enoyl-ACP reductase ascertained lipid accumulation. The carbon skeletons to be integrated into lipid precursors were regenerated by glycolysis, β-oxidation and TCA cycle. The enhanced expression of glycolysis and pentose phosphate pathway enzymes indicates heightened energy needs of FC2 cells for the sustenance of N-starvation. FC2 cells strategically reserved nitrogen by incorporating it into the TCA-cycle intermediates to form amino acids; particularly the enzymes involved in the biosynthesis of glutamate, aspartate and arginine were up-regulated. Regulation of arginine, superoxide dismutase, thioredoxin-peroxiredoxin, lipocalin, serine-hydroxymethyltransferase, cysteine synthase, and octanoyltransferase play a critical role in maintaining cellular homeostasis during N-starvation. These findings may provide a rationale for genetic engineering of microalgae, which may enable synchronized biomass and lipid synthesis.
Collapse
Affiliation(s)
- Vineeta Rai
- Department of Biosciences and Bioengineering, Wadhwani Research Center for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Muthusivaramapandian Muthuraj
- Department of Biosciences and Bioengineering, Centre for Energy, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mayuri N. Gandhi
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debasish Das
- Department of Biosciences and Bioengineering, Centre for Energy, Indian Institute of Technology Guwahati, Assam 781039, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Mumbai, Powai - 400067, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Wadhwani Research Center for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Mumbai, Powai - 400067, India
| |
Collapse
|
23
|
Gunning Y, Watson AD, Rigby NM, Philo M, Peazer JK, Kemsley EK. Species Determination and Quantitation in Mixtures Using MRM Mass Spectrometry of Peptides Applied to Meat Authentication. J Vis Exp 2016. [PMID: 27685654 PMCID: PMC5092036 DOI: 10.3791/54420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe a simple protocol for identifying and quantifying the two components in binary mixtures of species possessing one or more similar proteins. Central to the method is the identification of 'corresponding proteins' in the species of interest, in other words proteins that are nominally the same but possess species-specific sequence differences. When subject to proteolysis, corresponding proteins will give rise to some peptides which are likewise similar but with species-specific variants. These are 'corresponding peptides'. Species-specific peptides can be used as markers for species determination, while pairs of corresponding peptides permit relative quantitation of two species in a mixture. The peptides are detected using multiple reaction monitoring (MRM) mass spectrometry, a highly specific technique that enables peptide-based species determination even in complex systems. In addition, the ratio of MRM peak areas deriving from corresponding peptides supports relative quantitation. Since corresponding proteins and peptides will, in the main, behave similarly in both processing and in experimental extraction and sample preparation, the relative quantitation should remain comparatively robust. In addition, this approach does not need the standards and calibrations required by absolute quantitation methods. The protocol is described in the context of red meats, which have convenient corresponding proteins in the form of their respective myoglobins. This application is relevant to food fraud detection: the method can detect 1% weight for weight of horse meat in beef. The corresponding protein, corresponding peptide (CPCP) relative quantitation using MRM peak area ratios gives good estimates of the weight for weight composition of a horse plus beef mixture.
Collapse
Affiliation(s)
| | | | | | - Mark Philo
- Analytical Sciences Unit, Institute of Food Research
| | - Joshua K Peazer
- Analytical Sciences Unit, Institute of Food Research; School of Chemistry, University of East Anglia
| | | |
Collapse
|
24
|
Koehbach J, Gruber CW, Becker C, Kreil DP, Jilek A. MALDI TOF/TOF-Based Approach for the Identification of d- Amino Acids in Biologically Active Peptides and Proteins. J Proteome Res 2016; 15:1487-96. [PMID: 26985971 PMCID: PMC4861975 DOI: 10.1021/acs.jproteome.5b01067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Several
biologically active peptides contain a d- amino
acid in a well-defined position, which is position 2 in all peptide
epimers isolated to date from vertebrates and also some from invertebrates.
The detection of such D- residues by standard analytical
techniques is challenging. In tandem mass spectrometric (MS) analysis,
although fragment masses are the same for all stereoisomers, peak
intensities are known to depend on chirality. Here, we observe that
the effect of a d- amino acid in the second N-terminal position
on the fragmentation pattern in matrix assisted laser desorption time-of-flight
spectrometry (MALDI-TOF/TOF MS) strongly depends on the peptide sequence.
Stereosensitive fragmentation (SF) is correlated to a neighborhood
effect, but the d- residue also exerts an overall effect
influencing distant bonds. In a fingerprint analysis, multiple peaks
can thus serve to identify the chirality of a sample in short time
and potentially high throughput. Problematic variations between individual
spots could be successfully suppressed by cospotting deuterated analogues
of the epimers. By identifying the [d-Leu2] isomer of the
predicted peptide GH-2 (gene derived bombininH) in skin secretions
of the toad Bombina orientalis, we
demonstrated the analytical power of SF-MALDI-TOF/TOF measurements.
