1
|
Pernin F, Kuhlmann T, Kennedy TE, Antel JP. Oligodendrocytes in multiple sclerosis. MECHANISMS OF DISEASE PATHOGENESIS IN MULTIPLE SCLEROSIS 2024:261-287. [DOI: 10.1016/b978-0-12-823848-6.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Bhoopal B, Gollapelli KK, Damuka N, Miller M, Krizan I, Bansode A, Register T, Frye BM, Kim J, Mintz A, Orr M, Craft S, Whitlow C, Lockhart SN, Shively CA, Solingapuram Sai KK. Preliminary PET Imaging of Microtubule-Based PET Radioligand [ 11C]MPC-6827 in a Nonhuman Primate Model of Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3745-3751. [PMID: 37724996 PMCID: PMC10966409 DOI: 10.1021/acschemneuro.3c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The microtubule (MT) instability observed in Alzheimer's disease (AD) is commonly attributed to hyperphosphorylation of the MT-associated protein, tau. In vivo PET imaging offers an opportunity to gain critical information about MT changes with the onset and development of AD and related dementia. We developed the first brain-penetrant MT PET ligand, [11C]MPC-6827, and evaluated its in vivo imaging utility in vervet monkeys. Consistent with our previous in vitro cell uptake and in vivo rodent imaging experiments, [11C]MPC-6827 uptake increased with MT destabilization. Radioactive uptake was inversely related to (cerebrospinal fluid) CSF Aβ42 levels and directly related to age in a nonhuman primate (NHP) model of AD. Additionally, in vitro autoradiography studies also corroborated PET imaging results. Here, we report the preliminary results of PET imaging with [11C]MPC-6827 in four female vervet monkeys with high or low CSF Aβ42 levels, which have been shown to correlate with the Aβ plaque burden, similar to humans.
Collapse
Affiliation(s)
- Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Krishna Kumar Gollapelli
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Avinash Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Thomas Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Brett M Frye
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Jeongchul Kim
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Akiva Mintz
- Department of Radiology, Columbia University School of Medicine, New York, New York 10032, United States
| | - Miranda Orr
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Suzanne Craft
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Samuel N Lockhart
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Carol A Shively
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | | |
Collapse
|
3
|
Nagri S, Rice O, Chen Y. Nanomedicine strategies for central nervous system (CNS) diseases. FRONTIERS IN BIOMATERIALS SCIENCE 2023; 2:1215384. [PMID: 38938851 PMCID: PMC11210682 DOI: 10.3389/fbiom.2023.1215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The blood-brain barrier (BBB) is a crucial part of brain anatomy as it is a specialized, protective barrier that ensures proper nutrient transport to the brain, ultimately leading to regulating proper brain function. However, it presents a major challenge in delivering pharmaceuticals to treat central nervous system (CNS) diseases due to this selectivity. A variety of different vehicles have been designed to deliver drugs across this barrier to treat neurodegenerative diseases, greatly impacting the patient's quality of life. The two main types of vehicles used to cross the BBB are polymers and liposomes, which both encapsulate pharmaceuticals to allow them to transcytose the cells of the BBB. For Alzheimer's disease, Parkinson's disease, multiple sclerosis, and glioblastoma brain cancer, there are a variety of different nanoparticle treatments in development that increase the bioavailability and targeting ability of existing drugs or new drug targets to decrease symptoms of these diseases. Through these systems, nanomedicine offers a new way to target specific tissues, especially for the CNS, and treat diseases without the systemic toxicity that often comes with medications used currently.
Collapse
Affiliation(s)
- Shreya Nagri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Olivia Rice
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Scalabrino G. Epidermal Growth Factor in the CNS: A Beguiling Journey from Integrated Cell Biology to Multiple Sclerosis. An Extensive Translational Overview. Cell Mol Neurobiol 2022; 42:891-916. [PMID: 33151415 PMCID: PMC8942922 DOI: 10.1007/s10571-020-00989-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews the wealth of papers dealing with the different effects of epidermal growth factor (EGF) on oligodendrocytes, astrocytes, neurons, and neural stem cells (NSCs). EGF induces the in vitro and in vivo proliferation of NSCs, their migration, and their differentiation towards the neuroglial cell line. It interacts with extracellular matrix components. NSCs are distributed in different CNS areas, serve as a reservoir of multipotent cells, and may be increased during CNS demyelinating diseases. EGF has pleiotropic differentiative and proliferative effects on the main CNS cell types, particularly oligodendrocytes and their precursors, and astrocytes. EGF mediates the in vivo myelinotrophic effect of cobalamin on the CNS, and modulates the synthesis and levels of CNS normal prions (PrPCs), both of which are indispensable for myelinogenesis and myelin maintenance. EGF levels are significantly lower in the cerebrospinal fluid and spinal cord of patients with multiple sclerosis (MS), which probably explains remyelination failure, also because of the EGF marginal role in immunology. When repeatedly administered, EGF protects mouse spinal cord from demyelination in various experimental models of autoimmune encephalomyelitis. It would be worth further investigating the role of EGF in the pathogenesis of MS because of its multifarious effects.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences, University of Milan, Via Mangiagalli 31, 20133, Milan, Italy.
| |
Collapse
|
5
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
6
|
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol 2021; 12:754270. [PMID: 34899572 PMCID: PMC8664554 DOI: 10.3389/fneur.2021.754270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Martinsen V, Kursula P. Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino Acids 2021; 54:99-109. [PMID: 34889995 PMCID: PMC8810476 DOI: 10.1007/s00726-021-03111-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023]
Abstract
Myelin basic protein (MBP) is an abundant protein in central nervous system (CNS) myelin. MBP has long been studied as a factor in the pathogenesis of the autoimmune neurodegenerative disease multiple sclerosis (MS). MS is characterized by CNS inflammation, demyelination, and axonal loss. One of the main theories on the pathogenesis of MS suggests that exposure to foreign antigens causes the activation of cross-reactive T cells in genetically susceptible individuals, with MBP being a possible autoantigen. While a direct role for MBP as a primary antigen in human MS is unclear, it is clear that MBP and its functions in myelin formation and long-term maintenance are linked to MS. This review looks at some key molecular characteristics of MBP and its relevance to MS, as well as the mechanisms of possible molecular mimicry between MBP and some viral antigens. We also discuss the use of serum anti-myelin antibodies as biomarkers for disease. MBP is a prime example of an apparently simple, but in fact biochemically and structurally complex molecule, which is closely linked to both normal nervous system development and neurodegenerative disease.
Collapse
Affiliation(s)
- Vebjørn Martinsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway. .,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| |
Collapse
|
8
|
Briot J, Simon M, Méchin MC. Deimination, Intermediate Filaments and Associated Proteins. Int J Mol Sci 2020; 21:E8746. [PMID: 33228136 PMCID: PMC7699402 DOI: 10.3390/ijms21228746] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Deimination (or citrullination) is a post-translational modification catalyzed by a calcium-dependent enzyme family of five peptidylarginine deiminases (PADs). Deimination is involved in physiological processes (cell differentiation, embryogenesis, innate and adaptive immunity, etc.) and in autoimmune diseases (rheumatoid arthritis, multiple sclerosis and lupus), cancers and neurodegenerative diseases. Intermediate filaments (IF) and associated proteins (IFAP) are major substrates of PADs. Here, we focus on the effects of deimination on the polymerization and solubility properties of IF proteins and on the proteolysis and cross-linking of IFAP, to finally expose some features of interest and some limitations of citrullinomes.
Collapse
Affiliation(s)
| | | | - Marie-Claire Méchin
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Université Fédérale de Toulouse Midi-Pyrénées, U1056, 31059 Toulouse, France; (J.B.); (M.S.)
