1
|
Chong ZZ, Souayah N. Radixin: Roles in the Nervous System and Beyond. Biomedicines 2024; 12:2341. [PMID: 39457653 PMCID: PMC11504607 DOI: 10.3390/biomedicines12102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Radixin is an ERM family protein that includes radixin, moesin, and ezrin. The importance of ERM family proteins has been attracting more attention, and studies on the roles of ERM in biological function and the pathogenesis of some diseases are accumulating. In particular, we have found that radixin is the most dramatically changed ERM protein in elevated glucose-treated Schwann cells. METHOD We systemically review the literature on ERM, radixin in focus, and update the roles of radixin in regulating cell morphology, interaction, and cell signaling pathways. The potential of radixin as a therapeutic target in neurodegenerative diseases and cancer was also discussed. RESULTS Radixin research has focused on its cell functions, activation, and pathogenic roles in some diseases. Radixin and other ERM proteins maintain cell shape, growth, and motility. In the nervous system, radixin has been shown to prevent neurodegeneration and axonal growth. The activation of radixin is through phosphorylation of its conserved threonine residues. Radixin functions in cell signaling pathways by binding to membrane proteins and relaying the cell signals into the cells. Deficiency of radixin has been involved in the pathogenic process of diseases in the central nervous system and diabetic peripheral nerve injury. Moreover, radixin also plays a role in cell growth and drug resistance in multiple cancers. The trials of therapeutic potential through radixin modulation have been accumulating. However, the exact mechanisms underlying the roles of radixin are far from clarification. CONCLUSIONS Radixin plays various roles in cells and is involved in developing neurodegenerative diseases and many types of cancers. Therefore, radixin may be considered a potential target for developing therapeutic strategies for its related diseases. Further elucidation of the function and the cell signaling pathways that are linked to radixin may open the avenue to finding novel therapeutic strategies for diseases in the nervous system and other body systems.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S. Orange Ave, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S. Orange Ave, Newark, NJ 07103, USA
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
2
|
Zaman R, Lombardo A, Sauvanet C, Viswanatha R, Awad V, Bonomo LER, McDermitt D, Bretscher A. Effector-mediated ERM activation locally inhibits RhoA activity to shape the apical cell domain. J Cell Biol 2021; 220:211973. [PMID: 33836044 PMCID: PMC8185690 DOI: 10.1083/jcb.202007146] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/07/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Activated ezrin-radixin-moesin (ERM) proteins link the plasma membrane to the actin cytoskeleton to generate apical structures, including microvilli. Among many kinases implicated in ERM activation are the homologues LOK and SLK. CRISPR/Cas9 was used to knock out all ERM proteins or LOK/SLK in human cells. LOK/SLK knockout eliminates all ERM-activating phosphorylation. The apical domains of cells lacking LOK/SLK or ERMs are strikingly similar and selectively altered, with loss of microvilli and with junctional actin replaced by ectopic myosin-II–containing apical contractile structures. Constitutively active ezrin can reverse the phenotypes of either ERM or LOK/SLK knockouts, indicating that a central function of LOK/SLK is to activate ERMs. Both knockout lines have elevated active RhoA with concomitant enhanced myosin light chain phosphorylation, revealing that active ERMs are negative regulators of RhoA. As RhoA-GTP activates LOK/SLK to activate ERM proteins, the ability of active ERMs to negatively regulate RhoA-GTP represents a novel local feedback loop necessary for the proper apical morphology of epithelial cells.
Collapse
Affiliation(s)
- Riasat Zaman
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Andrew Lombardo
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Cécile Sauvanet
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Raghuvir Viswanatha
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Valerie Awad
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Locke Ezra-Ros Bonomo
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - David McDermitt
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
3
|
Ognibene M, Pezzolo A. Ezrin interacts with the tumor suppressor CHL1 and promotes neuronal differentiation of human neuroblastoma. PLoS One 2020; 15:e0244069. [PMID: 33326488 PMCID: PMC7743987 DOI: 10.1371/journal.pone.0244069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022] Open
Abstract
In a previous study, we demonstrated that CHL1, the neuronal cell adhesion molecule close homolog of L1, acts as a tumor suppressor in human neuroblastoma (NB), a still highly lethal childhood malignancy, influencing its differentiation and proliferation degree. Here we found that ezrin, one of the ERM (ezrin, radixin, moesin) proteins involved in cytoskeleton organization, strongly interacts with CHL1. The low expression of EZRIN, as well as the low expression of CHL1 and of the neuronal differentiation marker MAP2, correlates with poor outcome in NB patients. Knock-down of ezrin in HTLA-230 cell line induces neurite retraction, enhances cell proliferation and migration, and triggers anchorage-independent growth, with effects very similar to those already obtained by CHL1 silencing. Furthermore, lack of ezrin inhibits the expression of MAP2 and of the oncosuppressor molecule p53, whereas it enhances MAPK activation, all typical features of tumor aggressiveness. As already described, CHL1 overexpression in IMR-32 cell line provokes an opposite trend, but the co-silencing of ezrin reduces these effects, confirming the hypothesis that CHL1 acts in close connection with ezrin. Overall, our data show that ezrin reinforces the differentiating and oncosuppressive functions of CHL1, identifying this ERM protein as a new targetable molecule for NB therapy.
Collapse
Affiliation(s)
- Marzia Ognibene
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
- * E-mail:
| | - Annalisa Pezzolo
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
4
|
Luo T, Ou JN, Cao LF, Peng XQ, Li YM, Tian YQ. The Autism-Related lncRNA MSNP1AS Regulates Moesin Protein to Influence the RhoA, Rac1, and PI3K/Akt Pathways and Regulate the Structure and Survival of Neurons. Autism Res 2020; 13:2073-2082. [PMID: 33215882 DOI: 10.1002/aur.2413] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 01/13/2023]
Abstract
Autism spectrum disorder (ASD) is a complex disease involving multiple genes and multiple sites, and it is closely related to environmental factors. It has been gradually revealed that long noncoding RNAs (lncRNAs) may regulate the pathogenesis of ASD at the epigenetic level. In neuronal cells, the lncRNA moesin pseudogene 1 antisense (MSNP1AS) forms a double-stranded RNA with moesin (MSN) to suppress moesin protein expression. MSNP1AS overexpression can activate the RhoA pathway and inhibit the Rac1 and PI3K/Akt pathways; however, the regulation of Rac1 by MSNP1AS is not associated with MSN, and the effect on the RhoA pathway may also be associated with other factors. MSNP1AS can decrease the number and length of neurites, inhibit neuronal cell viability and migration, and promote apoptosis. Downregulation of MSN expression functions similarly to MSNP1AS, and its overexpression can block the above functions of MSNP1AS. In addition, in vivo experiments show that MSN improves social interactions and reduces repetitive behaviors in BTBR mice, decreases the activity of RhoA and restores the activity of PI3K/Akt pathway. Therefore, the abnormal expression of MSNP1AS in ASD patients might influence the structure and survival of neuronal cells through the regulation of moesin protein expression to facilitate the development and progression of ASD. These findings provide new evidence for studying the mechanisms of lncRNAs in ASD. LAY SUMMARY: Autism spectrum disorder (ASD) is a common neurodevelopmental disease and its neurodevelopmental mechanisms have not been elucidated. More and more studies have found that long noncoding RNAs (lncRNAs) can regulate the development of central nervous system in many ways and affect the pathogenic process of ASD. Moesin pseudogene 1 antisense (MSNP1AS) is an up-regulated lncRNA in ASD patients. In-depth functional experiments showed that MSNP1AS inhibited moesin protein expression and regulated the activation of multiple signaling pathways, thus decreasing the number and length of neurites, inhibiting neuronal cell viability and migration, and promoting apoptosis. Therefore, MSNP1AS is an important lncRNA related to ASD and can regulate the biological function of neurons.
Collapse
Affiliation(s)
- Ting Luo
- XiangYa School of Public Health, Central South University, Changsha, China.,Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jin-Nan Ou
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-Fang Cao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Qing Peng
- Medical Administration Department, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ya-Min Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong-Quan Tian
- XiangYa School of Public Health, Central South University, Changsha, China
| |
Collapse
|
5
|
Okazaki T, Saito D, Inden M, Kawaguchi K, Wakimoto S, Nakahari T, Asano S. Moesin is involved in microglial activation accompanying morphological changes and reorganization of the actin cytoskeleton. J Physiol Sci 2020; 70:52. [PMID: 33129281 PMCID: PMC10717892 DOI: 10.1186/s12576-020-00779-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/17/2020] [Indexed: 11/10/2022]
Abstract
Moesin is a member of the ezrin, radixin and moesin (ERM) proteins that are involved in the formation and/or maintenance of cortical actin organization through their cross-linking activity between actin filaments and proteins located on the plasma membranes as well as through regulation of small GTPase activities. Microglia, immune cells in the central nervous system, show dynamic reorganization of the actin cytoskeleton in their process elongation and retraction as well as phagocytosis and migration. In microglia, moesin is the predominant ERM protein. Here, we show that microglial activation after systemic lipopolysaccharide application is partly inhibited in moesin knockout (Msn-KO) mice. We prepared primary microglia from wild-type and Msn-KO mice, and studied them to compare their phenotypes accompanying morphological changes and reorganization of the actin cytoskeleton induced by UDP-stimulated phagocytosis and ADP-stimulated migration. The Msn-KO microglia showed higher phagocytotic activity in the absence of UDP, which was not further increased by the treatment with UDP. They also exhibited decreased ADP-stimulated migration activities compared with the wild-type microglia. However, the Msn-KO microglia retained their ability to secrete tumor necrosis factor α and nitric oxide in response to lipopolysaccharide.
