1
|
Lee SH, Mak A, Verheijen MHG. Comparative assessment of the effects of DREADDs and endogenously expressed GPCRs in hippocampal astrocytes on synaptic activity and memory. Front Cell Neurosci 2023; 17:1159756. [PMID: 37051110 PMCID: PMC10083367 DOI: 10.3389/fncel.2023.1159756] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have proven themselves as one of the key in vivo techniques of modern neuroscience, allowing for unprecedented access to cellular manipulations in living animals. With respect to astrocyte research, DREADDs have become a popular method to examine the functional aspects of astrocyte activity, particularly G-protein coupled receptor (GPCR)-mediated intracellular calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) dynamics. With this method it has become possible to directly link the physiological aspects of astrocytic function to cognitive processes such as memory. As a result, a multitude of studies have explored the impact of DREADD activation in astrocytes on synaptic activity and memory. However, the emergence of varying results prompts us to reconsider the degree to which DREADDs expressed in astrocytes accurately mimic endogenous GPCR activity. Here we compare the major downstream signaling mechanisms, synaptic, and behavioral effects of stimulating Gq-, Gs-, and Gi-DREADDs in hippocampal astrocytes of adult mice to those of endogenously expressed GPCRs.
Collapse
Affiliation(s)
- Sophie H. Lee
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Research Master’s Programme Brain and Cognitive Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Aline Mak
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mark H. G. Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Mark Verheijen,
| |
Collapse
|
2
|
Zhao YF, Verkhratsky A, Tang Y, Illes P. Astrocytes and major depression: The purinergic avenue. Neuropharmacology 2022; 220:109252. [PMID: 36122663 DOI: 10.1016/j.neuropharm.2022.109252] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric illnesses worldwide which impairs the social functioning of the afflicted patients. Astrocytes promote homeostasis of the CNS and provide defense against various types of harmful influences. Increasing evidence suggests that the number, morphology and function of astrocytes are deteriorated in the depressed brain and the malfunction of the astrocytic purinergic system appears to participate in the pathophysiology of MDD. Adenosine 5'-triphosphate (ATP) released from astrocytes modulates depressive-like behavior in animal models and probably also clinical depression in patients. Astrocytes possess purinergic receptors, such as adenosine A2A receptors (Rs), and P2X7, P2Y1, and P2Y11Rs, which mediate neuroinflammation, neuro(glio)transmission, and synaptic plasticity in depression-relevant areas of the brain (e.g. medial prefrontal cortex, hippocampus, amygdala nuclei). By contrast, astrocytic A1Rs are neuroprotective and immunosuppressive. In the present review, we shall discuss the release of purines from astrocytes, and the expression/function of astrocytic purinergic receptors. Subsequently, we shall review in more detail novel evidence indicating that the dysregulation of astrocytic purinergic signaling actively contributes to the pathophysiology of depression and shall discuss possible therapeutic options based on knowledge recently acquired in this field.
