1
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
2
|
Balaji PG, Bhimrao LS, Yadav AK. Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis. Mol Neurobiol 2025; 62:184-220. [PMID: 38829514 DOI: 10.1007/s12035-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.
Collapse
Affiliation(s)
- Paul Gajanan Balaji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Londhe Sachin Bhimrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Mohanty S, Roy S. Bioactive Hydrogels Inspired by Laminin: An Emerging Biomaterial for Tissue Engineering Applications. Macromol Biosci 2024; 24:e2400207. [PMID: 39172212 DOI: 10.1002/mabi.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Tissue or organ damage due to severe injuries or chronic diseases can adversely affect the quality of life. Current treatments rely on organ or tissue transplantation which has limitations including unavailability of donors, ethical issues, or immune rejection after transplantations. These limitations can be addressed by tissue regeneration which involves the development of bioactive scaffolds closely mimicking the extracellular matrix (ECM). One of the major components of ECM is the laminin protein which supports several tissues associated with important organs. In this direction, peptide-based hydrogels can effectively mimic the essential characteristics of laminin. While several reports have discussed the structure of laminin, the potential of laminin-derived peptide hydrogels as effective biomaterial for tissue engineering applications is yet to be discussed. In this context, the current review focuses on the structure of laminin and its role as an essential ECM protein. Further, the potential of short peptide hydrogels in mimicking the crucial properties of laminin is proposed. The review further highlights the significance of bioactive hydrogels inspired by laminin - in addressing numerous tissue engineering applications including angiogenesis, neural, skeletal muscle, liver, and adipose tissue regeneration along with a brief outlook on the future applications of these laminin-based hydrogels.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
4
|
Siapoush S, Rezaei R, Alavifard H, Hatami B, Zali MR, Vosough M, Lorzadeh S, Łos MJ, Baghaei K, Ghavami S. Therapeutic implications of targeting autophagy and TGF-β crosstalk for the treatment of liver fibrosis. Life Sci 2023; 329:121894. [PMID: 37380126 DOI: 10.1016/j.lfs.2023.121894] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Liver fibrosis is characterized by the excessive deposition and accumulation of extracellular matrix components, mainly collagens, and occurs in response to a broad spectrum of triggers with different etiologies. Under stress conditions, autophagy serves as a highly conserved homeostatic system for cell survival and is importantly involved in various biological processes. Transforming growth factor-β1 (TGF-β1) has emerged as a central cytokine in hepatic stellate cell (HSC) activation and is the main mediator of liver fibrosis. A growing body of evidence from preclinical and clinical studies suggests that TGF-β1 regulates autophagy, a process that affects various essential (patho)physiological aspects related to liver fibrosis. This review comprehensively highlights recent advances in our understanding of cellular and molecular mechanisms of autophagy, its regulation by TGF-β, and the implication of autophagy in the pathogenesis of progressive liver disorders. Moreover, we evaluated crosstalk between autophagy and TGF-β1 signalling and discussed whether simultaneous inhibition of these pathways could represent a novel approach to improve the efficacy of anti-fibrotic therapy in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Samaneh Siapoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland; Autophagy Research Center, Department of Biochemistry; Shiraz University of Medical Sciences, Shiraz, Iran; LinkoCare Life Sciences AB, Linkoping, Sweden
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
5
|
Abstract
Matrix metalloproteinases (MMPs) are a class of endopeptidases that are dependent on zinc and facilitate the degradation of extracellular matrix (ECM) proteins, thereby playing pivotal parts in human physiology and pathology. MMPs regulate normal tissue and cellular functions, including tissue development, remodeling, angiogenesis, bone formation, and wound healing. Several diseases, including cancer, inflammation, cardiovascular diseases, and nervous system disorders, have been linked to dysregulated expression of specific MMP subtypes, which can promote tumor progression, metastasis, and inflammation. Various MMP-responsive drug delivery and release systems have been developed by harnessing cleavage activities and overexpression of MMPs in affected regions. Herein, we review the structure, substrates, and physiological and pathological functions of various MMPs and highlight the strategies for designing MMP-responsive nanoparticles to improve the targeting efficiency, penetration, and protection of therapeutic payloads.
Collapse
Affiliation(s)
- Chenyun Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
6
|
Matrix Metalloproteinases in Cardioembolic Stroke: From Background to Complications. Int J Mol Sci 2023; 24:ijms24043628. [PMID: 36835040 PMCID: PMC9959608 DOI: 10.3390/ijms24043628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases participating in physiological processes of the brain, maintaining the blood-brain barrier integrity and playing a critical role in cerebral ischemia. In the acute phase of stroke activity, the expression of MMPs increase and is associated with adverse effects, but in the post-stroke phase, MMPs contribute to the process of healing by remodeling tissue lesions. The imbalance between MMPs and their inhibitors results in excessive fibrosis associated with the enhanced risk of atrial fibrillation (AF), which is the main cause of cardioembolic strokes. MMPs activity disturbances were observed in the development of hypertension, diabetes, heart failure and vascular disease enclosed in CHA2DS2VASc score, the scale commonly used to evaluate the risk of thromboembolic complications risk in AF patients. MMPs involved in hemorrhagic complications of stroke and activated by reperfusion therapy may also worsen the stroke outcome. In the present review, we briefly summarize the role of MMPs in the ischemic stroke with particular consideration of the cardioembolic stroke and its complications. Moreover, we discuss the genetic background, regulation pathways, clinical risk factors and impact of MMPs on the clinical outcome.
Collapse
|
7
|
Louet ER, Glavan M, Orset C, Parcq J, Hanley DF, Vivien D. tPA-NMDAR Signaling Blockade Reduces the Incidence of Intracerebral Aneurysms. Transl Stroke Res 2022; 13:1005-1016. [PMID: 35307812 DOI: 10.1007/s12975-022-01004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
Abstract
Intracranial aneurysms (IAs) are pathological dilatations affecting cerebral arteries, and their ruptures lead to devasting intracranial hemorrhages. Although the mechanisms underlying the IA formation and rupture are still unclear, some factors have been identified as critical in the control of the vascular remodeling pathways associated with aneurysms. In a preclinical model, we have previously proposed the implication of the vascular serine protease, the tissue-type plasminogen activator (tPA), as one of the key players in this pathology. Here, we provide insights into the mechanism by which tPA is implicated in the formation and rupture of aneurysms. This was addressed using a murine model of IAs combined with (i) hydrodynamic transfections of various tPA mutants based on the potential implications of the different tPA domains in this pathophysiology and (ii) a pharmacological approach using a monoclonal antibody targeting tPA-dependent NMDA receptor (NMDAR) signaling and in vivo magnetic resonance brain imaging (MRI). Our results show that the endovascular tPA-NMDAR axis is implicated in IA formation and possibly their rupture. Accordingly, the use of a monoclonal antibody designed to block tPA-dependent endothelial NMDAR signaling (Glunomab®) decreases the rate of intracranial aneurysm formation and their rupture. The present study gives new insights into the IA pathophysiology by demonstrating the implication of the tPA-dependent endothelial NMDAR signaling. In addition, the present data proposes that a monoclonal antibody injected intravenously to target this process, i.e., Glunomab® could be a useful therapeutic candidate for this devastating disease.
Collapse
Affiliation(s)
- Estelle R Louet
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Op2Lysis SAS, GIP Cyceron, Boulevard H Becquerel, 14000, Caen, France
| | - Martina Glavan
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Cyrille Orset
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Jerome Parcq
- Op2Lysis SAS, GIP Cyceron, Boulevard H Becquerel, 14000, Caen, France
| | - Daniel F Hanley
- Division of Brain Injury Outcomes, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France.
- Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de la côte de Nacre, Caen, France.
| |
Collapse
|
8
|
Schmidt S, Holzer M, Arendt T, Sonntag M, Morawski M. Tau Protein Modulates Perineuronal Extracellular Matrix Expression in the TauP301L-acan Mouse Model. Biomolecules 2022; 12:biom12040505. [PMID: 35454094 PMCID: PMC9027016 DOI: 10.3390/biom12040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Tau mutations promote the formation of tau oligomers and filaments, which are neuropathological signs of several tau-associated dementias. Types of neurons in the CNS are spared of tau pathology and are surrounded by a specialized form of extracellular matrix; called perineuronal nets (PNs). Aggrecan, the major PN proteoglycans, is suggested to mediate PNs neuroprotective function by forming an external shield preventing the internalization of misfolded tau. We recently demonstrated a correlation between aggrecan amount and the expression and phosphorylation of tau in a TauP310L-acan mouse model, generated by crossbreeding heterozygous aggrecan mice with a significant reduction of aggrecan and homozygous TauP301L mice. Neurodegenerative processes have been associated with changes of PN structure and protein signature. In this study, we hypothesized that the structure and protein expression of PNs in this TauP310L-acan mouse is regulated by tau. Immunohistochemical and biochemical analyses demonstrate that protein levels of PN components differ between TauP301LHET-acanWT and TauP301LHET-acanHET mice, accompanied by changes in the expression of protein phosphatase 2 A. In addition, tau can modulate PN components such as brevican. Co-immunoprecipitation experiments revealed a physical connection between PN components and tau. These data demonstrate a complex, mutual interrelation of tau and the proteoglycans of the PN.