| |
Collapse
|
9
|
Arthur-Farraj P, Moyon S. DNA methylation in Schwann cells and in oligodendrocytes. Glia 2020; 68:1568-1583. [PMID: 31958184 DOI: 10.1002/glia.23784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
DNA methylation is one of many epigenetic marks, which directly modifies base residues, usually cytosines, in a multiple-step cycle. It has been linked to the regulation of gene expression and alternative splicing in several cell types, including during cell lineage specification and differentiation processes. DNA methylation changes have also been observed during aging, and aberrant methylation patterns have been reported in several neurological diseases. We here review the role of DNA methylation in Schwann cells and oligodendrocytes, the myelin-forming glia of the peripheral and central nervous systems, respectively. We first address how methylation and demethylation are regulating myelinating cells' differentiation during development and repair. We then mention how DNA methylation dysregulation in diseases and cancers could explain their pathogenesis by directly influencing myelinating cells' proliferation and differentiation capacities.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Moyon
- Neuroscience Initiative Advanced Science Research Center, CUNY, New York, New York
| |
Collapse
|
10
|
Swimming Exercise Ameliorates Symptoms of MOG-Induced Experimental Autoimmune Encephalomyelitis by Inhibiting Inflammation and Demyelination in Rats. Int Neurourol J 2020; 24:S39-47. [PMID: 32482056 PMCID: PMC7285701 DOI: 10.5213/inj.2040156.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
Purpose Multiple sclerosis is an autoimmune disease that affects the central nerve system, resulting in cumulative loss of motor function. Multiple sclerosis is induced through multiple mechanisms and is caused by inflammation and demyelination. This study aims to evaluate the neuroprotective effect of swimming exercise in experimental autoimmune encephalomyelitis (EAE) rats, an animal model of multiple sclerosis. Methods EAE was induced by an intradermal injection of 50-μg purified myelin oligodendrocyte glycoprotein 33–55 (MOG33-55) dissolved in 200-μL saline at the base of the tail. The rats in the swimming exercise group were made to swim for 30 minutes once pert a day for 26 consecutive days, starting 5 days after induction of EAE. To compare the effect of swimming exercise with interferon-β, a drug for multiple sclerosis, interferon-β was injected intraperitoneally into rats of the EAE-induced and interferon-β-treated group during the exercise period. Results Injection of MOG33-55 caused weight loss, decreased clinical disability score, and increased level of pro-inflammatory cytokines and inflammatory mediators in the lumbar spinal cord. Loss of motor function and weakness increased demyelination score. Swimming exercise suppressed demyelination and expression of pro-inflammatory cytokines and inflammatory mediators. These changes promoted recovery of EAE symptoms such as body weight loss, motor dysfunction, and weakness. Swimming exercise caused the same level of improvement as interferon-β treatment. Conclusions The results of this experiment suggest the possibility of swimming exercise in urological diseases that are difficult to treat. Swimming exercises can be considered for relief of symptom in incurable multiple sclerosis.
Collapse
|
11
|
Damuka N, Czoty PW, Davis AT, Nader MA, Nader SH, Craft S, Macauley SL, Galbo LK, Epperly PM, Whitlow CT, Davenport AT, Martin TJ, Daunais JB, Mintz A, Solingapuram Sai KK. PET Imaging of [ 11C]MPC-6827, a Microtubule-Based Radiotracer in Non-Human Primate Brains. Molecules 2020; 25:E2289. [PMID: 32414052 PMCID: PMC7287733 DOI: 10.3390/molecules25102289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 05/09/2020] [Indexed: 01/02/2023] Open
Abstract
Dysregulation of microtubules is commonly associated with several psychiatric and neurological disorders, including addiction and Alzheimer's disease. Imaging of microtubules in vivo using positron emission tomography (PET) could provide valuable information on their role in the development of disease pathogenesis and aid in improving therapeutic regimens. We developed [11C]MPC-6827, the first brain-penetrating PET radiotracer to image microtubules in vivo in the mouse brain. The aim of the present study was to assess the reproducibility of [11C]MPC-6827 PET imaging in non-human primate brains. Two dynamic 0-120 min PET/CT imaging scans were performed in each of four healthy male cynomolgus monkeys approximately one week apart. Time activity curves (TACs) and standard uptake values (SUVs) were determined for whole brains and specific regions of the brains and compared between the "test" and "retest" data. [11C]MPC-6827 showed excellent brain uptake with good pharmacokinetics in non-human primate brains, with significant correlation between the test and retest scan data (r = 0.77, p = 0.023). These initial evaluations demonstrate the high translational potential of [11C]MPC-6827 to image microtubules in the brain in vivo in monkey models of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (N.D.); (A.T.D.); (M.A.N.); (C.T.W.)
| | - Paul W. Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Ashley T. Davis
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (N.D.); (A.T.D.); (M.A.N.); (C.T.W.)
| | - Michael A. Nader
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (N.D.); (A.T.D.); (M.A.N.); (C.T.W.)
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Susan H. Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Suzanne Craft
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (S.C.); (S.L.M.)
| | - Shannon L. Macauley
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (S.C.); (S.L.M.)
| | - Lindsey K. Galbo
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Phillip M. Epperly
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Christopher T. Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (N.D.); (A.T.D.); (M.A.N.); (C.T.W.)
| | - April T. Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Thomas J. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - James B. Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Akiva Mintz
- Department of Radiology, Columbia University, New York, NY 10016, USA;
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (N.D.); (A.T.D.); (M.A.N.); (C.T.W.)
| |
Collapse
|
12
|
Liu M, Liu G. Prediction of Citrullination Sites on the Basis of mRMR Method and SNN. Comb Chem High Throughput Screen 2019; 22:705-715. [PMID: 31782357 DOI: 10.2174/1386207322666191129113508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/02/2019] [Accepted: 10/25/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Citrullination, an important post-translational modification of proteins, alters the molecular weight and electrostatic charge of the protein side chains. Citrulline, in protein sequences, is catalyzed by a class of Peptidyl Arginine Deiminases (PADs). Dependent on Ca2+, PADs include five isozymes: PAD 1, 2, 3, 4/5, and 6. Citrullinated proteins have been identified in many biological and pathological processes. Among them, abnormal protein citrullination modification can lead to serious human diseases, including multiple sclerosis and rheumatoid arthritis. OBJECTIVE It is important to identify the citrullination sites in protein sequences. The accurate identification of citrullination sites may contribute to the studies on the molecular functions and pathological mechanisms of related diseases. METHODS AND RESULTS In this study, after an encoded training set (containing 116 positive and 348 negative samples) into the feature matrix, the mRMR method was used to analyze the 941- dimensional features which were sorted on the basis of their importance. Then, a predictive model based on a self-normalizing neural network (SNN) was proposed to predict the citrullination sites in protein sequences. Incremental Feature Selection (IFS) and 10-fold cross-validation were used as the model evaluation method. Three classical machine learning models, namely random forest, support vector machine, and k-nearest neighbor algorithm, were selected and compared with the SNN prediction model using the same evaluation methods. SNN may be the best tool for citrullination site prediction. The maximum value of the Matthews Correlation Coefficient (MCC) reached 0.672404 on the basis of the optimal classifier of SNN. CONCLUSION The results showed that the SNN-based prediction methods performed better when evaluated by some common metrics, such as MCC, accuracy, and F1-Measure. SNN prediction model also achieved a better balance in the classification and recognition of positive and negative samples from datasets compared with the other three models.
Collapse
Affiliation(s)
- Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Guangzhong Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
13
|
Ju Z, Wang SY. Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou's general pseudo amino acid composition. Gene 2018; 664:78-83. [DOI: 10.1016/j.gene.2018.04.055] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/23/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
|
14
|
Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis. Int J Mol Sci 2018; 19:ijms19061639. [PMID: 29865151 PMCID: PMC6032172 DOI: 10.3390/ijms19061639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) probably caused, in most cases, by the interaction of genetic and environmental factors. This review first summarizes some clinical, epidemiological and pathological characteristics of MS. Then, the involvement of biochemical pathways is discussed in the development and repair of the CNS lesions and the immune dysfunction in the disease. Finally, the potential roles of peroxisome proliferator-activated receptors (PPAR) in MS are discussed. It is suggested that metabolic mechanisms modulated by PPAR provide a window to integrate the systemic and neurological events underlying the pathogenesis of the disease. In conclusion, the reviewed data highlight molecular avenues of understanding MS that may open new targets for improved therapies and preventive strategies for the disease.
