1
|
Duley G, Ceci AT, Longo E, Darnal A, Martín-García B, Boselli E. Chemical and sensory properties of South Tyrol red wines from disease-resistant and Vitis vinifera cultivars. NPJ Sci Food 2025; 9:69. [PMID: 40346137 DOI: 10.1038/s41538-025-00412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/24/2025] [Indexed: 05/11/2025] Open
Abstract
Disease-resistant hybrid grape cultivars (DRHGCs) are hybrids of Vitis vinifera and other Vitis species that provide greater resistance to specific diseases, including downy and powdery mildew. These have many advantages, but often have unusual chemical and sensory properties. This study examined the link between the chemical and sensory properties of DRHGC red wines from South Tyrol, Northern Italy, using 'modified rate-all-that-apply' sensory analysis, projective mapping ('napping'), and analytical chemistry. The V. vinifera wine was more astringent, with more strawberry and jam aromas, than the DRHGC wines; the DRHGC wines had stronger green bell pepper flavours and aromas. The polyphenol and volatile profiles of DRHGCs were also distinctive, as were the profile of macrocyclic (crown) oligomeric proanthocyanidins. Panellists rated the DRHGC wines as high quality, suggesting that V. vinifera wines are not inevitably preferred.
Collapse
Affiliation(s)
- Gavin Duley
- Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Adriana Teresa Ceci
- Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Edoardo Longo
- Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100, Bolzano, Italy.
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| | - Aakriti Darnal
- Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Beatriz Martín-García
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAMBITAL), University of Almería, Agri-Food Campus of International Excellence, ceiA3, 04120, Almería, Spain
| | - Emanuele Boselli
- Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
2
|
Gonzalez-Ramirez M, Cerezo AB, Valero E, Troncoso AM, Garcia-Parrilla MC. From tyrosine to hydroxytyrosol: a pathway involving biologically active compounds and their determination in wines by ultra performance liquid chromatography with mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9399-9409. [PMID: 39041432 DOI: 10.1002/jsfa.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Hydroxytyrosol (HT) is a bioactive compound present in a limited number of foods such as wines, olives, and olive oils. During alcoholic fermentation, yeast converts aromatic amino acids into higher alcohols such as tyrosol, which can undergo hydroxylation into HT. The aim of this study was to validate an analytical method using ultra performance liquid chromatography coupled with mass spectrometry (UPLC/MS-MS) to quantify HT and its precursors (tyrosine, hydroxyphenylpyruvic acid, hydroxyphenylacetaldehyde, 4-hydroxyphenylacetic acid, and tyrosol) in wines. Their occurrence was evaluated in a total of 108 commercial Spanish wine samples. RESULTS The validated method simultaneously determined both HT and its precursors, with adequate limits of detection between 0.065 and 21.86 ng mL-1 and quantification limits between 0.199 and 66.27 ng mL-1 in a 5 min run. The concentration of HT in red wines was significantly higher (0.12-2.24 mg L-1) than in white wines (0.01-1.27 mg L-1). The higher the alcoholic degree, the higher was the content of HT. The bioactive 4-hydroxyphenylacetic acid was identified in Spanish wines for the first time at 3.90-127.47 mg L-1, being present in all the samples. CONCLUSION The highest HT concentrations were found in red wines and in wines with higher ethanol content. These data are useful for a further estimation of the intake of these bioactive compounds and to enlarge knowledge on chemical composition of wines. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Marina Gonzalez-Ramirez
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Ana B Cerezo
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Eva Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - M Carmen Garcia-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
3
|
Abdelbaset S, Ayoub IM, Mohamed OG, Tripathi A, Eldahshan OA, El-Kersh DM. Metabolic profiling of Vitex Pubescens Vahl bark via UPLC-ESI-QTOF/MS/MS analysis and evaluation of its antioxidant and acetylcholinesterase inhibitory activities. BMC Complement Med Ther 2024; 24:232. [PMID: 38877470 PMCID: PMC11177471 DOI: 10.1186/s12906-024-04520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative age-related disease that primarily affects the elderly population leading to progressive memory impairments and neural deficits. It is counted as a major cause of geriatric dependency and disability. The pathogenesis of Alzheimer's disease incidence is complex and involves various hypotheses, including the cholinergic hypothesis, deposition of β-amyloid plaques, neuroinflammation, oxidative stress, and apoptosis. Conventional treatments such as donepezil aim to delay the symptoms but do not affect the progression of the disease and may cause serious side effects like hepatoxicity. The use of natural candidates for Alzheimer's disease treatment has drawn the attention of many researchers as it offers a multitargeted approach. METHODS This current study investigates the metabolic profiles of total defatted methanolic extract of Vitex pubescens bark and its polar fractions, viz. ethyl acetate and n-butanol, using ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight tandem mass spectrometry(UPLC-ESI-QTOF/MS/MS) technique as well as evaluate the antioxidant using free radical scavenging assays, viz. DPPH and ABTS assays and in-vitro acetylcholinesterase inhibitory activities using Ellman's microplate assay. RESULTS Metabolic profiling revealed a total of 71, 43, and 55 metabolites tentatively identified in the defatted methanolic extract, ethyl acetate, and n-butanol fractions, respectively. Phenolic acids were the most abundant class, viz. benzoic acids, and acyl quinic acid derivatives followed by flavonoids exemplified mainly by luteolin-C-glycosides and apigenin-C-glycosides. Quantification of the total phenolic and flavonoid contents in the total defatted methanolic extract confirmed its enrichment with phenolics and flavonoids equivalent to 138.61 ± 9.39 µg gallic acid/mg extract and 119.63 ± 4.62 µg rutin/mg extract, respectively. Moreover, the total defatted methanolic extract exhibited promising antioxidant activity confirmed through DPPH and ABTS assays with a 50% inhibitory concentration (IC50) value equivalent to 52.79 ± 2.16 µg/mL and 10.02 ± µg/mL, respectively. The inhibitory activity of acetylcholine esterase (AchE) was assessed using in-vitro Ellman's colorimetric assay, the total defatted methanolic extract, ethyl acetate, and n-butanol fractions exhibited IC50 values of 52.9, 15.1 and 108.8 µg/mL that they proved the significant inhibition of AchE activity. CONCLUSION The results obtained herein unraveled the potential use of the total methanolic extract of Vitex pubescens bark and its polar fractions as natural candidates for controlling Alzheimer's disease progression.
Collapse
Affiliation(s)
- Safa Abdelbaset
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Iriny M Ayoub
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Omayma A Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
- Drug Research and Development Group (DRD-G), The British University in Egypt (BUE), Cairo, 11837, Egypt
| |
Collapse
|
4
|
Sharafan M, Malinowska MA, Kubicz M, Kubica P, Gémin MP, Abdallah C, Ferrier M, Hano C, Giglioli-Guivarc’h N, Sikora E, Lanoue A, Szopa A. Shoot Cultures of Vitis vinifera (Vine Grape) Different Cultivars as a Promising Innovative Cosmetic Raw Material-Phytochemical Profiling, Antioxidant Potential, and Whitening Activity. Molecules 2023; 28:6868. [PMID: 37836711 PMCID: PMC10574137 DOI: 10.3390/molecules28196868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The primary purpose of this work was the initiation and optimization of shoot cultures of different Vitis vinifera L. cultivars: cv. Chardonnay, cv. Hibernal, cv. Riesling, cv. Johanniter, cv. Solaris, cv. Cabernet Cortis, and cv. Regent. Cultures were maintained on 30-day growth cycles using two media, Murashige and Skoog (MS) and Schenk and Hildebrandt (SH), with various concentrations of plant growth regulators. Tested media ('W1'-'W4') contained varying concentrations of 6-benzylaminopurine (BA) in addition to indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA). High performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was used for metabolomic profiling. In all tested extracts, 45 compounds were identified (6 amino acids, 4 phenolic acids, 13 flavan-3-ols, 3 flavonols, and 19 stilbenoids). Principal component analysis (PCA) was performed to assess the influence of the genotype and medium on metabolic content. PCA showed that metabolic content was mainly influenced by genotype and to a lesser extent by medium composition. MS media variants induced the amino acid, procyanidin, and flavan-3-ol production. In addition, the antioxidant potential and anti-tyrosinase activity was measured spectrophotometrically. The studies on antioxidant activity clearly reveal very high efficiency in reducing free radicals in the tested extracts. The strongest tyrosinase inhibition capacity was proved for shoots cv. Hibernal cultured in SH medium and supplemented with NAA, with an inhibition of 17.50%. These studies show that in vitro cultures of V. vinifera cvs. can be proposed as an alternative source of plant material that can be potentially used in cosmetic industry.
Collapse
Affiliation(s)
- Marta Sharafan
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 St., 30-688 Cracow, Poland; (M.S.); (M.K.); (P.K.)
- Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| | - Magdalena Anna Malinowska
- Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| | - Marta Kubicz
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 St., 30-688 Cracow, Poland; (M.S.); (M.K.); (P.K.)
| | - Paweł Kubica
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 St., 30-688 Cracow, Poland; (M.S.); (M.K.); (P.K.)
| | - Marin-Pierre Gémin
- EA 2106 Biomolecules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France; (M.-P.G.); (C.A.); (M.F.); (N.G.-G.); (A.L.)
| | - Cécile Abdallah
- EA 2106 Biomolecules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France; (M.-P.G.); (C.A.); (M.F.); (N.G.-G.); (A.L.)
| | - Manon Ferrier
- EA 2106 Biomolecules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France; (M.-P.G.); (C.A.); (M.F.); (N.G.-G.); (A.L.)
| | - Christophe Hano
- Institut de Chimie Organique et Analytique, Universite d’Orleans-CNRS, UMR 7311 BP 6759, CEDEX 2, 45067 Orléans, France
| | - Nathalie Giglioli-Guivarc’h
- EA 2106 Biomolecules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France; (M.-P.G.); (C.A.); (M.F.); (N.G.-G.); (A.L.)
| | - Elżbieta Sikora
- Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| | - Arnaud Lanoue
- EA 2106 Biomolecules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France; (M.-P.G.); (C.A.); (M.F.); (N.G.-G.); (A.L.)
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 St., 30-688 Cracow, Poland; (M.S.); (M.K.); (P.K.)
| |
Collapse
|
5
|
Duley G, Ceci AT, Longo E, Boselli E. Oenological potential of wines produced from disease-resistant grape cultivars. Compr Rev Food Sci Food Saf 2023; 22:2591-2610. [PMID: 37078603 DOI: 10.1111/1541-4337.13155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023]
Abstract
Within the EU, changes in policy and public sentiment have made it more urgent to consider the adoption of sustainable agricultural practices. Consequently, one of the EU's goals is to reduce pesticide use by 50 per cent by 2030, including in viticulture. One of the proposed approaches is to expand the use of disease resistant hybrid grape-cultivars (DRHGC), such as 'PIWI' grapes (German, Pilzwiderstandsfähige Rebsorten), and to introduce new DRHGCs. However, the characteristics of DRHGCs are different from those of Vitis vinifera, which makes it necessary to take measures and make changes in winemaking technology to maintain high wine quality. This paper examines the chemistry of wines made from DRHGC and discusses their impact on aroma and flavor profiles. It also reviews the main winemaking practices suggested to produce high-quality wines from DRHGCs. The chemistry of DRHGCs is different to wine produced from V. vinifera, which can lead to both challenges during winemaking and unusual flavor profiles. Although newer DRHGCs have been bred to avoid unexpected flavors, many DRHGCs are still rich in proteins and polysaccharides. This can make tannin extraction difficult and produce wines with little astringency. In addition to this, new or alternative winemaking techniques such as thermovinification and the use of alternative yeast strains (non-Saccharomyces) can be used to produce wines from DRHGCs that are acceptable to consumers.
Collapse
Affiliation(s)
- Gavin Duley
- Oenolab, NOI TechPark Alto Adige/Südtirol, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Adriana Teresa Ceci
- Oenolab, NOI TechPark Alto Adige/Südtirol, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Edoardo Longo
- Oenolab, NOI TechPark Alto Adige/Südtirol, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Emanuele Boselli
- Oenolab, NOI TechPark Alto Adige/Südtirol, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
6
|
Decoding the Proanthocyanins Profile of Italian Red Wines. BEVERAGES 2022. [DOI: 10.3390/beverages8040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Italian wine appellations system is organized in hundreds of origin wines, with unique characteristics that are protected with many denominations of origin. The aim of this work was to analyze and compare the proanthocyanin profile of 12 single-cultivar and single-vintage Italian red wine groups (Aglianico from Campania, Cannonau from Sardinia, Corvina from Veneto, Montepulciano from Abruzzo, Nebbiolo from Piedmont, Nerello Mascalese from Sicily, Primitivo from Apulia, Raboso Piave from Veneto, Sagrantino from Umbria, Sangiovese from Tuscany and Romagna, and Teroldego from Trentino), each one produced in their terroirs under ad hoc legal frameworks to guarantee their quality and origin. All wines were analyzed with a protocol that combined the phloroglucinolysis reaction with an LC-MS/MS instrument. The results underlined Sagrantino wines as the richest in proanthocyanins. Sangiovese, Montepulciano, Nerello, and Teroldego were the richest in B-ring trihydroxylated flavan-3-ols, and especially Nerello was the richest in prodelphinidins. Cannonau, Raboso Piave, Nerello, and Corvina were characterized by C-ring trans conformation flavan-3-ols. Nebbiolo and Corvina had high percentages of galloylated flavan-3-ols. Aglianico and Primitivo had the lowest percentages of B-ring trihydroxylated and C-ring trans conformation flavan-3-ols. This information should be useful in better understanding the Italian red wines and valorize them.
Collapse
|
7
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
8
|
Abscisic Acid and Chitosan Modulate Polyphenol Metabolism and Berry Qualities in the Domestic White-Colored Cultivar Savvatiano. PLANTS 2022; 11:plants11131648. [PMID: 35807600 PMCID: PMC9269509 DOI: 10.3390/plants11131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/27/2022]
Abstract
During the last decade, several studies demonstrated the effect of biostimulants on the transcriptional and metabolic profile of grape berries, suggesting their application as a useful viticultural practice to improve grape and wine quality. Herein, we investigated the impact of two biostimulants—abscisic acid (0.04% w/v and 0.08% w/v) and chitosan (0.3% w/v and 0.6% w/v)—on the polyphenol metabolism of the Greek grapevine cultivar, Savvatiano, in order to determine the impact of biostimulants’ application in the concentration of phenolic compounds. The applications were performed at the veraison stage and the impact on yield, berry quality traits, metabolome and gene expression was examined at three phenological stages (veraison, middle veraison and harvest) during the 2019 and 2020 vintages. Results showed that anthocyanins increased during veraison after treatment with chitosan and abscisic acid. Additionally, stilbenoids were recorded in higher amount following the chitosan and abscisic acid treatments at harvest. Both of the abscisic acid and chitosan applications induced the expression of genes involved in stilbenoids and anthocyanin biosynthesis and resulted in increased accumulation, regardless of the vintage. Alterations in other phenylpropanoid gene expression profiles and phenolic compound concentrations were observed as well. Nevertheless, they were mostly restricted to the first vintage. Therefore, the application of abscisic acid and chitosan on the Greek cultivar Savvatiano showed promising results to induce stilbenoid metabolism and potentially increase grape defense and quality traits.
Collapse
|
9
|
Klimek K, Kapłan M, Najda A. Influence of Rootstock on Yield Quantity and Quality, Contents of Biologically Active Compounds and Antioxidant Activity in Regent Grapevine Fruit. Molecules 2022; 27:2065. [PMID: 35408464 PMCID: PMC9000453 DOI: 10.3390/molecules27072065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
The cultivation of vines in temperate climates poses many difficulties to be overcome. The soil and climatic conditions in Poland limit the choice of vine varieties that can be used in the field; therefore, growers are often limited to varieties that are tolerant to extreme winter temperatures and spring frosts and to cultivars that are able to achieve optimum berry maturity at the end of the season. The study evaluated the effect of six rootstock types and own-root bushes on yield quantity and quality and on the content of biologically active compounds and antioxidant activity in Regent grapevine fruit. The research was conducted in 2015 at NOBILIS Vineyard (50°39' N; 21°34' E) in the Sandomierz Upland. Among the evaluated rootstocks, 125AA turned out to exert the significantly best effect on the yield, grape and berry weight, and number of grapes per bush. The fruit from bushes grafted on the 5BB rootstock were characterised by the highest content of L-ascorbic acid and tannins.
Collapse
Affiliation(s)
- Kamila Klimek
- Department of Applied Mathematics and Informatics, University of Life Science, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Magdalena Kapłan
- Institute of Horticulture Production, University of Life Science, 28 Głęboka Street, 20-612 Lublin, Poland
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| |
Collapse
|
10
|
Gratl V, Sturm S, Zini E, Letschka T, Stefanini M, Vezzulli S, Stuppner H. Comprehensive polyphenolic profiling in promising resistant grapevine hybrids including 17 novel breeds in northern Italy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2380-2388. [PMID: 33011987 PMCID: PMC8048854 DOI: 10.1002/jsfa.10861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND A promising way to overcome the susceptibility of Vitis vinifera L. to fungal diseases is the integration of genetic resistance by the interspecific crossing between V. vinifera varieties and resistant species. However, the products of such hybrids are still not accepted by customers, particularly due to their organoleptic characteristics, not least influenced by their polyphenolic profile. RESULTS A total of 58 resistant breeding lines, 41 from international programs and 17 new progeny individuals, were grown in one untreated vineyard to exclude any variances by climatic and pedologic conditions or vineyard practice. A total of 60 polyphenols (including acids, anthocyanins, flavonols, flavan‐3‐ols, and stilbenoids) were determined in grapevine berries by ultrahigh‐performance liquid chromatography–mass spectrometry in two consecutive years. The overall profiles were rather consistent (variation P > 0.05) within the two harvests, with the exceptions of epicatechin and caftaric acid. Anthocyanin diglucosides were found in ten of the red breeding lines, malvidin‐3,5‐O‐diglucoside being predominant in nine of them. Total polyphenol content of the unknown progeny individuals and international breeding lines was comparable, with the exception of significantly increased amounts of gallic acid and some flavonoids. CONCLUSION The comprehensive study reported herein of the polyphenolic profile of hybrids from international breeding programs, but also of new breeds from private initiatives, all cultivated in the same vineyard, will support the selection of promising candidates for further breeding programs to overcome impairment due to undesired sensory characteristics of new highly resistant varieties.