Collapse
Affiliation(s)
- Y F Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - A Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PL, UK; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT, 01102, Vilnius, Lithuania
| | - Y Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - P Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
3
|
Castillo CA, Ballesteros-Yáñez I, León-Navarro DA, Albasanz JL, Martín M. Early Effects of the Soluble Amyloid β 25-35 Peptide in Rat Cortical Neurons: Modulation of Signal Transduction Mediated by Adenosine and Group I Metabotropic Glutamate Receptors. Int J Mol Sci 2021; 22:ijms22126577. [PMID: 34205261 PMCID: PMC8234864 DOI: 10.3390/ijms22126577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
The amyloid β peptide (Aβ) is a central player in the neuropathology of Alzheimer’s disease (AD). The alteration of Aβ homeostasis may impact the fine-tuning of cell signaling from the very beginning of the disease, when amyloid plaque is not deposited yet. For this reason, primary culture of rat cortical neurons was exposed to Aβ25-35, a non-oligomerizable form of Aβ. Cell viability, metabotropic glutamate receptors (mGluR) and adenosine receptors (AR) expression and signalling were assessed. Aβ25-35 increased mGluR density and affinity, mainly due to a higher gene expression and protein presence of Group I mGluR (mGluR1 and mGluR5) in the membrane of cortical neurons. Intriguingly, the main effector of group I mGluR, the phospholipase C β1 isoform, was less responsive. Also, the inhibitory action of group II and group III mGluR on adenylate cyclase (AC) activity was unaltered or increased, respectively. Interestingly, pre-treatment of cortical neurons with an antagonist of group I mGluR reduced the Aβ25-35-induced cell death. Besides, Aβ25-35 increased the density of A1R and A2AR, along with an increase in their gene expression. However, while A1R-mediated AC inhibition was increased, the A2AR-mediated stimulation of AC remained unchanged. Therefore, one of the early events that takes place after Aβ25-35 exposure is the up-regulation of adenosine A1R, A2AR, and group I mGluR, and the different impacts on their corresponding signaling pathways. These results emphasize the importance of deciphering the early events and the possible involvement of metabotropic glutamate and adenosine receptors in AD physiopathology.
Collapse
Affiliation(s)
- Carlos Alberto Castillo
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Physiotherapy and Nursing, University of Castilla-La Mancha, 45071 Toledo, Spain;
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
| | - Inmaculada Ballesteros-Yáñez
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, School of Medicine of Ciudad Real, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - David Agustín León-Navarro
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, Faculty of Chemical and Technological Sciences, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José Luis Albasanz
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, School of Medicine of Ciudad Real, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence:
| | - Mairena Martín
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, Faculty of Chemical and Technological Sciences, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
4
|
Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine. J Neurosci 2012; 32:2683-95. [PMID: 22357852 DOI: 10.1523/jneurosci.4125-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endogenous adenosine is an essential protective agent against neural damage by various insults to the brain. However, the therapeutic potential of adenosine receptor-directed ligands for neuroprotection is offset by side effects in peripheral tissues and organs. An increase in adenosine receptor responsiveness to endogenous adenosine would enhance neuroprotection while avoiding the confounding effects of exogenous ligands. Here we report novel regulation of adenosine-evoked responses by a neural tissue-specific protein, neurabin. Neurabin attenuated adenosine A(1) receptor (A1R) signaling by assembling a complex between the A1R and the regulator of G-protein signaling 4 (RGS4), a protein known to turn off G-protein signaling. Inactivation of the neurabin gene enhanced A1R signaling and promoted the protective effect of adenosine against excitotoxic seizure and neuronal death in mice. Furthermore, administration of a small molecule inhibitor of RGS4 significantly attenuated seizure severity in mice. Notably, the dose of kainate capable of inducing an ∼50% rate of death in wild-type (WT) mice did not affect neurabin-null mice or WT mice cotreated with an RGS4 inhibitor. The enhanced anti-seizure and neuroprotective effect achieved by disruption of the A1R/neurabin/RGS4 complex is elicited by the on-site and on-demand release of endogenous adenosine, and does not require administration of A1R ligands. These data identify neurabin-RGS4 as a novel tissue-selective regulatory mechanism for fine-tuning adenosine receptor function in the nervous system. Moreover, these findings implicate the A1R/neurabin/RGS4 complex as a valid therapeutic target for specifically manipulating the neuroprotective effects of endogenous adenosine.