In conclusion, SF-MALDI-TOF/TOF MS combines high sensitivity, versatility,
and the ability to complement other methods.
Collapse
Affiliation(s)
- Johannes Koehbach
- Centre for Physiology and Pharmacology, Medical University of Vienna , Schwarzspanierstraße 17, A-1090 Vienna, Austria.,School of Biomedical Sciences, The University of Queensland , Brisbane, QLD, 4072 Australia
| | - Christian W Gruber
- Centre for Physiology and Pharmacology, Medical University of Vienna , Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Christian Becker
- Institute of Biological Chemistry, Department of Chemistry, University of Vienna , Währinger Straße 38, A-1090 Vienna, Austria
| | - David P Kreil
- Chair of Bioinformatics, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Alexander Jilek
- Institute of Biological Chemistry, Department of Chemistry, University of Vienna , Währinger Straße 38, A-1090 Vienna, Austria.,Chair of Bioinformatics, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
25
|
Suomi T, Corthals GL, Nevalainen OS, Elo LL. Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins. J Proteome Res 2015; 14:4564-70. [PMID: 26380941 DOI: 10.1021/acs.jproteome.5b00363] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.
Collapse
Affiliation(s)
| | - Garry L Corthals
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam , 1090 GD Amsterdam , The Netherlands
| | | | | |
Collapse
|
26
|
Neves LX, Sanson AL, Wilson RA, Castro-Borges W. What's in SWAP? Abundance of the principal constituents in a soluble extract of Schistosoma mansoni revealed by shotgun proteomics. Parasit Vectors 2015; 8:337. [PMID: 26088647 PMCID: PMC4484702 DOI: 10.1186/s13071-015-0943-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/08/2015] [Indexed: 12/27/2022] Open
Abstract
Background The soluble antigen preparation of adult schistosomes (SWAP) has often been used to probe host responses against these blood-dwelling parasites. Despite its long-established use there is limited knowledge about its composition. The information we provide here on the molecular composition of SWAP may contribute as a guide for a rational selection of antigenic targets. Methods Label-free quantitative shotgun proteomics was employed to determine the composition and abundance of SWAP constituents. Briefly, paired adult Schistosoma mansoni worms were sonicated in PBS pH 7.2 and ultracentrifuged for recovery of the soluble supernatant. An aliquot was subjected to trypsin digestion. Resulting peptides were separated under ultra-high performance liquid chromatography and analysed using an orbitrap mass spectrometer. Spectral data were interrogated using SequestHT against an in-house S. mansoni database. Proteins were quantified by recording the mean area under curve obtained for up to three most intense detected peptides. Proteins within the 90th percentile of the total SWAP mass were categorized according to their sub-cellular/tissue location. Results In this work we expanded significantly the list of known SWAP constituents. Through application of stringent criteria, a total of 633 proteins were quantitatively identified. Only 18 proteins account to 50 % of the total SWAP mass as revealed by their cumulative abundance. Among them, none is predicted as a secreted molecule reinforcing the point that SWAP is dominated by cytosolic and cytoskeletal proteins. In contrast, only 3 % of the mass comprised proteins proposed to function at the host-parasite interfaces (tegument and gut), which could conceivably represent vulnerable targets of a protective immune response. Paradoxically, at least 11 SWAP proteins, comprising ~25 % of its mass, have been tested as vaccine candidates. Conclusions Our data suggest that use of SWAP to probe host responses has greatest value for diagnostic purposes or assessing intensity of infection. However, the preparation is of limited utility as an antigen source for investigating host responses to proteins expressed at or secreted from worm-host interfaces. The data also pose the question as to why vaccination with SWAP, containing so many proposed vaccine candidates, has no additive or even synergistic effects on the induction of protection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0943-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leandro Xavier Neves
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | - Ananda Lima Sanson
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | - R Alan Wilson
- Centre for Immunology & Infection, Department of Biology, University of York, PO Box 373, York, YO10 5YW, UK.
| | - William Castro-Borges
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Cherry JJ, Kobayashi DT, Lynes MM, Naryshkin NN, Tiziano FD, Zaworski PG, Rubin LL, Jarecki J. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Technol 2015; 12:315-41. [PMID: 25147906 DOI: 10.1089/adt.2014.587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials.