Collapse
|
15
|
Kumar JSD, Solingapuram Sai KK, Prabhakaran J, Oufkir HR, Ramanathan G, Whitlow CT, Dileep H, Mintz A, Mann JJ. Radiosynthesis and in Vivo Evaluation of [ 11C]MPC-6827, the First Brain Penetrant Microtubule PET Ligand. J Med Chem 2018; 61:2118-2123. [PMID: 29457976 DOI: 10.1021/acs.jmedchem.8b00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abnormalities of microtubules (MTs) are implicated in the pathogenesis of many CNS diseases. Despite the potential of an MT imaging agents, no PET ligand is currently available for in vivo imaging of MTs in the brain. We radiolabeled [11C]MPC-6827, a high affinity MTA, and demonstrated its specific binding in rat and mice brain using PET imaging. Our experiments show that [11C]MPC-6827 has specific binding to MT in brain, and it is the first MT-binding PET ligand.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States
| | | | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States.,Department of Psychiatry , Columbia University Medical Center , New York , New York 10032 , United States
| | - Hakeem R Oufkir
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - Gayathri Ramanathan
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - Christopher T Whitlow
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - Hima Dileep
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States.,Department of Psychiatry , Columbia University Medical Center , New York , New York 10032 , United States
| | - Akiva Mintz
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - J John Mann
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States.,Department of Psychiatry , Columbia University Medical Center , New York , New York 10032 , United States
| |
Collapse
|
16
|
Liu J, Xu L, Chen ZL, Li M, Yi H, Peng FH. Comprehensive analysis of patients with neuromyelitis optica spectrum disorder (NMOSD) combined with chronic hepatitis B (CHB) infection and seropositive for anti-aquaporin-4 antibody. Bosn J Basic Med Sci 2018; 18:35-42. [PMID: 29144890 PMCID: PMC5826672 DOI: 10.17305/bjbms.2017.2255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/03/2023] Open
Abstract
Previous research indicated the association between hepatitis B virus (HBV) infection/vaccination and the onset of demyelinating diseases. However, most of these studies were single case reports, and comprehensive data are still scarce. Here we present a comprehensive analysis of 10 patients with neuromyelitis optica spectrum disorder (NMOSD) combined with chronic hepatitis B (CHB) infection and seropositive for anti-aquaporin-4 antibody (AQP4-Ab). Demographic, clinical, laboratory, neuroimaging, outcome, and follow-up data of the 10 patients were retrospectively analyzed. The median age at the onset of NMOSD was 35 years (range 25-43). Nine patients were female (90%). All patients were positive for HBsAg and had been diagnosed with CHB earlier than with NMOSD. One patient had an autoimmune disease. All patients had normal thyroid function. Paresthesia and visual impairment were the most common clinical symptoms. The cerebrospinal fluid (CSF) parameters (protein and glucose) were normal in 10 cases, whereas slightly higher CSF white blood cell count was detected in 3 patients. The brain and spinal cord magnetic resonance imaging findings were abnormal in 8 patients. All patients were treated with hormone and immunosuppressive therapy, and anti-HBV agents. Patients with detectable serum HBV DNA were more prone to liver damage after receiving high doses of corticosteroids. In 8 patients, the symptoms improved before they were discharged. Two patients with optic neuritis (ON) maintained the symptoms. A month later, 1/8 patient had recurrence of symptoms, and one ON patient progressed to NMO. Overall, the characteristics of NMOSD patients with CHB and seropositive for AQP4-Ab are usually nonspecific. Abnormal liver function test results in NMOSD patients should be a warning of possible CHB infection, and the treatment should be modified accordingly.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Abi Ghanem C, Degerny C, Hussain R, Liere P, Pianos A, Tourpin S, Habert R, Macklin WB, Schumacher M, Ghoumari AM. Long-lasting masculinizing effects of postnatal androgens on myelin governed by the brain androgen receptor. PLoS Genet 2017; 13:e1007049. [PMID: 29107990 PMCID: PMC5690690 DOI: 10.1371/journal.pgen.1007049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/16/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022] Open
Abstract
The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis. Sex differences in brain structure are of great scientific and medical interest because the incidence and progress of many neurological and psychiatric disorders differ between males and females. They affect neural networks and also the myelin sheaths that insulate and protect axons and thus allow the rapid conduction of electrical impulses. In the central nervous system, myelin is formed by a particular type of cells named oligodendrocytes. In the male mouse brain, the density of oligodendrocytes is greater and myelin sheaths are thicker when compared with females. We show that these sex differences in myelin result from the long-lasting actions of androgens in males during their first 10 postnatal days. Importantly, the postnatal masculinizing effects of androgens involve brain androgen receptors as shown by the use of pharmacological and genetic tools. These findings are important for understanding sex-related differences in the susceptibility and progression of demyelinating diseases such as multiple sclerosis. They also reveal a so far unknown role of androgen receptor signaling in sexual differentiation of the brain.
Collapse
Affiliation(s)
- Charly Abi Ghanem
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Cindy Degerny
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Rashad Hussain
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
- Department of Neurosurgery, Institute for Translational Neuromedicine, University of Rochester, Rochester, NY, United States of America
| | - Philippe Liere
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Antoine Pianos
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Sophie Tourpin
- U566 Inserm, CEA, Universities Paris-Diderot and Paris-Sud, Fontenay aux Roses, France
| | - René Habert
- U566 Inserm, CEA, Universities Paris-Diderot and Paris-Sud, Fontenay aux Roses, France
| | - Wendy B. Macklin
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO, United States of America
| | - Michael Schumacher
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
- * E-mail: (AMG); (MS)
| | - Abdel M. Ghoumari
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
- * E-mail: (AMG); (MS)
| |
Collapse
|
19
|
Bondy-Chorney E, Baldwin RM, Didillon A, Chabot B, Jasmin BJ, Côté J. RNA binding protein RALY promotes Protein Arginine Methyltransferase 1 alternatively spliced isoform v2 relative expression and metastatic potential in breast cancer cells. Int J Biochem Cell Biol 2017; 91:124-135. [PMID: 28733251 DOI: 10.1016/j.biocel.2017.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/09/2017] [Accepted: 07/15/2017] [Indexed: 01/24/2023]
Abstract
Aberrant expression of Protein Arginine Methyltransferases (PRMTs) has been observed in several cancer types, including breast cancer. We previously reported that the PRMT1v2 isoform, which is generated through inclusion of alternative exon 2, is overexpressed in breast cancer cells and promotes their invasiveness. However, the precise mechanism by which expression of this isoform is controlled and how it is dysregulated in breast cancer remains unknown. Using a custom RNA interference-based screen, we identified several RNA binding proteins (RBP) which, when knocked down, altered the relative abundance of the alternatively spliced PRMT1v2 isoform. Amongst the top hits were SNW Domain containing 1 (SNW1) and RBP-associated with lethal yellow mutation (RALY), which both associated with the PRMT1 pre-mRNA and upon depletion caused an increase or decrease in the relative abundance of PRMT1v2 isoform mRNA and protein. Most importantly, a significant decrease in invasion was observed upon RALY knockdown in aggressive breast cancer cells, consistent with targeting PRMT1v2 directly, and this effect was rescued by the exogenous re-expression of PRMT1v2. We show that SNW1 expression is decreased, while RALY expression is increased in breast cancer cells and tumours, which correlates with decreased patient survival. This work revealed crucial insight into the mechanisms regulating the expression of the PRMT1 alternatively spliced isoform v2 and its dysregulation in breast cancer. It also provides proof-of-concept support for the development of therapeutic strategies where regulators of PRMT1 exon 2 alternative splicing are targeted as an approach to selectively reduce PRMT1v2 levels and metastasis in breast cancer.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada
| | - R Mitchell Baldwin
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada
| | - Andréanne Didillon
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada
| | - Benoît Chabot
- Département de microbiologie et d'infectiologie, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1 K 2R1, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada.
| |
Collapse
|
20
|
Sokratous M, Dardiotis E, Tsouris Z, Bellou E, Michalopoulou A, Siokas V, Arseniou S, Stamati T, Tsivgoulis G, Bogdanos D, Hadjigeorgiou GM. Deciphering the role of DNA methylation in multiple sclerosis: emerging issues. AUTOIMMUNITY HIGHLIGHTS 2016; 7:12. [PMID: 27605361 PMCID: PMC5014764 DOI: 10.1007/s13317-016-0084-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/24/2016] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory and neurodegenerative disease of the central nervous system that involves several not yet fully elucidated pathophysiologic mechanisms. There is increasing evidence that epigenetic modifications at level of DNA bases, histones, and micro-RNAs may confer risk for MS. DNA methylation seems to have a prominent role in the epigenetics of MS, as aberrant methylation in the promoter regions across genome may underlie several processes involved in the initiation and development of MS. In the present review, we discuss current understanding regarding the role of DNA methylation in MS, possible therapeutic implications and future emerging issues.
Collapse
Affiliation(s)
- Maria Sokratous
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Eleni Bellou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Stylianos Arseniou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Tzeni Stamati
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece
| | - Dimitrios Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly Viopolis, 40500, Larissa, Greece.,Cellular Immunotherapy and Molecular Immunodiagnostics, Biomedical Section, Center for Research and Technology-Hellas (CERTH)-Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece.
| |
Collapse
|
21
|
Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology. Neurochem Res 2016; 41:1845-56. [PMID: 27097548 DOI: 10.1007/s11064-016-1920-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial demyelinating disease characterized by neurodegenerative events and autoimmune response against myelin component. Citrullination or deimination, a post-translational modification of protein-bound arginine into citrulline, catalyzed by Ca(2+) dependent peptidylarginine deiminase enzyme (PAD), plays an essential role in physiological processes include gene expression regulation, apoptosis and the plasticity of the central nervous system, while aberrant citrullination can generate new epitopes, thus involving in the initiation and/or progression of autoimmune disorder like MS. Myelin basic protein (MBP) is the major myelin protein and is generally considered to maintain the stability of the myelin sheath. This review describes the MBP citrullination and its consequence, as well as offering further support for the "inside-out" hypothesis that MS is primarily a neurodegenerative disease with secondary inflammatory demyelination. In addition, it discusses the role of MBP citrullination in the immune inflammation and explores the potential of inhibition of PAD enzymes as a therapeutic strategy for the disease.