Collapse
|
5
|
Desensitization of adenosine A(1) receptors in rat immature cortical neurons. Eur J Pharmacol 2011; 670:365-71. [PMID: 21946103 DOI: 10.1016/j.ejphar.2011.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 09/05/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022]
Abstract
Adenosine plays an important neuroprotective role in brain, usually mediated by the activation of adenosine A₁ receptors. Prolonged activation of a G-protein-coupled receptor generally leads to the partial loss of the responsiveness of receptor-mediated transduction pathways (desensitization). Rat immature cortical neurons were treated with 100 nM⁻N⁶-phenylisopropyladenosine (R-PIA), a selective A₁ receptor agonist, and the effect on adenosine A₁ receptor/adenylyl cyclase pathway was studied. Incubation with R-PIA for 6, 12, 24 and 48 h elicited a time-dependent decrease in adenosine A₁ receptors in plasma membranes (92, 58, 43 and 26% of control, respectively), which was associated with variations in microsomal fraction (21, 56, 124 and 233% of control, respectively), suggesting the internalization and down-regulation of adenosine A₁ receptors. Moreover, real-time PCR assays showed a significant increase in mRNA levels coding adenosine A₁ receptor after the longest treatment period (48 h). In addition, αGi₁₋₂ protein levels detected in microsomes and mRNA levels coding αGi₁ protein were increased after 48 h of treatment with R-PIA, suggesting the synthesis of new αGi₁ proteins. Finally, adenylyl cyclase inhibition elicited by 2-Chloro-N6-cyclopentyladenosine (CPA), a selective adenosine A₁ receptor agonist, was significantly reduced after 12, 24 and 48h of treatment (37, 24 and 23%, respectively) as compared to controls (54%), suggesting the desensitization of adenosine A₁ receptor/adenylyl cyclase pathway. These results suggest that adenosine A₁ receptors desensitize slowly after prolonged receptor activation in immature cortical neurons, showing mechanisms of desensitization similar to those described not only in fetal but also in adult rat brain.
Collapse
|
6
|
Maddox SA, Monsey MS, Schafe GE. Early growth response gene 1 (Egr-1) is required for new and reactivated fear memories in the lateral amygdala. Learn Mem 2011; 18:24-38. [PMID: 21177377 PMCID: PMC3023969 DOI: 10.1101/lm.1980211] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/13/2010] [Indexed: 01/16/2023]
Abstract
The immediate-early gene early growth response gene-1 (EGR-1, zif-268) has been extensively studied in synaptic plasticity and memory formation in a variety of memory systems. However, a convincing role for EGR-1 in amygdala-dependent memory consolidation processes has yet to emerge. In the present study, we have examined the role of EGR-1 in the consolidation and reconsolidation of amygdala-dependent auditory Pavlovian fear conditioning. In our first series of experiments, we show that EGR-1 is regulated following auditory fear conditioning in the lateral nucleus of the amygdala (LA). Next, we use antisense oligodeoxynucleotide (ODN) knockdown of EGR-1 in the LA to show that training-induced expression of EGR-1 is required for memory consolidation of auditory fear conditioning; that is, long-term memory (LTM) is significantly impaired while acquisition and short-term memory (STM) are intact. In a second set of experiments, we show that EGR-1 is regulated in the LA by retrieval of an auditory fear memory. We then show that retrieval-induced expression of EGR-1 in the LA is required for memory reconsolidation of auditory fear conditioning; that is, post-retrieval (PR)-LTM is significantly impaired while memory retrieval and PR-STM are intact. Additional experiments show these effects to be restricted to the LA, to be temporally graded, and unlikely to be due to nonspecific toxicity within the LA. Collectively, our findings strongly implicate a role for EGR-1 in both the initial consolidation and in the reconsolidation of auditory fear memories in the LA.