Collapse
|
28
|
Xue B, Huang W, Yuan X, Xu B, Lou Y, Zhou Q, Ran F, Ge Z, Li R, Cui J. YSY01A, a Novel Proteasome Inhibitor, Induces Cell Cycle Arrest on G2 Phase in MCF-7 Cells via ERα and PI3K/Akt Pathways. J Cancer 2015; 6:319-26. [PMID: 25767601 PMCID: PMC4349871 DOI: 10.7150/jca.10733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/15/2014] [Indexed: 11/05/2022] Open
Abstract
Given that the proteasome is essential for multiple cellular processes by degrading diverse regulatory proteins, inhibition of the proteasome has emerged as an attractive target for anti-cancer therapy. YSY01A is a novel small molecule compound targeting the proteasome. The compound was found to suppress viability of MCF-7 cells and cause limited cell membrane damage as determined by sulforhodamine B assay (SRB) and CytoTox 96(®) non-radioactive cytotoxicity assay. High-content screening (HCS) further shows that YSY01A treatment induces cell cycle arrest on G2 phase within 24 hrs. Label-free quantitative proteomics (LFQP), which allows extensive comparison of cellular responses following YSY01A treatment, suggests that various regulatory proteins including cell cycle associated proteins and PI3K/Akt pathway may be affected. Furthermore, YSY01A increases p-CDC-2, p-FOXO3a, p53, p21(Cip1) and p27(Kip1) but decreases p-Akt, p-ERα as confirmed by Western blotting. Therefore, YSY01A represents a potential therapeutic for breast cancer MCF-7 by inducing G2 phase arrest via ERα and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Bingjie Xue
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Wei Huang
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Xia Yuan
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Bo Xu
- 2. Instrumental Analysis Center of State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Yaxin Lou
- 3. Lab of Proteomics Medical and Healthy Analytical Center, Peking University, Beijing, China
| | - Quan Zhou
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Fuxiang Ran
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Zemei Ge
- 4. Peking University School of Pharmaceutical Sciences Department of Medicinal Chemistry, Beijing, China
| | - Runtao Li
- 4. Peking University School of Pharmaceutical Sciences Department of Medicinal Chemistry, Beijing, China
| | - Jingrong Cui
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| |
Collapse
|
29
|
Stenken JA, Poschenrieder AJ. Bioanalytical chemistry of cytokines--a review. Anal Chim Acta 2015; 853:95-115. [PMID: 25467452 PMCID: PMC4717841 DOI: 10.1016/j.aca.2014.10.009] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 02/06/2023]
Abstract
Cytokines are bioactive proteins produced by many different cells of the immune system. Due to their role in different inflammatory disease states and maintaining homeostasis, there is enormous clinical interest in the quantitation of cytokines. The typical standard methods for quantitation of cytokines are immunoassay-based techniques including enzyme-linked immusorbent assays (ELISA) and bead-based immunoassays read by either standard or modified flow cytometers. A review of recent developments in analytical methods for measurements of cytokine proteins is provided. This review briefly covers cytokine biology and the analysis challenges associated with measurement of these biomarker proteins for understanding both health and disease. New techniques applied to immunoassay-based assays are presented along with the uses of aptamers, electrochemistry, mass spectrometry, optical resonator-based methods. Methods used for elucidating the release of cytokines from single cells as well as in vivo collection methods are described.
Collapse
Affiliation(s)
- Julie A Stenken
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Andreas J Poschenrieder
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Street 3, D-85748 Garching, Germany
| |
Collapse
|
30
|
Fisher S, Witkowska HE. Protein Biomarkers for Detecting Cancer. THE MOLECULAR BASIS OF CANCER 2015:331-346.e5. [DOI: 10.1016/b978-1-4557-4066-6.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Paczesny S, Duncan C, Jacobsohn D, Krance R, Leung K, Carpenter P, Bollard C, Renbarger J, Cooke K. Opportunities and challenges of proteomics in pediatric patients: circulating biomarkers after hematopoietic stem cell transplantation as a successful example. Proteomics Clin Appl 2014; 8:837-50. [PMID: 25196024 DOI: 10.1002/prca.201400033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/30/2014] [Accepted: 09/03/2014] [Indexed: 11/06/2022]
Abstract
Biomarkers have the potential to improve diagnosis and prognosis, facilitate-targeted treatment, and reduce health care costs. Thus, there is great hope that biomarkers will be integrated in all clinical decisions in the near future. A decade ago, the biomarker field was launched with great enthusiasm because MS revealed that blood contains a rich library of candidate biomarkers. However, biomarker research has not yet delivered on its promise due to several limitations: (i) improper sample handling and tracking as well as limited sample availability in the pediatric population, (ii) omission of appropriate controls in original study designs, (iii) lability and low abundance of interesting biomarkers in blood, and (iv) the inability to mechanistically tie biomarker presence to disease biology. These limitations as well as successful strategies to overcome them are discussed in this review. Several advances in biomarker discovery and validation have been made in hematopoietic stem cell transplantation, the current most effective tumor immunotherapy, and these could serve as examples for other conditions. This review provides fresh optimism that biomarkers clinically relevant in pediatrics are closer to being realized based on: (i) a uniform protocol for low-volume blood collection and preservation, (ii) inclusion of well-controlled independent cohorts, (iii) novel technologies and instrumentation with low analytical sensitivity, and (iv) integrated animal models for exploring potential biomarkers and targeted therapies.