Collapse
|
22
|
Zhuo F, Qiu G, Xu J, Yang M, Wang K, Liu H, Huang J, Lu W, Liu Q, Xu S, Huang S, Sun S. Both endoplasmic reticulum and mitochondrial pathways are involved in oligodendrocyte apoptosis induced by capsular hemorrhage. Mol Cell Neurosci 2016; 72:64-71. [PMID: 26808219 DOI: 10.1016/j.mcn.2016.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 12/23/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The white matter injury caused by intracerebral hemorrhage (ICH) includes demyelination and axonal injury. Oligodendrocyte apoptosis is reported to be involved in triggering demyelination. Experimental observations indicate that both endoplasmic reticulum and mitochondrial pathways could mediate cell apoptosis. The purpose of this study was to investigate the demyelination and the possible mechanisms in an autologous blood-injected rat model of internal capsule hemorrhage. METHODS Transmission electron microscope was applied to examine the pathological changes of myelinated nerve fibers in internal capsule. Western blotting was used to detect the myelin basic protein (MBP) which was an important component of myelin sheath. Double immunofluorescence and Western blotting were used to determine the apoptosis and apoptotic pathways. The levels of caspase-12 (a representative protein of endoplasmic reticulum stress) and cytochrome c (an apoptosis factor released from mitochondria) were assessed in this study. RESULTS Demyelination occurred on day 1, 3, and 7 after ICH onset. Myelin sheaths of internal capsule nerve fibers were swollen and broken down in ICH groups. MBP expression showed a downregulation after ICH with its minimum value occurred on day 7 post-ICH. Besides, neuron and oligodendrocyte apoptosis were observed at different time intervals post-ICH accompanied with an upregulated caspase-12 expression and enhanced cytochrome c release. CONCLUSIONS These results suggested that oligodendrocyte and neuron apoptosis may contribute to the demyelination induced by internal capsule hemorrhage and oligodendrocyte apoptosis is positively mediated through both endoplasmic reticulum and mitochondrial pathways.
Collapse
Affiliation(s)
- Fei Zhuo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - GuoPing Qiu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jin Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - KeJian Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Juan Huang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - WeiTian Lu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - ShiYe Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - SiQin Huang
- Traditional Chinese Medical College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - ShanQuan Sun
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
23
|
Morales Y, Cáceres T, May K, Hevel JM. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 2015; 590:138-152. [PMID: 26612103 DOI: 10.1016/j.abb.2015.11.030] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022]
Abstract
Many key cellular processes can be regulated by the seemingly simple addition of one, or two, methyl groups to arginine residues by the nine known mammalian protein arginine methyltransferases (PRMTs). The impact that arginine methylation has on cellular well-being is highlighted by the ever growing evidence linking PRMT dysregulation to disease states, which has marked the PRMTs as prominent pharmacological targets. This review is meant to orient the reader with respect to the structural features of the PRMTs that account for catalytic activity, as well as provide a framework for understanding how these enzymes are regulated. An overview of what we understand about substrate recognition and binding is provided. Control of product specificity and enzyme processivity are introduced as necessary but flexible features of the PRMTs. Precise control of PRMT activity is a critical component to eukaryotic cell health, especially given that an arginine demethylase has not been identified. We therefore conclude the review with a comprehensive discussion of how protein arginine methylation is regulated.
Collapse
Affiliation(s)
- Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Tamar Cáceres
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Kyle May
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States.
| |
Collapse
|
24
|
Veber D, Scalabrino G. Are PrPCs involved in some human myelin diseases? Relating experimental studies to human pathology. J Neurol Sci 2015; 359:396-403. [DOI: 10.1016/j.jns.2015.09.365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/04/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
|
25
|
Decrease in levels of the evolutionarily conserved microRNA miR-124 affects oligodendrocyte numbers in Zebrafish, Danio rerio. INVERTEBRATE NEUROSCIENCE 2015; 15:4. [PMID: 26159098 DOI: 10.1007/s10158-015-0180-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/29/2015] [Indexed: 01/08/2023]
Abstract
Oligodendrocytes produce multi-lamellar myelin membranes that surround axons in the central nervous system (CNS). Preservation and generation of myelin are potential therapeutic targets for dysmyelinating and demyelinating diseases. MicroRNAs (miRNAs) play a vital role in oligodendrocyte differentiation and overall CNS development. miR-124 is a well-conserved neuronal miRNA with important roles in neuronal differentiation and function. miR-124 levels increase following loss of myelin in both human and rodent brains. While the role of neuronal miR-124 in neurogenesis has been established, its effects on axonal outgrowth and oligodendrocytes are not currently known. We therefore explored the possible effect of selective knockdown of miR-124 in Danio rerio using a morpholino-based knockdown approach. No morphological abnormalities or loss of motor neurons were detected despite loss of axonal outgrowth. Morpholino-based knockdown of miR-124 led to reciprocal increases in mRNA levels of target genes that inhibit axonal and dendritic projections. Importantly, loss of miR-124 led to decreased oligodendrocyte cell numbers and myelination of axonal projections in the ventral hindbrain. Taken together, our results add a new dimension to the existing complexity of neuron-glial relationships and highlight the utility of Danio rerio as a model system to investigate such interactions.
Collapse
|
26
|
Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJG, Reynolds R, Martin R. Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 2015; 16:147-58. [PMID: 25697158 DOI: 10.1038/nrn3900] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis is characterized at the gross pathological level by the presence of widespread focal demyelinating lesions of the myelin-rich white matter. However, it is becoming clear that grey matter is not spared, even during the earliest phases of the disease. Furthermore, grey matter damage may have an important role both in physical and cognitive disability. Grey matter pathology involves both inflammatory and neurodegenerative mechanisms, but the relationship between the two is unclear. Histological, immunological and neuroimaging studies have provided new insight in this rapidly expanding field, and form the basis of the most recent hypotheses on the pathogenesis of grey matter damage.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Advanced Neuroimaging Laboratory of Neurology B, Department of Neurological and Movement Sciences, University Hospital Verona, Piazzale Ludovico Antonio Scuro 10, 37134, Verona, Italy
| | - Roberta Magliozzi
- 1] Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. [2] Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Olga Ciccarelli
- 1] National Institute for Health Research, University College London/University College London Hospitals NHS Foundation Trust (NIHR UCL/UCLH) Biomedical Research Centre, 149 Tottenham Court Road, London W1T 7DN, UK. [2] Queen Square Multiple Sclerosis Centre, University College London, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jeroen J G Geurts
- Section of Clinical Neuroscience, Department of Anatomy and Neurosciences, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Richard Reynolds
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| |
Collapse
|
27
|
Scalabrino G, Veber D, De Giuseppe R, Roncaroli F. Low levels of cobalamin, epidermal growth factor, and normal prions in multiple sclerosis spinal cord. Neuroscience 2015; 298:293-301. [PMID: 25888933 DOI: 10.1016/j.neuroscience.2015.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
Abstract
We have previously demonstrated that multiple sclerosis (MS) patients have abnormal cerebrospinal fluid (CSF) levels of the key myelin-related molecules cobalamin (Cbl), epidermal growth factor (EGF), and normal cellular prions (PrP(C)s), thus confirming that some CSF abnormalities may be co-responsible for remyelination failure. We determined the levels of these three molecules in post-mortem spinal cord (SC) samples taken from MS patients and control patients. The control SC samples, almost all of which came from non-neurological patients, did not show any microscopic lesions of any type. All of the samples were supplied by the U.K. MS Tissue Bank. The Cbl, EGF, and PrP(C) levels were determined using enzyme-linked immunosorbent assays. The SC total homocysteine level was determined using a competitive immunoenzymatic assay. CSF samples, taken from a further group of MS patients, were used for the assay of holo-transcobalamin (holo-TC) levels. The Cbl, EGF, and PrP(C) levels were significantly decreased in MS SCs in comparison with controls and, paradoxically, the decreased Cbl levels were associated with decreased SC levels of homocysteine, a biochemical marker of Cbl deficiency. The trends of EGF and PrP(C) levels paralleled those previously found in CSF, whereas that of Cbl was the opposite. There was no significant difference in CSF holo-TC levels between the MS patients and the controls. Given that we have previously demonstrated that Cbl positively regulates central nervous system EGF levels, it is conceivable that the low EGF levels in the MS SC may be causally related to a local decrease in Cbl levels. Only PrP(C) levels were invariably decreased in both the SC and CSF regardless of the clinical course of the disease. These findings suggest that the simultaneous lack of Cbl, EGF, and PrP(C)s may greatly hamper the remyelination process in MS patients, because they are key molecules of the machinery for remyelination.