Collapse
Affiliation(s)
- Stephanie A. Maddox
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | - Melissa S. Monsey
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | - Glenn E. Schafe
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
7
|
Castillo CA, León D, Ruiz MA, Albasanz JL, Martín M. Modulation of adenosine A1 and A2A receptors in C6 glioma cells during hypoxia: involvement of endogenous adenosine. J Neurochem 2010; 105:2315-29. [PMID: 18315561 DOI: 10.1111/j.1471-4159.2008.05314.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During hypoxia, extracellular adenosine levels are increased to prevent cell damage, playing a neuroprotective role mainly through adenosine A(1) receptors. The aim of the present study was to analyze the effect of hypoxia in both adenosine A(1) and A(2A) receptors endogenously expressed in C6 glioma cells. Two hours of hypoxia (5% O(2)) caused a significant decrease in adenosine A(1) receptors. The same effect was observed at 6 h and 24 h of hypoxia. However, adenosine A(2A) receptors were significantly increased at the same times. These effects were not due to hypoxia-induced alterations in cells number or viability. Changes in receptor density were not associated with variations in the rate of gene expression. Furthermore, hypoxia did not alter HIF-1alpha expression in C6 cells. However, HIF-3alpha, CREB and CREM were decreased. Adenosine A(1) and A(2A) receptor density in normoxic C6 cells treated with adenosine for 2, 6 and 24 h was similar to that observed in cells after oxygen deprivation. When C6 cells were subjected to hypoxia in the presence of adenosine deaminase, the density of receptors was not significantly modulated. Moreover, DPCPX, an A(1) receptor antagonist, blocked the effects of hypoxia on these receptors, while ZM241385, an A(2A) receptor antagonist, was unable to prevent these changes. These results suggest that moderate hypoxia modulates adenosine receptors and cAMP response elements in glial cells, through a mechanism in which endogenous adenosine and tonic A(1) receptor activation is involved.
Collapse
Affiliation(s)
- Carlos A Castillo
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | | | | | | |
Collapse
|
8
|
Castillo CA, León DA, Ballesteros-Yáñez I, Albasanz JL, Martín M. Glutamate differently modulates excitatory and inhibitory adenosine receptors in neuronal and glial cells. Neurochem Int 2010; 57:33-42. [PMID: 20399823 DOI: 10.1016/j.neuint.2010.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/31/2010] [Accepted: 04/03/2010] [Indexed: 12/20/2022]
Abstract
Adenosine is a neuromodulator which acts through adenosine receptors regulating functions such as inhibition of glutamate release. Adenosine A(1) and A(2A) receptor activations most often regulate opposing actions. Primary rat cortical neurons and rat C6 cells, an astrocytic derived cell line, were exposed to 100muM l-glutamate, and cell viability and transduction pathways mediated by both A(1) and A(2A) receptors were analyzed. Glutamate-induced excitotoxic damage was found only in cortical neurons, with C6 cells preserved. In C6 cells, adenosine A(1) and A(2A) receptors were increased and decreased, respectively. Consequently, A(1)-mediated adenylyl cyclase inhibition and A(2A)-mediated adenylyl cyclase stimulation were, respectively, increased and decreased after glutamate exposure. In cortical neurons, glutamate treatment increased both A(1) and A(2A) receptors. Moreover, adenylyl cyclase responsiveness to A(1) or A(2A) receptor agonists was heightened in these cells, in which pharmacological activation of AC induced cell death. Finally, activation of A(1) receptor or blockade of A(2A) receptor during glutamate treatment partially prevented the glutamate-induced cell death detected in cultured cortical neurons. Results show that adenosine receptors are regulated by glutamate, and that this regulation is dependent on the cell type, suggesting that adenosine receptors might be promising targets in the therapy against excitotoxic cell death.