Collapse
Affiliation(s)
- Tomonori Okazaki
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Daichi Saito
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Gifu City University Nishi, Gifu, 501-1196, Japan
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Sayuri Wakimoto
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Takashi Nakahari
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan.
| |
Collapse
|
6
|
Synapse type-specific proteomic dissection identifies IgSF8 as a hippocampal CA3 microcircuit organizer. Nat Commun 2020; 11:5171. [PMID: 33057002 PMCID: PMC7560607 DOI: 10.1038/s41467-020-18956-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Excitatory and inhibitory neurons are connected into microcircuits that generate circuit output. Central in the hippocampal CA3 microcircuit is the mossy fiber (MF) synapse, which provides powerful direct excitatory input and indirect feedforward inhibition to CA3 pyramidal neurons. Here, we dissect its cell-surface protein (CSP) composition to discover novel regulators of MF synaptic connectivity. Proteomic profiling of isolated MF synaptosomes uncovers a rich CSP composition, including many CSPs without synaptic function and several that are uncharacterized. Cell-surface interactome screening identifies IgSF8 as a neuronal receptor enriched in the MF pathway. Presynaptic Igsf8 deletion impairs MF synaptic architecture and robustly decreases the density of bouton filopodia that provide feedforward inhibition. Consequently, IgSF8 loss impairs excitation/inhibition balance and increases excitability of CA3 pyramidal neurons. Our results provide insight into the CSP landscape and interactome of a specific excitatory synapse and reveal IgSF8 as a critical regulator of CA3 microcircuit connectivity and function. Mossy fiber synapses are key in CA3 microcircuit function. Here, the authors profile the mossy fiber synapse proteome and cell-surface interactome. They uncover a diverse repertoire of cell-surface proteins and identify the receptor IgSF8 as a regulator of CA3 microcircuit connectivity and function.
Collapse
|
7
|
Bennison SA, Blazejewski SM, Smith TH, Toyo-Oka K. Protein kinases: master regulators of neuritogenesis and therapeutic targets for axon regeneration. Cell Mol Life Sci 2020; 77:1511-1530. [PMID: 31659414 PMCID: PMC7166181 DOI: 10.1007/s00018-019-03336-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Proper neurite formation is essential for appropriate neuronal morphology to develop and defects at this early foundational stage have serious implications for overall neuronal function. Neuritogenesis is tightly regulated by various signaling mechanisms that control the timing and placement of neurite initiation, as well as the various processes necessary for neurite elongation to occur. Kinases are integral components of these regulatory pathways that control the activation and inactivation of their targets. This review provides a comprehensive summary of the kinases that are notably involved in regulating neurite formation, which is a complex process that involves cytoskeletal rearrangements, addition of plasma membrane to increase neuronal surface area, coupling of cytoskeleton/plasma membrane, metabolic regulation, and regulation of neuronal differentiation. Since kinases are key regulators of these functions during neuromorphogenesis, they have high potential for use as therapeutic targets for axon regeneration after injury or disease where neurite formation is disrupted.
Collapse
Affiliation(s)
- Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Trevor H Smith
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
8
|
Fortugno P, Angelucci F, Cestra G, Camerota L, Ferraro AS, Cordisco S, Uccioli L, Castiglia D, De Angelis B, Kurth I, Kornak U, Brancati F. Recessive mutations in the neuronal isoforms of DST
, encoding dystonin, lead to abnormal actin cytoskeleton organization and HSAN type VI. Hum Mutat 2018; 40:106-114. [DOI: 10.1002/humu.23678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/22/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Paola Fortugno
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
| | - Francesco Angelucci
- Department of Life; Health and Environmental Sciences; University of L'Aquila; L'Aquila Italy
| | - Gianluca Cestra
- IBPM; Istituto di Biologia e Patologia Molecolari; CNR; Rome Italy
- Deptartment of Biology and Biotechnology; University of Rome “Sapienza,”; Rome Italy
| | - Letizia Camerota
- Department of Life; Health and Environmental Sciences; University of L'Aquila; L'Aquila Italy
| | | | - Sonia Cordisco
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
- Department of Life; Health and Environmental Sciences; University of L'Aquila; L'Aquila Italy
| | - Luigi Uccioli
- Department of Systems Medicine; University of Rome Tor Vergata; Rome Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
| | - Barbara De Angelis
- Department of Plastic and Reconstructive Surgery; University of Rome “Tor Vergata,”; Rome Italy
| | - Ingo Kurth
- Institute of Human Genetics; Medical Faculty; RWTH Aachen University; Aachen Germany
| | - Uwe Kornak
- Institut für Medizinische Genetik und Humangenetik and Berlin-Brandenburg Center for Regenerative Therapies; Charité; Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
- FG Development and Disease; Max-Planck-Institut fuer Molekulare Genetik; Berlin Germany
| | - Francesco Brancati
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
- Department of Life; Health and Environmental Sciences; University of L'Aquila; L'Aquila Italy
| |
Collapse
|
9
|
Hobson AD, Judge RA, Aguirre AL, Brown BS, Cui Y, Ding P, Dominguez E, DiGiammarino E, Egan DA, Freiberg GM, Gopalakrishnan SM, Harris CM, Honore MP, Kage KL, Kapecki NJ, Ling C, Ma J, Mack H, Mamo M, Maurus S, McRae B, Moore NS, Mueller BK, Mueller R, Namovic MT, Patel K, Pratt SD, Putman CB, Queeney KL, Sarris KK, Schaffter LM, Stoll V, Vasudevan A, Wang L, Wang L, Wirthl W, Yach K. Identification of Selective Dual ROCK1 and ROCK2 Inhibitors Using Structure-Based Drug Design. J Med Chem 2018; 61:11074-11100. [DOI: 10.1021/acs.jmedchem.8b01098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adrian D. Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Russell A. Judge
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ana L. Aguirre
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Brian S. Brown
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yifang Cui
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Ping Ding
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Eric Dominguez
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Enrico DiGiammarino
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - David A. Egan
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gail M. Freiberg
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | | | - Christopher M. Harris
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Marie P. Honore
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Karen L. Kage
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Nicolas J. Kapecki
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Christopher Ling
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Junli Ma
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Helmut Mack
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Mulugeta Mamo
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stefan Maurus
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Bradford McRae
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Nigel S. Moore
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Bernhard K. Mueller
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Reinhold Mueller
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Marian T. Namovic
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kaushal Patel
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Steve D. Pratt
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - C. Brent Putman
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kara L. Queeney
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Kathy K. Sarris
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Lisa M. Schaffter
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Vincent Stoll
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Anil Vasudevan
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Lei Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - William Wirthl
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Kimberly Yach
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
10
|
Judge RA, Vasudevan A, Scott VE, Simler GH, Pratt SD, Namovic MT, Putman CB, Aguirre A, Stoll VS, Mamo M, Swann SI, Cassar SC, Faltynek CR, Kage KL, Boyce-Rustay JM, Hobson AD. Design of Aminobenzothiazole Inhibitors of Rho Kinases 1 and 2 by Using Protein Kinase A as a Structure Surrogate. Chembiochem 2018; 19:613-621. [PMID: 29314498 DOI: 10.1002/cbic.201700547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/11/2022]
Abstract
We describe the design, synthesis, and structure-activity relationships (SARs) of a series of 2-aminobenzothiazole inhibitors of Rho kinases (ROCKs) 1 and 2, which were optimized to low nanomolar potencies by use of protein kinase A (PKA) as a structure surrogate to guide compound design. A subset of these molecules also showed robust activity in a cell-based myosin phosphatase assay and in a mechanical hyperalgesia in vivo pain model.
Collapse
Affiliation(s)
- Russell A Judge
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Anil Vasudevan
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Victoria E Scott
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Gricelda H Simler
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Steve D Pratt
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Marian T Namovic
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - C Brent Putman
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Ana Aguirre
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Vincent S Stoll
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Mulugeta Mamo
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA.,Current address: Novartis Institute for Biomedical Research, 4560 Horton Street, Emeryville, CA, 94608, USA
| | - Steven I Swann
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA.,Current address: Takeda Pharmaceuticals, 10410 Science Center Drive, San Diego, CA, 92121, USA
| | - Steven C Cassar
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | | | - Karen L Kage
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA.,Current address: Altor Bioscience, 2810 North Commerce Parkway, Miramar, FL, 33025, USA
| | - Janel M Boyce-Rustay
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA.,Current address: Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Adrian D Hobson
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| |
Collapse
|
11
|
Antoine-Bertrand J, Fu M, Lamarche-Vane N. Direct measurement of oscillatory RhoA activity in embryonic cortical neurons stimulated with the axon guidance cue netrin-1 using fluorescence resonance energy transfer. Biol Cell 2016; 108:115-26. [PMID: 26787017 DOI: 10.1111/boc.201500077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/15/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND INFORMATION Rho GTPases play an essential role during the development of the nervous system. They induce cytoskeletal rearrangements that are critical for the regulation of axon outgrowth and guidance. It is generally accepted that Rac1 and Cdc42 are positive regulators of axon outgrowth and guidance, whereas RhoA is a negative regulator. However, spatiotemporal control of their activity can modify the function of Rho GTPases during axonal morphogenesis. Signalling downstream of the axon guidance cue netrin-1 and its receptor deleted in colorectal cancer (DCC) triggers the activation of Rac1 and the inhibition of RhoA to promote axon outgrowth. However, our previous work also suggests that netrin-1/DCC signalling can activate RhoA in a time- and region-specific manner. RESULTS Here, we visualised RhoA activation in response to netrin-1 in live embryonic cortical neurons using fluorescence resonance energy transfer. RhoA activity oscillated in unstimulated neurons and netrin-1 increased the amplitude of the oscillations in growth cones after 5 min of stimulation. Within this period of time, netrin-1 transiently increased RhoA activity and modulated the pattern of RhoA oscillations. We found that the timing of netrin-1-induced RhoA activation was different in whole neurons, cell bodies and growth cones. CONCLUSIONS We conclude that netrin-1 modulates the spatiotemporal activation of RhoA in embryonic cortical neurons. SIGNIFICANCE This study demonstrates for the first time the short-term localised activation of RhoA in neuronal growth cones by the axon guidance cue netrin-1.