Collapse
|
9
|
Mechanisms of Thrombosis and Thrombolysis. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Zheng B, Jin Y, Mi S, Xu W, Yang X, Hong Z, Wang Z. Dl-3-n-butylphthalide Attenuates Spinal Cord Injury via Regulation of MMPs and Junction Proteins in Mice. Neurochem Res 2021; 46:2297-2306. [PMID: 34086144 DOI: 10.1007/s11064-021-03361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
As a serious trauma of the neurological system, spinal cord injury (SCI) results in permanent disability, gives rise to immediate vascular damage and a wide range of matters that induce the breakage of blood spinal cord barrier (BSCB). SCI activates the expression of MMP-2/9, which are considered to accelerate the disruption of BSCB. Recent research shows that Dl-3-n-butylphthalide (NBP) exerted protective effects on blood spinal cord barrier in animals after SCI, but the underlying molecular mechanism of NBP on the BSCB undergoing SCI is unknown. Here, our research show that NBP inhibited the expression of MMP-2/9, then improved the permeability of BSCB following SCI. After the T9 level of spinal cord performed with a moderate injury, NBP was managed by intragastric administration and further performed once a day. NBP remarkably improved the permeability of BSCB and junction proteins degration, then promoted locomotion recovery. The protective effect of NBP on BSCB destruction is related to the regulation of MMP-2/9 induced by SCI. Moreover, NBP obviously inhibited the MMP-2/9 expression and junction proteins degradation in microvascular endothelial cells. In conclusion, our results indicate that MMP-2/9 are relevant to the breakdown of BSCB, NBP impairs BSCB destruction through inhibiting MMP-2/9 and promotes functional recovery subjected to SCI. NBP is likely to become a new nominee as a therapeutic to treat SCI via a transigent BSCB.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Yanjun Jin
- Nursing Department, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Shuang Mi
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Wei Xu
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Xiangdong Yang
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Zhenghua Hong
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China.
| | - Zhangfu Wang
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China.
| |
Collapse
|
11
|
Zhang Z, Mei Y, Xiong M, Lu F, Zhao X, Zhu J, He B. Genetic Variation of Inflammatory Genes to Ischemic Stroke Risk in a Chinese Han Population. Pharmgenomics Pers Med 2021; 14:977-986. [PMID: 34413669 PMCID: PMC8370589 DOI: 10.2147/pgpm.s320483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Background Inflammation proteins play an important role in stroke occurrence. IL1A, IL1B, PTGS2, MMP2, and MMP9 were the mediators involved in the immune response, and the association of these genetic variations with ischemic stroke (IS) risk was still unclear. Methods To investigate the susceptibility of genetic variations of IL1A, IL1B, PTGS2, MMP2, and MMP9 to IS risk, we performed a case–control study involving 299 patients and 300 controls in a Chinese population. Thirteen genetic variations of investigated genes of all participants were genotyped using an improved multiplex ligase detection–reaction technique. Results No SNP in all genes showed an association with overall IS. However, in subgroup analysis, PTGS2 rs689466 (dominant model: CT vs TT – ORadjusted= 2.51, 95% CI: 1.22–5.16, p = 0.012; co-dominant model: CT/CC vs TT – ORadjusted= 2.53, 95% CI: 1.26–5.07, p = 0.009; additive model – ORadjusted= 2.26, 95% CI: 1.19–4.28, p = 0.013) and rs5275 (dominant model: GG vs AA – ORadjusted= 0.31, 95% CI: 0.12–0.80, p = 0.016; co-dominant model: GA/GG vs AA – ORadjusted= 0.45, 95% CI: 0.21–0.95, p = 0.036; additive model – ORadjusted= 0.60, 95% CI: 0.39–0.92, p = 0.020) were associated with IS type of small-vessel occlusion. Conclusion Our study suggested that PTGS2 rs689466 C and rs5275 A were potentially associated with IS subtype of small-vessel occlusion. Our result should be confirmed with further large sample sized studies.
Collapse
Affiliation(s)
- Zhongqiu Zhang
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Yanping Mei
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Mengqiu Xiong
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Fang Lu
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Xianghong Zhao
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Junrong Zhu
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Bangshun He
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| |
Collapse
|
12
|
Shi K, Cao L, Liu F, Xie S, Wang S, Huang Y, Lei C, Nie Z. Amplified and label-free electrochemical detection of a protease biomarker by integrating proteolysis-triggered transcription. Biosens Bioelectron 2021; 190:113372. [PMID: 34116447 DOI: 10.1016/j.bios.2021.113372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 10/25/2022]
Abstract
Cell-free synthetic biology provides a promising strategy for developing high-performance biosensors by integrating with advanced testing technologies. However, the combination of synthetic biology with electrochemical testing techniques is still underdeveloped. Here, we proposed an electrochemical biosensor for the label-free and ultrasensitive detection of target protease biomarker by coupling a protease-responsive RNA polymerase (PR) for signal amplification. Taking tumor biomarker matrix metalloprotease-2 (MMP-2) as a model protease, we employed PR to transduce each proteolysis reaction mediated by MMP-2 into multiple programmable RNA outputs that can be captured by the DNA probes immobilized on a gold electrode. Moreover, the captured RNAs are designed to contain a guanine-rich sequence that can form G-quadruplex and bind to hemin in the presence of potassium ions. In this scenario, the activity of MMP-2 is converted and amplified into the electrochemical signals of hemin. Under the optimal conditions, this PR-based electrochemical biosensor enabled the sensitive detection of MMP-2 in a wide linear dynamic range from 10 fM to 1.0 nM, with a limit of detection of 7.1 fM. Moreover, the proposed biosensor was further applied in evaluating MMP-2 activities in different cell cultures and human tissue samples, demonstrating its potential in the analysis of protease biomarkers in complex clinical samples.
Collapse
Affiliation(s)
- Kai Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Lei Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Fang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Shuo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China.
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
13
|
Hernandes-Alejandro M, Montaño S, Harrington CR, Wischik CM, Salas-Casas A, Cortes-Reynosa P, Pérez Salazar E, Cazares-Apatiga J, Apatiga-Perez R, Ontiveros Torres MÁ, Perry G, Pacheco-Herrero M, Luna-Muñoz J. Analysis of the Relationship Between Metalloprotease-9 and Tau Protein in Alzheimer's Disease. J Alzheimers Dis 2021; 76:553-569. [PMID: 32538846 DOI: 10.3233/jad-200146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neurofibrillary tangles (NFTs) and amyloid plaques are the neuropathological hallmarks in brains with Alzheimer's disease (AD). Post-translational modifications of tau, such as phosphorylation and truncation, have been proposed as initiators in the assembly of the abnormal paired helical filaments that constitute the NFTs. Neurons and NFTs are sites of matrix metalloproteinases (MMPs). OBJECTIVE The aim of this study was to analyze the relationship of MMP-9 and tau protein in brain samples with AD. METHODS This study was performed on brain tissue samples from patients with early, moderate, and late AD. MMPs and tau levels were analyzed by western blot and gelatin-substrate zymography. Immunofluorescence techniques and confocal microscopy were used to analyze the presence of both proteins in NFTs. Further, molecular dynamics simulations (MDS) and protein-protein docking were conducted to predict interaction between MMP-9 and tau protein. RESULTS MMP-9 expression was greatest in moderate and late AD, whereas MMP-2 expression was only increased in late-stage AD. Interestingly, confocal microscopy revealed NFTs in which there was co-localization of MMP-9 and tau protein. MDS and protein-protein docking predictions indicate that a high-affinity complex can be formed between MMP-9 and full-length tau protein. CONCLUSION These observations provide preliminary evidence of an interaction between these two proteins. Post-translational modifications of tau protein, such as C-terminal truncation or phosphorylation of amino acid residues in the MMP-9 recognition site and conformational changes in the protein, such as folding of the N-terminal sequence over the three-repeat domain, could preclude the interaction between MMP-9 and tau protein during stages of NFT development.
Collapse
Affiliation(s)
- Mario Hernandes-Alejandro
- Departamento de Bioingeniería, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI-IPN), Gustavo A. Madero, México
| | - Sarita Montaño
- Laboratorio de Modelado Molecular y Bioinformática de la Facultad de Ciencias-Químico Biológicas de la Universidad Autónoma de Sinaloa, México
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Andrés Salas-Casas
- Instituto de Ciencias de la Salud, Área Académica de Gerontología Universidad Autónoma del Estado de Hidalgo, México
| | - Pedro Cortes-Reynosa
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (Instituto Politécnico Nacional), Gustavo A. Madero, México
| | - Eduardo Pérez Salazar
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (Instituto Politécnico Nacional), Gustavo A. Madero, México
| | - Javier Cazares-Apatiga
- Laboratorio de Biología Molecular y Bioseguridad Nivel 3, Centro Médico Naval, CDMX, México
| | - Ricardo Apatiga-Perez
- Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, Mexico.,National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM, Estado de México, México
| | | | - George Perry
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mar Pacheco-Herrero
- School of Medicine, Faculty of Health Sciences, Pontificia Universidad Catolica Madre y Maestra, Dominican Republic
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM, Estado de México, México
| |
Collapse
|
14
|
Diabetes Mellitus/Poststroke Hyperglycemia: a Detrimental Factor for tPA Thrombolytic Stroke Therapy. Transl Stroke Res 2020; 12:416-427. [PMID: 33140258 DOI: 10.1007/s12975-020-00872-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Intravenous administration of tissue-type plasminogen activator (IV tPA) therapy has long been considered a mainstay in ischemic stroke management. However, patients respond to IV tPA therapy unequally with some subsets of patients having worsened outcomes after treatment. In particular, diabetes mellitus (DM) is recognized as a clinically important vascular comorbidity that leads to lower recanalization rates and increased risks of hemorrhagic transformation (HT). In this short-review, we summarize the recent advances in understanding of the underlying mechanisms involved in post-IV tPA worsening of outcome in diabetic stroke. Potential pathologic factors that are related to the suboptimal tPA recanalization in diabetic stroke include higher plasma plasminogen activator inhibitor (PAI)-1 level, diabetic atherogenic vascular damage, glycation of the tPA receptor annexin A2, and alterations in fibrin clot density. While factors contributing to the exacerbation of HT in diabetic stroke include hyperglycemia, vascular oxidative stress, and inflammation, tPA neurovascular toxicity and imbalance in extracellular proteolysis are discussed. Besides, impaired collaterals in DM also compromise the efficacy of IV tPA therapy. Additionally, several tPA combination approaches developed from experimental studies that may help to optimize IV tPA therapy are also briefly summarized. In summary, more research efforts are needed to improve the safety and efficacy of IV tPA therapy in ischemic stroke patients with DM/poststroke hyperglycemia.