Collapse
Affiliation(s)
- Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tiwari V, Tiwari M. Quantitative proteomics to study carbapenem resistance in Acinetobacter baumannii. Front Microbiol 2014; 5:512. [PMID: 25309531 PMCID: PMC4176082 DOI: 10.3389/fmicb.2014.00512] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/11/2014] [Indexed: 12/28/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen causing pneumonia, respiratory infections and urinary tract infections. The prevalence of this lethal pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source. Moreover it resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. Resistance against carbapenem has emerged in Acinetobacter baumannii which can create significant health problems and is responsible for high morbidity and mortality. With the development of quantitative proteomics, a considerable progress has been made in the study of carbapenem resistance of Acinetobacter baumannii. Recent updates showed that quantitative proteomics has now emerged as an important tool to understand the carbapenem resistance mechanism in Acinetobacter baumannii. Present review also highlights the complementary nature of different quantitative proteomic methods used to study carbapenem resistance and suggests to combine multiple proteomic methods for understanding the response to antibiotics by Acinetobacter baumannii.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of RajasthanAjmer, India
| | | |
Collapse
|
33
|
Graft-versus-host disease biomarkers: omics and personalized medicine. Int J Hematol 2014; 98:275-92. [PMID: 23959582 DOI: 10.1007/s12185-013-1406-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 02/03/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the most effective form of tumor immunotherapy available to date and the frequency of transplants continues to increase worldwide. However, while allo-HSCT usually induces a beneficial graft-versus leukemia effect, a major source of morbidity and mortality following allo-HSCT is graft-versus-host disease (GVHD). Currently available diagnostic and staging tools frequently fail to identify those at higher risk for GVHD morbidity, treatment unresponsiveness, and death. Furthermore, there are shortcomings in the risk stratification of patients before GVHD clinical signs develop. In parallel, recent years have been characterized by an explosive evolution of omics technologies, largely due to technological advancements in chemistry, engineering, and bioinformatics. Building on these opportunities, plasma biomarkers have been identified and validated as promising diagnostic and prognostic tools for acute GVHD. This review summarizes current information on the types of GVHD biomarkers, the omics tools used to identify them, the biomarkers currently validated as acute GVHD markers, and future recommendations for incorporating biomarkers into new grading algorithms for risk-stratifying patients and creating more personalized treatment courses. Future directions will include randomized evaluations of these biomarkers in multicenter prospective studies while extending on the need for biomarkers of chronic GVHD.
Collapse
|
34
|
Mesri M. Advances in Proteomic Technologies and Its Contribution to the Field of Cancer. Adv Med 2014; 2014:238045. [PMID: 26556407 PMCID: PMC4590950 DOI: 10.1155/2014/238045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022] Open
Abstract
Systematic studies of the cancer genome have generated a wealth of knowledge in recent years. These studies have uncovered a number of new cancer genes not previously known to be causal targets in cancer. Genetic markers can be used to determine predisposition to tumor development, but molecularly targeted treatment strategies are not widely available for most cancers. Precision care plans still must be developed by understanding and implementing basic science research into clinical treatment. Proteomics is continuing to make major strides in the discovery of fundamental biological processes as well as more recent transition into an assay platform capable of measuring hundreds of proteins in any biological system. As such, proteomics can translate basic science discoveries into the clinical practice of precision medicine. The proteomic field has progressed at a fast rate over the past five years in technology, breadth and depth of applications in all areas of the bioscience. Some of the previously experimental technical approaches are considered the gold standard today, and the community is now trying to come to terms with the volume and complexity of the data generated. Here I describe contribution of proteomics in general and biological mass spectrometry in particular to cancer research, as well as related major technical and conceptual developments in the field.
Collapse
Affiliation(s)
- Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Qiu X, Zhang H, Lai Y. Quantitative targeted proteomics for membrane transporter proteins: method and application. AAPS JOURNAL 2014; 16:714-26. [PMID: 24830943 DOI: 10.1208/s12248-014-9607-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/05/2014] [Indexed: 01/04/2023]
Abstract
Although global proteomics has shown promise for discovery of many new proteins, biomarkers, protein modifications, and polymorphisms, targeted proteomics is emerging in the proteomics research field as a complement to untargeted shotgun proteomics, particularly when a determined set of low-abundance functional proteins need to be measured. The function and expression of proteins related to drug absorption, distribution, metabolism, and excretion (ADME) such as cytochrome P450 enzymes and membrane transporters are of great interest in biopharmaceutical research. Since the variation in ADME-related protein expression is known to be a major complicating factor encountered during in vitro-in vivo and in vivo-in vivo extrapolations (IVIVE), the accurate quantification of the ADME proteins in complex biological systems becomes a fundamental element in establishing IVIVE for pharmacokinetic predictions. In this review, we provide an overview of relevant methodologies followed by a summary of recent applications encompassing mass spectrometry-based targeted quantifications of membrane transporters.