Collapse
Affiliation(s)
- Verena Gratl
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
| | - Sonja Sturm
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
| | | | | | - Marco Stefanini
- Fondazione Edmund Mach, Italy Research and Innovation CentreSan Michele all'AdigeItaly
| | - Silvia Vezzulli
- Fondazione Edmund Mach, Italy Research and Innovation CentreSan Michele all'AdigeItaly
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
11
|
Šikuten I, Štambuk P, Andabaka Ž, Tomaz I, Marković Z, Stupić D, Maletić E, Kontić JK, Preiner D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020; 25:E5604. [PMID: 33260583 PMCID: PMC7731206 DOI: 10.3390/molecules25235604] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Željko Andabaka
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Zvjezdana Marković
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Stupić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Chenot C, Briffoz L, Lomartire A, Collin S. Occurrence of Ehrlich-Derived and Varietal Polyfunctional Thiols in Belgian White Wines Made from Chardonnay and Solaris Grapes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10310-10317. [PMID: 31659900 DOI: 10.1021/acs.jafc.9b05478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although almost disappeared at the end of the 20th century, Belgian wine production reached a million liters in 2017. The aim of the present work was to identify aroma markers for two white cultivars widespread in Belgium: Chardonnay (the most commercially grown cultivar worldwide) and Solaris (an interspecific fungus-resistant variety). Specific p-hydroxymercuribenzoic acid extraction followed by gas chromatography with a pulsed flame photometric detector was applied to single-varietal wine samples from 2015 to 2018 harvests. Among the Ehrlich-derived thiols, all found below their sensory thresholds, 3-sulfanylpropyl acetate usually outranged 3-sulfanylpropan-1-ol, while 2-sulfanylethan-1-ol concentrations always exceeded 2-sulfanylethyl acetate levels. The data confirm the occurrence, in both Chardonnay and Solaris wines, of 3-sulfanylhexan-1-ol and phenylmethanethiol (grapefruit and gunflint aroma, respectively), at concentrations far above their thresholds. This work also revealed, for the first time, the presence of 3-sulfanylheptan-1-ol, the branched alcohols 2-methyl-3-sulfanyl propan-1-ol, 2-methyl-3-sulfanylbutan-1-ol, and 3-sulfanyl-3-methylbutan-1-ol, and the carbonyls 3-sulfanylbutan-2-one (not in sparkling wines) and 3-sulfanylpentanal.
Collapse
Affiliation(s)
- Cécile Chenot
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute (ELIM), Faculté des Bioingénieurs, Université catholique de Louvain. Croix du Sud 2, Box L7.05.07, B-1348 Louvain-la-Neuve, Belgium
| | - Laura Briffoz
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute (ELIM), Faculté des Bioingénieurs, Université catholique de Louvain. Croix du Sud 2, Box L7.05.07, B-1348 Louvain-la-Neuve, Belgium
| | - Antonin Lomartire
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute (ELIM), Faculté des Bioingénieurs, Université catholique de Louvain. Croix du Sud 2, Box L7.05.07, B-1348 Louvain-la-Neuve, Belgium
| | - Sonia Collin
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute (ELIM), Faculté des Bioingénieurs, Université catholique de Louvain. Croix du Sud 2, Box L7.05.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Garrido-Bañuelos G, Ballester J, Buica A, Mihnea M. Exploring the Typicality, Sensory Space, and Chemical Composition of Swedish Solaris Wines. Foods 2020; 9:foods9081107. [PMID: 32806732 PMCID: PMC7466253 DOI: 10.3390/foods9081107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 11/16/2022] Open
Abstract
The Swedish wine industry has exponentially grown in the last decade. However, Swedish wines remain largely unknown internationally. In this study, the typicality and sensory space of a set of twelve wines, including five Swedish Solaris wines, was evaluated blind by Swedish wine experts. The aim of the work was to evaluate whether the Swedish wine experts have a common concept of what a typical Solaris wines should smell and taste like or not and, also, to bring out more information about the sensory space and chemical composition of Solaris wines. The results showed a lack of agreement among the wine experts regarding the typicality of Solaris wines. This, together with the results from the sensory evaluation, could suggest the possibility of different wine styles for Solaris wines. From a chemical perspective, the global volatile profile showed a larger variability between individual wines than between Solaris and non-Solaris. However, 4MMP, ethyl propionate, ethyl 2-Methyl propanoate, and diethyl succinate were significantly higher in Solaris wines. Concerning non-volatile compounds, the results showed a significant discrimination between Solaris and non-Solaris wines, the former being characterized by higher ethanol %, Mg, succinic acid, tartaric acid, and sucrose levels.
Collapse
Affiliation(s)
- Gonzalo Garrido-Bañuelos
- Agriculture and Food, Product Design—RISE—Research Institutes of Sweden, 41276 Göteborg, Sweden
- Correspondence: (G.G.-B.); (M.M.)
| | - Jordi Ballester
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France;
| | - Astrid Buica
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Mihaela Mihnea
- Material and exterior design, Perception—RISE—Research Institutes of Sweden, 41276 Göteborg, Sweden
- Correspondence: (G.G.-B.); (M.M.)
| |
Collapse
|
14
|
Billet K, Malinowska MA, Munsch T, Unlubayir M, Adler S, Delanoue G, Lanoue A. Semi-Targeted Metabolomics to Validate Biomarkers of Grape Downy Mildew Infection Under Field Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1008. [PMID: 32784974 PMCID: PMC7465342 DOI: 10.3390/plants9081008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022]
Abstract
Grape downy mildew is a devastating disease worldwide and new molecular phenotyping tools are required to detect metabolic changes associated to plant disease symptoms. In this purpose, we used UPLC-DAD-MS-based semi-targeted metabolomics to screen downy mildew symptomatic leaves that expressed oil spots (6 dpi, days post-infection) and necrotic lesions (15 dpi) under natural infections in the field. Leaf extract analyses enabled the identification of 47 metabolites belonging to the primary metabolism including 6 amino acids and 1 organic acid, as well as an important diversity of specialized metabolites including 9 flavonols, 11 flavan-3-ols, 3 phenolic acids, and stilbenoids with various degree of polymerization (DP) including 4 stilbenoids DP1, 8 stilbenoids DP2, and 4 stilbenoids DP3. Principal component analysis (PCA) was applied as unsupervised multivariate statistical analysis method to reveal metabolic variables that were affected by the infection status. Univariate and multivariate statistics revealed 33 and 27 metabolites as relevant infection biomarkers at 6 and 15 dpi, respectively. Correlation-based networks highlighted a general decrease of flavonoid-related metabolites, whereas stilbenoid DP1 and DP2 concentrations increased upon downy mildew infection. Stilbenoids DP3 were identified only in necrotic lesions representing late biomarkers of downy mildew infection.
Collapse
Affiliation(s)
- Kévin Billet
- EA2106 “Biomolécules et Biotechnologies Végétales”, UFR des Sciences Pharmaceutiques “Philippe Maupas”, Université de Tours, 31 av. Monge, F37200 Tours, France; (K.B.); (M.A.M.); (T.M.); (M.U.); (S.A.)
| | - Magdalena Anna Malinowska
- EA2106 “Biomolécules et Biotechnologies Végétales”, UFR des Sciences Pharmaceutiques “Philippe Maupas”, Université de Tours, 31 av. Monge, F37200 Tours, France; (K.B.); (M.A.M.); (T.M.); (M.U.); (S.A.)