Collapse
Affiliation(s)
- G Scalabrino
- Department of Biomedical Sciences, Laboratory of Neuropathology, University of Milan, 20133 Milan, Italy.
| | - D Veber
- Department of Biomedical Sciences, Laboratory of Neuropathology, University of Milan, 20133 Milan, Italy
| | - R De Giuseppe
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - F Roncaroli
- Division of Brain Sciences, Imperial College, London W12 0NN, UK
| |
Collapse
|
28
|
Chauvin S, Sobel A. Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration. Prog Neurobiol 2015; 126:1-18. [DOI: 10.1016/j.pneurobio.2014.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023]
|
29
|
Progressive disorganization of paranodal junctions and compact myelin due to loss of DCC expression by oligodendrocytes. J Neurosci 2014; 34:9768-78. [PMID: 25031414 DOI: 10.1523/jneurosci.0448-14.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Paranodal axoglial junctions are critical for maintaining the segregation of axonal domains along myelinated axons; however, the proteins required to organize and maintain this structure are not fully understood. Netrin-1 and its receptor Deleted in Colorectal Cancer (DCC) are proteins enriched at paranodes that are expressed by neurons and oligodendrocytes. To identify the specific function of DCC expressed by oligodendrocytes in vivo, we selectively eliminated DCC from mature myelinating oligodendrocytes using an inducible cre regulated by the proteolipid protein promoter. We demonstrate that DCC deletion results in progressive disruption of the organization of axonal domains, myelin ultrastructure, and myelin protein composition. Conditional DCC knock-out mice develop balance and coordination deficits and exhibit decreased conduction velocity. We conclude that DCC expression by oligodendrocytes is required for the maintenance and stability of myelin in vivo, which is essential for proper signal conduction in the CNS.
Collapse
|
30
|
D'Aversa TG, Eugenin EA, Lopez L, Berman JW. Myelin basic protein induces inflammatory mediators from primary human endothelial cells and blood-brain barrier disruption: implications for the pathogenesis of multiple sclerosis. Neuropathol Appl Neurobiol 2013; 39:270-83. [PMID: 22524708 DOI: 10.1111/j.1365-2990.2012.01279.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, characterized by demyelination of white matter, loss of myelin forming oligodendrocytes, changes in the blood-brain barrier (BBB) and leucocyte infiltration. Myelin basic protein (MBP) is a component of the myelin sheath. Degradation of myelin is believed to be an important step that leads to MS pathology. Transmigration of leucocytes across the vasculature, and a compromised BBB participate in the neuroinflammation of MS. We examined the expression and regulation of the chemokine (C-C motif) ligand 2 (CCL2) and the cytokine interleukin-6 (IL-6) in human endothelial cells (EC), a component of the BBB, after treatment with MBP. METHODS EC were treated with full-length MBP. CCL2 and IL-6 protein were determined by ELISA. Western blot analysis was used to determine signalling pathways. A BBB model was treated with MBP and permeability was assayed using albumin conjugated to Evan's blue dye. The levels of the tight junction proteins occludin and claudin-1, and matrix metalloprotease (MMP)-2 were assayed by Western blot. RESULTS MBP significantly induced CCL2 and IL-6 protein from EC. This induction was partially mediated by the p38 MAPK pathway as there was phosphorylation after MBP treatment. MBP treatment of a BBB model caused an increase in permeability that correlated with a decrease in occludin and claudin-1, and an induction of MMP2. CONCLUSION These data demonstrate that MBP induces chemotactic and inflammatory mediators. MBP also alters BBB permeability and tight junction expression, indicating additional factors that may contribute to the BBB breakdown characteristic of MS.
Collapse
Affiliation(s)
- T G D'Aversa
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | |
Collapse
|
31
|
Huang SQ, Tang CL, Sun SQ, Yang C, Xu J, Wang KJ, Lu WT, Huang J, Zhuo F, Qiu GP, Wu XY, Qi W. Demyelination initiated by oligodendrocyte apoptosis through enhancing endoplasmic reticulum-mitochondria interactions and Id2 expression after compressed spinal cord injury in rats. CNS Neurosci Ther 2013; 20:20-31. [PMID: 23937638 DOI: 10.1111/cns.12155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Demyelination is one of the most important pathological factors of spinal cord injury. Oligodendrocyte apoptosis is involved in triggering demyelination. However, fewer reports on pathological changes and mechanism of demyelination have been presented from compressed spinal cord injury (CSCI). The relative effect of oligodendrocyte apoptosis on CSCI-induced demyelination and the mechanism of apoptosis remain unclear. AIMS In this study, a custom-designed model of CSCI was used to determine whether or not demyelination and oligodendrocyte apoptosis occur after CSCI. The pathological changes in axonal myelinated fibers were investigated by osmic acid staining and transmission electron microscopy. Myelin basic protein (MBP), which is used in myelin formation in the central nervous system, was detected by immunofluorescence and Western blot assays. Oligodendrocyte apoptosis was revealed by in situ terminal-deoxytransferase-mediated dUTP nick-end labeling. To analyze the mechanism of oligodendrocyte apoptosis, we detected caspase-12 [a representative of endoplasmic reticulum (ER) stress], cytochrome c (an apoptotic factor and hallmark of mitochondria), and inhibitor of DNA binding 2 (Id2, an oligodendrocyte lineage gene) by immunofluorescence and Western blot assays. RESULTS The custom-designed model of CSCI was successfully established. The rats were spastic, paralyzed, and incontinent. The Basso, Beattie, and Bresnahan (BBB) locomotor rating scale scores were decreased as time passed. The compressed spinal cord slices were ischemic. Myelin sheaths became swollen and degenerative; these sheaths were broken down as time passed after CSCI. MBP expression was downregulated after CSCI and consistent with the degree of demyelination. Oligodendrocyte apoptosis occurred at 1 day after CSCI and increased as caspase-12 expression was enhanced and cytochrome c was released. Id2 was distributed widely in the white matter. Id2 expression increased with time after CSCI. CONCLUSION Demyelination occurred after CSCI and might be partly caused by oligodendrocyte apoptosis, which was positively correlated with ER-mitochondria interactions and enhanced Id2 expression after CSCI in rats.
Collapse
Affiliation(s)
- Si-Qin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ramaswamy V, Jacob FD, Bolduc FV. Rearrangement of chromosome 14q with associated white matter disease. Pediatr Neurol 2011; 45:117-20. [PMID: 21763953 DOI: 10.1016/j.pediatrneurol.2011.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 03/07/2011] [Indexed: 11/30/2022]
Abstract
We report the case of a 29-month-old boy with spasticity and periventricular white matter changes on magnetic resonance imaging in whom a complex rearrangement consisting of a de novo duplication of 14q32.31q32.33 and deletion of 14q32.33 was identified by array-based comparative genomic hybridization. Our case replicates some of the previous features associated with chromosome 14q duplication and deletion while expanding its clinical spectrum with pyramidal tract dysfunction signs and neuroimaging features. Genomic lesions should be considered in cases of leukodystrophies, and genome-wide studies such as array-based comparative genomic hybridization could be considered in the assessment of undefined white matter disorders.
Collapse
Affiliation(s)
- Vijay Ramaswamy
- Division of Pediatric Neurology, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
33
|
Lange S, Gögel S, Leung KY, Vernay B, Nicholas AP, Causey CP, Thompson PR, Greene ND, Ferretti P. Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability. Dev Biol 2011; 355:205-14. [PMID: 21539830 PMCID: PMC4768803 DOI: 10.1016/j.ydbio.2011.04.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 04/06/2011] [Accepted: 04/14/2011] [Indexed: 01/25/2023]
Abstract
Spinal cord regenerative ability is lost with development, but the mechanisms underlying this loss are still poorly understood. In chick embryos, effective regeneration does not occur after E13, when spinal cord injury induces extensive apoptotic response and tissue damage. As initial experiments showed that treatment with a calcium chelator after spinal cord injury reduced apoptosis and cavitation, we hypothesized that developmentally regulated mediators of calcium-dependent processes in secondary injury response may contribute to loss of regenerative ability. To this purpose we screened for such changes in chick spinal cords at stages of development permissive (E11) and non-permissive (E15) for regeneration. Among the developmentally regulated calcium-dependent proteins identified was PAD3, a member of the peptidylarginine deiminase (PAD) enzyme family that converts protein arginine residues to citrulline, a process known as deimination or citrullination. This post-translational modification has not been previously associated with response to injury. Following injury, PAD3 up-regulation was greater in spinal cords injured at E15 than at E11. Consistent with these differences in gene expression, deimination was more extensive at the non-regenerating stage, E15, both in the gray and white matter. As deimination paralleled the extent of apoptosis, we investigated the effect of blocking PAD activity on cell death and deiminated-histone 3, one of the PAD targets we identified by mass-spectrometry analysis of spinal cord deiminated proteins. Treatment with the PAD inhibitor, Cl-amidine, reduced the abundance of deiminated-histone 3, consistent with inhibition of PAD activity, and significantly reduced apoptosis and tissue loss following injury at E15. Altogether, our findings identify PADs and deimination as developmentally regulated modulators of secondary injury response, and suggest that PADs might be valuable therapeutic targets for spinal cord injury.