Collapse
Affiliation(s)
- Xi Qiu
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA
| | | | | |
Collapse
|
36
|
Sun B, Hood L. Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins. J Proteome Res 2014; 13:2705-14. [PMID: 24754784 PMCID: PMC4053080 DOI: 10.1021/pr500187g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The advent of proteomics technology
has transformed our understanding
of biological membranes. The challenges for studying membrane proteins
have inspired the development of many analytical and bioanalytical
tools, and the techniques of glycoproteomics have emerged as an effective
means to enrich and characterize membrane and plasma-membrane proteomes.
This Review summarizes the development of various glycoproteomics
techniques to overcome the hurdles formed by the unique structures
and behaviors of membrane proteins with a focus on N-glycoproteomics.
Example contributions of N-glycoproteomics to the understanding of
membrane biology are provided, and the areas that require future technical
breakthroughs are discussed.
Collapse
Affiliation(s)
- Bingyun Sun
- Department of Chemistry, Simon Fraser University , 8888 University Drive, Burnaby, British Columbia V5A1S6, Canada
| | | |
Collapse
|
37
|
Mass spectrometry based biomarker discovery, verification, and validation--quality assurance and control of protein biomarker assays. Mol Oncol 2014; 8:840-58. [PMID: 24713096 DOI: 10.1016/j.molonc.2014.03.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/10/2014] [Indexed: 12/17/2022] Open
Abstract
In its early years, mass spectrometry (MS)-based proteomics focused on the cataloging of proteins found in different species or different tissues. By 2005, proteomics was being used for protein quantitation, typically based on "proteotypic" peptides which act as surrogates for the parent proteins. Biomarker discovery is usually done by non-targeted "shotgun" proteomics, using relative quantitation methods to determine protein expression changes that correlate with disease (output given as "up-or-down regulation" or "fold-increases"). MS-based techniques can also perform "absolute" quantitation which is required for clinical applications (output given as protein concentrations). Here we describe the differences between these methods, factors that affect the precision and accuracy of the results, and some examples of recent studies using MS-based proteomics to verify cancer-related biomarkers.
Collapse
|
38
|
Rhoads TW, Rose CM, Bailey DJ, Riley NM, Molden RC, Nestler AJ, Merrill AE, Smith LM, Hebert AS, Westphall MS, Pagliarini DJ, Garcia BA, Coon JJ. Neutron-encoded mass signatures for quantitative top-down proteomics. Anal Chem 2014; 86:2314-9. [PMID: 24475910 PMCID: PMC3983007 DOI: 10.1021/ac403579s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ability to acquire highly accurate quantitative data is an increasingly important part of any proteomics experiment, whether shotgun or top-down approaches are used. We recently developed a quantitation strategy for peptides based on neutron encoding, or NeuCode SILAC, which uses closely spaced heavy isotope-labeled amino acids and high-resolution mass spectrometry to provide quantitative data. We reasoned that the strategy would also be applicable to intact proteins and could enable robust, multiplexed quantitation for top-down experiments. We used yeast lysate labeled with either (13)C6(15)N2-lysine or (2)H8-lysine, isotopologues of lysine that are spaced 36 mDa apart. Proteins having such close spacing cannot be distinguished during a medium resolution scan, but upon acquiring a high-resolution scan, the two forms of the protein with each amino acid are resolved and the quantitative information revealed. An additional benefit NeuCode SILAC provides for top down is that the spacing of the isotope peaks indicates the number of lysines present in the protein, information that aids in identification. We used NeuCode SILAC to quantify several hundred isotope distributions, manually identify and quantify proteins from 1:1, 3:1, and 5:1 mixed ratios, and demonstrate MS(2)-based quantitation using ETD.