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Thibaut Munsch
- EA2106 “Biomolécules et Biotechnologies Végétales”, UFR des Sciences Pharmaceutiques “Philippe Maupas”, Université de Tours, 31 av. Monge, F37200 Tours, France; (K.B.); (M.A.M.); (T.M.); (M.U.); (S.A.)
| | - Marianne Unlubayir
- EA2106 “Biomolécules et Biotechnologies Végétales”, UFR des Sciences Pharmaceutiques “Philippe Maupas”, Université de Tours, 31 av. Monge, F37200 Tours, France; (K.B.); (M.A.M.); (T.M.); (M.U.); (S.A.)
| | - Sophie Adler
- EA2106 “Biomolécules et Biotechnologies Végétales”, UFR des Sciences Pharmaceutiques “Philippe Maupas”, Université de Tours, 31 av. Monge, F37200 Tours, France; (K.B.); (M.A.M.); (T.M.); (M.U.); (S.A.)
| | - Guillaume Delanoue
- Institut Français de la Vigne et du Vin, 509 avenue Chanteloup, F37400 Amboise, France;
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales”, UFR des Sciences Pharmaceutiques “Philippe Maupas”, Université de Tours, 31 av. Monge, F37200 Tours, France; (K.B.); (M.A.M.); (T.M.); (M.U.); (S.A.)
| |
Collapse
|
15
|
Lončarić A, Jozinović A, Kovač T, Kojić N, Babić J, Šubarić D. High Voltage Electrical Discharges and Ultrasound-Assisted Extraction of Phenolics from Indigenous Fungus-Resistant Grape By-Product. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/117716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Rapid Characterizaiton of Chemical Constituents of the Tubers of Gymnadenia conopsea by UPLC-Orbitrap-MS/MS Analysis. Molecules 2020; 25:molecules25040898. [PMID: 32085417 PMCID: PMC7070944 DOI: 10.3390/molecules25040898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gymnadenia conopsea R. Br. is a traditional Tibetan medicinal plant that grows at altitudes above 3000 m, which is used to treat neurasthenia, asthma, coughs, and chronic hepatitis. However, a comprehensive configuration of the chemical profile of this plant has not been reported because of the complexity of its chemical constituents. In this study, a rapid and precise method based on ultra-high performance liquid chromatography (UPLC) combined with an Orbitrap mass spectrometer (UPLC–Orbitrap–MS/MS) was established in both positive- and negative-ion modes to rapidly identify various chemical components in the tubers of G. conopsea for the first time. Finally, a total of 91 compounds, including 17 succinic acid ester glycosides, 9 stilbenes, 6 phenanthrenes, 19 alkaloids, 11 terpenoids and steroids, 20 phenolic acid derivatives, and 9 others, were identified in the tubers of G. conopsea based on the accurate mass within 3 ppm error. Furthermore, many alkaloids, phenolic acid derivates, and terpenes were reported from G. conopsea for the first time. This rapid method provides an important scientific basis for further study on the cultivation, clinical application, and functional food of G. conopsea.
Collapse
|
17
|
Guerrero RF, Valls-Fonayet J, Richard T, Cantos-Villar E. A rapid quantification of stilbene content in wine by ultra-high pressure liquid chromatography – Mass spectrometry. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106821] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Andreeva V. Identification of red grape varieties by anthocyanin profile. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202502020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The presence of anthocyans was studied to determine the anthocyanin profile as a tool for distinguishing grapes of the Don region of autochthonous and hybrid varieties of ARRIVW breeding and other hybrid varieties for isolation and identifying typical characteristics. The composition of anthocyans depends on both the variety and the grape habitat. The presence of 3.5-diglucosides in hybrid varieties was established.
Collapse
|
19
|
Qian W, Wu W, Kang Y, Wang Y, Yang P, Deng Y, Ni C, Huang J. Comprehensive identification of minor components and bioassay-guided isolation of an unusual antioxidant from Azolla imbricata using ultra-high performance liquid chromatography—quadrupole time-of-flight mass spectrometry combined with multicomponent knockout and bioactivity evaluation. J Chromatogr A 2020; 1609:460435. [DOI: 10.1016/j.chroma.2019.460435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/25/2022]
|
20
|
Álvarez-Fernández MA, Fernández-Cruz E, Garcia-Parrilla MC, Troncoso AM, Mattivi F, Vrhovsek U, Arapitsas P. Saccharomyces cerevisiae and Torulaspora delbrueckii Intra- and Extra-Cellular Aromatic Amino Acids Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7942-7953. [PMID: 31264861 DOI: 10.1021/acs.jafc.9b01844] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tryptophan, phenylalanine, and tyrosine play an important role as nitrogen sources in yeast metabolism. They regulate biomass production and fermentation rate, and their catabolites contribute to wine health benefits and sensorial character through the yeast biotransformation of grape juice constitutes into biologically active and flavor-impacting components. A UHPLC-MS/MS method was applied to monitor 37 tryptophan/phenylalanine/tyrosine yeast metabolites both in extra- and intracellular extracts produced by the fermentation of two Saccharomyces cerevisiae strains and one Torulaspora delbrueckii. The results shed light on the intra- and extra-cellular metabolomic dynamics, by combining metabolic needs, stimuli, and signals. Among others, the results indicated (a) the production of 2-aminoacetophenone by yeasts, mainly by the two Saccharomyces cerevisiae; (b) the deactivation and/or detoxification of tryptophol via sulfonation reaction; and (c) the deacetylation of N-acetyl tryptophan ethyl ester and N-acetyl tyrosine ethyl ester by producing the corresponding ethyl esters.
Collapse
Affiliation(s)
- M Antonia Álvarez-Fernández
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia , Universidad de Sevilla , C/P. García González no. 2 , Sevilla 41012 , Spain
| | - Edwin Fernández-Cruz
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia , Universidad de Sevilla , C/P. García González no. 2 , Sevilla 41012 , Spain
| | - M Carmen Garcia-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia , Universidad de Sevilla , C/P. García González no. 2 , Sevilla 41012 , Spain
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia , Universidad de Sevilla , C/P. García González no. 2 , Sevilla 41012 , Spain
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre , Fondazione Edmund Mach-Istituto Agrario San Michele all'Adige , Trento , Italy
- Center Agriculture Food Environment , University of Trento , Trento , Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre , Fondazione Edmund Mach-Istituto Agrario San Michele all'Adige , Trento , Italy
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Research and Innovation Centre , Fondazione Edmund Mach-Istituto Agrario San Michele all'Adige , Trento , Italy
| |
Collapse
|
21
|
Donati L, Ferretti L, Frallicciardi J, Rosciani R, Valletta A, Pasqua G. Stilbene biosynthesis and gene expression in response to methyl jasmonate and continuous light treatment in Vitis vinifera cv. Malvasia del Lazio and Vitis rupestris Du Lot cell cultures. PHYSIOLOGIA PLANTARUM 2019; 166:646-662. [PMID: 30091254 DOI: 10.1111/ppl.12813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Vitis rupestris is used as rootstock or to obtain hybrids with Vitis vinifera, due to its resistance to certain pathogens. Its resistance mechanisms are poorly understood, while it is known that stilbene neo-synthesis is a central defense strategy in V. vinifera. In the present study, the response to methyl jasmonate (MeJa) and light treatment in terms of stilbene biosynthesis and the expression of genes involved in polyphenol biosynthesis was investigated in V. vinifera and V. rupestris cells. The two species exhibited a similar constitutive stilbene content [2.50-2.80 mg g-1 dry weight (DW)], which greatly increased in response to elicitation (8.97-11.90 mg g-1 DW). In V. vinifera, continuous light treatment amplified the effect of MeJa, with a stilbene production that had never previously been obtained (26.49 mg g-1 DW). By contrast, it suppressed the effect of MeJa in V. rupestris. Gene expression was consistent with stilbene production in V. vinifera, whereas discrepancies were recorded in V. rupestris that could be explained by the synthesis of stilbenes that had never before been analyzed in this species.
Collapse
Affiliation(s)
- Livia Donati
- Sapienza University of Rome, Department of Environmental Biology, Rome 00185, Italy
| | - Luca Ferretti
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Rome 00156, Italy
| | - Jacopo Frallicciardi
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Rome 00156, Italy
| | - Roberta Rosciani
- Sapienza University of Rome, Department of Environmental Biology, Rome 00185, Italy
| | - Alessio Valletta
- Sapienza University of Rome, Department of Environmental Biology, Rome 00185, Italy
| | - Gabriella Pasqua
- Sapienza University of Rome, Department of Environmental Biology, Rome 00185, Italy
| |
Collapse
|
22
|
Antonia Álvarez-Fernández M, Fernández-Cruz E, Valero E, Troncoso AM, Carmen García-Parrilla M. Efficiency of three intracellular extraction methods in the determination of metabolites related to tryptophan and tyrosine in winemaking yeast's metabolism by LC-HRMS. Food Chem 2019; 297:124924. [PMID: 31253284 DOI: 10.1016/j.foodchem.2019.05.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/09/2023]
Abstract
Yeast nitrogen metabolism produces metabolites, whose origin in wines has scarcely been studied, with an important biological and organoleptic role. The present work focuses on comparing three intracellular extraction methods in order to elucidate efficiency of extraction while measuring the effect of temperature upon the integrity of the compounds related to the metabolism of tryptophan and tyrosine by yeast. Two UHPLC/HRMS methods to measure 16 metabolites were developed and validated. The validation provided optimum values of LOD (7.4·10-6 to 0.1 μg L-1), of LOQ (2·10-5 to 0.02 μg L-1) of precision (11-0.5% RSD) and repeatability (12-0.5% RSD). The removal of interfering molecules enabled matrix effects to be kept at low levels. The results pointed out that the low-temperature methods were more effective, providing better precision for 16 metabolites. The high-temperature extraction method may yield false enhanced compounds concentrations since they originate in cell wall macromolecules degradation.