Collapse
|
15
|
Baumann HJ, Mahajan G, Ham TR, Betonio P, Kothapalli CR, Shriver LP, Leipzig ND. Softening of the chronic hemi-section spinal cord injury scar parallels dysregulation of cellular and extracellular matrix content. J Mech Behav Biomed Mater 2020; 110:103953. [PMID: 32957245 PMCID: PMC7509206 DOI: 10.1016/j.jmbbm.2020.103953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/18/2022]
Abstract
Regeneration following spinal cord injury (SCI) is challenging in part due to the modified tissue composition and organization of the resulting glial and fibrotic scar regions. Inhibitory cell types and biochemical cues present in the scar have received attention as therapeutic targets to promote regeneration. However, altered Young's modulus of the scar as a readout for potential impeding factors for regeneration are not as well-defined, especially in vivo. Although the decreased Young's modulus of surrounding tissue at acute stages post-injury is known, the causation and outcomes at chronic time points remain largely understudied and controversial, which motivates this work. This study assessed the glial and fibrotic scar tissue's Young's modulus and composition (scar morphometry, cell identity, extracellular matrix (ECM) makeup) that contribute to the tissue's stiffness. The spatial Young's modulus of a chronic (~18-wks, post-injury) hemi-section, including the glial and fibrotic regions, were significantly less than naïve tissue (~200 Pa; p < 0.0001). The chronic scar contained cystic cavities dispersed in areas of dense nuclei packing. Abundant CNS cell types such as astrocytes, oligodendrocytes, and neurons were dysregulated in the scar, while epithelial markers such as vimentin were upregulated. The key ECM components in the CNS, namely sulfated proteoglycans (sPGs), were significantly downregulated following injury with concomitant upregulation of unsulfated glycosaminoglycans (GAGs) and hyaluronic acid (HA), likely altering the foundational ECM network that contributes to tissue stiffness. Our results reveal the Young's modulus of the chronic SCI scar as well as quantification of contributing elastic components that can provide a foundation for future study into their role in tissue repair and regeneration.
Collapse
Affiliation(s)
- Hannah J Baumann
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Trevor R Ham
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Patricia Betonio
- School of Nursing, The University of Akron, Akron, OH, 44325, USA
| | - Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Leah P Shriver
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA; Department of Biology, The University of Akron, Akron, OH, 44325, USA
| | - Nic D Leipzig
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA; Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
16
|
Adak A, Das G, Khan J, Mukherjee N, Gupta V, Mallesh R, Ghosh S. Extracellular Matrix (ECM)-Mimicking Neuroprotective Injectable Sulfo-Functionalized Peptide Hydrogel for Repairing Brain Injury. ACS Biomater Sci Eng 2020; 6:2287-2296. [PMID: 33455349 DOI: 10.1021/acsbiomaterials.9b01829] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brain injury can lead to the loss of neuronal functions and connections, along with the damage of the extracellular matrix (ECM). Thus, it ultimately results in devastating long-term damage, and recovery from this damage is a challenging task. To address this issue, we have designed a sulfo-group-functionalized injectable biocompatible peptide hydrogel, which not only mimics the ECM and supports the damaged neurons but also releases a neurotrophic factor around the injured sites of the brain in the presence of the matrix metalloproteinase 9 (MMP9) enzyme. It has also been observed that the driving force of hydrogel formation is a β-sheet secondary structure and π-π stacking interactions between Phe-Phe moieties. The hydrogel is able not only to promote neurite outgrowth of PC12-derived neurons and primary neurons cultured in its presence but also to nullify the toxic effects of anti-nerve growth factor (Anti-NGF)-induced neurons. It also promotes the expression of vital neuronal markers in rat cortical primary neurons, displays substantial potential in neuroregeneration, and also promotes fast recovery of the sham injured mice brain. Increased expression of reactive astrocytes in the hippocampal dentate gyrus region of the sham injured brain clearly suggests its tremendous ability in the neural repair of the damaged brain. Thus, we can convincingly state that our hydrogel is capable of repairing brain injury by mimicking an ECM-like environment and providing neuroprotection to the damaged neurons.
Collapse
Affiliation(s)
- Anindyasundar Adak
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Gaurav Das
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Juhee Khan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Nabanita Mukherjee
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rathnam Mallesh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
17
|
Iulita MF, Ganesh A, Pentz R, Flores Aguilar L, Gubert P, Ducatenzeiler A, Christie S, Wilcock GK, Cuello AC. Identification and Preliminary Validation of a Plasma Profile Associated with Cognitive Decline in Dementia and At-Risk Individuals: A Retrospective Cohort Analysis. J Alzheimers Dis 2020; 67:327-341. [PMID: 30636741 DOI: 10.3233/jad-180970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomarker discovery is a major need for earlier dementia diagnosis. We evaluated a plasma signature of amyloid, metallo-proteinases (MMPs), and inflammatory markers in a cohort of at-risk individuals and individuals clinically diagnosed with probable Alzheimer's disease (pAD). Using multiplex arrays, we measured Aβ40, Aβ42, MMP-1, MMP-3, MMP-9, IFN-γ, TNF-α, IL-6, IL-8, and IL-10 in plasma from 107 individuals followed every 6 months for 3 years. Final diagnoses included: pAD (n = 28), mild cognitive impairment (MCI, n = 30), subjective memory impairment (SMI, n = 30), and asymptomatic (NCI, n = 19). Blood was drawn at final follow-up. We used linear and logistic regressions to examine biomarker associations with prior known decline on the Montreal Cognitive Assessment (MoCA) and the Cambridge Cognitive Examination (CAMCOG); as well disease progression by the time of blood-draw. We derived a biomarker composite from the individual markers, and tested its association with a clinical diagnosis of pAD. Lower Aβ40 and Aβ42 and higher IL-8, IL-10, and TNF-α were associated with greater cognitive decline per the MoCA and CAMCOG. MMP-3 was higher in SMI, MCI, and pAD than NCI. Whereas the other investigative molecules did not differ between groups, composite scores-created using MoCA/CAMCOG-based trends in Aβ40, Aβ42, MMP-1, MMP-3, IL-8, IL-10, and TNF-α- were associated with a final diagnosis of pAD (c-statistic 0.732 versus 0.602 for age-sex alone). Thus, plasma amyloid, MMP, and inflammatory biomarkers demonstrated differences in individuals with cognitive deterioration and/or progression to MCI/pAD. Our findings support studying these markers earlier in the continuum of probable AD as well as in specific dementias.
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Aravind Ganesh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | - Palma Gubert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | - Sharon Christie
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gordon K Wilcock
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom (Visiting Professorship)
| |
Collapse
|
18
|
Shetty AK, Zanirati G. The Interstitial System of the Brain in Health and Disease. Aging Dis 2020; 11:200-211. [PMID: 32010493 PMCID: PMC6961771 DOI: 10.14336/ad.2020.0103] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
The brain interstitial fluid (ISF) and the cerebrospinal fluid (CSF) cushion and support the brain cells. The ISF occupies the brain interstitial system (ISS), whereas the CSF fills the brain ventricles and the subarachnoid space. The brain ISS is an asymmetrical, tortuous, and exceptionally confined space between neural cells and the brain microvasculature. Recently, with a newly developed in vivo measuring technique, a series of discoveries have been made in the brain ISS and the drainage of ISF. The goal of this review is to confer recent advances in our understanding of the brain ISS, including its structure, function, and the various processes mediating or disrupting ISF drainage in physiological and pathological conditions. The brain ISF in the deep brain regions has recently been demonstrated to drain in a compartmentalized ISS instead of a highly connected system, together with the drainage of ISF into the cerebrospinal fluid (CSF) at the surface of the cerebral cortex and the transportation from CSF into cervical lymph nodes. Besides, accumulation of tau in the brain ISS in conditions such as Alzheimer’s disease and its link to the sleep-wake cycle and sleep deprivation, clearance of ISF in a deep sleep via increased CSF flow, novel approaches to remove beta-amyloid from the brain ISS, and obstruction to the ISF drainage in neurological conditions are deliberated. Moreover, the role of ISS in the passage of extracellular vesicles (EVs) released from neural cells and the rapid targeting of therapeutic EVs into neural cells in the entire brain following an intranasal administration, and the promise and limitations of ISS based drug delivery approaches are discussed
Collapse
Affiliation(s)
- Ashok K Shetty
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX 77843, USA
| | - Gabriele Zanirati
- 2Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Lee YH, Lee SR. Neuroprotective effects of N-acetylcysteine via inhibition of matrix metalloproteinase in a mouse model of transient global cerebral ischemia. Brain Res Bull 2019; 154:142-150. [PMID: 31722253 DOI: 10.1016/j.brainresbull.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
N-acetylcysteine (NAC) is known to serve many biological functions including acting as an antioxidant, and electing antiinflammatory effects. Previous reports have revealed that NAC may have neuroprotective effects against the deleterious effects of brain ischemia. Despite of this, the mechanism by which NAC prevents neuronal damage after brain ischemia remains unclear. The current study aimed to investigate this mechanism in a mouse model of transient global brain ischemia. In the present study, mice were subjected to 20 min of transient global brain ischemia, proceeded by intraperitoneal administration of NAC (150 mg/kg) in one group. The mice were then euthanized 72 h after this ischemic insult for collection of experimental tissues. The effect of NAC on neuronal damage and matrix metalloproteinase (MMP)-9 activity were assessed and immunofluorescence, and hippocampal terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay experiments were conducted and results compared between NAC- and vehicle-treated groups. Neuronal damage was primarily observed in the hippocampal CA1 and CA2 regions. In NAC-treated mice, neuronal damage was significantly reduced after ischemia when compared to vehicle-treated animals. NAC also inhibited increased MMP-9 activity after global brain ischemia. NAC increased laminin and NeuN expression and inhibited increases in TUNEL-positive cells, all in the hippocampus. These results suggest that NAC reduces hippocampal neuronal damage following transient global ischemia, potentially via reductions in MMP-9 activity.