Collapse
Affiliation(s)
- Sigrun Lange
- Developmental Biology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Stefanie Gögel
- Developmental Biology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Kit-Yi Leung
- Neural Development Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Bertrand Vernay
- Developmental Biology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Anthony P. Nicholas
- Department of Neurology, University of Alabama at Birmingham and Birmingham VA Medical Center, Birmingham, Alabama 35294, USA
| | - Corey P. Causey
- University of South Carolina, Department of Chemistry & Biochemistry, Columbia, 29208, USA
| | - Paul R. Thompson
- Department of Chemistry, TSRI, Scripps Florida, Florida 33458 USA
| | | | - Patrizia Ferretti
- Developmental Biology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
34
|
|
35
|
Subcellular localization of peptidylarginine deiminase 2 and citrullinated proteins in brains of scrapie-infected mice: nuclear localization of PAD2 and membrane fraction-enriched citrullinated proteins. J Neuropathol Exp Neurol 2011; 70:116-24. [PMID: 21343880 DOI: 10.1097/nen.0b013e318207559e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Peptidylarginine deiminase (PAD) and citrullinated proteins have emerged as key molecules in various human diseases, but detailed subcellular localizations of PAD2 and citrullinated proteins are poorly mapped in brain under normal and pathologic conditions. We performed subcellular fractionation and electron microscopic analysis using brains of normal and scrapie-infected mice. Peptidylarginine deiminase 2 was abundantly present in cytosol and weakly in microsomal and mitochondrial fractions and expression in these fractions was higher in brains of scrapie-infected mice. Despite relatively low PAD2 expression, in microsomal and mitochondrial fractions, citrullinated proteins were present at high levels in these fractions in scrapie-infected brains. Surprisingly, increased PAD2 expression and accumulated citrullinated proteins were also found in nuclear fractions in scrapie-infected brains. By electron microscopy, PAD2 and citrullinated proteins in scrapie-infected brains were widely distributed in most cellular compartments including mitochondria, endoplasmic reticulum, glial filaments, nuclei, and Golgi apparatus in astrocytes and hippocampal neurons. Taken together, we report for the first time the nuclear localization of PAD2 and the detailed subcellular localization of PAD2 and of citrullinated proteins in scrapie-infected brains. Our findings suggest that different subcellular compartmentalization of PAD2 and citrullinated proteins may have different physiological roles in normal and neurodegenerative conditions.
Collapse
|
36
|
Sedzik J, Jastrzebski JP. High-resolution structural model of porcine P2 myelin membrane protein with associated fatty acid ligand: fact or artifact? J Neurosci Res 2011; 89:909-20. [PMID: 21425316 DOI: 10.1002/jnr.22612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/06/2011] [Accepted: 01/09/2011] [Indexed: 11/07/2022]
Abstract
Myelin membrane is a biological complex of glial cells origin; it is composed of 25% (w/w) proteins and 75% lipids, and more than 300 proteins are associated with central nervous system myelin (for peripheral nervous system myelin, such data are lacking). Myelin plays an important role in maintaining propagation of nerve signals. To uncover the nature of propagation phenomena, it is essential to study biochemistry of myelin proteins and lipids, myelin composition, and myelin structure. Nearly all myelin proteins are like antigens, causing clinically well-defined devastating diseases; multiple sclerosis and Guillain-Barré syndrome are two of them. In this article, a high-resolution study (1.8 Å) of porcine myelin P2 protein is presented. Myelin was purified from porcine intradural spinal roots, which were stored at -80°C for 10 years before myelin and P2 protein were purified (spinal roots were a gift of Prof. Kunio Kitamura, Saitama Medical School). The three-dimensional structural analysis uncovered embedded 18-carbons-long fatty acid. Some speculative interpretation is presented, to uncover how this ligand of fatty acid may form cholesterol ester and stabilize the myelin structure or form simple raft microdomain. Protein crystallography indicates that the ligand may be 18-carbons-long fatty acid. This is unlike previous work with mass spectrometry, in which three ligands were determined. In other protein crystallography-based studies of P2 (bovine), an oleic fatty acid was suggested, but, for recombinant (human) protein, palmitic acid was found. There is no fatty acid ligand in equine P2 protein.
Collapse
Affiliation(s)
- Jan Sedzik
- Department of Chemical Engineering and Technology, Protein Crystallization Facility KTH, Royal Institute of Technology, Stockholm, Sweden.
| | | |
Collapse
|
37
|
Kinloch AJ, Lundberg KE, Moyes D, Venables PJ. Pathogenic role of antibodies to citrullinated proteins in rheumatoid arthritis. Expert Rev Clin Immunol 2010; 2:365-75. [PMID: 20476908 DOI: 10.1586/1744666x.2.3.365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the last 10 years, the discovery that antibodies to citrullinated proteins are highly specific for rheumatoid arthritis has led to a model of pathogenesis that ties together the genetic and environmental risk factors for susceptibility and severity of disease. The authors propose that the chronic inflammation is driven by two phases of an immune response. The first phase is the priming of autoimmunity, which may occur many years before the onset of disease and is caused by environmental factors, such as smoking and infectious agents, in the context of disease susceptibility alleles. This may occur in sites outside the joint, such as the respiratory tract. The second phase is the induction of arthritis, which is associated with the generation of citrullinated proteins within the joint, which is then perpetuated as the erosive disease by a local chronic immune response. The identity of candidate synovial citrullinated antigen(s), whether fibrin, vimentin, alpha-enolase, collagen type II or others yet to be described, may be the key to the pathogenesis of the destructive disease characteristic of rheumatoid arthritis. There is emerging evidence that citrullination may already be modified by established therapy in rheumatoid arthritis, but more specific inhibitors of deimination may provide new agents for future treatments.
Collapse
Affiliation(s)
- Andrew J Kinloch
- Kennedy Institute of Rheumatology, Charing Cross Campus, Imperial College London, London W6 8LH, UK.
| | | | | | | |
Collapse
|
38
|
O'Connor KC, Lopez-Amaya C, Gagne D, Lovato L, Moore-Odom NH, Kennedy J, Krupp L, Tenembaum S, Ness J, Belman A, Boyko A, Bykova O, Mah JK, Stoian CA, Waubant E, Kremenchutzky M, Ruggieri M, Bardini MR, Rensel M, Hahn J, Weinstock-Guttman B, Yeh EA, Farrell K, Freedman MS, Iivanainen M, Bhan V, Dilenge M, Hancock MA, Gano D, Fattahie R, Kopel L, Fournier AE, Moscarello M, Banwell B, Bar-Or A. Anti-myelin antibodies modulate clinical expression of childhood multiple sclerosis. J Neuroimmunol 2010; 223:92-9. [PMID: 20381173 DOI: 10.1016/j.jneuroim.2010.02.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/02/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
Anti-myelin basic protein (MBP) antibodies in pediatric-onset MS and controls were characterized. Serum samples were obtained from 94 children with MS and 106 controls. Paired CSF and serum were obtained from 25 children with MS at time of their initial episode of acute demyelinating syndrome (ADS). Complementary assays were applied across samples to evaluate the presence, and the physical binding properties, of anti-MBP antibodies. While the prevalence and titers of serum anti-MBP antibodies against both immature and mature forms of MBP were similar in children with MS and in controls, binding characteristics and formal Surface Plasmon Resonance (SPR) studies indicated surprisingly high binding affinities of all pediatric anti-MBP antibodies. Serum levels of anti-MBP antibodies correlated significantly with their CSF levels, and their presence in children with MS was associated with significantly increased risk of an acute disseminated encephalomyelitis-like initial clinical presentation. While antibodies to both immature and mature forms of MBP can be present as part of the normal pediatric humoral repertoire, these anti-myelin antibodies are of surprisingly high affinity, can access the CNS during inflammation, and have the capacity to modulate disease expression. Our findings identify an immune mechanism that could contribute to the observed heterogeneity in spectrum of clinical presentations in early-onset MS.