Collapse
Affiliation(s)
- M Antonia Álvarez-Fernández
- Departamento de Nutrición, Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González n° 2, Sevilla 41012, Spain
| | - E Fernández-Cruz
- Departamento de Nutrición, Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González n° 2, Sevilla 41012, Spain
| | - E Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, Sevilla 41013, Spain
| | - Ana M Troncoso
- Departamento de Nutrición, Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González n° 2, Sevilla 41012, Spain
| | - M Carmen García-Parrilla
- Departamento de Nutrición, Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González n° 2, Sevilla 41012, Spain.
| |
Collapse
|
23
|
Tkacz K, Wojdyło A, Nowicka P, Turkiewicz I, Golis T. Characterization in vitro potency of biological active fractions of seeds, skins and flesh from selected Vitis vinifera L. cultivars and interspecific hybrids. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
24
|
The Management of Compounds that Influence Human Health in Modern Winemaking from an HACCP Point of View. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The undesirable effects of some hazardous compounds involved in the different steps of the winemaking process may pose health risks to consumers; hence, the importance of compliance with recent international food safety standards, including the Hazard Analysis and Critical Control Point (HACCP) standards. In recent years, there has been a rise in the development of new technologies in response to the hazardous effects of chemical compounds detected during the winemaking process, whether naturally produced or added during different winemaking processes. The main purpose was to reduce the levels of some compounds, such as biogenic amines, ethyl carbamate, ochratoxin A, and sulfur dioxide. These technological advances are currently considered a necessity, because they produce wines free of health-hazardous compounds and, most importantly, help in the management and prevention of health risks. This review shows how to prevent and control the most common potential health risks of wine using a HACCP methodology.
Collapse
|
25
|
Tassoni A, Zappi A, Melucci D, Reisch BI, Davies PJ. Seasonal changes in amino acids and phenolic compounds in fruits from hybrid cross populations of American grapes differing in disease resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:182-193. [PMID: 30554065 DOI: 10.1016/j.plaphy.2018.11.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The production of wine grapes in upstate New York (USA) is limited by diseases that are promoted by the cool and sometimes rainy climate. A breeding program has been introducing disease resistance from related species into the cultivated stock. Previous work has indicated that such resistance may be based on biochemical reactions rather than on a hypersensitive reaction. We therefore undertook metabolic profiling of amino acids and phenolic compounds in berries from collections of susceptible and resistant hybrids over the course of berry development to determine whether any of these compounds could be causal in disease resistance. The most abundant amino acids were GLN, ARG, PRO and THR. The amount of amino acids in ripe berries was from 3 to 4.7-fold higher compared to earlier stages. The concentrations of total phenolics were variable through the season with no consistent trend between susceptible and resistant fruits. Notable changes in phenolic compounds, especially anthocyanins, were recorded, especially during the ripening phase, when phenolics and anthocyanins increased following veraison. The most abundant phenolic compounds were catechin and epi-catechin; the most abundant anthocyanin was delphinidin-3-glucoside, which had a slightly greater concentration in resistant fruit at harvest, followed by malvidin-3-glucoside and petunidin-3-glucoside. The content of both amino acids and phenolic compounds in white-fruited parent cv. Horizon was equal to several-fold lower than the progeny plants, whether susceptible or resistant, depending on the harvest time. While no major differences between susceptible and resistant lines were found, multivariate analyses showed that it is possible to discriminate the susceptibility or resistance of grapes by analyzing their combined concentrations of amino acids, polyphenols and anthocyanins. Therefore, these compounds are influenced by the resistance capacity of grapes and could be used as a chemical fingerprint of this ability. However, it is likely that these are associations with disease resistance rather than their cause as no major consistent differences were noted.
Collapse
Affiliation(s)
- Annalisa Tassoni
- Plant Biology and Horticulture Sections, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA; Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, Italy
| | - Alessandro Zappi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Dora Melucci
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Bruce I Reisch
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA
| | - Peter J Davies
- Plant Biology and Horticulture Sections, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
26
|
Mayr F, Sturm S, Ganzera M, Waltenberger B, Martens S, Schwaiger S, Schuster D, Stuppner H. Mushroom Tyrosinase-Based Enzyme Inhibition Assays Are Not Suitable for Bioactivity-Guided Fractionation of Extracts. JOURNAL OF NATURAL PRODUCTS 2019; 82:136-147. [PMID: 30629444 DOI: 10.1021/acs.jnatprod.8b00847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tyrosinase (Tyr) catalyzes the rate-limiting step of melanogenesis in human skin and is thus the main target for treating pigmentation disorders today. This has led to an increased research interest in Tyr inhibitors during the last decades, with a frequent focus on polyphenols. In the early stages of drug discovery, it is typical to avoid the high costs of human Tyr by using the more economic mushroom tyrosinase (mh-Tyr). Since some polyphenols are accepted as substrates by mh-Tyr, the present study aimed to more generally investigate this enzyme's specificity toward polyphenols and to discuss its significance in the context of bioactivity-guided fractionation. Mh-Tyr substrates can change the sample color during an inhibition assay, leading to unreliable inhibition constants or to the discontinuation of a bioactivity-guided fractionation campaign. A data set of 56 natural products was investigated and classified into assay interferers (AIs) and noninterferers, using a spectrophotometric and an LC-ESIHRMS assay. Based on these experimental findings, structure-activity relationships defining AIs were deduced and implemented into an in silico tool that will allow for rapid prescreening in the future. We anticipate that these results will aid in the search for new Tyr inhibitors and contribute to the understanding of this enzyme, as well as its optimal use in pharmacological research.
Collapse
Affiliation(s)
- Fabian Mayr
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Sonja Sturm
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Markus Ganzera
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Stefan Martens
- Research and Innovation Centre , Fondazione Edmund Mach (FEM) , Via E. Mach 1 , 38010 San Michele all'Adige (Trentino), Italy
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry , Paracelsus Medical University Salzburg , Strubergasse 21 , 5020 Salzburg , Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| |
Collapse
|
27
|
Identification and Quantification of Flavanol Glycosides in Vitis vinifera Grape Seeds and Skins during Ripening. Molecules 2018; 23:molecules23112745. [PMID: 30355957 PMCID: PMC6278495 DOI: 10.3390/molecules23112745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 01/18/2023] Open
Abstract
Monomeric and dimeric flavanol glycosides were analyzed in Vitis vinifera grapes and seeds during ripening. An analytical method using ultra-high performance liquid chromatography coupled with a triple quadrupole mass spectrometry (UHPLC-ESI-QQQ-MS/MS) in multiple reaction monitoring (MRM) mode was employed. Three grape varieties (Merlot, Syrah and Tannat) were chosen and grape berries were sampled at different stages of development. Ten monoglycosylated and six diglycosylated flavanol monomers were detected. Twelve monoglycosylated and three diglycosylated flavanol dimers were also detected for all three grape varieties. All diglycosides were detected for the first time in Vitis vinifera grapes, though some of these compounds were only detected in skins or seeds. Furthermore, the evolution of all these compounds was studied, and a decrease in monomeric (epi) catechin monoglycosides was observed during ripening for Tannat, Merlot and Syrah grape skins. The dimers would appear to accumulate in skin tissues up to mid-summer (after veraison) and decrease when grape berries reached maturity.
Collapse
|
28
|
Yu J, Qi J, Zhang L, Yu X, Kong Q, Ren X. Using the relative abundance of characteristic product ions in UHPLC-ESI-QTOF-MS 2 methods to identify isomers of resveratrol oligomers in extracts of Xinjiang winegrape stems. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1096:88-94. [PMID: 30149299 DOI: 10.1016/j.jchromb.2018.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 01/28/2023]
Abstract
Stilbenoids, particularly resveratrol and its oligomer, are abundantly present in grapes, and their antioxidant activities have been widely reported. A quick and simple method based on UHPLC-ESI-QTOF-MS2 was established for the fragmentation pathways analysis of trans-ε-Viniferin, cis-ε-Viniferin, trans-δ-Viniferin and (-)-Hopeaphenol. MS/MS experiments on the [M-H]- ions provided abundant structural information, especially regarding the relative abundance of the key product ion at m/z 347. The product ion was used to further identify structures in isomers of resveratrol dimers and its analogues. Based on the fragmentation pathways, we tentatively determined two compounds from the crude extracts of Xinjiang winegrape stems as Gnetin C and cis-Scirpusin A. Results from these experiments contribute to a more complete understanding of the stilbene compounds found in grape stems. The UHPLC-QTOF-MS2 method can be used for the rapid analysis of stilbenes compounds in plant materials, foods and wine.