Collapse
Affiliation(s)
- Judith Antoine-Bertrand
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.,Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Min Fu
- Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Nathalie Lamarche-Vane
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.,Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| |
Collapse
|
12
|
Xuan Z, Wu Y, Zhang C, Zhang S, Chen X, Li S, Hao Y, Wang Q, Wang X, Zhang S. Xijiao Dihuang Decoction combined with Yinqiao Powder reverses influenza virus-induced F-actin reorganization in PMVECs by inhibiting ERM phosphorylation. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2016. [PMCID: PMC7147192 DOI: 10.1016/j.jtcms.2016.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective It has been documented that ezrin/radixin/moesin (ERM) phosphorylation by the p38 mitogen-activated protein kinase (MAPK), Rho/ROCK, and protein kinase C (PKC) pathways leads to filamentous actin (F-actin) reorganization and microvascular endothelial cell hyperpermeability. In this study, we investigated the effects of Xijiao Dihuang Decoction combined with Yinqiao Powder (XDY) on influenza virus (IV)-induced F-actin restructuring and ERM phosphorylation regulated by the Rho/Rho kinase 1 (ROCK), p38 MAPK, and PKC signaling pathways in pulmonary microvascular endothelial cells (PMVECs). Methods Serum containing XDY (XDY-CS; 13.8 g/kg) was acquired using standard protocols for serum pharmacology. Primary PMVECs were obtained from male Wistar rats and cultured. After adsorption of IV A (multiplicity of infection, 0.01) for 1 h, medium with 20% XDY-CS was added to the PMVECs. The distributions of F-actin and phosphorylated ERM were determined by confocal microscopy, and F-actin expression was measured by flow cytometry. The expression levels of ROCK1, phosphorylated myosin phosphatase target-subunit (p-MYPT), phosphorylated MAPK kinase, phosphorylated p38 (p-p38), phosphorylated PKC (p-PKC), and phosphorylated ERM (p-ERM) were determined by western blotting. Results F-actin reorganization in IV-infected PMVECs was reversed by XDY-CS treatment, which was accompanied by reduced p-ERM production. The p-ERM protein accumulated at plasma membrane of PMVECs infected with IV, which was also inhibited by XDY-CS treatment. In addition, XDY-CS treatment drastically reduced the levels of p-p38, ROCK1, p-MYPT, and p-PKC induced by IV infection in PMVECs. Conclusion These results show that XDY-CS inhibited influenza-induced F-actin reorganization in PMVECs by down-regulating p-ERM expression via inhibition of the Rho/ROCK, p38 MAPK, and PKC pathways. In conclusion, XDY could reduce the damage to endothelial cytoskeleton induced by IV infection, thus protecting the barriers of PMVECs.
Collapse
|
13
|
Wang T, Wang Q, Song R, Zhang Y, Zhang K, Yuan Y, Bian J, Liu X, Gu J, Liu Z. Autophagy Plays a Cytoprotective Role During Cadmium-Induced Oxidative Damage in Primary Neuronal Cultures. Biol Trace Elem Res 2015; 168:481-9. [PMID: 26041154 DOI: 10.1007/s12011-015-0390-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/26/2015] [Indexed: 11/30/2022]
Abstract
Cadmium (Cd) induces significant oxidative damage in cells. Recently, it was reported that autophagy could be induced by Cd in neurons. However, little is known about the role of reactive oxygen species (ROS) during Cd-induced autophagy. In our study, we examined the cross-talk between ROS and autophagy by using N-acetyl cysteine (NAC, an antioxidant) and chloroquine (CQ, a pharmacological inhibitor of autophagy) in a primary rat neuronal cell cultures. We observed accumulation of acidic vesicular organelles and the increased expression of endogenous protein light chain 3 (LC3) in Cd-treated neurons, revealing that Cd induced a high level of autophagy. Moreover, increased levels of ROS were observed in neurons treated with Cd, showing that ROS accumulation was closely associated with neuron's exposure to Cd. Furthermore, we found that autophagy was inhibited by using CQ and/or NAC with further aggravation of mitochondrial damage, lactate dehydrogenase (LDH) leakage and hypoploid apoptotic cell number in Cd-treated neurons. These results proved that autophagy has a cytoprotective role during Cd-induced toxicity in neurons, and it can prevent the oxidative damage. These findings may enable the development of novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Qiwen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
- Bijie Pilot Area Research Institute of Bijie University, Bijie, 551700, People's Republic of China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Yajing Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Kangbao Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
14
|
Interactions between Epac1 and ezrin in the control of endothelial barrier function. Biochem Soc Trans 2015; 42:274-8. [PMID: 24646230 DOI: 10.1042/bst20130271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Loss of barrier function in the vasculature promotes inflammatory signalling which in turn contributes to the progression of cardiovascular disease. cAMP can protect against endothelial dysfunction through the effectors PKA (protein kinase A) and Epac (exchange protein directly activated by cAMP). The present review outlines the role of Epac1 signalling within the endothelium and, in particular, the role of Epac1 in cytoskeletal dynamics and the control of cell morphology. The actin/cytoskeleton linker ezrin will be described in terms of the growing body of evidence placing it downstream of cAMP signalling as a mediator of altered cellular morphology.
Collapse
|
15
|
Li YY, Zhou CX, Gao Y. Snail regulates the motility of oral cancer cells via RhoA/Cdc42/p-ERM pathway. Biochem Biophys Res Commun 2014; 452:490-496. [PMID: 25172658 DOI: 10.1016/j.bbrc.2014.08.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 12/16/2022]
Abstract
The transcriptional factor Snail has been reported to possess properties related to cancer progression; however, the mechanism for it is not fully understood. Our data showed that Snail knockdown by small interfering RNA in two OSCC cell lines, WSU-HN6 and CAL27, significantly inhibited cell migration and invasion which also resulted in decreased cell motility, such as impaired cell spreading on type I collagen substrate, reduced filopodia, and premature assembly of stress fibers. In addition, Snail-silencing decreased Cdc42 activity but increased RhoA activity, accompanied by the downregulation in both p-ERM expression and cell motility. Meanwhile, endogenous p-ERM was found specifically co-precipitated with activated Cdc42, but not RhoA, and this co-association was decreased by Snail-silencing. The small molecule inhibitors of Rho-associated kinase (Y27632) markedly enhanced Cdc42 activity and the association of p-ERM with activated Cdc42, increasing cell motility remarkably. Using immunohistochemistry, Snail and p-ERM overexpressions were found in OSCC tissues correlated with nodal metastasis and shorter survival. Taken together, these results demonstrate that Snail regulates cell motility through RhoA/Cdc42/p-ERM pathway and may serve as a biomarker to predict prognosis for OSCC patients. Although RhoA and Cdc42 are concurrently regulated downstream of Snail, there is a direct interplay between them, which indicates RhoA has to be inactivated at some point in cell motility cycle.
Collapse
Affiliation(s)
- Yao-Yin Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Chuan-Xiang Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China.
| | - Yan Gao
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China.
| |
Collapse
|
16
|
Durham JT, Surks HK, Dulmovits BM, Herman IM. Pericyte contractility controls endothelial cell cycle progression and sprouting: insights into angiogenic switch mechanics. Am J Physiol Cell Physiol 2014; 307:C878-92. [PMID: 25143350 DOI: 10.1152/ajpcell.00185.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microvascular stability and regulation of capillary tonus are regulated by pericytes and their interactions with endothelial cells (EC). While the RhoA/Rho kinase (ROCK) pathway has been implicated in modulation of pericyte contractility, in part via regulation of the myosin light chain phosphatase (MLCP), the mechanisms linking Rho GTPase activity with actomyosin-based contraction and the cytoskeleton are equivocal. Recently, the myosin phosphatase-RhoA-interacting protein (MRIP) was shown to mediate the RhoA/ROCK-directed MLCP inactivation in vascular smooth muscle. Here we report that MRIP directly interacts with the β-actin-specific capping protein βcap73. Furthermore, manipulation of MRIP expression influences pericyte contractility, with MRIP silencing inducing cytoskeletal remodeling and cellular hypertrophy. MRIP knockdown induces a repositioning of βcap73 from the leading edge to stress fibers; thus MRIP-silenced pericytes increase F-actin-driven cell spreading twofold. These hypertrophied and cytoskeleton-enriched pericytes demonstrate a 2.2-fold increase in contractility upon MRIP knockdown when cells are plated on a deformable substrate. In turn, silencing pericyte MRIP significantly affects EC cycle progression and angiogenic activation. When MRIP-silenced pericytes are cocultured with capillary EC, there is a 2.0-fold increase in EC cycle entry. Furthermore, in three-dimensional models of injury and repair, silencing pericyte MRIP results in a 1.6-fold elevation of total tube area due to EC network formation and increased angiogenic sprouting. The pivotal role of MRIP expression in governing pericyte contractile phenotype and endothelial growth should lend important new insights into how chemomechanical signaling pathways control the "angiogenic switch" and pathological angiogenic induction.