Collapse
Affiliation(s)
- Carlos Alberto Castillo
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias Químicas, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha (UCLM), Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | | | | | | | | |
Collapse
|
9
|
Glutamate differently modulates metabotropic glutamate receptors in neuronal and glial cells. Neurochem Res 2010; 35:1050-63. [PMID: 20309728 DOI: 10.1007/s11064-010-0154-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2010] [Indexed: 12/17/2022]
Abstract
Glutamate is an excitatory neurotransmitter implicated in learning and memory processes, but at high concentrations it acts as an excitotoxin causing degeneration and neuronal death. The aim of this work was to determine the excitotoxic effect of glutamate and the regulation of metabotropic glutamate receptors (mGluR) during excitotoxicity in neurons and C6 glioma cells. Results show that glutamate causes excitotoxic damage only in cortical neurons. Loss of cell viability in neurons was glutamate concentration- and time-dependent. Total mGluR levels were significantly reduced in these cells when exposed to glutamate. However, in C6 cells, which have been used as a model of glial cells, these receptors were regulated in a biphasic manner, decreased after 6 h, and increased after 24/48 h of treatment. Results show a cell dependent mGluR regulation by glutamate exposure which could mediate the vulnerability or not to glutamate mediated excitotoxicity.
Collapse
|
10
|
Castillo CA, Albasanz JL, Fernández M, Martín M. Endogenous Expression of Adenosine A1, A2 and A3 Receptors in Rat C6 Glioma Cells. Neurochem Res 2007; 32:1056-70. [PMID: 17401671 DOI: 10.1007/s11064-006-9273-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
Inhibitory and stimulatory adenosine receptors have been identified and characterized in both membranes and intact rat C6 glioma cells. In membranes, saturation experiment performed with [(3)H]DPCPX, selective A(1)R antagonist, revealed a single binding site with a K (D) = 9.4 +/- 1.4 nM and B (max) = 62.7 +/- 8.6 fmol/mg protein. Binding of [(3)H]DPCPX in intact cell revealed a K (D) = 17.7 +/- 1.3 nM and B (max )= 567.1 +/- 26.5 fmol/mg protein. On the other hand, [(3)H]ZM241385 binding experiments revealed a single binding site population of receptors with K (D) = 16.5 +/- 1.3 nM and B (max) = 358.9 +/- 52.4 fmol/mg protein in intact cells, and K (D) = 4.7 +/- 0.6 nM and B (max) = 74.3 +/- 7.9 fmol/mg protein in plasma membranes, suggesting the presence of A(2A) receptor in C6 cells. A(1), A(2A), A(2B) and A(3 )adenosine receptors were detected by Western-blotting and immunocytochemistry, and their mRNAs quantified by real time PCR assays. Gialpha and Gsalpha proteins were also detected by Western-blotting and RT-PCR assays. Furthermore, selective A(1)R agonists inhibited forskolin- and GTP-stimulated adenylyl cyclase activity and CGS 21680 and NECA stimulated this enzymatic activity in C6 cells. These results suggest that C6 glioma cells endogenously express A(1) and A(2) receptors functionally coupled to adenylyl cyclase inhibition and stimulation, respectively, and suggest these cells as a model to study the role of adenosine receptors in tumoral cells.
Collapse
Affiliation(s)
- Carlos Alberto Castillo
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | | | | |
Collapse
|
11
|
Trincavelli ML, Marroni M, Tuscano D, Ceruti S, Mazzola A, Mitro N, Abbracchio MP, Martini C. Regulation of A2B adenosine receptor functioning by tumour necrosis factor a in human astroglial cells. J Neurochem 2005; 91:1180-90. [PMID: 15569261 DOI: 10.1111/j.1471-4159.2004.02793.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-affinity A2B adenosine receptors (A2B ARs), which are expressed in astrocytes, are mainly activated during brain hypoxia and ischaemia, when large amounts of adenosine are released. Cytokines, which are also produced at high levels under these conditions, may regulate receptor responsiveness. In the present study, we detected A2B AR in human astrocytoma cells (ADF) by both immunoblotting and real-time PCR. Functional studies showed that the receptor stimulated adenylyl cyclase through Gs proteins. Moreover, A2B ARs were phosphorylated and desensitized following stimulation of the receptors with high agonist concentration. Tumour necrosis factor alpha (TNF-alpha) treatment (24- h) increased A2B AR functional response and receptor G protein coupling, without any changes in receptor protein and mRNA levels. TNF-alpha markedly reduced agonist-dependent receptor phosphorylation on threonine residues and attenuated agonist-mediated A2B ARs desensitization. In the presence of TNF-alpha, A2B AR stimulation in vitro induced the elongation of astrocytic processes, a typical morphological hallmark of in vivo reactive astrogliosis. This event was completely prevented by the selective A2B AR antagonist MRS 1706 and required the presence of TNF-alpha. These results suggest that, in ADF cells, TNF-alpha selectively modulates A2B AR coupling to G proteins and receptor functional response, providing new insights to clarify the pathophysiological role of A2B AR in response to brain damage.