Collapse
Affiliation(s)
- Yoon-Hyung Lee
- Department of Pharmacology and ODR center, Brain Research Institute, School of Medicine, Keimyung University, Daegu, 42601, South Korea; Department of Urology, Fatima Hospital, Daegu, 42601, South Korea
| | - Seong-Ryong Lee
- Department of Pharmacology and ODR center, Brain Research Institute, School of Medicine, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
20
|
Wu G, Cai H, Li G, Meng S, Huang J, Xu H, Chen M, Hu M, Yang W, Wang C, Wu Z, Cai Y. Influence of the Matrix Metalloproteinase 9 Geners3918242 Polymorphism on Development of Ischemic Stroke: A Meta-analysis. World Neurosurg 2019; 133:e31-e61. [PMID: 31415895 DOI: 10.1016/j.wneu.2019.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The association between matrix metalloproteinase 9 (MMP-9) gene -1562C/T (rs3918242) polymorphism and the susceptibility of ischemic stroke (IS) has been investigated. However, results were ambiguous and inconsistent. Therefore, we performed this study to better assess the potential relationship between rs3918242 polymorphism and susceptibility risk of IS. METHODS We included case-control studies concerning the relationship between the rs3918242 polymorphism and IS, and odds ratios with corresponding 95% confidence intervals were used to describe the associations. Furthermore, meta-regression analyses, heterogeneity, cumulative analyses, sensitivity analyses, and publication bias were examined. RESULTS A total of 19 studies were included for analysis. Significant associations with the risk of IS were detected for the rs3918242 polymorphism in overall population, Asians, and whites. When available data were stratified by gender, we found a significant correlation with the risk of IS in both males and females. Further subgroup analysis by the subtypes of IS showed that the rs3918242 polymorphism was significantly correlated with the risk of patients with large artery atherosclerosis. When stratified by age, we found that the rs3918242 polymorphism was significantly correlated with the risk of IS in patients both aged ≥65 years and >65 years. Both the diabetes and the nondiabetes subgroups reached significant results, and in an analysis stratified by smoking status, an increased risk of IS was associated with smoking. CONCLUSIONS The rs3918242 polymorphism may be a susceptible predictor of susceptibility of IS. Further large-scale studies are needed to verify the results of our findings.
Collapse
Affiliation(s)
- Guangliang Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haiyan Cai
- Guangzhou Pan Yu District Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Guoming Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhui Meng
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingyan Huang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haoyou Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mei Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mingzhe Hu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weina Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuyang Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhijian Wu
- Guangzhou Pan Yu District Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China.
| | - Yefeng Cai
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Montaner J, Ramiro L, Simats A, Hernández-Guillamon M, Delgado P, Bustamante A, Rosell A. Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci 2019; 76:3117-3140. [PMID: 31165904 PMCID: PMC11105215 DOI: 10.1007/s00018-019-03175-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. However, after years of in-depth research, the pathophysiology of stroke is still not fully understood. Increasing evidence shows that matrix metalloproteinases (MMPs) and "a disintegrin and metalloproteinase" (ADAMs) participate in the neuro-inflammatory cascade that is triggered during stroke but also in recovery phases of the disease. This review covers the involvement of these proteins in brain injury following cerebral ischemia which has been widely studied in recent years, with efforts to modulate this group of proteins in neuroprotective therapies, together with their implication in neurorepair mechanisms. Moreover, the review also discusses the role of these proteins in specific forms of neurovascular disease, such as small vessel diseases and intracerebral hemorrhage. Finally, the potential use of MMPs and ADAMs as guiding biomarkers of brain injury and repair for decision-making in cases of stroke is also discussed.
Collapse
Affiliation(s)
- Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
22
|
Salah MM, Abdelmawla MA, Eid SR, Hasanin RM, Mostafa EA, Abdelhameed MW. Role of Matrix Metalloproteinase-9 in Neonatal Hypoxic-Ischemic Encephalopathy. Open Access Maced J Med Sci 2019; 7:2114-2118. [PMID: 31456835 PMCID: PMC6698126 DOI: 10.3889/oamjms.2019.618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Neonatal encephalopathy is a heterogeneous syndrome characterised by signs of central nervous system dysfunction in the newborn. Matrix metalloproteinase-9(MMP-9) increases the blood-brain barrier permeability, and their inhibitors can reduce its damage. MMP-9 has been implicated specifically in cerebral ischemia. AIM To measure serum MMP-9 in neonatal hypoxic-ischemic encephalopathy and evaluate its correlation to the severity of early prediction and treatment. METHODS its case-control study. The serum concentration of MMP-9 was determined by ELISA in 100 hypoxic neonates and 50 healthy neonates of matched age and sex who served as controls. RESULTS In our present study the serum MMP-9 level was significantly higher at p = 0.0001 in hypoxic-ischemic full-term newborns (176.7 ± 68.7 ng/ml)as compared to control newborn (69.4 ± 34.85 ng/ml)and it was significantly higher at p = 0.0075 in hypoxic-ischemic preterm newborn (171.2 ± 132.9 ng/ml) when compared to control newborn (72.54 ± 36.74 ng/ml), also MMP-9 was significantly higher at Sarnat stage III at p = 0.0001. CONCLUSION Serum MMP-9 level was significantly higher in hypoxic-ischemic newborns, and significantly increased with severity, so we suggest that serum MMP-9 level is important for predicting neurological sequel and severity in neonatal encephalopathy.
Collapse
Affiliation(s)
- Mohab M. Salah
- Department of Pediatrics, National Research Centre (NRC), Cairo, Egypt
| | - MA Abdelmawla
- Department of Pediatrics, National Research Centre (NRC), Cairo, Egypt
| | - Sally R. Eid
- Department of Pediatrics, Research Institute of Ophthalmology Centre, Giza, Egypt
| | - Rasha M. Hasanin
- Department of Pediatrics, National Research Centre (NRC), Cairo, Egypt
| | - Eman A. Mostafa
- Department of Pediatrics, National Research Centre (NRC), Cairo, Egypt
| | - MW Abdelhameed
- Department of Clinical Pathology, Shobra Hospial, Cairo, Egypt
| |
Collapse
|
23
|
Lin M, Griessenauer CJ, Starke RM, Tubbs RS, Shoja MM, Foreman PM, Vyas NA, Walters BC, Harrigan MR, Hendrix P, Fisher WS, Pittet JF, Mathru M, Lipsky RH. Haplotype analysis of SERPINE1 gene: Risk for aneurysmal subarachnoid hemorrhage and clinical outcomes. Mol Genet Genomic Med 2019; 7:e737. [PMID: 31268630 PMCID: PMC6687628 DOI: 10.1002/mgg3.737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage (aSAH) has high fatality and permanent disability rates due to the severe damage to brain cells and inflammation. The SERPINE1 gene that encodes PAI‐1 for the regulation of tissue plasminogen activator is considered an important therapeutic target for aSAH. Methods Six SNPs in the SERPINE1 gene (in order of rs2227631, rs1799889, rs6092, rs6090, rs2227684, rs7242) were investigated. Blood samples were genotyped with Taqman genotyping assays and pyrosequencing. The experiment‐wide statistically significant threshold for single marker analysis was set at p < 0.01 after evaluation of independent markers. Haplotype analysis was performed in Haplo.stats package with permutation tests. Bonferroni correction for multiple comparison in dominant, additive, and recessive model was applied. Results A total of 146 aSAH patients and 49 control subjects were involved in this study. The rs2227631 G allele is significant (p = 0.01) for aSAH compared to control. In aSAH group, haplotype analysis showed that G5GGGT homozygotes in recessive model were associated with delayed cerebral ischemia (p < 0.01, Odds Ratio = 5.14, 95% CI = 1.45–18.18), clinical vasospasm (p = 0.01, Odds Ratio = 4.58, 95% CI = 1.30–16.13), and longer intensive care unit stay (p = 0.01). By contrast, the G5GGAG carriers were associated with less incidence of cerebral edema (p < 0.01) and higher Glasgow Coma Scale (p < 0.01). The A4GGGT carriers were associated with less incidence of severe hypertension (>140/90) (p < 0.01). Conclusion The results suggested an important regulatory role of the SERPINE1 gene polymorphism in clinical outcomes of aSAH.