Collapse
Affiliation(s)
- Timothy W Rhoads
- Department of Chemistry, ‡Department of Biomolecular Chemistry, §Genome Center, and ∇Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen Y, Yang LN, Cheng L, Tu S, Guo SJ, Le HY, Xiong Q, Mo R, Li CY, Jeong JS, Jiang L, Blackshaw S, Bi LJ, Zhu H, Tao SC, Ge F. Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity. Mol Cell Proteomics 2013; 12:2804-19. [PMID: 23824909 DOI: 10.1074/mcp.m112.025882] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Perrin RJ, Payton JE, Malone JP, Gilmore P, Davis AE, Xiong C, Fagan AM, Townsend RR, Holtzman DM. Quantitative label-free proteomics for discovery of biomarkers in cerebrospinal fluid: assessment of technical and inter-individual variation. PLoS One 2013; 8:e64314. [PMID: 23700471 PMCID: PMC3659127 DOI: 10.1371/journal.pone.0064314] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/11/2013] [Indexed: 01/11/2023] Open
Abstract
Background Biomarkers are required for pre-symptomatic diagnosis, treatment, and monitoring of neurodegenerative diseases such as Alzheimer's disease. Cerebrospinal fluid (CSF) is a favored source because its proteome reflects the composition of the brain. Ideal biomarkers have low technical and inter-individual variability (subject variance) among control subjects to minimize overlaps between clinical groups. This study evaluates a process of multi-affinity fractionation (MAF) and quantitative label-free liquid chromatography tandem mass spectrometry (LC-MS/MS) for CSF biomarker discovery by (1) identifying reparable sources of technical variability, (2) assessing subject variance and residual technical variability for numerous CSF proteins, and (3) testing its ability to segregate samples on the basis of desired biomarker characteristics. Methods/Results Fourteen aliquots of pooled CSF and two aliquots from six cognitively normal individuals were randomized, enriched for low-abundance proteins by MAF, digested endoproteolytically, randomized again, and analyzed by nano-LC-MS. Nano-LC-MS data were time and m/z aligned across samples for relative peptide quantification. Among 11,433 aligned charge groups, 1360 relatively abundant ones were annotated by MS2, yielding 823 unique peptides. Analyses, including Pearson correlations of annotated LC-MS ion chromatograms, performed for all pairwise sample comparisons, identified several sources of technical variability: i) incomplete MAF and keratins; ii) globally- or segmentally-decreased ion current in isolated LC-MS analyses; and iii) oxidized methionine-containing peptides. Exclusion of these sources yielded 609 peptides representing 81 proteins. Most of these proteins showed very low coefficients of variation (CV<5%) whether they were quantified from the mean of all or only the 2 most-abundant peptides. Unsupervised clustering, using only 24 proteins selected for high subject variance, yielded perfect segregation of pooled and individual samples. Conclusions Quantitative label-free LC-MS/MS can measure scores of CSF proteins with low technical variability and can segregate samples according to desired criteria. Thus, this technique shows potential for biomarker discovery for neurological diseases.
Collapse
Affiliation(s)
- Richard J Perrin
- Division of Neuropathology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mass spectrometry-based proteomics in molecular diagnostics: discovery of cancer biomarkers using tissue culture. BIOMED RESEARCH INTERNATIONAL 2013; 2013:783131. [PMID: 23586059 PMCID: PMC3613068 DOI: 10.1155/2013/783131] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
Abstract
Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.
Collapse
|
42
|
Russell JD, Scalf M, Book AJ, Ladror DT, Vierstra RD, Smith LM, Coon JJ. Characterization and quantification of intact 26S proteasome proteins by real-time measurement of intrinsic fluorescence prior to top-down mass spectrometry. PLoS One 2013; 8:e58157. [PMID: 23536786 PMCID: PMC3594244 DOI: 10.1371/journal.pone.0058157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 02/03/2013] [Indexed: 11/18/2022] Open
Abstract
Quantification of gas-phase intact protein ions by mass spectrometry (MS) is impeded by highly-variable ionization, ion transmission, and ion detection efficiencies. Therefore, quantification of proteins using MS-associated techniques is almost exclusively done after proteolysis where peptides serve as proxies for estimating protein abundance. Advances in instrumentation, protein separations, and informatics have made large-scale sequencing of intact proteins using top-down proteomics accessible to the proteomics community; yet quantification of proteins using a top-down workflow has largely been unaddressed. Here we describe a label-free approach to determine the abundance of intact proteins separated by nanoflow liquid chromatography prior to MS analysis by using solution-phase measurements of ultraviolet light-induced intrinsic fluorescence (UV-IF). UV-IF is measured directly at the electrospray interface just prior to the capillary exit where proteins containing at least one tryptophan residue are readily detected. UV-IF quantification was demonstrated using commercially available protein standards and provided more accurate and precise protein quantification than MS ion current. We evaluated the parallel use of UV-IF and top-down tandem MS for quantification and identification of protein subunits and associated proteins from an affinity-purified 26S proteasome sample from Arabidopsis thaliana. We identified 26 unique proteins and quantified 13 tryptophan-containing species. Our analyses discovered previously unidentified N-terminal processing of the β6 (PBF1) and β7 (PBG1) subunit - such processing of PBG1 may generate a heretofore unknown additional protease active site upon cleavage. In addition, our approach permitted the unambiguous identification and quantification both isoforms of the proteasome-associated protein DSS1.
Collapse
Affiliation(s)
- Jason D. Russell
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Adam J. Book
- Department of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Daniel T. Ladror
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Richard D. Vierstra
- Department of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Department of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
43
|
Current status and advances in quantitative proteomic mass spectrometry. INTERNATIONAL JOURNAL OF PROTEOMICS 2013; 2013:180605. [PMID: 23533757 PMCID: PMC3606794 DOI: 10.1155/2013/180605] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 12/18/2022]
Abstract
The accurate quantitation of proteins and peptides in complex biological systems is one of the most challenging areas of proteomics. Mass spectrometry-based approaches have forged significant in-roads allowing accurate and sensitive quantitation and the ability to multiplex vastly complex samples through the application of robust bioinformatic tools. These relative and absolute quantitative measures using label-free, tags, or stable isotope labelling have their own strengths and limitations. The continuous development of these methods is vital for increasing reproducibility in the rapidly expanding application of quantitative proteomics in biomarker discovery and validation. This paper provides a critical overview of the primary mass spectrometry-based quantitative approaches and the current status of quantitative proteomics in biomedical research.