Collapse
Affiliation(s)
- Jia Yu
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China
| | - Jianrui Qi
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China
| | - Lingling Zhang
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China
| | - Xing Yu
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China
| | - Qingjun Kong
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China.
| | - Xueyan Ren
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
29
|
Classification of samples from NMR-based metabolomics using principal components analysis and partial least squares with uncertainty estimation. Anal Bioanal Chem 2018; 410:6305-6319. [PMID: 30043113 DOI: 10.1007/s00216-018-1240-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/14/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
Abstract
Recent progress in metabolomics has been aided by the development of analysis techniques such as gas and liquid chromatography coupled with mass spectrometry (GC-MS and LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. The vast quantities of data produced by these techniques has resulted in an increase in the use of machine algorithms that can aid in the interpretation of this data, such as principal components analysis (PCA) and partial least squares (PLS). Techniques such as these can be applied to biomarker discovery, interlaboratory comparison, and clinical diagnoses. However, there is a lingering question whether the results of these studies can be applied to broader sets of clinical data, usually taken from different data sources. In this work, we address this question by creating a metabolomics workflow that combines a previously published consensus analysis procedure ( https://doi.org/10.1016/j.chemolab.2016.12.010 ) with PCA and PLS models using uncertainty analysis based on bootstrapping. This workflow is applied to NMR data that come from an interlaboratory comparison study using synthetic and biologically obtained metabolite mixtures. The consensus analysis identifies trusted laboratories, whose data are used to create classification models that are more reliable than without. With uncertainty analysis, the reliability of the classification can be rigorously quantified, both for data from the original set and from new data that the model is analyzing. Graphical abstract ᅟ.
Collapse
|
30
|
Billet K, Houillé B, Dugé de Bernonville T, Besseau S, Oudin A, Courdavault V, Delanoue G, Guérin L, Clastre M, Giglioli-Guivarc'h N, Lanoue A. Field-Based Metabolomics of Vitis vinifera L. Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring. FRONTIERS IN PLANT SCIENCE 2018; 9:798. [PMID: 29977248 PMCID: PMC6021511 DOI: 10.3389/fpls.2018.00798] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/24/2018] [Indexed: 05/21/2023]
Abstract
Grape accumulates numerous polyphenols with abundant health benefit and organoleptic properties that in planta act as key components of the plant defense system against diseases. Considerable advances have been made in the chemical characterization of wine metabolites particularly volatile and polyphenolic compounds. However, the metabotyping (metabolite-phenotype characterization) of grape varieties, from polyphenolic-rich vineyard by-product is unprecedented. As this composition might result from the complex interaction between genotype, environment and viticultural practices, a field experiment was setting up with uniform pedo-climatic factors and viticultural practices of growing vines to favor the genetic determinism of polyphenol expression. As a result, UPLC-MS-based targeted metabolomic analyses of grape stems from 8 Vitis vinifera L. cultivars allowed the determination of 42 polyphenols related to phenolic acids, flavonoids, procyanidins, and stilbenoids as resveratrol oligomers (degree of oligomerization 1-4). Using a partial least-square discriminant analysis approach, grape stem chemical profiles were discriminated according to their genotypic origin showing that polyphenol profile express a varietal signature. Furthermore, hierarchical clustering highlights various degree of polyphenol similarity between grape varieties that were in agreement with the genetic distance using clustering analyses of 22 microsatellite DNA markers. Metabolite correlation network suggested that several polyphenol subclasses were differently controlled. The present polyphenol metabotyping approach coupled to multivariate statistical analyses might assist grape selection programs to improve metabolites with both health-benefit potential and plant defense traits.
Collapse
Affiliation(s)
- Kévin Billet
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Benjamin Houillé
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Thomas Dugé de Bernonville
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Sébastien Besseau
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Audrey Oudin
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Vincent Courdavault
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | | | | | - Marc Clastre
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Nathalie Giglioli-Guivarc'h
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| |
Collapse
|
31
|
Tuberoso CIG, Serreli G, Montoro P, D'Urso G, Congiu F, Kowalczyk A. Biogenic amines and other polar compounds in long aged oxidized Vernaccia di Oristano white wines. Food Res Int 2018; 111:97-103. [PMID: 30007742 DOI: 10.1016/j.foodres.2018.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 05/08/2018] [Indexed: 10/17/2022]
Abstract
Oxidized white wines are produced by techniques that provide a barrel ageing which can range from a few years to some decades. This step, characterized by the metabolic activity of peculiar strains of Saccharomyces cerevisiae yeast, can affect the chemical composition of these wines and the production of unwanted substances such as biogenic amines. In this study, Vernaccia di Oristano wines from different vintages have been analysed for the first time regarding the content of biogenic amines and amino acids (by HPLC-FLD), and polar compounds (by HPLC-DAD and LC-MS). Furthermore, colour and technological parameters (contents of alcohol, reducing sugars, total and volatile acidities, pH and organic acids) of the wines were also evaluated. Older samples showed dark shades, which may have derived from polyphenols' oxidation while ageing. Some typical ageing products, such as 5-(hydroxymethyl)furfural and hydroxycinnamic acid derivatives were found in larger quantities in these samples, as well as the purinic compound xanthine, which was also detected in relevant concentrations. Additionally, as expected, the average of the main biogenic amines quantified in Vernaccia di Oristano was higher compared to non-oxidized white wines, especially in the older samples. Thus, though this content does not exceed values which spoil the quality of the wine, the monitoring of the winemaking conditions is suggested, to further limit the presence of these undesirable compounds.
Collapse
Affiliation(s)
- Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - Gabriele Serreli
- Department of Biomedical Sciences, Unit of Experimental Pathology, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Cagliari, Italy
| | - Paola Montoro
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Gilda D'Urso
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Francesca Congiu
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Adam Kowalczyk
- Department of Pharmacognosy, Wrocław Medical University, ul. Borowska 211, 50-556 Wrocław, Poland
| |
Collapse
|
32
|
Arapitsas P, Guella G, Mattivi F. The impact of SO 2 on wine flavanols and indoles in relation to wine style and age. Sci Rep 2018; 8:858. [PMID: 29339827 PMCID: PMC5770432 DOI: 10.1038/s41598-018-19185-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
Wine has one of the broadest chemical profiles, and the common oenological practice of adding the antioxidant and antimicrobial sulfur dioxide has a major impact on its metabolomic fingerprint. In this study, we investigated novel discovered oenological reactions primarily occurring between wine metabolites and sulfur dioxide. The sulfonated derivatives of epicatechin, procyanidin B2, indole acetic acid, indole lactic acid and tryptophol were synthesized and for the first time quantified in wine. Analysis of 32 metabolites in 195 commercial wines (1986-2016 vintages) suggested that sulfonation of tryptophan metabolites characterised white wines, in contrast to red wines, where sulfonation of flavanols was preferred. The chemical profile of the oldest wines was strongly characterised by sulfonated flavanols and indoles, indicating that could be fundamental metabolites in explaining quality in both red and white aged wines. These findings offer new prospects for more precise use of sulfur dioxide in winemaking.
Collapse
Affiliation(s)
- Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy.
| | - Graziano Guella
- Centre for Agriculture, Food and the Environment, University of Trento, San Michele all'Adige, Italy
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
- Centre for Agriculture, Food and the Environment, University of Trento, San Michele all'Adige, Italy
| |
Collapse
|
33
|
Tomaz I, Šeparović M, Štambuk P, Preiner D, Maletić E, Karoglan Kontić J. Effect of freezing and different thawing methods on the content of polyphenolic compounds of red grape skins. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivana Tomaz
- Faculty of Agriculture, Department of Viticulture and Enology; University of Zagreb; Zagreb Croatia
| | - Marina Šeparović
- Faculty of Agriculture, Department of Viticulture and Enology; University of Zagreb; Zagreb Croatia
| | - Petra Štambuk
- Faculty of Agriculture, Department of Viticulture and Enology; University of Zagreb; Zagreb Croatia
| | - Darko Preiner
- Faculty of Agriculture, Department of Viticulture and Enology; University of Zagreb; Zagreb Croatia
- Faculty of Agriculture, Centre of Excellence for Biodiversity and Molecular Plant Breeding, University of Zagreb; Zagreb Croatia
| | - Edi Maletić
- Faculty of Agriculture, Department of Viticulture and Enology; University of Zagreb; Zagreb Croatia
- Faculty of Agriculture, Centre of Excellence for Biodiversity and Molecular Plant Breeding, University of Zagreb; Zagreb Croatia
| | - Jasminka Karoglan Kontić
- Faculty of Agriculture, Department of Viticulture and Enology; University of Zagreb; Zagreb Croatia
- Faculty of Agriculture, Centre of Excellence for Biodiversity and Molecular Plant Breeding, University of Zagreb; Zagreb Croatia
| |
Collapse
|
34
|
The anthocyanins profile of red grape cultivars growing in south-east Poland (Subcarpathia region). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9568-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Gabaston J, Cantos-Villar E, Biais B, Waffo-Teguo P, Renouf E, Corio-Costet MF, Richard T, Mérillon JM. Stilbenes from Vitis vinifera L. Waste: A Sustainable Tool for Controlling Plasmopara Viticola. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2711-2718. [PMID: 28288509 DOI: 10.1021/acs.jafc.7b00241] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stilbene-enriched extracts from Vitis vinifera waste (cane, wood, and root) were characterized by UHPLC-MS. Eleven stilbenes were identified and quantified as follows: ampelopsin A, (E)-piceatannol, pallidol, (E)-resveratrol, hopeaphenol, isohopeaphenol, (E)-ε-viniferin, (E)-miyabenol C, (E)-ω-viniferin, r2-viniferin, and r-viniferin. The fungicide concentration inhibiting 50% of growth of Plasmopara viticola sporulation (IC50) was determined for the extracts and also for the main compounds isolated. r-Viniferin followed by hopeaphenol and r2-viniferin showed low IC50 and thus high efficacy against Plasmopara viticola. Regarding stilbene extracts, wood extract followed by root extract showed the highest antifungal activities. These data suggest that stilbene complex mixtures from Vitis vinifera waste could be used as a cheap source of bioactive stilbenes for the development of natural fungicides.