Collapse
Affiliation(s)
- Mingkuan Lin
- Department of Systems Biology, George Mason University, Fairfax, Virginia.,Department of Neuroscience, INOVA Health System, Fairfax, Virginia
| | - Christoph J Griessenauer
- Department of Neurosurgery, Geisinger, Danville, Pennsylvania.,Research Institute of Neurointervention, Paracelsus Medical University, Salzurg, Austria
| | - Robert M Starke
- Department of Neurosurgery and Radiology, University of Miami, Miami, Florida
| | | | | | - Paul M Foreman
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, Alabama
| | - Nilesh A Vyas
- Department of Neuroscience, INOVA Health System, Fairfax, Virginia
| | | | - Mark R Harrigan
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, Alabama
| | - Philipp Hendrix
- Department of Neurosurgery, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Winfield S Fisher
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, Alabama
| | - Jean-Francois Pittet
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, Alabama
| | - Mali Mathru
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, Alabama
| | - Robert H Lipsky
- Department of Systems Biology, George Mason University, Fairfax, Virginia.,Department of Neuroscience, INOVA Health System, Fairfax, Virginia
| |
Collapse
|
24
|
Chen F, Weng Z, Xia Q, Cao C, Leak RK, Han L, Xiao J, Graham SH, Cao G. Intracerebroventricular Delivery of Recombinant NAMPT Deters Inflammation and Protects Against Cerebral Ischemia. Transl Stroke Res 2019; 10:719-728. [PMID: 30820847 DOI: 10.1007/s12975-019-00692-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 01/18/2023]
Abstract
Our previous study indicated that nicotinamide phosphoribosyltransferase (NAMPT) is released from cells and might be an important extracellular neuroprotective factor in brain ischemia. Here, we tested whether NAMPT protects against ischemic brain injury when administered directly into the intracerebroventricular (ICV) compartment of the cranium. Recombinant NAMPT protein (2 μg) was delivered ICV in mice subjected to 45-min middle cerebral artery occlusion (MCAO), and the effects on infarct volume, sensorimotor function, microglia/macrophage polarization, neutrophil infiltration, and BBB integrity were analyzed. The results indicate that ICV administration of NAMPT significantly reduced infarct volume, retained its beneficial properties even when ICV administration was delayed by 6 h after MCAO, and improved neurological outcomes. NAMPT treatment inhibited pro-inflammatory microglia/macrophages, promoted microglia/macrophage polarization toward the anti-inflammatory phenotype, and reduced the infiltration of neutrophils into the perilesional area after brain ischemia. In vitro studies indicated that multiple pro-inflammatory microglial markers/cytokines were downregulated while multiple anti-inflammatory microglial markers/cytokines were induced in primary microglial cultures treated with NAMPT protein. NAMPT treatment also fortified the blood-brain barrier (BBB), as shown by reduced extravascular leakage of the small-molecule tracer Alexa Fluor 555 Cadaverine and larger-sized endogenous IgGs into brain parenchyma. Thus, NAMPT may protect against ischemic brain injury partly through a novel anti-inflammatory mechanism, which in turn maintains BBB integrity and reduces the infiltration of peripheral inflammatory cells. Taken together, these results provide validation of recombinant NAMPT delivery into the extracellular space as a potential neuroprotective strategy for stroke.
Collapse
Affiliation(s)
- Fenghua Chen
- Department of Neurology, BST S520, University of Pittsburgh School of Medicine, 206 Lothrop Street, Pittsburgh, PA, 15260, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Zhongfang Weng
- Department of Neurology, BST S520, University of Pittsburgh School of Medicine, 206 Lothrop Street, Pittsburgh, PA, 15260, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Qinghai Xia
- Department of Neurology, BST S520, University of Pittsburgh School of Medicine, 206 Lothrop Street, Pittsburgh, PA, 15260, USA
| | - Catherine Cao
- North Allegheny Senior High School, Pittsburgh, PA, 15237, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Lihong Han
- Department of Biochemistry, Baotou Medical College, Baotou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, Wenzhou Medical University, Zhejian, China
| | - Steven H Graham
- Department of Neurology, BST S520, University of Pittsburgh School of Medicine, 206 Lothrop Street, Pittsburgh, PA, 15260, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Guodong Cao
- Department of Neurology, BST S520, University of Pittsburgh School of Medicine, 206 Lothrop Street, Pittsburgh, PA, 15260, USA. .,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
25
|
Lorente L, Martín MM, Ramos L, Argueso M, Cáceres JJ, Solé-Violán J, Jiménez A, Borreguero-León JM, González-Rivero AF, Orbe J, Rodríguez JA, Páramo JA. Persistently high circulating tissue inhibitor of matrix metalloproteinase-1 levels in non-survivor brain trauma injury patients. J Crit Care 2019; 51:117-121. [PMID: 30802757 DOI: 10.1016/j.jcrc.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Previously, higher circulating levels of matrix metalloproteinase (MMP)-9 and tissue inhibitor matrix metalloproteinases (TIMP)-1 were reported in the first hours after TBI in blood samples from patients with poor prognosis. Thus, the objectives of this study were to determine whether MMP-9 and TIMP-1 levels during the first week of a severe TBI could be used as biomarker predictive of mortality. METHODS We included patients with severe TBI (defined as Glasgow Coma Scale lower than 9), and with Injury Severity Score in non-cranial aspects lower than 9. We determined serum concentrations of MMP-9 and TIMP-1 at days 1, 4 and 8 of TBI. RESULTS TIMP-1 concentrations at days 1 (p < .001), 4 (p = .001), and 8 (p = .01) of TBI were higher in non-surviving (n = 34) than in surviving (n = 90) patients. ROC curve analyses showed an area under curve of TIMP-1 concentrations at days 1, 4, and 8 of TBI to predict 30-day mortality of 78% (p < .001), 76% (p < .001) and 71% (p = .02) respectively. CONCLUSIONS The most relevant new findings of our study were that TIMP-1 levels during the first week of a severe TBI were higher in non-surviving than in surviving patients and that could be used as biomarker predictive of mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, 38320 Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, Santa Cruz de Tenerife 38010, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma 38713, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez n°17-19, Valencia 46004, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria 35016, Spain.
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, Las Palmas de Gran Canaria 35010, Spain.
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Juan M Borreguero-León
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Agustín F González-Rivero
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Josune Orbe
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII n°55, Pamplona 31008, Spain.
| | - José A Rodríguez
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII n°55, Pamplona 31008, Spain.
| | - José A Páramo
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII n°55, Pamplona 31008, Spain.
| |
Collapse
|
26
|
Abstract
Neuroinflammation is initiated as a result of traumatic brain injury and can exacerbate evolving tissue pathology. Immune cells respond to acute signals from damaged cells, initiate neuroinflammation, and drive the pathological consequences over time. Importantly, the mechanism(s) of injury, the location of the immune cells within the brain, and the animal species all contribute to immune cell behavior following traumatic brain injury. Understanding the signals that initiate neuroinflammation and the context in which they appear may be critical for understanding immune cell contributions to pathology and regeneration. Within this paper, we review a number of factors that could affect immune cell behavior acutely following traumatic brain injury.
Collapse
Affiliation(s)
- Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma, and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA; School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Hong A, Aguilar MI, Del Borgo MP, Sobey CG, Broughton BRS, Forsythe JS. Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke. J Mater Chem B 2019. [DOI: 10.1039/c9tb00257j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ischaemic stroke remains one of the leading causes of death and disability worldwide, without any long-term effective treatments targeted at regeneration. This has led to developments of novel, biomaterial-based strategies using self-assembling peptide hydrogels.
Collapse
Affiliation(s)
- Andrew Hong
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Mark P. Del Borgo
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Christopher G. Sobey
- Vascular Biology and Immunopharmacology Group
- Department of Physiology
- Anatomy and Microbiology
- La Trobe University
- Bundoora
| | - Brad R. S. Broughton
- Cardiovascular & Pulmonary Pharmacology Group
- Biomedicine Discovery Institute and Department of Pharmacology
- Monash University
- Clayton
- Australia
| | - John S. Forsythe
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| |
Collapse
|
28
|
Pathophysiology of Acute Illness and Injury. OPERATIVE TECHNIQUES AND RECENT ADVANCES IN ACUTE CARE AND EMERGENCY SURGERY 2019. [PMCID: PMC7122041 DOI: 10.1007/978-3-319-95114-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pathophysiology of acute illness and injury recognizes three main effectors: infection, trauma, and ischemia-reperfusion injury. Each of them can act by itself or in combination with the other two in developing a systemic inflammatory reaction syndrome (SIRS) that is a generalized reaction to the morbid event. The time course of SIRS is variable and influenced by the number and severity of subsequent insults (e.g., reparative surgery, acquired hospital infections). It occurs simultaneously with a complex of counter-regulatory mechanisms (compensatory anti-inflammatory response syndrome, CARS) that limit the aggressive effects of SIRS. In adjunct, a progressive dysfunction of the acquired (lymphocytes) immune system develops with increased risk for immunoparalysis and associated infectious complications. Both humoral and cellular effectors participate to the development of SIRS and CARS. The most important humoral mediators are pro-inflammatory (IL-1β, IL-6, IL-8, IL-12) and anti-inflammatory (IL-4, IL-10) cytokines and chemokines, complement, leukotrienes, and PAF. Effector cells include neutrophils, monocytes, macrophages, lymphocytes, and endothelial cells. The endothelium is a key factor for production of remote organ damage as it exerts potent chemo-attracting effects on inflammatory cells, allows for leukocyte trafficking into tissues and organs, and promotes further inflammation by cytokines release. Moreover, the loss of vasoregulatory properties and the increased permeability contribute to the development of hypotension and tissue edema. Finally, the disseminated activation of the coagulation cascade causes the widespread deposition of microthrombi with resulting maldistribution of capillary blood flow and ultimately hypoxic cellular damage. This mechanism together with increased vascular permeability and vasodilation is responsible for the development of the multiple organ dysfunction syndrome (MODS).