Collapse
Affiliation(s)
- Jennifer T Durham
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Center for Innovations in Wound Healing Research, School of Medicine, Tufts University, Boston, Massachusetts
| | - Howard K Surks
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Center for Innovations in Wound Healing Research, School of Medicine, Tufts University, Boston, Massachusetts
| | - Brian M Dulmovits
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Center for Innovations in Wound Healing Research, School of Medicine, Tufts University, Boston, Massachusetts
| | - Ira M Herman
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Center for Innovations in Wound Healing Research, School of Medicine, Tufts University, Boston, Massachusetts
| |
Collapse
|
17
|
Zhang C, Wu Y, Xuan Z, Zhang S, Wang X, Hao Y, Wu J, Zhang S. p38MAPK, Rho/ROCK and PKC pathways are involved in influenza-induced cytoskeletal rearrangement and hyperpermeability in PMVEC via phosphorylating ERM. Virus Res 2014; 192:6-15. [PMID: 25150189 DOI: 10.1016/j.virusres.2014.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 07/04/2014] [Accepted: 07/28/2014] [Indexed: 12/27/2022]
Abstract
Severe influenza infections are featured by acute lung injury, a syndrome of pulmonary microvascular leak. A growing number of evidences have shown that the pulmonary microvascular endothelial cells (PMVEC) are critical target of influenza virus, promoting microvascular leak. It is reported that there are multiple mechanisms by which influenza virus could elicit increased pulmonary endothelial permeability, in both direct and indirect manners. Ezrin/radixin/moesin family proteins, the linkers between plasma membrane and actin cytoskeleton, have been reported to be involved in cell adhesion, motility and may modulate endothelial permeability. Studies have also shown that ERM is phosphorylated in response to various stimuli via p38MAPK, Rho/ROCK or PKC pathways. However, it is unclear that whether influenza infection could induce ERM phosphorylation and its relocalization. In the present study, we have found that there are cytoskeletal reorganization and permeability increases in the course of influenza virus infection, accompanied by upregulated levels of p-ERM. p-ERM's aggregation along the periphery of PMVEC upon influenza virus infection was detected via confocal microscopy. Furthermore, we sought to determine the role of p38MAPK, Rho/ROCK and PKC pathways in ERM phosphorylation as well as their involvement in influenza virus-induced endothelial malfunction. The activation of p38MAPK, Rho/ROCK and PKC pathways upon influenza virus stimulation were observed, as evidenced by the evaluation of phosphorylated p38 (p-p38), phosphorylated MKK (p-MKK) in p38MAPK pathway, ROCK1 in Rho/ROCK pathway and phosphorylated PKC (p-PKC) in PKC pathway. We also showed that virus-induced ERM phosphorylation was reduced by using p38MAPK inhibitor, SB203580 (20 μM), Rho/ROCK inhibitor, Y27632 (20 μM), PKC inhibitor, LY317615 (10 μM). Additionally, influenza virus-induced F-actin reorganization and hyperpermeability were attenuated by pretreatment with SB203580, Y27632 and LY317615. Taken together, we provide the first evidence that p38MAPK, Rho/ROCK and PKC are involved in influenza-induced cytoskeletal changes and permeability increases in PMVEC via phosphorylating ERM.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| | - Ying Wu
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Zinan Xuan
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| | - Shujing Zhang
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| | - Xudan Wang
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yu Hao
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jun Wu
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| | - Shu Zhang
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| |
Collapse
|
18
|
Moon Y, Kim JY, Kim WR, Kim HJ, Jang MJ, Nam Y, Kim K, Kim H, Sun W. Function of ezrin-radixin-moesin proteins in migration of subventricular zone-derived neuroblasts following traumatic brain injury. Stem Cells 2014; 31:1696-705. [PMID: 23649635 DOI: 10.1002/stem.1420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/16/2013] [Indexed: 12/15/2022]
Abstract
Throughout life, newly generated neuroblasts from the subventricular zone migrate toward the olfactory bulb through the rostral migratory stream. Upon brain injury, these migrating neuroblasts change their route and begin to migrate toward injured regions, which is one of the regenerative responses after brain damage. This injury-induced migration is triggered by stromal cell-derived factor 1 (SDF1) released from microglia near the damaged site; however, it is still unclear how these cells transduce SDF1 signals and change their direction. In this study, we found that SDF1 promotes the phosphorylation of ezrin-radixin-moesin (ERM) proteins, which are key molecules in organizing cell membrane and linking signals from the extracellular environment to the intracellular actin cytoskeleton. Blockade of ERM activation by overexpressing dominant-negative ERM (DN-ERM) efficiently perturbed the migration of neuroblasts. Considering that DN-ERM-expressing neuroblasts failed to maintain proper migratory cell morphology, it appears that ERM-dependent regulation of cell shape is required for the efficient migration of neuroblasts. These results suggest that ERM activation is an important step in the directional migration of neuroblasts in response to SDF1-CXCR4 signaling following brain injury.
Collapse
Affiliation(s)
- Younghye Moon
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, Korea; Brain and Neuroendocrine Laboratory, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bosanquet DC, Ye L, Harding KG, Jiang WG. FERM family proteins and their importance in cellular movements and wound healing (review). Int J Mol Med 2014; 34:3-12. [PMID: 24820650 DOI: 10.3892/ijmm.2014.1775] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/10/2014] [Indexed: 11/06/2022] Open
Abstract
Motility is a requirement for a number of biological processes, including embryonic development, neuronal development, immune responses, cancer progression and wound healing. Specific to wound healing is the migration of endothelial cells, fibroblasts and other key cellular players into the wound space. Aberrations in wound healing can result in either chronic wounds or abnormally healed wounds. The protein 4.1R, ezrin, radixin, moesin (FERM) superfamily consists of over 40 proteins all containing a three lobed N-terminal FERM domain which binds a variety of cell-membrane associated proteins and lipids. The C-terminal ends of these proteins typically contain an actin-binding domain (ABD). These proteins therefore mediate the linkage between the cell membrane and the actin cytoskeleton, and are involved in cellular movements and migration. Certain FERM proteins have been shown to promote cancer metastasis via this very mechanism. Herein we review the effects of a number of FERM proteins on wound healing and cancer. We show how these proteins typically aid wound healing through their effects on increasing cellular migration and movements, but also typically promote metastasis in cancer. We conclude that FERM proteins play important roles in cellular migration, with markedly different outcomes in the context of cancer and wound healing.
Collapse
Affiliation(s)
- David C Bosanquet
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK
| | - Lin Ye
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK
| | - Keith G Harding
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK
| | - Wen G Jiang
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK
| |
Collapse
|
20
|
Akama T, Dong C, Virtucio C, Sullivan D, Zhou Y, Zhang YK, Rock F, Freund Y, Liu L, Bu W, Wu A, Fan XQ, Jarnagin K. Linking phenotype to kinase: identification of a novel benzoxaborole hinge-binding motif for kinase inhibition and development of high-potency rho kinase inhibitors. J Pharmacol Exp Ther 2013; 347:615-25. [PMID: 24049062 DOI: 10.1124/jpet.113.207662] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Benzoxaboroles are a novel class of drug-like compounds that have been rich sources of novel inhibitors for various enzymes and of new drugs. While examining benzoxaborole activity in phenotypic screens, our attention was attracted by the (aminomethylphenoxy)benzoxaborole family, which potently inhibited Toll-like receptor-stimulated cytokine secretion from leukocytes. After considering their structure-activity relationships and the central role of kinases in leukocyte biology, we performed a kinome-wide screen to investigate the members of the (aminomethylphenoxy)benzoxaborole family. This technique identified Rho-activated kinase (ROCK) as a target. We showed competitive behavior, with respect to ATP, and then determined the ROCK2-drug cocrystal structure. The drug occupies the ATP site in which the oxaborole moiety provides hydrogen bond donors and acceptors to the hinge, and the aminomethyl group interacts with the magnesium/ATP-interacting aspartic acid common to protein kinases. The series exhibits excellent selectivity against most of the kinome, with greater than 15-fold selectivity against the next best member of the AGC protein kinase subfamily. Medicinal chemistry efforts with structure-based design resulted in a compound with a Ki of 170 nM. Cellular studies revealed strong enzyme inhibition rank correlation with suppression of intracellular phosphorylation of a ROCK substrate. The biochemical potencies of these compounds also translated to functional activity, causing smooth muscle relaxation in rat aorta and guinea pig trachea. The series exhibited oral availability and one member reduced rat blood pressure, consistent with ROCK's role in smooth muscle contraction. Thus, the benzoxaborole moiety represents a novel hinge-binding kinase scaffold that may have potential for therapeutic use.
Collapse
|
21
|
Persson A, Lindberg OR, Kuhn HG. Radixin inhibition decreases adult neural progenitor cell migration and proliferation in vitro and in vivo. Front Cell Neurosci 2013; 7:161. [PMID: 24065889 PMCID: PMC3781578 DOI: 10.3389/fncel.2013.00161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/03/2013] [Indexed: 11/13/2022] Open
Abstract
Neuronal progenitors capable of long distance migration are produced throughout life in the subventricular zone (SVZ). Migration from the SVZ is carried out along a well-defined pathway called the rostral migratory stream (RMS). Our recent finding of the specific expression of the cytoskeleton linker protein radixin in neuroblasts suggests a functional role for radixin in RMS migration. The ezrin-radixin-moesin (ERM) family of proteins is capable of regulating migration through interaction with the actin cytoskeleton and transmembrane proteins. The ERM proteins are differentially expressed in the RMS with radixin and moesin localized to neuroblasts, and ezrin expression confined to astrocytes of the glial tubes. Here, we inhibited radixin function using the quinocarmycin analog DX52-1 which resulted in reduced neuroblast migration in vitro, while glial migration remained unaltered. Furthermore, the morphology of neuroblasts was distorted resulting in a rounded shape with no or short polysialylated neural cell adhesion molecule positive processes. Intracerebroventricular infusion of the radixin inhibitor resulted in accumulation of neuroblasts in the anterior SVZ. Neuroblast chains were short and intermittently interrupted in the SVZ and considerably disorganized in the RMS. Moreover, we studied the proliferation activity in the RMS after radixin inhibition, since concentrated radixin expression has been demonstrated in the cleavage furrow of dividing cells, which indicates a role of radixin in cell division. Radixin inhibition decreased neuroblast proliferation, whereas the proliferation of other cells in the RMS was not affected. Our results demonstrate a significant role for radixin in neuroblast proliferation and migration.