Collapse
Affiliation(s)
- Maria L Trincavelli
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Allaman I, Lengacher S, Magistretti PJ, Pellerin L. A2B receptor activation promotes glycogen synthesis in astrocytes through modulation of gene expression. Am J Physiol Cell Physiol 2003; 284:C696-704. [PMID: 12421692 DOI: 10.1152/ajpcell.00202.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine has been proposed as a key factor regulating the metabolic balance between energy supply and demand in the central nervous system. Because astrocytes represent an important cellular element in the control of brain energy metabolism, we investigated whether adenosine could induce long-term changes of glycogen levels in primary cultures of mouse cortical astrocytes. We observed that adenosine increased glycogen content, up to 300%, in a time- (maximum at 8 h) and concentration-dependent manner with an EC(50) of 9.69 microM. Pharmacological experiments using the broad-spectrum agonist 5'-(N-ethylcarboxamido)adenosine (NECA) and specific agonists for the A(1), A(2A), and A(3) receptors [N(6)-cyclopentyladenosine (CPA), CGS-21680, and IB-MECA, respectively] suggest that the effect of adenosine is mediated through activation of the low-affinity A(2B) adenosine receptor subtype. Interestingly, adenosine induces in parallel the expression of the protein targeting to glycogen (PTG), one of the protein phosphatase-1 glycogen-targeting subunits that has been implicated in the control of glycogen levels in various tissues. These results indicate that adenosine can exert long-term control over glycogen levels in astrocytes and might therefore play a significant role in physiological and/or pathological processes involving long-term modulation of brain energy metabolism.
Collapse
Affiliation(s)
- Igor Allaman
- Institut de Physiologie, Faculté de Médecine, Université de Lausanne, Switzerland
| | | | | | | |
Collapse
|
13
|
Gabryel B, Adamek M, Pudełko A, Małecki A, Trzeciak HI. Piracetam and vinpocetine exert cytoprotective activity and prevent apoptosis of astrocytes in vitro in hypoxia and reoxygenation. Neurotoxicology 2002; 23:19-31. [PMID: 12164545 DOI: 10.1016/s0161-813x(02)00004-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The aim of the present study was to establish whether piracetam (2-pyrrolidon-N-acetamide; PIR) and vinpocetine (a vasoactive vinca alkaloid; VINP) are capable of protecting astrocytes against hypoxic injury. Using the model of astrocyte cell culture we observed the cells treated with PIR and VINP during and after in vitro simulated hypoxia. Cell viability was determined by Live/Dead Viability/Cytotoxicity Assay Kit, LDH release assay and MTT conversion test. Apoptotic cell death was distinguished by a method of Hoechst 33342 staining underfluorescence microscope and caspase-3 colorimetric assay. In addition the intracellular levels of ATP and phosphocreatine (PCr) were evaluated by bioluminescence method. Moreover, the effect of the drugs on the DNA synthesis was evaluated by measuring the incorporation of [3H]thymidine into DNA of astrocytes. PIR (0.01 and 1 mM) and VINP (0.1 and 10 microM) were added to the medium both during 24 h normoxia, 24 h hypoxia or 24 h reoxygenation. Administration of 1 mM PIR or 0.1 microM VINP to the cultures during hypoxia significantly decreases the number of dead and apoptotic cells. The antiapoptic effects of drugs in the above mentioned concentrations was also confirmed by their stimulation of mitochondrial function, the increase of intracellular ATP, and the inhibition of the caspase-3 activity. The prevention of apoptosis was accompanied by the increase in ATP and PCr levels and increase in the proliferation of astrocytes exposed to reoxygenation. The higher concentration of VINP (10 microM) was detrimental in hypoxic conditions. Our experiment proved the significant cytoprotective effect of 1 mM PIR and 0.1 microM VINP on astrocytes in vitro.