Collapse
Affiliation(s)
- K C O'Connor
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Homchaudhuri L, Polverini E, Gao W, Harauz G, Boggs JM. Influence of membrane surface charge and post-translational modifications to myelin basic protein on its ability to tether the Fyn-SH3 domain to a membrane in vitro. Biochemistry 2010; 48:2385-93. [PMID: 19178193 DOI: 10.1021/bi8022587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myelin basic protein (MBP) is a highly post-translationally modified, multifunctional structural component of central nervous system myelin, adhering to phospholipid membranes and assembling cytoskeletal proteins, and has previously been shown to bind SH3 domains in vitro and tether them to a membrane surface [Polverini, E., et al. (2008) Biochemistry 47, 267-282]. Since molecular modeling shows that the Fyn-SH3 domain has a negative surface charge density even after binding the MBP ligand, we have investigated the influence of negative membrane surface charge and the effects of post-translational modifications to MBP on the interaction of the Fyn-SH3 domain with membrane-associated MBP. Using a sedimentation assay with multilamellar vesicles consisting of neutral phosphatidylcholine (PC) and negatively charged phosphatidylinositol (PI), we demonstrate that increasing the negative surface charge of the membrane by increasing the proportion of PI reduces the amount of Fyn-SH3 domain that binds to membrane-associated MBP, due to electrostatic repulsion. When one of the phosphoinositides, PI(4)P or PI(4,5)P(2) was substituted for PI in equal proportion, none of the Fyn-SH3 domain bound to MBP under the conditions that were used. Post-translational modifications of MBP which reduced its net positive charge, i.e., phosphorylation or arginine deimination, increased the degree of repulsion of Fyn-SH3 from the membrane surface, an effect further modulated by the lipid charge. This study suggests that changes in membrane negative surface charge due to protein or lipid modifications, which could occur during cell signaling, can regulate the binding of the Fyn-SH3 domain to membrane-associated MBP and thus could regulate the activity of Fyn at the oligodendrocyte membrane surface.
Collapse
Affiliation(s)
- Lopamudra Homchaudhuri
- Department of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
40
|
Novel approaches for scanning near-field optical microscopy imaging of oligodendrocytes in culture. Neuroimage 2010; 49:517-24. [DOI: 10.1016/j.neuroimage.2009.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 07/15/2009] [Indexed: 11/22/2022] Open
|
41
|
Vazquez J, Hall SC, Greco MA. Protein expression is altered during spontaneous sleep in aged Sprague Dawley rats. Brain Res 2009; 1298:37-45. [PMID: 19729003 DOI: 10.1016/j.brainres.2009.08.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 07/28/2009] [Accepted: 08/21/2009] [Indexed: 11/25/2022]
Abstract
Age-related changes in brain function include those affecting learning, memory, and sleep-wakefulness. Sleep-wakefulness is an essential behavior that results from the interaction of multiple brain regions, peptides, and neurotransmitters. The biological function(s) of sleep, however, remains unknown due to a paucity of information available at the cellular level. Aged rats exhibit alterations in the circadian and homeostatic influences associated with sleep-wake regulation. We recently showed that alterations in cortical profiles occur after timed bouts of spontaneous sleep in young rats. Examination of the cellular response to sleep-wake in old rats may thus provide insight(s) into the biological function(s) of sleep. To test this hypothesis, we monitored cortical profiles in the frontal cortex of young and old Sprague-Dawley rats after timed bouts of spontaneous sleep-wake behavior. Proteins were separated by two-dimensional electrophoresis (2-DE), visualized by fluorescent staining, imaged, and analyzed as a function of behavioral state and age. Old rats showed a 6-fold increase in total protein expression, independent of the behavioral state at sacrifice. When analyzed according to age and behavioral state, there was a decrease (approximately 46%) in the number of phospho-spots present during SWS in aged animals. SWS-associated spots present only in old animals were associated with multiple functions including vesicular transport, cell signaling, oxidation state, cytoskeletal support, and energy metabolism. These data suggest that the intracellular response to the signaling associated with spontaneous sleep is affected by age and is consistent with the idea that the ability of sleep to fulfill its function(s) may become diminished with age.
Collapse
Affiliation(s)
- Jacqueline Vazquez
- Behavioral Biochemistry Laboratory, Biosciences Division, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | | | | |
Collapse
|
42
|
A microarray study of altered gene expression in colorectal cancer cells after treatment with immunomodulatory drugs: differences in action in vivo and in vitro. Mol Biol Rep 2009; 37:1801-14. [PMID: 19597962 DOI: 10.1007/s11033-009-9614-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
Abstract
Thalidomide and lenalidomide are FDA approved for the treatment of multiple myeloma, and along with pomalidomide are being investigated in a variety of other cancers. Although these agents display immunomodulatory, anti-angiogenic and anti-apoptotic effects, little is known about the primary mode of therapeutic action in patients with cancer. This paper describes a microarray study of the in vitro and in vivo effects of these drugs, and contrasts the difference in gene profiles achieved in the two models. In the current study, Agilent whole mouse genome oligonucleotide microarrays (44 K) were used to examine alterations in gene expression of colorectal cancer cells after treatment. Venn analysis revealed a divergence of gene signature for pomalidomide and lenalidomide, which although similar in vitro, different in vivo. Several clusters of genes involved in various cellular processes such as immune response, cell signalling and cell adhesion were altered by treatment, and common to the three drugs. Notably, the expressions of linked genes within the Notch/Wnt signalling pathway, including kremen2 and dtx4, highlighted a possible novel mechanistic pathway for these drugs. This study also showed that gene signatures were not greatly divergent in the models, and recapitulated the complex nature of these drugs. Overall, these microarray studies highlighted the diversity of this class of drug, which have effects ranging from cell signalling to translation initiation.
Collapse
|
43
|
Musse AA, Li Z, Ackerley CA, Bienzle D, Lei H, Poma R, Harauz G, Moscarello MA, Mastronardi FG. Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis Model Mech 2008; 1:229-40. [PMID: 19093029 DOI: 10.1242/dmm.000729] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 08/12/2008] [Indexed: 11/20/2022] Open
Abstract
Demyelination in the central nervous system is the hallmark feature in multiple sclerosis (MS). The mechanism resulting in destabilization of myelin is a complex multi-faceted process, part of which involves deimination of myelin basic protein (MBP). Deimination, the conversion of protein-bound arginine to citrulline, is mediated by the peptidylarginine deiminase (PAD) family of enzymes, of which the PAD2 and PAD4 isoforms are present in myelin. To test the hypothesis that PAD contributes to destabilization of myelin in MS, we developed a transgenic mouse line (PD2) containing multiple copies of the cDNA encoding PAD2, under the control of the MBP promoter. Using previously established criteria, clinical signs were more severe in PD2 mice than in their normal littermates. The increase in PAD2 expression and activity in white matter was demonstrated by immunohistochemistry, reverse transcriptase-PCR, enzyme activity assays, and increased deimination of MBP. Light and electron microscopy revealed more severe focal demyelination and thinner myelin in the PD2 homozygous mice compared with heterozygous PD2 mice. Quantitation of the disease-associated molecules GFAP and CD68, as measured by immunoslot blots, were indicative of astrocytosis and macrophage activation. Concurrently, elevated levels of the pro-inflammatory cytokine TNF-alpha and nuclear histone deimination support initiation of demyelination by increased PAD activity. These data support the hypothesis that elevated PAD levels in white matter represents an early change that precedes demyelination.
Collapse
Affiliation(s)
- Abdiwahab A Musse
- Department of Molecular and Cellular Biology and Biophysics Interdepartmental Group, University of Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Musse AA, Polverini E, Raijmakers R, Harauz G. Kinetics of human peptidylarginine deiminase 2 (hPAD2) — Reduction of Ca2+ dependence by phospholipids and assessment of proposed inhibition by paclitaxel side chains. Biochem Cell Biol 2008; 86:437-47. [DOI: 10.1139/o08-124] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis is a complex human neurodegenerative disease, characterized by the active destruction of the insulating myelin sheath around the axons in the central nervous system. The physical deterioration of myelin is mediated by hyperdeimination of myelin basic and other proteins, catalysed by the Ca2+-dependent enzyme peptidylarginine deiminase 2 (PAD2). Thus, inhibition of PAD2 may be of value in treatment of this disease. Here, we have first characterized the in vitro kinetic properties of the human peptidylarginine deiminase isoform 2 (hPAD2). Phosphatidylserine and phosphatidylcholine reduced its Ca2+ dependence by almost twofold. Second, we have explored the putative inhibitory action of the methyl ester side chain of paclitaxel (TSME), which shares structural features with a synthetic PAD substrate, viz., the benzoyl-l-arginine ethyl ester (BAEE). Using the known crystallographic structure of the homologous enzyme hPAD4 and in silico molecular docking, we have shown that TSME interacted strongly with the catalytic site, albeit with a 100-fold lower affinity than BAEE. Despite paclitaxel having previously been shown to inhibit hPAD2 in vitro, the side chain of paclitaxel alone did not inhibit this enzyme’s activity.