Collapse
Affiliation(s)
- Julien Gabaston
- Université de Bordeaux, Faculté des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Equipe Molécules d'Intérêt Biologique (Gesvab), Institut des Sciences de la Vigne et du Vin , CS 50008-210, Chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Emma Cantos-Villar
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) , Rancho de la Merced, Junta de Andalucía, Ctra. Trebujena, Km 3.2, P.O. Box 589, Jerez de la Frontera, 11471 Cádiz, Spain
| | - Benoît Biais
- Université de Bordeaux, Faculté des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Equipe Molécules d'Intérêt Biologique (Gesvab), Institut des Sciences de la Vigne et du Vin , CS 50008-210, Chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Pierre Waffo-Teguo
- Université de Bordeaux, Faculté des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Equipe Molécules d'Intérêt Biologique (Gesvab), Institut des Sciences de la Vigne et du Vin , CS 50008-210, Chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Elodie Renouf
- Université de Bordeaux, Faculté des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Equipe Molécules d'Intérêt Biologique (Gesvab), Institut des Sciences de la Vigne et du Vin , CS 50008-210, Chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Marie-France Corio-Costet
- UMR Santé Végétale, 1065, ISVV, IFR 103, INRA , Rue Edouard Bourleaud, CS 20032, 33882 Villenave d' Ornon, France
| | - Tristan Richard
- Université de Bordeaux, Faculté des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Equipe Molécules d'Intérêt Biologique (Gesvab), Institut des Sciences de la Vigne et du Vin , CS 50008-210, Chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Jean-Michel Mérillon
- Université de Bordeaux, Faculté des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Equipe Molécules d'Intérêt Biologique (Gesvab), Institut des Sciences de la Vigne et du Vin , CS 50008-210, Chemin de Leysotte, 33882 Villenave d'Ornon, France
| |
Collapse
|
36
|
Mijowska K, Ochmian I, Oszmiański J. Impact of Cluster Zone Leaf Removal on Grapes cv. Regent Polyphenol Content by the UPLC-PDA/MS Method. Molecules 2016; 21:molecules21121688. [PMID: 27973426 PMCID: PMC6274226 DOI: 10.3390/molecules21121688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 11/21/2022] Open
Abstract
Leaf removal is known to enhance light exposure of clusters and therefore may affect grape composition. Owing to the risk of decreasing grape quality or sunburn as a consequence of improper sun exposure, it is crucial to determine the optimum leaf removal techniques adequate for the particular climate conditions of a vineyard area. Defoliation experiments on vine cv. Regent were conducted in two consecutive years (2014 and 2015). The effect of leaf removal treatment on the qualitative and quantitative composition of the polyphenol compounds in the grapes, with reference to the basic weather conditions of the vineyard area, located in Szczecin in the North-Western part of Poland, was assessed. Defoliation was performed manually in the cluster zone at three phenological plant stages: pre-flowering, berry-set and véraison. Leaf removal, especially early defoliation (pre-flowering), enhanced total polyphenol content, including the amount of anthocyanins, flavonols and flavan-3-ols and furthermore, it increased the amount of soluble solids, decreasing the titratable acidity in grapes. On the other hand, the treatments had a reducing impact on the phenolic acids in berries. Defoliation at earlier stages of cluster development appears to be an efficient strategy for improving berry quality in cool climate areas, however, additionally further weather data control is required to determine the effects on berry components.
Collapse
Affiliation(s)
- Kamila Mijowska
- Department of Horticulture, West Pomeranian University of Technology Szczecin, Słowackiego 17 Street, 71-434 Szczecin, Poland.
| | - Ireneusz Ochmian
- Department of Horticulture, West Pomeranian University of Technology Szczecin, Słowackiego 17 Street, 71-434 Szczecin, Poland.
| | - Jan Oszmiański
- Department of Fruit and Vegetable Processing, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37 Street, 51-630 Wrocław, Poland.
| |
Collapse
|
37
|
Jung SM, Hur YY, Preece JE, Fiehn O, Kim YH. Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis. THE PLANT PATHOLOGY JOURNAL 2016; 32:489-499. [PMID: 27904455 PMCID: PMC5117857 DOI: 10.5423/ppj.ft.08.2016.0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.
Collapse
Affiliation(s)
- Sung-Min Jung
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Youn-Young Hur
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - John E. Preece
- National Clonal Germplasm Repository, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Davis, CA 95616,
USA
| | - Oliver Fiehn
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA 95616,
USA
| | - Young-Ho Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
38
|
de Bem B, Brighenti E, Bonin BF, Allembrandt R, Araújo L, Brighenti AF, Bogo A. Downy mildew intensity in tolerant grapes varieties in highlands of southern Brazil. BIO WEB OF CONFERENCES 2016. [DOI: 10.1051/bioconf/20160701015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Pinasseau L, Verbaere A, Roques M, Meudec E, Vallverdú-Queralt A, Terrier N, Boulet JC, Cheynier V, Sommerer N. A Fast and Robust UHPLC-MRM-MS Method to Characterize and Quantify Grape Skin Tannins after Chemical Depolymerization. Molecules 2016; 21:molecules21101409. [PMID: 27775674 PMCID: PMC6273201 DOI: 10.3390/molecules21101409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 11/16/2022] Open
Abstract
A rapid, sensitive, and selective analysis method using ultra high performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS) has been developed for the characterization and quantification of grape skin flavan-3-ols after acid-catalysed depolymerization in the presence of phloroglucinol (phloroglucinolysis). The compound detection being based on specific MS transitions in Multiple Reaction Monitoring (MRM) mode, this fast gradient robust method allows analysis of constitutive units of grape skin proanthocyanidins, including some present in trace amounts, in a single injection, with a throughput of 6 samples per hour. This method was applied to a set of 214 grape skin samples from 107 different red and white grape cultivars grown under two conditions in the vineyard, irrigated or non-irrigated. The results of triplicate analyses confirmed the robustness of the method, which was thus proven to be suitable for high-throughput and large-scale metabolomics studies. Moreover, these preliminary results suggest that analysis of tannin composition is relevant to investigate the genetic bases of grape response to drought.
Collapse
Affiliation(s)
- Lucie Pinasseau
- Plate-Forme D'analyse des Polyphénols, UMR1083 Sciences Pour l'Œnologie, Institut National de la Recherche Agronomique, Montpellier 34060, France.
| | - Arnaud Verbaere
- Plate-Forme D'analyse des Polyphénols, UMR1083 Sciences Pour l'Œnologie, Institut National de la Recherche Agronomique, Montpellier 34060, France.
| | - Maryline Roques
- Plate-Forme D'analyse des Polyphénols, UMR1083 Sciences Pour l'Œnologie, Institut National de la Recherche Agronomique, Montpellier 34060, France.
- Equipe Biosynthèse et Composition en Polyphénols et Polysaccharides, UMR1083 Sciences Pour l'Œnologie, Institut National de la Recherche Agronomique, Montpellier 34060, France.