Collapse
Affiliation(s)
- Asa Persson
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | | | | |
Collapse
|
22
|
Bosanquet DC, Ye L, Harding KG, Jiang WG. Expressed in high metastatic cells (Ehm2) is a positive regulator of keratinocyte adhesion and motility: The implication for wound healing. J Dermatol Sci 2013; 71:115-21. [PMID: 23664528 DOI: 10.1016/j.jdermsci.2013.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/17/2013] [Accepted: 04/04/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Multiple factors have been shown to delay dermal wound healing. These resultant wounds pose a significant problem in terms of morbidity and healthcare spend. Recently, an increasing volume of research has focused on the molecular perturbations underlying non-healing wounds. OBJECTIVES This study investigates the effect of a novel cancer promoter, Ehm2, in wound healing. Ehm2 belongs to the FERM family of proteins, known to be involved in membrane-cytoskeletal interactions, and has been shown to promote cancer metastasis in melanoma, prostate cancer and breast cancer. METHODS Ehm2 mRNA levels were analysed using qRT-PCR, standardised to GAPDH, from either acute or chronic wounds, and normal skin. IHC analysis was also undertaken from wound edge biopsies. An anti-Ehm2 transgene was created and transfected into the HaCaT cell line. The effect of Ehm2 knockdown on migration, adhesion, growth, cell cycle progression and apoptosis was analysed using standard laboratory methods. Western Blot analysis was used to investigate potential downstream protein interactions. RESULTS Ehm2 is expressed nearly three times higher in acute wound tissues, compared to chronic wound tissues. Increased Ehm2 expression is found in wounds undergoing healing, especially at the leading wound edge. In vitro, Ehm2 knockdown reduces cellular adhesion, migration and motility, without affecting growth, cell cycle and apoptosis. Finally, Ehm2 knockdown results in reduced NWasp protein expression. CONCLUSION These results suggest Ehm2 may be an important player in the wound healing process, and show that Ehm2 knockdown downregulates the expression of NWasp, through which it may have its effect on cellular migration.
Collapse
Affiliation(s)
- David C Bosanquet
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK.
| | | | | | | |
Collapse
|
23
|
Persson Å, Osman A, Bolouri H, Mallard C, Kuhn HG. Radixin expression in microglia after cortical stroke lesion. Glia 2013; 61:790-9. [PMID: 23440885 DOI: 10.1002/glia.22473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/07/2013] [Indexed: 01/02/2023]
Abstract
Stroke induces extensive tissue remodeling, resulting in the activation of several cell types in the brain as well as recruitment of blood-borne leucocytes. Radixin is part of a cytoskeleton linker protein family with the ability to connect transmembrane proteins to the actin cytoskeleton, promoting cell functions involving a dynamic cytoskeleton such as morphological changes, cell division and migration which are common events of different cell types after stroke. In the healthy adult brain radixin is expressed in Olig2(+) cells throughout the brain and in neural progenitor cells in the subventricular zone. In the current study, we detected a 2.5 fold increase in the number of radixin positive cells in the peri-infarct cortex two weeks after the induction of cortical stroke by photothrombosis. Similarly, the number of Olig2(+) cells increased in the peri-infarct area after stroke; however, the number of radixin(+)/Olig2(+) cells was unchanged. Neural progenitor cells maintained radixin expression on their route to the infarct. More surprising however, was the expression of radixin in activated microglia in the peri-infarct cortex. Seventy percent of Iba1(+) cells expressed radixin after stroke, a population which was not present in the control brain. Furthermore, activation of radixin was predominantly detected in the peri-infarct region of oligodendrocyte progenitors and microglia. The specific location of radixin(+) cells in the peri-infarct region and in microglia suggests a role for radixin in microglial activation after stroke.
Collapse
Affiliation(s)
- Åsa Persson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
24
|
Expression of ezrin in subventricular zone neural stem cells and their progeny in adult and developing mice. Histochem Cell Biol 2012; 139:403-13. [DOI: 10.1007/s00418-012-1048-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2012] [Indexed: 01/13/2023]
|
25
|
Roubinet C, Tran PT, Piel M. Common mechanisms regulating cell cortex properties during cell division and cell migration. Cytoskeleton (Hoboken) 2012; 69:957-72. [PMID: 23125194 DOI: 10.1002/cm.21086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 12/14/2022]
Abstract
Single cell morphogenesis results from a balance of forces involving internal pressure (also called turgor pressure in plants and fungi) and the plastic and dynamic outer shell of the cell. Dominated by the cell wall in plants and fungi, mechanical properties of the outer shell of animal cells arise from the cell cortex, which is mostly composed of the plasma membrane (and membrane proteins) and the underlying meshwork of actin filaments and myosin motors (and associated proteins). In this review, following Bray and White [1988; Science 239:883-889], we draw a parallel between the regulation of the cell cortex during cell division and cell migration in animal cells. Starting from the similarities in shape changes and underlying mechanical properties, we further propose that the analogy between cell division and cell migration might run deeper, down to the basic molecular mechanisms driving cell cortex remodeling. We focus our attention on how an heterogeneous and dynamic cortex can be generated to allow cell shape changes while preserving cell integrity.
Collapse
Affiliation(s)
- Chantal Roubinet
- Université de Toulouse, UPS, Centre de Biologie du Développement, Bâtiment 4R3, 118 route de Narbonne, F-31062 Toulouse, France.
| | | | | |
Collapse
|
26
|
Kashimoto R, Yamanaka H, Kobayashi K, Okubo M, Yagi H, Mimura O, Noguchi K. Phosphorylation of ezrin/radixin/moesin (ERM) protein in spinal microglia following peripheral nerve injury and lysophosphatidic acid administration. Glia 2012; 61:338-48. [PMID: 23065679 DOI: 10.1002/glia.22436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/18/2012] [Indexed: 11/09/2022]
Abstract
Peripheral nerve injury activates spinal glial cells, which may contribute to the development of pain behavioral hypersensitivity. There is growing evidence that activated microglia show dynamic changes in cell morphology; however, the molecular mechanisms that underlie the modification of the membrane and cytoskeleton of microglia are not known. Here, we investigated the phosphorylation of ezrin, radixin, and moesin (ERM) proteins in the spinal cord after peripheral nerve injury. ERM is known to function as membrane-cytoskeletal linkers and be localized at filopodia- and microvilli-like structures. ERM proteins must be phosphorylated at a specific C-terminal threonine residue to be in the active state. The nature of ERM proteins in the spinal cord of animals in a neuropathic pain model has not been investigated and characterized. In the present study, we observed an increase in the phosphorylated ERM in the spinal microglia following spared nerve injury. The intrathecal administration of lysophosphatidic acid induced the phosphorylation of ERM proteins in microglia along with the development of mechanical pain hypersensitivity. Intrathecal administration of ERM antisense locked nucleic acid suppressed nerve injury-induced tactile allodynia and decreased the phosphorylation of ERM, but not the Iba1 staining pattern, in spinal glial cells. These findings suggest that lysophosphatidic acid induced the phosphorylation of ERM proteins in spinal microglia and may be involved in the emergence of neuropathic pain. These findings may underlie the pathological mechanisms of nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Ryosuke Kashimoto
- Department of Ophthalmology, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Lindberg OR, Persson Å, Brederlau A, Shabro A, Kuhn HG. EGF-induced expansion of migratory cells in the rostral migratory stream. PLoS One 2012; 7:e46380. [PMID: 23029503 PMCID: PMC3460866 DOI: 10.1371/journal.pone.0046380] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 08/29/2012] [Indexed: 01/11/2023] Open
Abstract
The presence of neural stem cells in the adult brain is currently widely accepted and efforts are made to harness the regenerative potential of these cells. The dentate gyrus of the hippocampal formation, and the subventricular zone (SVZ) of the anterior lateral ventricles, are considered the main loci of adult neurogenesis. The rostral migratory stream (RMS) is the structure funneling SVZ progenitor cells through the forebrain to their final destination in the olfactory bulb. Moreover, extensive proliferation occurs in the RMS. Some evidence suggest the presence of stem cells in the RMS, but these cells are few and possibly of limited differentiation potential. We have recently demonstrated the specific expression of the cytoskeleton linker protein radixin in neuroblasts in the RMS and in oligodendrocyte progenitors throughout the brain. These cell populations are greatly altered after intracerebroventricular infusion of epidermal growth factor (EGF). In the current study we investigate the effect of EGF infusion on the rat RMS. We describe a specific increase of radixin+/Olig2+ cells in the RMS. Negative for NG2 and CNPase, these radixin+/Olig2+ cells are distinct from typical oligodendrocyte progenitors. The expanded Olig2+ population responds rapidly to EGF and proliferates after only 24 hours along the entire RMS, suggesting local activation by EGF throughout the RMS rather than migration from the SVZ. In addition, the radixin+/Olig2+ progenitors assemble in chains in vivo and migrate in chains in explant cultures, suggesting that they possess migratory properties within the RMS. In summary, these results provide insight into the adaptive capacity of the RMS and point to an additional stem cell source for future brain repair strategies.
Collapse
Affiliation(s)
| | | | | | | | - Hans Georg Kuhn
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
28
|
Matsumoto Y, Murakami H, Hattori N, Yoshimoto K, Asano S, Inden M. Excessive expression of hippocampal ezrin is induced by intrastriatal injection of 6-hydroxydopamine. Biol Pharm Bull 2012; 34:1753-8. [PMID: 22040891 DOI: 10.1248/bpb.34.1753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulating evidence in humans demonstrates that visuo-spatial deficits are the most consistently reported cognitive abnormalities in Parkinson's disease (PD). Ezrin, radixin, and moesin are collectively known as ERM proteins. Although ERM proteins have important implications in cell-shape determination and relevant signaling pathway, they have not been studied in the hippocampus in association with visuo-spatial memory impairments. The purpose of the present study is to examine whether the expression level of ERM proteins in the hippocampus is changed by an intrastriatal injection of 6-hydroxydopamine (6-OHDA) in mice. The intrastriatal injection of 6-OHDA induced partial dopaminergic deficits and spatial memory impairments. We also found that ezrin was increased in the hippocampus by the microinjection of 6-OHDA. On the other hand, protein levels of radixin and moesin were not influenced by 6-OHDA lesions. These results suggest that excessive ezrin may be related to visuo-spatial memory impairments.