Collapse
|
29
|
Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Mol Neurobiol 2018; 56:1992-2006. [DOI: 10.1007/s12035-018-1213-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023]
|
30
|
Porter A, Leckie R, Verstynen T. White matter pathways as both a target and mediator of health behaviors. Ann N Y Acad Sci 2018; 1428:71-88. [PMID: 29749627 DOI: 10.1111/nyas.13708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/03/2018] [Accepted: 03/14/2018] [Indexed: 01/09/2023]
Abstract
Health behaviors arise from the dynamics of highly interconnected networks in the brain and variability in these networks drives individual differences in behavior. In this review, we show how many factors that predict the physical health of the body also correlate with variability of the myelinated fascicles, called white matter, that connect brain regions together. The general pattern present in the literature is that as predictors of physical health decline, there is often a coincident reduction in the integrity of major white matter pathways. We also highlight a plausible mechanism, inflammatory pathways, whereby health-related activation of the immune system can impact the myelin sheath, a protective tissue that facilitates long range communication in the brain. The growing body of evidence supports the hypothesis that degrading health in the periphery may disrupt the communication efficiency of the macroscopic neural circuits that mediate complex behaviors, which can in turn contribute to poorer physical health.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Regina Leckie
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Effects of Vitamin D3 on the NADPH Oxidase and Matrix Metalloproteinase 9 in an Animal Model of Global Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3273654. [PMID: 29849881 PMCID: PMC5932460 DOI: 10.1155/2018/3273654] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/27/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Decreased blood flow in the brain leads to a rapid increase in reactive oxygen species (ROS). NADPH oxidase (NOX) is an enzyme family that has the physiological function to produce ROS. NOX2 and NOX4 overexpression is associated with aggravated ischemic injury, while NOX2/4-deficient mice had reduced stroke size. Dysregulation of matrix metalloproteinases (MMPs) contributes to tissue damage. The active form of vitamin D3 expresses neuroprotective, immunomodulatory, and anti-inflammatory effects in the CNS. The present study examines the effects of the vitamin D3 pretreatment on the oxidative stress parameters and the expression of NOX subunits, MMP9, microglial marker Iba1, and vitamin D receptor (VDR), in the cortex and hippocampus of Mongolian gerbils subjected to ten minutes of global cerebral ischemia, followed by 24 hours of reperfusion. The ischemia/reperfusion procedure has induced oxidative stress, changes in the expression of NOX2 subunits and MMP9 in the brain, and increased MMP9 activity in the serum of experimental animals. Pretreatment with vitamin D3 was especially effective on NOX2 subunits, MMP9, and the level of malondialdehyde and superoxide anion. These results outline the significance of the NOX and MMP9 investigation in brain ischemia and the importance of adequate vitamin D supplementation in ameliorating the injury caused by I/R.
Collapse
|
32
|
Bindal P, Ramasamy TS, Kasim NHA, Gnanasegaran N, Chai WL. Immune responses of human dental pulp stem cells in lipopolysaccharide-induced microenvironment. Cell Biol Int 2018; 42:832-840. [PMID: 29363846 DOI: 10.1002/cbin.10938] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the effect of inflammatory stimuli on dental pulp stem cells (DPSCs) by assessing their proliferation and expression of genes as well as proteins in lipopolysaccharide (LPS)-induced microenvironment (iDPSCs). DPSCs were first characterized for their mesenchymal properties prior to challenging them with a series of LPS concentrations from 12 to 72 h. Following to this, their proliferation and inflammatory based genes as well as protein expression were assessed. iDPSCs had demonstrated significant expression of mesenchymal markers. Upon exposure to LPS, the viability dropped distinctly with increasing concentration, as compared to control (P < 0.05). The expression of pro-inflammatory genes such as interleukin 6, interleukin 8 were augmented with exposure to LPS (P < 0.05). Similarly, cytokines like tumour necrosis factor (TNF) α and interleukin 1α had increased in dose dependant manner upon LPS exposure (P < 0.05). Our results suggest that LPS concentration between 1 and 2 μg/mL demonstrated inflammation induction in DPSCs that may simulate inflamed microenvironment of dental pulp in clinical scenario. Thus, optimizing iDPSCs secretome profile could be a promising approach to test various regenerative protocols in inflamed microenvironment.
Collapse
Affiliation(s)
- Priyadarshini Bindal
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Thamil Selvee Ramasamy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Nareshwaran Gnanasegaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
33
|
Dhoke NR, Geesala R, Das A. Low Oxidative Stress-Mediated Proliferation Via JNK-FOXO3a-Catalase Signaling in Transplanted Adult Stem Cells Promotes Wound Tissue Regeneration. Antioxid Redox Signal 2018; 28:1047-1065. [PMID: 28826225 DOI: 10.1089/ars.2016.6974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aims: Stem cells exposed to pathological levels of reactive oxygen species (ROS) at wound sites fail to regenerate tissue. The molecular mechanism underlying differential levels of ROS-mediated regulation of stem cells remains elusive. This study elucidates the mechanistic role of catalase at 10 μM H2O2-induced proliferation of mouse bone marrow stromal (BMSC) and hematopoietic (HSPC) stem/progenitor cells. Results: BMSCs and HSPCs depicted an increased growth rate and colony formation, in the presence of 10 μM but not 100 μM concentration of H2O2, an effect that was perturbed by Vit. C. Mechanistically, JNK activation-FOXO3a nuclear translocation and binding of FOXO3a to catalase promoter at 10 μM H2O2 led to an increased expression and activity of anti-oxidant gene, catalase. This was followed by an increased proliferative phenotype via the AKT-dependent pathway that was perturbed in the presence of catalase-inhibitor, 3-aminotriazole due to an increased ROS-mediated inactivation of AKT. Preclinically, 10 μM H2O2-mediated preconditioning of BMSCs/HSPCs transplantation accelerated wound closure, enhanced catalase expression, and decreased ROS levels at the wound site. Transplantation of male donor cells into female recipient mice or GFP-labeled BMSCs or HSPCs depicted an increased engraftment and proliferation in preconditioned cell transplanted groups as compared with the wound control. Wound healing occurred via keratinocyte generation and vascularization in preconditioned BMSCs, whereas only neo-vascularization occurred in the preconditioned HSPCs transplanted groups. Innovation and Conclusion: Our study suggests a distinct role of catalase that protects BMSCs and HSPCs from low ROS and promotes proliferation. Transplantation of preconditioned stem cells enhanced wound tissue regeneration with a better antioxidant defense mechanism-as a therapeutic approach in stem cell transplantation-mediated tissue regeneration. Antioxid. Redox Signal. 28, 1047-1065.
Collapse
Affiliation(s)
- Neha R Dhoke
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ramasatyaveni Geesala
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Amitava Das
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
34
|
Dineen RA, Pszczolkowski S, Flaherty K, Law ZK, Morgan PS, Roberts I, Werring DJ, Al-Shahi Salman R, England T, Bath PM, Sprigg N. Does tranexamic acid lead to changes in MRI measures of brain tissue health in patients with spontaneous intracerebral haemorrhage? Protocol for a MRI substudy nested within the double-blind randomised controlled TICH-2 trial. BMJ Open 2018; 8:e019930. [PMID: 29431141 PMCID: PMC5879748 DOI: 10.1136/bmjopen-2017-019930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To test whether administration of the antifibrinolytic drug tranexamic acid (TXA) in patients with spontaneous intracerebral haemorrhage (SICH) leads to increased prevalence of diffusion-weighted MRI-defined hyperintense ischaemic lesions (primary hypothesis) or reduced perihaematomal oedema volume, perihaematomal diffusion restriction and residual MRI-defined SICH-related tissue damage (secondary hypotheses). DESIGN MRI substudy nested within the double-blind randomised controlled Tranexamic Acid for Hyperacute Primary Intracerebral Haemorrhage (TICH)-2 trial (ISRCTN93732214). SETTING International multicentre hospital-based study. PARTICIPANTS Eligible adults consented and randomised in the TICH-2 trial who were also able to undergo MRI scanning. To address the primary hypothesis, a sample size of n=280 will allow detection of a 10% relative increase in prevalence of diffusion-weighted imaging (DWI) hyperintense lesions in the TXA group with 5% significance, 80% power and 5% imaging data rejection. INTERVENTIONS TICH-2 MRI substudy participants will undergo MRI scanning using a standardised protocol at day ~5 and day ~90 after randomisation. Clinical assessments, randomisation to TXA or placebo and participant follow-up will be performed as per the TICH-2 trial protocol. CONCLUSION The TICH-2 MRI substudy will test whether TXA increases the incidence of new DWI-defined ischaemic lesions or reduces perihaematomal oedema or final ICH lesion volume in the context of SICH. ETHICS AND DISSEMINATION The TICH-2 trial obtained ethical approval from East Midlands - Nottingham 2 Research Ethics Committee (12/EM/0369) and an amendment to allow the TICH-2 MRI sub study was approved in April 2015 (amendment number SA02/15). All findings will be published in peer-reviewed journals. The primary outcome results will also be presented at a relevant scientific meeting. TRIAL REGISTRATION NUMBER ISRCTN93732214; Pre-results.