Collapse
Affiliation(s)
- Abdiwahab A. Musse
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Dipartimento di Fisica and CNISM, Università di Parma, V. le Usberti, 7/A, 43100 Parma, Italy
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Eugenia Polverini
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Dipartimento di Fisica and CNISM, Università di Parma, V. le Usberti, 7/A, 43100 Parma, Italy
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Reinout Raijmakers
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Dipartimento di Fisica and CNISM, Università di Parma, V. le Usberti, 7/A, 43100 Parma, Italy
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - George Harauz
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Dipartimento di Fisica and CNISM, Università di Parma, V. le Usberti, 7/A, 43100 Parma, Italy
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
45
|
Casaccia-Bonnefil P, Pandozy G, Mastronardi F. Evaluating epigenetic landmarks in the brain of multiple sclerosis patients: a contribution to the current debate on disease pathogenesis. Prog Neurobiol 2008; 86:368-78. [PMID: 18930111 DOI: 10.1016/j.pneurobio.2008.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/05/2008] [Indexed: 12/31/2022]
Abstract
The evidence suggesting a role of epigenetics in the definition of complex trait diseases is rapidly increasing. The gender prevalence of multiple sclerosis, the low level concordance in homozygous twins and the linkage to several genetic loci, suggest an epigenetic component to the definition of this demyelinating disorder. While the immune etio-pathogenetic mechanism of disease progression has been well characterized, still relatively little is known about the initial events contributing to onset and progression of the demyelinating lesion. This article addresses the challenging question of whether loss of the mechanisms of epigenetic regulation of gene expression in the myelinating cells may contribute to the pathogenesis of multiple sclerosis, by affecting the repair process and by modulating the levels of enzymes involved in neo-epitope formation. The role of altered post-translational modifications of nucleosomal histones and DNA methylation in white matter oligodendroglial cells are presented in terms of pathogenetic concepts and the relevance to therapeutic intervention is then discussed.
Collapse
Affiliation(s)
- Patrizia Casaccia-Bonnefil
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY10029, USA.
| | | | | |
Collapse
|
46
|
Medic N, Vita F, Abbate R, Soranzo MR, Pacor S, Fabbretti E, Borelli V, Zabucchi G. Mast cell activation by myelin through scavenger receptor. J Neuroimmunol 2008; 200:27-40. [PMID: 18657868 DOI: 10.1016/j.jneuroim.2008.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
Abstract
A role for mast cells (MC) in the pathogenesis of multiple sclerosis (MS) has been suggested, based on the analysis of human lesions and on an animal model of the disease (EAE). What role MC play in the development of MS is not well understood. We hypothesized that the link connecting MC with demyelinating diseases may be represented by their interaction with myelin. Here we show that myelin can activate mast cells. This process could be a key event in the mast cell function required for inducing EAE in mice and possibly in MS in man.
Collapse
Affiliation(s)
- Nevenka Medic
- Department of Physiology and Pathology, University of Trieste, via A. Fleming 22, 34127 Trieste Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. J Transl Med 2008; 88:354-64. [PMID: 18227806 DOI: 10.1038/labinvest.3700748] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An understanding of the structure and composition of the myelin sheath is essential to understand the pathogenesis of demyelinating diseases such as multiple sclerosis (MS). The presence of citrulline in myelin proteins in particular myelin basic protein (MBP) causes an important change in myelin structure, which destabilizes myelin. The peptidylarginine deiminases (PADs) are responsible for converting arginine in proteins to citrulline. Two of these, PAD2 and PAD4, were localized to the myelin sheath by immunogold electron microscopy. Deimination of MBP by the recombinant forms of these enzymes showed that it was extensive, that is, PAD2 deiminated 18 of 19 arginyl residues in MBP, whereas PAD4 deiminated 14 of 19 residues. In the absence of PAD2 (the PAD2-knockout mouse) PAD4 remained active with limited deimination of arginyl residues. In myelin isolated from patients with MS, the amounts of both PAD2 and PAD4 enzymes were increased compared with that in normals, and the citrullinated proteins were also increased. These data support the view that an increase in citrullinated proteins resulting from increased PAD2 and 4 is an important change in the pathogenesis of MS.
Collapse
|
48
|
Backbone dynamics of the 18.5 kDa isoform of myelin basic protein reveals transient alpha-helices and a calmodulin-binding site. Biophys J 2008; 94:4847-66. [PMID: 18326633 DOI: 10.1529/biophysj.107.125823] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The 18.5 kDa isoform of myelin basic protein (MBP) is the predominant form in adult human central nervous system myelin. It is an intrinsically disordered protein that functions both in membrane adhesion, and as a linker connecting the oligodendrocyte membrane to the underlying cytoskeleton; its specific interactions with calmodulin and SH3-domain containing proteins suggest further multifunctionality in signaling. Here, we have used multidimensional heteronuclear nuclear magnetic resonance spectroscopy to study the conformational dependence on environment of the protein in aqueous solution (100 mM KCl) and in a membrane-mimetic solvent (30% TFE-d(2)), particularly to analyze its secondary structure using chemical shift indexing, and to investigate its backbone dynamics using (15)N spin relaxation measurements. Collectively, the data revealed three major segments of the protein with a propensity toward alpha-helicity that was stabilized by membrane-mimetic conditions: T33-D46, V83-T92, and T142-L154 (murine 18.5 kDa sequence numbering). All of these regions corresponded with bioinformatics predictions of ordered secondary structure. The V83-T92 region comprises a primary immunodominant epitope that had previously been shown by site-directed spin labeling and electron paramagnetic resonance spectroscopy to be alpha-helical in membrane-reconstituted systems. The T142-L154 segment overlapped with a predicted calmodulin-binding site. Chemical shift perturbation experiments using labeled MBP and unlabeled calmodulin demonstrated a dramatic conformational change in MBP upon association of the two proteins, and were consistent with the C-terminal segment of MBP being the primary binding site for calmodulin.
Collapse
|
49
|
Polverini E, Rangaraj G, Libich DS, Boggs JM, Harauz G. Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications. Biochemistry 2007; 47:267-82. [PMID: 18067320 DOI: 10.1021/bi701336n] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and with cytoskeletal and other proteins. A central segment of MBP is highly conserved in mammals and consists of a membrane surface-associated amphipathic alpha-helix, immediately followed by a proline-rich segment that we hypothesize is an SH3 ligand. We show by circular dichroic spectroscopy that this proline-rich segment forms a polyproline type II helix in vitro under physiological conditions and that phosphorylation at a constituent threonyl residue has a stabilizing effect on its conformation. Using SH3 domain microarrays, we observe that the unmodified recombinant murine 18.5 kDa MBP isoform (rmC1 component) binds the following SH3 domains: Yes1 > PSD95 > cortactin = PexD = Abl = Fyn = c-Src = Itk in order of decreasing affinity. A quasi-deiminated form of the protein (rmC8) binds the SH3 domains Yes1 > Fyn > cortactin = c-Src > PexD = Abl. Phosphorylation of rmC1 at 1-2 threonines within the proline-rich segment by mitogen-activated protein kinase in vitro has no effect on the binding specificity to the SH3 domains on the array. An SH3 domain of chicken Fyn is also demonstrated to bind to lipid membrane-associated C1, phosphorylated C1, and rmC8. Molecular docking simulations of the interaction of the putative SH3 ligand of classic MBP with the human Fyn SH3 domain indicate that the strength of the interaction is of the same order of magnitude as with calmodulin and that the molecular recognition and association is mediated by some weak CH...pi interactions between the ligand prolyl residues and the aromatic ones of the SH3 binding site. One such interaction is well-conserved and involves the stacking of an MBP-peptide prolyl and an SH3 domain tryptophanyl residue, as in most other SH3-ligand complexes. Lysyl and arginyl residues in the peptide canonically interact via salt bridges and cation-pi interactions with negatively charged and aromatic residues in the SH3 domain binding site. Posttranslational modifications (phosphorylation or methylation) of the ligand cause noticeable shifts in the conformation of the flexible peptide and its side chains but do not predict any major inhibition of the binding beyond somewhat less favorable interactions for peptides with phosphorylated seryl or threonyl residues.
Collapse
Affiliation(s)
- Eugenia Polverini
- Dipartimento di Fisica and CNISM, Università di Parma, V. le Usberti, 7/A, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
50
|
Mastronardi FG, Noor A, Wood DD, Paton T, Moscarello MA. Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J Neurosci Res 2007; 85:2006-16. [PMID: 17469138 DOI: 10.1002/jnr.21329] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In previous studies, we documented increased citrullinated myelin basic protein (MBP) was present in MBP isolated from multiple sclerosis (MS) normal appearing white matter (NAWM). This increase was due to the myelin enzyme peptidyl argininedeiminase 2 (PAD2). In this study, we show that methylation of cytosine of the PAD2 promoter in DNA from MS NAWM was decreased to one-third of the level of that in DNA from normal white matter. The PAD2 promoter in DNA from thymus obtained from the same MS patients and white matter DNA from Alzheimer's, Huntington's, and Parkinson's was not hypomethylated. DNA demethylase activity in supernatants prepared from NAWM of MS patients was 2-fold higher than the DNA demethylase from normal, Alzheimer's, Huntington's and Parkinson's disease white matter. The amount of PAD2 enzyme and citrullinated MBP was increased in MS NAWM. The decreased methylation of cytosines in the PAD2 promoter may explain the increased synthesis of PAD2 protein that is responsible for the increased amount of citrullinated MBP, which in turn results in loss of myelin stability in MS brain.
Collapse
Affiliation(s)
- Fabrizio G Mastronardi
- Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|