Collapse
Affiliation(s)
- Bozena Gabryel
- Department of Pharmacology, Silesian Medical University, Katowice, Poland.
| | | | | | | | | |
Collapse
|
14
|
Ruiz MA, Escriche M, Lluis C, Franco R, Martín M, Andrés A, Ros M. Adenosine A(1) receptor in cultured neurons from rat cerebral cortex: colocalization with adenosine deaminase. J Neurochem 2000; 75:656-64. [PMID: 10899940 DOI: 10.1046/j.1471-4159.2000.0750656.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine A(1) receptors (A(1)Rs) have been characterized in primary cultures of neurons from cerebral cortex. The specific adenosine A(1) antagonist 8-cyclopentyl-1,3-[(3)H]dipropylxanthine bound to both membranes and intact cells. When saturation experiments were performed in membranes, a K(D) value of 0.76 nM and a B(max) of 57 fmol/mg of protein were obtained. Competition assays revealed a pharmacological profile characteristic of A(1)Rs. The presence of this receptor was further confirmed by RT-PCR analysis. The expression of the receptor showed no significant changes during the period of culture studied, up to 12 days in vitro. A(1)R agonist inhibited forskolin-stimulated adenylyl cyclase, showing the functional coupling of these receptors with the effector. alphaG(i1, 2) protein level, detected by immunoblot, presented an increase during the period of culture. This increase correlated with an increase in the mRNA level of alphaG(i1) but not alphaG(i2). By immunochemical assays, it is shown that these receptors are expressed in both the neuronal cell body and the proximal dendrites. Colocalization of A(1)Rs with microtubule-associated protein 2 and cell surface adenosine deaminase was shown by confocal microscopy. The high degree of colocalization observed between A(1)Rs and ectoadenosine deaminase in neurons could suggest an important role of the enzyme in adenosine-mediated neuromodulation.
Collapse
MESH Headings
- Adenosine Deaminase/analysis
- Adenosine Deaminase/metabolism
- Adenylyl Cyclases/metabolism
- Animals
- Binding, Competitive
- Cell Membrane/metabolism
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Embryo, Mammalian
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Kinetics
- Neurons/cytology
- Neurons/metabolism
- Rats
- Rats, Wistar
- Receptors, Purinergic P1/analysis
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
- Transcription, Genetic
- Xanthines/pharmacokinetics
Collapse
Affiliation(s)
- M A Ruiz
- Area de Bioquímica, Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MA, Reed JK, Ciccarelli R, Di Iorio P, Caciagli F. Trophic effects of purines in neurons and glial cells. Prog Neurobiol 1999; 59:663-90. [PMID: 10845757 DOI: 10.1016/s0301-0082(99)00017-9] [Citation(s) in RCA: 309] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In addition to their well known roles within cells, purine nucleotides such as adenosine 5' triphosphate (ATP) and guanosine 5' triphosphate (GTP), nucleosides such as adenosine and guanosine and bases, such as adenine and guanine and their metabolic products xanthine and hypoxanthine are released into the extracellular space where they act as intercellular signaling molecules. In the nervous system they mediate both immediate effects, such as neurotransmission, and trophic effects which induce changes in cell metabolism, structure and function and therefore have a longer time course. Some trophic effects of purines are mediated via purinergic cell surface receptors, whereas others require uptake of purines by the target cells. Purine nucleosides and nucleotides, especially guanosine, ATP and GTP stimulate incorporation of [3H]thymidine into DNA of astrocytes and microglia and concomitant mitosis in vitro. High concentrations of adenosine also induce apoptosis, through both activation of cell-surface A3 receptors and through a mechanism requiring uptake into the cells. Extracellular purines also stimulate the synthesis and release of protein