Collapse
Affiliation(s)
- Rob A Dineen
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Stefan Pszczolkowski
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Katie Flaherty
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Zhe K Law
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Department of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Paul S Morgan
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ian Roberts
- Clinical Trials Unit, London School of Hygiene and Tropical Medicine, London, UK
| | - David J Werring
- Stroke Research Centre, University College London, London, UK
| | | | - Tim England
- Vascular Medicine, Division of Medical Sciences and GEM, University of Nottingham, Nottingham, UK
| | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Nikola Sprigg
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| |
Collapse
|
35
|
Co-administration of liposomal fasudil and tissue plasminogen activator ameliorated ischemic brain damage in occlusion model rats prepared by photochemically induced thrombosis. Biochem Biophys Res Commun 2017; 495:873-877. [PMID: 29162447 DOI: 10.1016/j.bbrc.2017.11.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Delivery of neuroprotectants with liposomes has been shown to be effective for the treatment of ischemic stroke. We have recently revealed that intravenous administration of liposomal fasudil (Fasudil-Lip), a Rho-kinase inhibitor, prior to thrombolysis with tissue plasminogen activator (t-PA) can extend the narrow therapeutic time window (TTW) of t-PA. In the present study, we examined the influence of t-PA treatment on liposomal accumulation into the ischemic region and cerebroprotective effect of combined treatment with Fasudil-Lip and t-PA performed at the same timing after the onset of ischemia in middle cerebral artery occlusion (MCAO) prepared by photochemically induced thrombosis. The t-PA administration into MCAO rats 3 h after occlusion brought about significantly higher accumulation of intravenously injected PEGylated liposomes in wide area of ischemic region. Confocal images showed that extravasation of the liposomes from cerebral vessels into brain parenchyma was markedly facilitated by the t-PA treatment which increased blood flow in cerebral vessels. Importantly, co-administration of Fasudil-Lip and t-PA after 3 h occlusion, beyond the TTW of t-PA in MCAO rats, significantly suppressed brain cell damage compared with t-PA treatment alone. These findings suggest that co-administration of Fasudil-Lip and t-PA should lead to prolong t-PA's TTW and become a useful therapeutic option for ischemic stroke.
Collapse
|
36
|
Sachs PC, Mollica PA, Bruno RD. Tissue specific microenvironments: a key tool for tissue engineering and regenerative medicine. J Biol Eng 2017; 11:34. [PMID: 29177006 PMCID: PMC5688702 DOI: 10.1186/s13036-017-0077-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
The accumulated evidence points to the microenvironment as the primary mediator of cellular fate determination. Comprised of parenchymal cells, stromal cells, structural extracellular matrix proteins, and signaling molecules, the microenvironment is a complex and synergistic edifice that varies tissue to tissue. Furthermore, it has become increasingly clear that the microenvironment plays crucial roles in the establishment and progression of diseases such as cardiovascular disease, neurodegeneration, cancer, and ageing. Here we review the historical perspectives on the microenvironment, and how it has directed current explorations in tissue engineering. By thoroughly understanding the role of the microenvironment, we can begin to correctly manipulate it to prevent and cure diseases through regenerative medicine techniques.
Collapse
Affiliation(s)
- Patrick C Sachs
- Medical Diagnostic and Translational Sciences, College of Health Science, Old Dominion University, Norfolk, VA 23529 USA
| | - Peter A Mollica
- Medical Diagnostic and Translational Sciences, College of Health Science, Old Dominion University, Norfolk, VA 23529 USA
| | - Robert D Bruno
- Medical Diagnostic and Translational Sciences, College of Health Science, Old Dominion University, Norfolk, VA 23529 USA
| |
Collapse
|
37
|
The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol 2017; 157:230-246. [DOI: 10.1016/j.pneurobio.2015.12.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 01/01/2023]
|
38
|
Neuroprotective Effect of Matricaria chamomilla Extract on Motor Dysfunction Induced by Transient Global Cerebral Ischemia and Reperfusion in Rat. ACTA ACUST UNITED AC 2017. [DOI: 10.5812/zjrms.10927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Labeyrie PE, Goulay R, Martinez de Lizarrondo S, Hébert M, Gauberti M, Maubert E, Delaunay B, Gory B, Signorelli F, Turjman F, Touzé E, Courthéoux P, Vivien D, Orset C. Vascular Tissue-Type Plasminogen Activator Promotes Intracranial Aneurysm Formation. Stroke 2017; 48:2574-2582. [DOI: 10.1161/strokeaha.117.017305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/08/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Paul-Emile Labeyrie
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Romain Goulay
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Sara Martinez de Lizarrondo
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Marie Hébert
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Maxime Gauberti
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Eric Maubert
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Barbara Delaunay
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Benjamin Gory
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Francesco Signorelli
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Francis Turjman
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Emmanuel Touzé
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Patrick Courthéoux
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Denis Vivien
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Cyrille Orset
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| |
Collapse
|
40
|
Ergün Y. Deney hayvanlarındaki iskemi-reperfüzyon hasarı modellerinde yeşil çayın etkileri. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2017. [DOI: 10.17517/ksutfd.310324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Irons H, Lind JG, Wakade CG, Yu G, Hadman M, Carroll J, Hess DC, Borlongan CV. Intracerebral Xenotransplantation of GFP Mouse Bone Marrow Stromal Cells in Intact and Stroke Rat Brain: Graft Survival and Immunologic Response. Cell Transplant 2017; 13:283-94. [PMID: 15191166 DOI: 10.3727/000000004783983990] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The present study characterized survival and immunologic response of bone marrow stromal cells (BMSCs) following transplantation into intact and stroke brains. In the first study, intrastriatal transplantation of BMSC (60,000 in 3 μl) or vehicle was performed in normal adult Sprague-Dawley male rats that subsequently received daily cyclosporin A (CsA, 10 mg/kg, IP in 3 ml) or vehicle (olive oil, similar volume) starting on day of surgery up to 3 days posttransplantation. Animals were euthanized at 3 or 30 days posttransplantation and brains were processed either for green fluorescent protein (GFP) microscopy or flow cytometry (FACS). Both GFP epifluorescence and FACS scanning revealed GFP+ BMSCs in both groups of transplanted rats with or without CsA, although significantly increased (1.6- to 3-fold more) survival of GFP+ BMSCs was observed in the immunosuppressed animals. Further histologic examination revealed widespread dispersal of BMSCs away from the graft core accompanied by many long outgrowth processes in non-CsA-transplanted animals, whereas a very dense graft core, with cells expressing only sporadic short outgrowth processes, was observed in CsA-transplanted animals. There were no detectable GFP+ BMSCs in nontrans-planted rats that received CsA or vehicle. Immunologic response via FACS analysis revealed a decreased presence of cytotoxic cells, characterized by near complete absence of CD8+ cells, and lack of activation depicted by low CD69 expression in CsA-treated transplanted animals. In contrast, elevated levels of CD8+ cells and increased activation of CD69 expression were observed in transplanted animals that received vehicle alone. CD4+ helper cells were almost nondetectable in transplanted rats that received CsA, but also only minimally elevated in transplanted rats that received vehicle. Nontransplanted rats that received either CsA or vehicle displayed very minimal detectable levels of all three lymphocyte markers. In the second study, a new set of male Sprague-Dawley rats initially received bilateral stereotaxic intrastriatal transplantation of BMSCs and 3 days after were subjected to unilateral transient occlusion of middle cerebral artery. The animals were allowed to survive for 3 days after stroke without CsA immunosuppression. Epifluorescence microscopy revealed significantly higher (5-fold more) survival of transplanted GFP+ BMSCs in the stroke striatum compared with the intact striatum. The majority of the grafts remained within the original dorsal striatal transplant site, characterized by no obvious migration in intact striatum, but with long-distance migration along the ischemic penumbra in the stroke striatum. Moreover, FACS scanning analyses revealed low levels of immunologic response of grafted BMSCs in both stroke and intact striata. These results, taken together, suggest that xenotransplantation of mouse BMSCs into adult rats is feasible. Immunosuppression therapy can enhance xenograft survival and reduce graft-induced immunologic response; however, in the acute phase posttransplantation, BMSCs can survive in intact and stroke brain, and may even exhibit long-distance migration and increased outgrowth processes without immunosuppression.