Collapse
|
44
|
Konzer A, Ruhs A, Braun H, Jungblut B, Braun T, Krüger M. Stable isotope labeling in zebrafish allows in vivo monitoring of cardiac morphogenesis. Mol Cell Proteomics 2013; 12:1502-12. [PMID: 23412571 DOI: 10.1074/mcp.m111.015594] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Quantitative proteomics is an important tool to study biological processes, but so far it has been challenging to apply to zebrafish. Here, we describe a large scale quantitative analysis of the zebrafish proteome using a combination of stable isotope labeling and liquid chromatography-mass spectrometry (LC-MS). Proteins derived from the fully labeled fish were used as a standard to quantify changes during embryonic heart development. LC-MS-assisted analysis of the proteome of activated leukocyte cell adhesion molecule zebrafish morphants revealed a down-regulation of components of the network required for cell adhesion and maintenance of cell shape as well as secondary changes due to arrest of cellular differentiation. Quantitative proteomics in zebrafish using the stable isotope-labeling technique provides an unprecedented resource to study developmental processes in zebrafish.
Collapse
Affiliation(s)
- Anne Konzer
- §Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Veraksa A. Regulation of developmental processes: insights from mass spectrometry-based proteomics. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:723-34. [PMID: 24014456 DOI: 10.1002/wdev.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mass spectrometry (MS)-based proteomics has become an indispensable tool for protein identification and quantification. In this paper, common MS workflows are described, with an emphasis on applications of MS-based proteomics in developmental biology. Progress has been made in the analysis of proteome changes during tissue differentiation and in various genetic perturbations. MS-based proteomics has been particularly useful for identifying novel protein interactions by affinity purification-mass spectrometry (AP-MS), many of which have been subsequently functionally validated and led to the discovery of previously unknown modes of developmental regulation. Quantitative proteomics approaches can be used to study posttranslational modifications (PTMs) of proteins such as phosphorylation, to reveal the dynamics of intracellular signal transduction. Integrative approaches combine quantitative MS-based proteomics with other high-throughput methods, with the promise of a systems level understanding of developmental regulation.
Collapse
Affiliation(s)
- Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
46
|
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the most effective tumor immunotherapy available. Although allo-HSCT provides beneficial graft-versus-tumor effects, acute GVHD (aGVHD) is the primary source of morbidity and mortality after HSCT. Diagnosis of aGVHD is typically based on clinical symptoms in one or more of the main target organs (skin, liver, gastrointestinal tract) and confirmed by biopsy. However, currently available diagnostic and staging tools often fail to identify patients at higher risk of GVHD progression, unresponsiveness to therapy, or death. In addition, there are shortcomings in the prediction of GVHD before clinical signs develop, indicating the urgent need for noninvasive and reliable laboratory tests. Through the continuing evolution of proteomics technologies seen in recent years, plasma biomarkers have been identified and validated as promising diagnostic tools for GVHD and prognostic tools for nonrelapse mortality. These biomarkers may facilitate timely and selective therapeutic intervention but should be more widely validated and incorporated into a new grading system for risk stratification of patients and better-customized treatment. This review identifies biomarkers for detecting GVHD, summarizes current information on aGVHD biomarkers, proposes future prospects for the blinded evaluation of these biomarkers, and discusses the need for biomarkers of chronic GVHD.
Collapse
|
47
|
Matzke MM, Brown JN, Gritsenko MA, Metz TO, Pounds JG, Rodland KD, Shukla AK, Smith RD, Waters KM, McDermott JE, Webb-Robertson BJ. A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments. Proteomics 2012; 13:493-503. [PMID: 23019139 DOI: 10.1002/pmic.201200269] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/14/2012] [Accepted: 08/22/2012] [Indexed: 12/24/2022]
Abstract
Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used to identify and quantify peptides in complex biological samples. In particular, label-free shotgun proteomics is highly effective for the identification of peptides and subsequently obtaining a global protein profile of a sample. As a result, this approach is widely used for discovery studies. Typically, the objective of these discovery studies is to identify proteins that are affected by some condition of interest (e.g. disease, exposure). However, for complex biological samples, label-free LC-MS proteomics experiments measure peptides and do not directly yield protein quantities. Thus, protein quantification must be inferred from one or more measured peptides. In recent years, many computational approaches to relative protein quantification of label-free LC-MS data have been published. In this review, we examine the most commonly employed quantification approaches to relative protein abundance from peak intensity values, evaluate their individual merits, and discuss challenges in the use of the various computational approaches.