Collapse
Affiliation(s)
- Yosuke Matsumoto
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Rho-associated kinase in the gustatory cortex is involved in conditioned taste aversion memory formation but not in memory retrieval or relearning. Neurobiol Learn Mem 2012; 97:1-6. [DOI: 10.1016/j.nlm.2011.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 08/14/2011] [Accepted: 08/17/2011] [Indexed: 12/29/2022]
|
30
|
Antoine-Bertrand J, Ghogha A, Luangrath V, Bedford FK, Lamarche-Vane N. The activation of ezrin-radixin-moesin proteins is regulated by netrin-1 through Src kinase and RhoA/Rho kinase activities and mediates netrin-1-induced axon outgrowth. Mol Biol Cell 2011; 22:3734-46. [PMID: 21849478 PMCID: PMC3183026 DOI: 10.1091/mbc.e10-11-0917] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The receptor Deleted in Colorectal Cancer (DCC) mediates the attractive response of axons to the guidance cue netrin-1 during development. On netrin-1 stimulation, DCC is phosphorylated and induces the assembly of signaling complexes within the growth cone, leading to activation of cytoskeleton regulators, namely the GTPases Rac1 and Cdc42. The molecular mechanisms that link netrin-1/DCC to the actin machinery remain unclear. In this study we seek to demonstrate that the actin-binding proteins ezrin-radixin-moesin (ERM) are effectors of netrin-1/DCC signaling in embryonic cortical neurons. We show that ezrin associates with DCC in a netrin-1-dependent manner. We demonstrate that netrin-1/DCC induces ERM phosphorylation and activation and that the phosphorylation of DCC is required in that context. Moreover, Src kinases and RhoA/Rho kinase activities mediate netrin-1-induced ERM phosphorylation in neurons. We also observed that phosphorylated ERM proteins accumulate in growth cone filopodia, where they colocalize with DCC upon netrin-1 stimulation. Finally, we show that loss of ezrin expression in cortical neurons significantly decreases axon outgrowth induced by netrin-1. Together, our findings demonstrate that netrin-1 induces the formation of an activated ERM/DCC complex in growth cone filopodia, which is required for netrin-1-dependent cortical axon outgrowth.
Collapse
|
31
|
Mourlevat S, Galizzi JP, Guigal-Stéphan N, Courtade-Gaïani S, Rolland-Valognes G, Rodriguez M, Barbet F, Bourrier C, Catesson S, Chomel A, Danober L, Villain N, Caignard DH, Pirotte B, Lestage P, Lockhart BP. Molecular characterization of the AMPA-receptor potentiator S70340 in rat primary cortical culture: Whole-genome expression profiling. Neurosci Res 2011; 70:349-60. [DOI: 10.1016/j.neures.2011.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
|
32
|
Huang H, Xiao Y, Lin H, Fu D, Zhan Z, Liang L, Yang X, Fan J, Ye Y, Sun L, Xu H. Increased phosphorylation of ezrin/radixin/moesin proteins contributes to proliferation of rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford) 2011; 50:1045-53. [PMID: 21278069 DOI: 10.1093/rheumatology/keq440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Increasing evidence indicates that ezrin/radixin/moesin (ERM) proteins may play a critical role in cell proliferation. This study examined the role of ERM proteins in proliferation of fibroblast-like synoviocytes (FLS) from patients with RA. METHODS Synovial tissues (STs) were obtained from 18 RA and 6 OA patients. The expression of ERM and its phosphorylated proteins in cultured FLS and ST was assessed by western blots or IF staining. Small interference RNA (siRNA)-mediated ERM knockdown was used to inhibit phosphorylation of ERM. Proliferation of FLS was measured by bromodeoxyuridine (BrdU) incorporation into cell DNA and by PCNA immunoblotting. RESULTS Our study showed that increased phosphorylation of ERM proteins was found in ST and FLS from patients with RA as compared with OA patients and non-arthritis controls. Treatment with TNF-α, IL-1β or PDGF-induced phosphorylation of ERM proteins in dose- and time-dependent manner by RA FLS, but did not affect the expression of total ERM protein. Rho kinase and p38MAPK signal pathways were involved in TNF-α-induced ERM phosphorylation. We further showed that inhibition of ERM phosphorylation by siRNA-mediated ERM knockdown suppressed TNF-α- or IL-1β-induced BrdU incorporation and PCNA expression in RA FLS. CONCLUSIONS This study provides the novel evidence that increased phosphorylation of ERM proteins may contribute to proliferation of RA FLS, suggesting that specific inhibition of ERM phosphorylation may be a new therapeutic approach for RA.
Collapse
Affiliation(s)
- Hongwei Huang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dächsel JC, Behrouz B, Yue M, Beevers JE, Melrose HL, Farrer MJ. A comparative study of Lrrk2 function in primary neuronal cultures. Parkinsonism Relat Disord 2010; 16:650-5. [PMID: 20850369 PMCID: PMC3159957 DOI: 10.1016/j.parkreldis.2010.08.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 07/29/2010] [Accepted: 08/24/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To assess the contribution of wild-type, mutant and loss of leucine-rich repeat kinase-2 (LRRK2; Lrrk2) on dendritic neuronal arborization. BACKGROUND LRRK2 mutations are recognized as the major genetic determinant of susceptibility to Parkinson's disease for which a cellular assay of Lrrk2 mutant function would facilitate the development of targeted molecular therapeutics. METHODS Dendritic neuronal arborization (neurite length, branching and the number of processes per cell) was quantified in primary hippocampal and midbrain cultures derived from five lines of recombinant LRRK2 mice, including human BAC wild-type and mutant overexpressors (Y1699C and G2019S), murine knock-out and G2019S knock-in animals. RESULTS Neuronal arborization in cultures from BAC Lrrk2 wild-type animals is comparable to non-transgenic littermate controls, despite high levels of human transgene expression. In contrast, primary neurons from both BAC mutant overexpressors presented with significantly reduced neuritic outgrowth and branching, although the total number of processes per cell remained comparable. The mutant-specific toxic gain-of-function observed in cultures from BAC mutant mice may be partially rescued by staurosporine treatment, a non-specific kinase inhibitor. In contrast, neuronal arborization is far more extensive in neuronal cultures derived from murine knock-out mice that lack endogenous Lrrk2 expression. In Lrrk2 G2019S knock-in mice, arguably the most physiologically relevant system, neuritic arborization is not impaired. CONCLUSIONS Impairment of neuritic arborization is an exaggerated, albeit mutant specific, consequence of Lrrk2 over-expression in primary cultures. The phenotype and assay described provides a means to develop therapeutic agents that modulate the toxic gain-of-function conferred by mutant Lrrk2.
Collapse
Affiliation(s)
- Justus C. Dächsel
- Division of Neurogenetics, Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Bahareh Behrouz
- Division of Neurogenetics, Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Mei Yue
- Division of Neurogenetics, Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Joel E. Beevers
- Division of Neurogenetics, Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Heather L. Melrose
- Division of Neurogenetics, Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Matthew J. Farrer
- Division of Neurogenetics, Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
- University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
34
|
Parisiadou L, Cai H. LRRK2 function on actin and microtubule dynamics in Parkinson disease. Commun Integr Biol 2010; 3:396-400. [PMID: 21057624 PMCID: PMC2974064 DOI: 10.4161/cib.3.5.12286] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/05/2010] [Indexed: 01/11/2023] Open
Abstract
The mutations in the LRRK2 gene cause clinically typical, late-onset Parkinson disease, strengthening the idea that the familial forms of the disease represent an important tool for the study of the idiopathic forms. Despite the great effort to describe and functionally characterize the LRRK2 gene product, its physiological role remains elusive. In this article, we will discuss along with other references, our recent findings that assigned a critical role of LRRK2 protein on cytosleketal dynamics and how this direction could provide a valuable platform to further appreciate the mechanism underlying LRRK2-mediated pathophysiology of the disease.
Collapse
Affiliation(s)
- Loukia Parisiadou
- Unit of Transgenesis; Laboratory of Neurogenetics; National Institute on Aging; National Institutes of Health; Bethesda, MD USA
| | | |
Collapse
|
35
|
Kim HS, Bae CD, Park J. Glutamate receptor-mediated phosphorylation of ezrin/radixin/moesin proteins is implicated in filopodial protrusion of primary cultured hippocampal neuronal cells. J Neurochem 2010; 113:1565-76. [PMID: 20367752 DOI: 10.1111/j.1471-4159.2010.06713.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Previously, we reported the phosphorylation of moesin induced by electroconvulsive shock in rat brain and by glutamate in immortalized rat hippocampal cells. However, the function of phosphorylated moesin in differentiated neurons is not well understood. In this study, we observed that glutamate induces phosphorylation of ezrin/radixin/moesin proteins (ERM) in cultured hippocampal cells and that phosphorylated ERM localizes at the newly formed filopodia of neurites. The glutamate-induced phosphorylation of ERM is calcium-dependent, and inhibition of protein kinase C abolishes ERM phosphorylation as well as RhoA activation. The inhibitions of RhoA and RhoA kinase also diminishes the glutamate-induced ERM phosphorylation in cultured hippocampal cells. The knock-down of moesin or the inhibition of ERM phosphorylation results in the reduction of glutamate-induced filopodia protrusion and diminishes the increase in active synaptic boutons induced by glutamate treatment. These results indicate that glutamate-induced phosphorylation of ERM proteins in primary cultured differentiated hippocampal neurons is mediated by calcium-dependent protein kinase C, RhoA and RhoA kinase, and the phosphorylated ERM protein is necessary for the formation of filopodial protrusion and may be involved in pre-synaptic trafficking.
Collapse
Affiliation(s)
- Han-Seop Kim
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | | |
Collapse
|
36
|
Persson A, Lindwall C, Curtis MA, Kuhn HG. Expression of ezrin radixin moesin proteins in the adult subventricular zone and the rostral migratory stream. Neuroscience 2010; 167:312-22. [PMID: 20109539 DOI: 10.1016/j.neuroscience.2010.01.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 12/24/2022]
Abstract
Continuous proliferation occurs in the adult subventricular zone (SVZ) of the lateral ventricles throughout life. In the SVZ, progenitor cells differentiate into neuroblasts, which migrate tangentially along the rostral migratory stream (RMS) to reach their final destination in the olfactory bulb. These progenitor cells mature and integrate into the existing neural network of the olfactory bulb. Long distance migration of neuroblasts in the RMS requires a highly dynamic cytoskeleton with the ability to respond to surrounding stimuli. Radixin is a member of the ERM (Ezrin, Radixin, Moesin) family, which connect the actin cytoskeleton to the extracellular matrix through transmembrane proteins. The membrane-cytoskeleton linker proteins of the ERM family may regulate cellular events with a high demand on cytoskeleton plasticity, such as cell motility. Recently, specific expression of the ERM protein ezrin was shown in the RMS. Radixin however has not been characterized in this region. Here we used immunohistochemistry and confocal microscopy to examine the expression of radixin in the different cell types of the adult subventricular zone niche and in the RMS. Our findings indicate that radixin is strongly expressed in neuroblasts of the adult RMS and subventricular zone, and also in Olig2-positive cells. We also demonstrate the presence of radixin in the cerebral cortex, striatum, cerebellum, thalamus, hippocampus as well as the granular and periglomerular layers of the olfactory bulb. Our studies also reveal the localization of radixin in neurosphere culture studies and we reveal the specificity of our labeling using Western blotting. The expression pattern demonstrated here suggests a role for radixin in neuronal migration and differentiation in the adult RMS. Understanding how adult neuronal migration is regulated is of importance for the development of new therapeutic interventions using endogenous repair for neurodegenerative diseases.