Collapse
Affiliation(s)
- H Irons
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fukuta T, Asai T, Yanagida Y, Namba M, Koide H, Shimizu K, Oku N. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke. FASEB J 2017; 31:1879-1890. [PMID: 28082354 DOI: 10.1096/fj.201601209r] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022]
Abstract
For ischemic stroke treatment, extension of the therapeutic time window (TTW) of thrombolytic therapy with tissue plasminogen activator (tPA) and amelioration of secondary ischemia/reperfusion (I/R) injury are most desirable. Our previous studies have indicated that liposomal delivery of neuroprotectants into an ischemic region is effective for stroke treatment. In the present study, for solving the above problems in the clinical setting, the usefulness of combination therapy with tPA and liposomal fasudil (fasudil-Lip) was investigated in ischemic stroke model rats with photochemically induced thrombosis, with clots that were dissolved by tPA. Treatment with tPA 3 h after occlusion markedly increased blood-brain barrier permeability and activated matrix metalloproteinase (MMP)-2 and -9, which are involved in cerebral hemorrhage. However, an intravenous administration of fasudil-Lip before tPA markedly suppressed the increase in permeability and the MMP activation stemming from tPA. The combination treatment showed significantly larger neuroprotective effects, even in the case of delayed tPA administration compared with each treatment alone or the tPA/fasudil-treated group. These findings suggest that treatment with fasudil-Lip before tPA could decrease the risk of tPA-derived cerebral hemorrhage and extend the TTW of tPA and that the combination therapy could be a useful therapeutic option for ischemic stroke.-Fukuta, T., Asai, T., Yanagida, Y., Namba, M., Koide, H., Shimizu, K., Oku, N. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and
| | - Yosuke Yanagida
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and
| | - Mio Namba
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and
| | - Hiroyuki Koide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and
| | - Kosuke Shimizu
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and
| |
Collapse
|
43
|
Cheon SY, Kim SY, Kam EH, Lee JH, Kim JM, Kim EJ, Kim TW, Koo BN. Isoflurane preconditioning inhibits the effects of tissue-type plasminogen activator on brain endothelial cell in an in vitro model of ischemic stroke. Int J Med Sci 2017; 14:425-433. [PMID: 28539818 PMCID: PMC5441034 DOI: 10.7150/ijms.18037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023] Open
Abstract
Tissue-type plasminogen activator (tPA) is the only treatment for ischemic stroke. However, tPA could induce the intracranial hemorrhage (ICH), which is the main cause of death in ischemic stroke patient after tPA treatment. At present, there is no treatment strategy to ameliorate tPA-induced brain injury after ischemia. Therefore, we investigated the effect of pre-treated isoflurane, which is a volatile anesthetic and has beneficial effects on neurological dysfunction, brain edema and infarct volume in ischemic stroke model. In this study, we used oxygen/glucose deprivation and reperfusion (OGD/R) condition to mimic an ischemic stroke in vitro. Matrix metalloproteinases (MMP) activity was measured in endothelial cell media. Also, neuronal cell culture was performed to investigate the effect of pretreated isoflurane on the neuronal cell survival after tPA-induced injury during OGD/R. Isoflurane pretreatment prevented tPA-induced MMP-2 and MMP-9 activity and suppressed tPA-triggered LRP/NF-κB/Cox-2 signaling after OGD/R. Neuronal cells, incubated with endothelial cell conditioned medium (EC-CM) after tPA + OGD/R, showed upregulation of pro-apoptotic molecules. However, neurons incubated with isoflurane-pretreated EC-CM showed increased anti-apoptotic molecules. Our findings suggest that isoflurane pretreatment could attenuate tPA-exaggerated brain ischemic injury, by reducing tPA-induced LRP/NF-κB/Cox-2 in endothelial cells, endothelial MMP-2 and MMP-9 activation, and subsequent pro-apoptotic molecule in neurons after OGD/R.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Kam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hoon Lee
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Whan Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
44
|
Barnes JM, Przybyla L, Weaver VM. Tissue mechanics regulate brain development, homeostasis and disease. J Cell Sci 2017; 130:71-82. [PMID: 28043968 PMCID: PMC5394781 DOI: 10.1242/jcs.191742] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cells sense and integrate mechanical and biochemical cues from their environment to orchestrate organismal development and maintain tissue homeostasis. Mechanotransduction is the evolutionarily conserved process whereby mechanical force is translated into biochemical signals that can influence cell differentiation, survival, proliferation and migration to change tissue behavior. Not surprisingly, disease develops if these mechanical cues are abnormal or are misinterpreted by the cells - for example, when interstitial pressure or compression force aberrantly increases, or the extracellular matrix (ECM) abnormally stiffens. Disease might also develop if the ability of cells to regulate their contractility becomes corrupted. Consistently, disease states, such as cardiovascular disease, fibrosis and cancer, are characterized by dramatic changes in cell and tissue mechanics, and dysregulation of forces at the cell and tissue level can activate mechanosignaling to compromise tissue integrity and function, and promote disease progression. In this Commentary, we discuss the impact of cell and tissue mechanics on tissue homeostasis and disease, focusing on their role in brain development, homeostasis and neural degeneration, as well as in brain cancer.
Collapse
Affiliation(s)
- J Matthew Barnes
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Laralynne Przybyla
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
- Departments of Anatomy, Bioengineering and Therapeutic Sciences, Radiation Oncology, and the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and The Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94143, USA
| |
Collapse
|
45
|
Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 2016; 36:1481-507. [PMID: 27323783 PMCID: PMC5012524 DOI: 10.1177/0271678x16655551] [Citation(s) in RCA: 464] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/26/2016] [Indexed: 02/01/2023]
Abstract
Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood-brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood-brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer's disease, Parkinson's disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood-brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood-brain barrier in brain disorders.
Collapse
Affiliation(s)
- Ralf G Rempe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
46
|
Dahl LCM, Nasa Z, Chung J, Niego B, Tarlac V, Ho H, Galle A, Petratos S, Lee JY, Alderuccio F, Medcalf RL. The Influence of Differentially Expressed Tissue-Type Plasminogen Activator in Experimental Autoimmune Encephalomyelitis: Implications for Multiple Sclerosis. PLoS One 2016; 11:e0158653. [PMID: 27427941 PMCID: PMC4948890 DOI: 10.1371/journal.pone.0158653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/17/2016] [Indexed: 12/21/2022] Open
Abstract
Tissue type plasminogen activator (t-PA) has been implicated in the development of multiple sclerosis (MS) and in rodent models of experimental autoimmune encephalomyelitis (EAE). We show that levels of t-PA mRNA and activity are increased ~4 fold in the spinal cords of wild-type mice that are mice subjected to EAE. This was also accompanied with a significant increase in the levels of pro-matrix metalloproteinase 9 (pro-MMP-9) and an influx of fibrinogen. We next compared EAE severity in wild-type mice, t-PA-/- mice and T4+ transgenic mice that selectively over-express (~14-fold) mouse t-PA in neurons of the central nervous system. Our results confirm that t-PA deficient mice have an earlier onset and more severe form of EAE. T4+ mice, despite expressing higher levels of endogenous t-PA, manifested a similar rate of onset and neurological severity of EAE. Levels of proMMP-9, and extravasated fibrinogen in spinal cord extracts were increased in mice following EAE onset regardless of the absence or over-expression of t-PA wild-type. Interestingly, MMP-2 levels also increased in spinal cord extracts of T4+ mice following EAE, but not in the other genotypes. Hence, while the absence of t-PA confers a more deleterious form of EAE, neuronal over-expression of t-PA does not overtly protect against this condition with regards to symptom onset or severity of EAE.
Collapse
Affiliation(s)
- Lisa CM Dahl
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Zeyad Nasa
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - JieYu Chung
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Be’eri Niego
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Volga Tarlac
- Van Cleef Roet Centre for Nervous Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Heidi Ho
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Adam Galle
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia
| | - Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia
| | - Frank Alderuccio
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- * E-mail:
| |
Collapse
|
47
|
Liu S, Zhou J, Zhang X, Liu Y, Chen J, Hu B, Song J, Zhang Y. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration. Int J Mol Sci 2016; 17:ijms17060982. [PMID: 27338364 PMCID: PMC4926512 DOI: 10.3390/ijms17060982] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jingli Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xuan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yang Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jin Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Bo Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
48
|
Zhang S, Kojic L, Tsang M, Grewal P, Liu J, Namjoshi D, Wellington CL, Tetzlaff W, Cynader MS, Jia W. Distinct roles for metalloproteinases during traumatic brain injury. Neurochem Int 2016; 96:46-55. [PMID: 26939762 DOI: 10.1016/j.neuint.2016.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Significant protease activations have been reported after traumatic brain injury (TBI). These proteases are responsible for cleavage of transmembrane proteins in neurons, glial, and endothelial cells and this results in the release of their extracellular domains (ectodomains). METHODS Two TBI models were employed here, representing both closed head injury (CHI) and open head injury (OHI). In situ zymography, immunohistochemistry, bright field and confocal microscopy, quantification of immunopositive cells and statistical analysis were applied. RESULTS We found, using in situ zymography, that gelatinase activity of matrix metalloproteinases (MMP)-2 and MMP-9 was upregulated in cortex of both injury models. Using immunohistochemistry for several MPPs (Matrix metalloproteinases) and ADAMs (disintegrin and metalloproteinases), including MMP-2, -9, ADAM-10, -17, distinct patterns of induction were observed in the two TBI models. In closed head injury, an early increase in protein expression of MMP-2, -9 and ADAM-17 was found as early as 10 min post injury in cortex and peaked at 1 h for all 4 proteases examined. In contrast, after OHI the maximal expression was observed locally neighboring the impact site, at a later time-point, as long as 24 h after the injury for MMP-2 and MMP-9. Confocal microscopy revealed colocalization of the 4 proteases with the neuronal marker NeuN in CHI, but only MMP2 colocalized with NeuN in OHI. CONCLUSIONS The findings may lead to a trauma-induced therapeutic strategy triggered soon after a primary insult to improve survival and to reduce brain damage following TBI.
Collapse
Affiliation(s)
- Si Zhang
- Brain Research Center, University of British Columbia, Vancouver, BC, Canada.
| | - Luba Kojic
- Brain Research Center, University of British Columbia, Vancouver, BC, Canada.
| | - Michelle Tsang
- Brain Research Center, University of British Columbia, Vancouver, BC, Canada.
| | - Parampal Grewal
- Brain Research Center, University of British Columbia, Vancouver, BC, Canada.
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.
| | - Dhananjay Namjoshi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.
| | - Max S Cynader
- Brain Research Center, University of British Columbia, Vancouver, BC, Canada.
| | - William Jia
- Brain Research Center, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
49
|
Mechanisms of Thrombosis and Thrombolysis. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Hong JH, Lee H, Lee SR. Protective effect of resveratrol against neuronal damage following transient global cerebral ischemia in mice. J Nutr Biochem 2016; 27:146-52. [DOI: 10.1016/j.jnutbio.2015.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/12/2015] [Accepted: 08/25/2015] [Indexed: 02/04/2023]
|