Collapse
|
48
|
Melvin Blaze MT, Aydin B, Carlson R, Hanley L. Identification and imaging of peptides and proteins on Enterococcus faecalis biofilms by matrix assisted laser desorption ionization mass spectrometry. Analyst 2012; 137:5018-25. [PMID: 22962657 PMCID: PMC3654527 DOI: 10.1039/c2an35922g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heptapeptide ARHPHPH was identified from biofilms and planktonic cultures of two different strains of Enterococcus faecalis, V583 and ATCC 29212, using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS). ARHPHPH was also imaged at the boundary of cocultured, adjacent E. faecalis and Escherichia coli (ATCC 25922) biofilms, appearing only on the E. faecalis side. ARHPHPH was proteolyzed from κ-casein, a component in the growth media, by E. faecalis microbes. Additionally, top down and bottom up proteomic approaches were combined to identify and spatially locate multiple proteins within intact E. faecalis V583 biofilms by MALDI-MS. The resultant tandem MS data were searched against the NCBInr E. faecalis V583 database to identify thirteen cytosolic and membrane proteins which have functional association with the cell surface. Two of these proteins, enolase and GAPDH, are glycolytic enzymes known to display multiple functions in bacterial virulence in related bacterial strains. This work illustrates a powerful approach for discovering and localizing multiple peptides and proteins within intact biofilms.
Collapse
Affiliation(s)
- M. T. Melvin Blaze
- Department of Chemistry, MC 111, University of Illinois at Chicago, Chicago, IL 60607-7061
| | - Berdan Aydin
- Department of Chemistry, MC 111, University of Illinois at Chicago, Chicago, IL 60607-7061
| | - Ross Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
| | - Luke Hanley
- Department of Chemistry, MC 111, University of Illinois at Chicago, Chicago, IL 60607-7061
| |
Collapse
|
49
|
Blaze MMT, Akhmetov A, Aydin B, Edirisinghe PD, Uygur G, Hanley L. Quantification of antibiotic in biofilm-inhibiting multilayers by 7.87 eV laser desorption postionization MS imaging. Anal Chem 2012; 84:9410-5. [PMID: 23017064 PMCID: PMC3491138 DOI: 10.1021/ac302230e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The potential of laser desorption postionization mass spectrometry (LDPI-MS) imaging for small molecule quantification is demonstrated here. The N-methylpiperazine acetamide (MPA) of ampicillin was adsorbed into polyelectrolyte multilayer surface coatings composed of chitosan and alginate, both high molecular weight biopolymers. These MPA-ampicillin spiked multilayers were then shown to inhibit the growth of Enterococcus faecalis biofilms that play a role in early stage infection of implanted medical devices. Finally, LDPI-MS imaging using 7.87 eV single-photon ionization was found to detect MPA-ampicillin within the multilayers before and after biofilm growth with limits of quantification and detection of 0.6 and 0.3 nmol, respectively. The capabilities of LDPI-MS imaging for small molecule quantification are compared to those of MALDI-MS. Furthermore, these results indicate that 7.87 eV LDPI-MS imaging should be applicable to quantification of a range of small molecular species on a variety of complex organic and biological surfaces. Finally, while MS imaging for quantification was demonstrated here using LDPI, it is a generally useful strategy that can be applied to other methods.
Collapse
Affiliation(s)
- Melvin M. T. Blaze
- Department of Chemistry, MC 111, University of Illinois at Chicago, Chicago, IL 60607
| | - Artem Akhmetov
- Department of Chemistry, MC 111, University of Illinois at Chicago, Chicago, IL 60607
| | - Berdan Aydin
- Department of Chemistry, MC 111, University of Illinois at Chicago, Chicago, IL 60607
| | | | - Gulsah Uygur
- Department of Chemistry, MC 111, University of Illinois at Chicago, Chicago, IL 60607
| | - Luke Hanley
- Department of Chemistry, MC 111, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
50
|
Cappadona S, Baker PR, Cutillas PR, Heck AJR, van Breukelen B. Current challenges in software solutions for mass spectrometry-based quantitative proteomics. Amino Acids 2012; 43:1087-108. [PMID: 22821268 PMCID: PMC3418498 DOI: 10.1007/s00726-012-1289-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 04/03/2012] [Indexed: 10/31/2022]
Abstract
Mass spectrometry-based proteomics has evolved as a high-throughput research field over the past decade. Significant advances in instrumentation, and the ability to produce huge volumes of data, have emphasized the need for adequate data analysis tools, which are nowadays often considered the main bottleneck for proteomics development. This review highlights important issues that directly impact the effectiveness of proteomic quantitation and educates software developers and end-users on available computational solutions to correct for the occurrence of these factors. Potential sources of errors specific for stable isotope-based methods or label-free approaches are explicitly outlined. The overall aim focuses on a generic proteomic workflow.
Collapse
Affiliation(s)
- Salvatore Cappadona
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter R. Baker
- Department of Pharmaceutical Chemistry, Mass Spectrometry Facility, University of California San Francisco, San Francisco, USA
| | - Pedro R. Cutillas
- Analytical Signalling Group, Centre for Cell Signalling, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bas van Breukelen
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Bioinformatics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|