Collapse
Affiliation(s)
- A Persson
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
37
|
Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 2009; 29:13971-80. [PMID: 19890007 DOI: 10.1523/jneurosci.3799-09.2009] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) functions as a putative protein kinase of ezrin, radixin, and moesin (ERM) family proteins. A Parkinson's disease-related G2019S substitution in the kinase domain of LRRK2 further enhances the phosphorylation of ERM proteins. The phosphorylated ERM (pERM) proteins are restricted to the filopodia of growing neurites in which they tether filamentous actin (F-actin) to the cytoplasmic membrane and regulate the dynamics of filopodia protrusion. Here, we show that, in cultured neurons derived from LRRK2 G2019S transgenic mice, the number of pERM-positive and F-actin-enriched filopodia was significantly increased, and this correlates with the retardation of neurite outgrowth. Conversely, deletion of LRRK2, which lowered the pERM and F-actin contents in filopodia, promoted neurite outgrowth. Furthermore, inhibition of ERM phosphorylation or actin polymerization rescued the G2019S-dependent neuronal growth defects. These data support a model in which the G2019S mutation of LRRK2 causes a gain-of-function effect that perturbs the homeostasis of pERM and F-actin in sprouting neurites critical for neuronal morphogenesis.
Collapse
|
38
|
Krawetz R, Kelly GM. Coordinate Gα13 and Wnt6-β-catenin signaling in F9 embryonal carcinoma cells is required for primitive endoderm differentiation. Biochem Cell Biol 2009; 87:567-80. [DOI: 10.1139/o09-014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mouse F9 embryonal carcinoma cell line is ideally suited to study the epithelial-to-mesenchymal transition accompanying the differentiation of primitive to parietal extraembryonic endoderm. In F9 cells, the application of exogenous agents including retinoic acid or activation of signal transduction cascades downstream of G-proteins triggers widespread changes in gene expression and leads to the formation of primitive endoderm. The epithelial-to-mesenchymal transition is completed and parietal endoderm develops as of result of increasing PKA activity in primitive endoderm cells. Expression of a constitutively active form of Gα13(Q226L) is sufficient to induce F9 cells into parietal endoderm and a model is emerging that a signaling axis linking G-protein signaling to RhoA and the ERM protein moesin is required for differentiation. In this study, we found that expression of either p115RhoGEF or a constitutively active, GTPase-deficient form of RhoA(L63) promoted primitive, but not parietal, endoderm formation. The overexpression of Gα13(Q226L) or p115RhoGEF, but not Rho(L63), caused β-catenin to translocate to the nucleus. Surprisingly, the stimulation of the Wnt-β-catenin pathway was accompanied by nuclear β-catenin and primitive endoderm formation, even when a dominant negative was used to block the signaling axis at the level of p115RhoGEF or when ROCK activity was inhibited using the pharmacological agent Y-27632. Together, results indicate that the coordinate signaling by two independent pathways, one involving canonical Wnt-β-catenin activation of target genes and the other with Gα13 signaling to ERM proteins to modulate cytoarchitectural changes, is required during the retinoic acid induced differentiation of F9 cells to primitive endoderm.
Collapse
Affiliation(s)
- Roman Krawetz
- Department of Biology, Molecular Genetics Unit, University of Western Ontario, London, ON N6A 5B7, Canada
- Child Health Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, University of Western Ontario, London, ON N6A 5B7, Canada
- Child Health Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
39
|
Kim WY, Shin SR, Kim S, Jeon S, Kim JH. Cocaine regulates ezrin-radixin-moesin proteins and RhoA signaling in the nucleus accumbens. Neuroscience 2009; 163:501-5. [PMID: 19580848 DOI: 10.1016/j.neuroscience.2009.06.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 06/28/2009] [Accepted: 06/30/2009] [Indexed: 12/18/2022]
Abstract
The ezrin-radixin-moesin (ERM) proteins are a family of widely distributed membrane-associated proteins and have been implicated not only in cell-shape determination but also in signaling pathway. The nucleus accumbens (NAcc) is an important neuronal substrate mediating the effects of drugs of abuse. However, it has not been determined yet how ERM proteins are regulated in this site by drugs of abuse. Here we show in rat that the phosphorylation levels of ERM protein are dose- and time-dependently decreased in the NAcc by a single injection of cocaine (15 or 30 mg/kg i.p.). Further, we show that the amount of active RhoA, a small GTPase protein, is significantly reduced in the NAcc by cocaine, while the phosphorylation levels of ERM protein are also decreased by bilateral microinjections in this site of the Rho kinase inhibitors. Together, these results suggest that cocaine reduces phosphorylated ERM levels in the NAcc by making downregulation of RhoA-Rho kinase signaling, which may importantly contribute to initiate synaptic changes in this site leading to drug addiction.
Collapse
Affiliation(s)
- W Y Kim
- Department of Physiology, Brain Korea 21 Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemungu, Seoul 120-752, South Korea
| | | | | | | | | |
Collapse
|
40
|
ten Klooster JP, Jansen M, Yuan J, Oorschot V, Begthel H, Di Giacomo V, Colland F, de Koning J, Maurice MM, Hornbeck P, Clevers H. Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex. Dev Cell 2009; 16:551-62. [PMID: 19386264 DOI: 10.1016/j.devcel.2009.01.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 01/02/2009] [Accepted: 01/26/2009] [Indexed: 11/15/2022]
Abstract
The human Lkb1 kinase, encoded by the ortholog of the invertebrate Par4 polarity gene, is mutated in Peutz-Jeghers cancer syndrome. Lkb1 activity requires complex formation with the pseudokinase Strad and the adaptor protein Mo25. The complex can induce complete polarization in a single isolated intestinal epithelial cell. We describe an interaction between Mo25alpha and a human serine/threonine kinase termed Mst4. A homologous interaction occurs in the yeast Schizosaccharomyces pombe in the control of polar tip growth. Human Mst4 translocates from the Golgi to the subapical membrane compartment upon activation of Lkb1. Inhibition of Mst4 activity inhibits Lkb1-induced brush border formation, whereas other aspects of polarity such as the formation of lateral junctions remain unaffected. As an essential event in brush border formation, Mst4 phosphorylates the regulatory T567 residue of Ezrin. These data define a brush border induction pathway downstream of the Lkb1/Strad/Mo25 polarization complex, yet separate from other polarity events.
Collapse
|
41
|
Abstract
The central component in the road trip of axon guidance is the growth cone, a dynamic structure that is located at the tip of the growing axon. During its journey, the growth cone comprises both 'vehicle' and 'navigator'. Whereas the 'vehicle' maintains growth cone movement and contains the cytoskeletal structural elements of its framework, a motor to move forward and a mechanism to provide traction on the 'road', the 'navigator' aspect guides this system with spatial bias to translate environmental signals into directional movement. The understanding of the functions and regulation of the vehicle and navigator provides new insights into the cell biology of growth cone guidance.
Collapse
|
42
|
Tobet S, Knoll JG, Hartshorn C, Aurand E, Stratton M, Kumar P, Searcy B, McClellan K. Brain sex differences and hormone influences: a moving experience? J Neuroendocrinol 2009; 21:387-92. [PMID: 19207813 PMCID: PMC2669491 DOI: 10.1111/j.1365-2826.2009.01834.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sex differences in the nervous system come in many forms. Although a majority of sexually dimorphic characteristics in the brain have been described in older animals, mechanisms that determine sexually differentiated brain characteristics often operate during critical perinatal periods. Both genetic and hormonal factors likely contribute to physiological mechanisms in development to generate the ontogeny of sexual dimorphisms in brain. Relevant mechanisms may include neurogenesis, cell migration, cell differentiation, cell death, axon guidance and synaptogenesis. On a molecular level, there are several ways to categorize factors that drive brain development. These range from the actions of transcription factors in cell nuclei that regulate the expression of genes that control cell development and differentiation, to effector molecules that directly contribute to signalling from one cell to another. In addition, several peptides or proteins in these and other categories might be referred to as 'biomarkers' of sexual differentiation with undetermined functions in development or adulthood. Although a majority of sex differences are revealed as a direct consequence of hormone actions, some may only be revealed after genetic or environmental disruption. Sex differences in cell positions in the developing hypothalamus, and steroid hormone influences on cell movements in vitro, suggest that cell migration may be one target for early molecular actions that impact brain development and sexual differentiation.