- Institut Français de la Vigne et du Vin, Pôle National Matériel Végétal, UMT Génovigne, Montpellier 34060, France.
| | - Emmanuelle Meudec
- Plate-Forme D'analyse des Polyphénols, UMR1083 Sciences Pour l'Œnologie, Institut National de la Recherche Agronomique, Montpellier 34060, France.
| | - Anna Vallverdú-Queralt
- Plate-Forme D'analyse des Polyphénols, UMR1083 Sciences Pour l'Œnologie, Institut National de la Recherche Agronomique, Montpellier 34060, France.
| | - Nancy Terrier
- Equipe Biosynthèse et Composition en Polyphénols et Polysaccharides, UMR1083 Sciences Pour l'Œnologie, Institut National de la Recherche Agronomique, Montpellier 34060, France.
| | - Jean-Claude Boulet
- Plate-Forme D'analyse des Polyphénols, UMR1083 Sciences Pour l'Œnologie, Institut National de la Recherche Agronomique, Montpellier 34060, France.
| | - Véronique Cheynier
- Plate-Forme D'analyse des Polyphénols, UMR1083 Sciences Pour l'Œnologie, Institut National de la Recherche Agronomique, Montpellier 34060, France.
| | - Nicolas Sommerer
- Plate-Forme D'analyse des Polyphénols, UMR1083 Sciences Pour l'Œnologie, Institut National de la Recherche Agronomique, Montpellier 34060, France.
| |
Collapse
|
40
|
de Villiers A, Venter P, Pasch H. Recent advances and trends in the liquid-chromatography–mass spectrometry analysis of flavonoids. J Chromatogr A 2016; 1430:16-78. [DOI: 10.1016/j.chroma.2015.11.077] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
|
41
|
Arapitsas P, Ugliano M, Perenzoni D, Angeli A, Pangrazzi P, Mattivi F. Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen. J Chromatogr A 2015; 1429:155-65. [PMID: 26709023 DOI: 10.1016/j.chroma.2015.12.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 11/17/2022]
Abstract
The impact of minute amounts of oxygen in the headspace on the post-bottling development of wine is generally considered to be very important, since oxygen can either damage or improve the quality of wine. This project aimed to gain new experimental evidence about the chemistry of the interaction between wine and oxygen. The experimental design included 216 bottles of 12 different white wines produced from 6 different cultivars (Inzolia, Muller Thurgau, Chardonnay, Grillo, Traminer and Pinot gris). Half of them were bottled using the standard industrial process with inert headspace and the other half without inert gas and with extra headspace. After 60 days of storage at room temperature, the wines were analysed using an untargeted LC-MS method. The use of a detailed holistic analysis workflow, with several levels of quality control and marker selection, gave 35 metabolites putatively induced by the different amounts of oxygen. These metabolite markers included ascorbic acid, tartaric acid and various sulfonated compounds observed in wine for the first time (e.g. S-sulfonated cysteine, glutathione and pantetheine; and sulfonated indole-3-lactic acid hexoside and tryptophol). The consumption of SO2 mediated by these sulfonation reactions was promoted by the presence of higher levels of oxygen on bottling.
Collapse
Affiliation(s)
- Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all'Adige, Italy.
| | - Maurizio Ugliano
- Nomacorc France, Domaine de Donadille, Avenue Yves Cazeaux, 30230 Rodilhan, France
| | - Daniele Perenzoni
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all'Adige, Italy
| | - Andrea Angeli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all'Adige, Italy
| | | | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all'Adige, Italy
| |
Collapse
|
42
|
Arapitsas P, Corte AD, Gika H, Narduzzi L, Mattivi F, Theodoridis G. Studying the effect of storage conditions on the metabolite content of red wine using HILIC LC-MS based metabolomics. Food Chem 2015; 197 Pt B:1331-40. [PMID: 26675875 DOI: 10.1016/j.foodchem.2015.09.084] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
The main aim of this work was to develop an untargeted normal phase LC-MS method, starting from a targeted method already validated for the analysis of 135 polar metabolites. Since the LC instrument and column were the same, most of the chromatographic conditions remained identical, while the adaptations focused on maintaining the ionic strength of the eluents constant. The sample preparation was simplified and the effectiveness of LC-MS for long batches was evaluated, in order to record the maximum number of metabolites with good chromatographic resolution and the best MS stability and accuracy. The method was applied to study the influence of storage conditions on wine composition. Slightly sub-optimum storage conditions had a major impact on the polar metabolite fingerprint of the red wines analysed and the markers revealed included phenolics, vitamins and metabolites indentified in wine for the first time (4-amino-heptanedioic acid and its ethyl ester).
Collapse
Affiliation(s)
- Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy.
| | - Anna Della Corte
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Helen Gika
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Luca Narduzzi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Georgios Theodoridis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
43
|
Lambert M, Meudec E, Verbaere A, Mazerolles G, Wirth J, Masson G, Cheynier V, Sommerer N. A High-Throughput UHPLC-QqQ-MS Method for Polyphenol Profiling in Rosé Wines. Molecules 2015; 20:7890-914. [PMID: 25942371 PMCID: PMC6272418 DOI: 10.3390/molecules20057890] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/16/2022] Open
Abstract
A rapid, sensitive and selective analysis method using Ultra High Performance Liquid Chromatography coupled to triple-quadrupole Mass Spectrometry (UHPLC-QqQ-MS) has been developed for the quantification of polyphenols in rosé wines. The compound detection being based on specific MS transitions in Multiple Reaction Monitoring (MRM) mode, the present method allows the selective quantification of up to 152 phenolic and two additional non-phenolic wine compounds in 30 min without sample purification or pre-concentration, even at low concentration levels. This method was repeatably applied to a set of 12 rosé wines and thus proved to be suitable for high-throughput and large-scale metabolomics studies.
Collapse
Affiliation(s)
- Marine Lambert
- INRA, UMR 1083 Sciences Pour l'Oenologie, Polyphenol Analysis Facility, 2 place Viala, F-34060 Montpellier, France.
| | - Emmanuelle Meudec
- INRA, UMR 1083 Sciences Pour l'Oenologie, Polyphenol Analysis Facility, 2 place Viala, F-34060 Montpellier, France.
| | - Arnaud Verbaere
- INRA, UMR 1083 Sciences Pour l'Oenologie, Polyphenol Analysis Facility, 2 place Viala, F-34060 Montpellier, France.
| | - Gérard Mazerolles
- INRA, UMR 1083 Sciences Pour l'Oenologie, Polyphenol Analysis Facility, 2 place Viala, F-34060 Montpellier, France.
| | - Jérémie Wirth
- INRA, UMR 1083 Sciences Pour l'Oenologie, Polyphenol Analysis Facility, 2 place Viala, F-34060 Montpellier, France.
| | - Gilles Masson
- Centre de Recherche et d'Expérimentation sur le Vin Rosé, 70 avenue Wilson, F-83550 Vidauban, France.
| | - Véronique Cheynier
- INRA, UMR 1083 Sciences Pour l'Oenologie, Polyphenol Analysis Facility, 2 place Viala, F-34060 Montpellier, France.
| | - Nicolas Sommerer
- INRA, UMR 1083 Sciences Pour l'Oenologie, Polyphenol Analysis Facility, 2 place Viala, F-34060 Montpellier, France.
| |
Collapse
|
44
|
|
45
|
Aldawsari FS, Velázquez-Martínez CA. 3,4',5-trans-Trimethoxystilbene; a natural analogue of resveratrol with enhanced anticancer potency. Invest New Drugs 2015; 33:775-86. [PMID: 25720605 DOI: 10.1007/s10637-015-0222-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/18/2015] [Indexed: 01/15/2023]
Abstract
Resveratrol is a phytoalexin produced by many plant species as a defence mechanism. Over the last decade, this polyphenol has been reported to be active against multiple targets associated with chronic disorders. However, its poor pharmacokinetic profile, as well as multiple discrepancies related to its in vitro and in vivo profile, has resulted not only on the study of suitable delivery systems, but the use of resveratrol derivatives. In this regard, the 3,4',5-trans-trimethoxystilbene (TMS), a natural analogue of resveratrol, has emerged as a strong candidate. TMS has an enhanced anticancer profile compared to resveratrol, exhibiting higher potency than resveratrol, as shown by multiple reports describing an improved cancer cell proliferation inhibition, induction of cell cycle arrest, decreased metastasis, reduced angiogenesis, and increased apoptosis. In this review, we provide a concise summary of results reported in the literature, related to the similarities and differences between resveratrol and TMS, and we submit to the scientific community that TMS is a promising and (still) understudied natural agent candidate, with potential applications in cancer research. Nevertheless, based on the available evidence, we also submit to the scientific community that TMS may also find a niche in any other research area in which resveratrol has been used.
Collapse
Affiliation(s)
- Fahad S Aldawsari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada,
| | | |
Collapse
|
46
|
Mattivi F, Arapitsas P, Perenzoni D, Guella G. Influence of Storage Conditions on the Composition of Red Wines. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1203.ch003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all’Adige, Italy
- Department of Physics, University of Trento, Via Sommarive 14, Povo, Italy
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all’Adige, Italy
- Department of Physics, University of Trento, Via Sommarive 14, Povo, Italy
| | - Daniele Perenzoni
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all’Adige, Italy
- Department of Physics, University of Trento, Via Sommarive 14, Povo, Italy
| | - Graziano Guella
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all’Adige, Italy
- Department of Physics, University of Trento, Via Sommarive 14, Povo, Italy
| |
Collapse
|