Collapse
Affiliation(s)
- S Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Myung JK, Shim KS, Li L, Höger H, Lubec G. Developmental Brain Protein Level Changes in the C57BL/6J Mouse. J Proteome Res 2009; 8:1207-19. [DOI: 10.1021/pr800990x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jae-Kyung Myung
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria, and Institute for Animal Genetics, Medical University of Vienna, Himberg, Austria
| | - Ki Shuk Shim
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria, and Institute for Animal Genetics, Medical University of Vienna, Himberg, Austria
| | - Lin Li
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria, and Institute for Animal Genetics, Medical University of Vienna, Himberg, Austria
| | - Harald Höger
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria, and Institute for Animal Genetics, Medical University of Vienna, Himberg, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria, and Institute for Animal Genetics, Medical University of Vienna, Himberg, Austria
| |
Collapse
|
44
|
Mintz CD, Carcea I, McNickle DG, Dickson TC, Ge Y, Salton SR, Benson DL. ERM proteins regulate growth cone responses to Sema3A. J Comp Neurol 2008; 510:351-66. [PMID: 18651636 PMCID: PMC2691689 DOI: 10.1002/cne.21799] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Axonal growth cones initiate and sustain directed growth in response to cues in their environment. A variety of events such as receptor internalization, kinase activation, and actin rearrangement can be stimulated by guidance cues and are essential for mediating targeted growth cone behavior. Surprisingly little is known about how such disparate actions are coordinated. Our data suggest that ezrin, radixin, and moesin (ERMs), a family of highly homologous, multifunctional proteins may be able to coordinate growth cone responses to the guidance cue Semaphorin 3A (Sema3A). We show that active ERMs concentrate asymmetrically in neocortical growth cones, are rapidly and transiently inactivated by Sema3A, and are required for Sema3A-mediated growth cone collapse and guidance. The FERM domain of active ERMs regulates internalization of the Sema3A receptor, Npn1, and its coreceptor, L1CAM, while the ERM C-terminal domain binds and caps F-actin. Our data support a model in which ERMs can coordinate membrane and actin dynamics in response to Sema3A.
Collapse
Affiliation(s)
- C. David Mintz
- Fishberg Department of Neuroscience, The Mount Sinai School of Medicine, New York, NY, 10029, U.S.A
| | - Ioana Carcea
- Fishberg Department of Neuroscience, The Mount Sinai School of Medicine, New York, NY, 10029, U.S.A
| | - Daniel G. McNickle
- Fishberg Department of Neuroscience, The Mount Sinai School of Medicine, New York, NY, 10029, U.S.A
| | - Tracey C. Dickson
- Menzies Research Institute, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Yongchao Ge
- Department of Neurology, The Mount Sinai School of Medicine, New York, NY, 10029, U.S.A
| | - Stephen R.J. Salton
- Fishberg Department of Neuroscience, The Mount Sinai School of Medicine, New York, NY, 10029, U.S.A
- Department of Geriatrics, The Mount Sinai School of Medicine, New York, NY, 10029, U.S.A
| | - Deanna L. Benson
- Fishberg Department of Neuroscience, The Mount Sinai School of Medicine, New York, NY, 10029, U.S.A
| |
Collapse
|
45
|
Gallo G. Semaphorin 3A inhibits ERM protein phosphorylation in growth cone filopodia through inactivation of PI3K. Dev Neurobiol 2008; 68:926-33. [PMID: 18327764 DOI: 10.1002/dneu.20631] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ezrin-radixin-moesin (ERM) proteins are involved in the linkage of membranes to theactin filament (F-actin) cytoskeleton. Phosphorylation of the C-terminus activates the F-actin binding domain of ERM proteins by preventing the action of an autoinhibitory domain. In this study, we investigated whether a growth cone collapsing signal, semaphorin 3A (Sema3A), alters the state of ERM C-terminus phosphorylation. In the growth cones of dorsal root ganglion axons, phosphorylated ERM proteins localize to filopodia. We report that Sema3A inhibits ERM protein phosphorylation in growth cone filopodia. Significantly, Sema3A decreased ERM phosphorylation prior to the onset of growth cone collapse. Over-expression of the F-actin binding fragment of ERM proteins, which competes with endogenous ERM proteins for binding to F-actin, inhibited filopodial initiation and dynamics. Sema3A has been previously shown to inhibit phosphoinositide 3-kinase (PI3K) activity. Inhibition of PI3K resulted in the loss of phosphorylated ERM proteins from growth cone filopodia, and treatment with a PI3K activating peptide blocked the effects of Sema3A on ERM phosphorylation. Collectively, these observations demonstrate that inactivation of PI3K in response to Sema3A results in decreased phosphorylation of ERM proteins in filopodia thereby contributing to growth cone collapse.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.
| |
Collapse
|
46
|
Seabrooke S, Stewart BA. Moesin helps to restrain synaptic growth at the Drosophila neuromuscular junction. Dev Neurobiol 2008; 68:379-91. [PMID: 18161855 DOI: 10.1002/dneu.20595] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The precise role of actin and actin-binding proteins in synaptic development is unclear. In Drosophila, overexpression of a dominant-negative NSF2 construct perturbs filamentous actin, which is associated with overgrowth of the NMJ, while co-expression of moesin, which encodes an actin binding protein, suppresses this overgrowth phenotype. These data suggest that Moesin may play a role in synaptic development at the Drosophila NMJ. To further investigate this possibility, we examined the influence of loss-of-function moesin alleles on the NSF2-induced overgrowth phenotype. We found that flies carrying P-element insertions that reduce moesin expression enhanced the NMJ overgrowth phenotype, indicating a role for Moesin in normal NMJ morphology. In addition to the NMJ overgrowth phenotype, expression of dominant-negative NSF2 is known to reduce the frequency of miniature excitatory junctional potentials and the amplitude of excitatory junctional potentials. We found that moesin coexpression did not restore the physiology of the mutant NSF2 phenotype. Together, our results demonstrate a role for moesin in regulating synaptic growth in the Drosophila NMJ and suggest that the effect of dominant-negative NSF2 on NMJ morphology and physiology may have different underlying molecular origins.
Collapse
Affiliation(s)
- Sara Seabrooke
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | | |
Collapse
|
47
|
Wald FA, Oriolo AS, Mashukova A, Fregien NL, Langshaw AH, Salas PJ. Atypical protein kinase C (iota) activates ezrin in the apical domain of intestinal epithelial cells. J Cell Sci 2008; 121:644-54. [PMID: 18270268 PMCID: PMC2293289 DOI: 10.1242/jcs.016246] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Atypical protein kinase iota (PKCiota) is a key organizer of the apical domain in epithelial cells. Ezrin is a cytosolic protein that, upon activation by phosphorylation of T567, is localized under the apical membrane where it connects actin filaments to membrane proteins and recruits protein kinase A (PKA). To identify the kinase that phosphorylates ezrin T567 in simple epithelia, we analyzed the expression of active PKC and the appearance of T567-P during enterocyte differentiation in vivo. PKCiota phosphorylated ezrin on T567 in vitro, and in Sf9 cells that do not activate human ezrin. In CACO-2 human intestinal cells in culture, PKCiota co-immunoprecipitated with ezrin and was knocked down by shRNA expression. The resulting phenotype showed a modest decrease in total ezrin, but a steep decrease in T567 phosphorylation. The PKCiota-depleted cells showed fewer and shorter microvilli and redistribution of the PKA regulatory subunit. Expression of a dominant-negative form of PKCiota also decreased T567-P signal, and expression of a constitutively active PKCiota mutant showed depolarized distribution of T567-P. We conclude that, although other molecular mechanisms contribute to ezrin activation, apically localized phosphorylation by PKCiota is essential for the activation and normal distribution of ezrin at the early stages of intestinal epithelial cell differentiation.
Collapse
Affiliation(s)
- Flavia A. Wald
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, RMSB 4090 - R124, 1600 NW 10th Avenue, Miami, FL 33135
| | - Andrea S. Oriolo
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, RMSB 4090 - R124, 1600 NW 10th Avenue, Miami, FL 33135
| | - Anastasia Mashukova
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, RMSB 4090 - R124, 1600 NW 10th Avenue, Miami, FL 33135
| | - Nevis L. Fregien
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, RMSB 4090 - R124, 1600 NW 10th Avenue, Miami, FL 33135
| | - Amber H. Langshaw
- Department of Pediatrics, University of Miami Miller School of Medicine, RMSB 4090 - R124, 1600 NW 10th Avenue, Miami, FL 33135
| | - Pedro J.I. Salas
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, RMSB 4090 - R124, 1600 NW 10th Avenue, Miami, FL 33135
| |
Collapse
|
48
|
Charafe-Jauffret E, Monville F, Bertucci F, Esterni B, Ginestier C, Finetti P, Cervera N, Geneix J, Hassanein M, Rabayrol L, Sobol H, Taranger-Charpin C, Xerri L, Viens P, Birnbaum D, Jacquemier J. Moesin expression is a marker of basal breast carcinomas. Int J Cancer 2007; 121:1779-85. [PMID: 17594689 DOI: 10.1002/ijc.22923] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Basal breast cancers (BBCs) have a high risk of metastasis, recurrence and death. Formal subtype definition relies on gene expression but can be approximated by protein expression. New markers are needed to help in the management of the basal subtype of breast cancer. In a previous transcriptional analysis of breast cell lines we found that Moesin expression was a potential basal marker. We show here that Moesin protein expression is a basal marker in breast tumors. In a tissue microarray (TMA) containing 547 sporadic breast cancers, of which 108 were profiled for gene expression, Moesin was expressed in 31% of all tumors and in 82% of the basal tumors. To confirm that Moesin expression remained associated with the basal phenotype in specific types of BBCs, we analyzed Moesin expression in 2 other TMAs containing 40 medullary breast cancers (MBCs) and 27 BRCA1-associated breast cancers (BRCA1-BCs), respectively. Moesin was strongly expressed in MBCs (87%; p = 2.4 x 10(-5)) and in BRCA1-BCs (58%; p = 1.3 x 10(-5)) as compared with non-MBCs and sporadic cases. Moesin-expressing tumors display features of BBCs, such as high proliferation rate, hormone receptors negativity, expression of putative basal/myoepithelial markers (CAV1, CD10, CK5/6, CK14, EGFR, P53, P-cadherin and SMA). Survival analysis showed a reduced specific survival and metastasis-free survival in Moesin-expressing tumors by log-rank test (p(SS) = 0.014 and p(MFS) = 0.014). In multivariate analysis, Moesin expression was nearly an independent prognostic marker of poor outcome as shown by Cox proportional hazard model in patients without lymph node metastasis (p = 0.052, HR = 2.38, CI 95[0.99-5.69]).
Collapse
Affiliation(s)
- Emmanuelle Charafe-Jauffret
- Laboratory of Molecular Oncology, Marseille Cancer Research Institute, UMR599 Inserm/Institut Paoli-Calmettes, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|