trophic factors by astrocytes, including bFGF (basic fibroblast growth factor), nerve growth factor (NGF), neurotrophin-3, ciliary neurotrophic factor and S-100beta protein. In vivo infusion into brain of adenosine analogs stimulates reactive gliosis. Purine nucleosides and nucleotides also stimulate the differentiation and process outgrowth from various neurons including primary cultures of hippocampal neurons and pheochromocytoma cells. A tonic release of ATP from neurons, its hydrolysis by ecto-nucleotidases and subsequent re-uptake by axons appears crucial for normal axonal growth. Guanosine and GTP, through apparently different mechanisms, are also potent stimulators of axonal growth in vitro. In vivo the extracellular concentration of purines depends on a balance between the release of purines from cells and their re-uptake and extracellular metabolism. Purine nucleosides and nucleotides are released from neurons by exocytosis and from both neurons and glia by non-exocytotic mechanisms. Nucleosides are principally released through the equilibratory nucleoside transmembrane transporters whereas nucleotides may be transported through the ATP binding cassette family of proteins, including the multidrug resistance protein. The extracellular purine nucleotides are rapidly metabolized by ectonucleotidases. Adenosine is deaminated by adenosine deaminase (ADA) and guanosine is converted to guanine and deaminated by guanase. Nucleosides are also removed from the extracellular space into neurons and glia by transporter systems. Large quantities of purines, particularly guanosine and, to a lesser extent adenosine, are released extracellularly following ischemia or trauma. Thus purines are likely to exert trophic effects in vivo following trauma. The extracellular purine nucleotide GTP enhances the tonic release of adenine nucleotides, whereas the nucleoside guanosine stimulates tonic release of adenosine and its metabolic products. The trophic effects of guanosine and GTP may depend on this process. Guanosine is likely to be an important trophic effector in vivo because high concentrations remain extracellularly for up to a week after focal brain injury. Purine derivatives are now in clinical trials in humans as memory-enhancing agents in Alzheimer's disease. Two of these, propentofylline and AIT-082, are trophic effectors in animals, increasing production of neurotrophic factors in brain and spinal cord. Likely more clinical uses for purine derivatives will be found; purines interact at the level of signal-transduction pathways with other transmitters, for example, glutamate. They can beneficially modify the actions of these other transmitters.
Collapse
Affiliation(s)
- M P Rathbone
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ochiishi T, Saitoh Y, Yukawa A, Saji M, Ren Y, Shirao T, Miyamoto H, Nakata H, Sekino Y. High level of adenosine A1 receptor-like immunoreactivity in the CA2/CA3a region of the adult rat hippocampus. Neuroscience 1999; 93:955-67. [PMID: 10473260 DOI: 10.1016/s0306-4522(99)00179-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe the immunocytochemical distribution of adenosine A1 receptors in the rat hippocampus. Adenosine A1 receptor-like immunoreactivity was seen on the cell soma and dendrites of pyramidal cells and the cell soma and proximal part of dendrites of granule cells, but not on glial cells. Developmentally, adenosine A1 receptor-like immunoreactivity was diffuse on postnatal day 7 and increased in intensity in individual cells by day 21. In the CA2/CA3a region, the adult pattern of A1 receptor distribution was established by day 28. In the adult rat hippocampus, rostrocaudal inspection revealed that immunoreactivity in CA2/CA3a was greatest. Confocal microscopy revealed differences in the staining patterns for the adenosine A receptor and synaptophysin, a marker of presynaptic terminals. This result suggests that the adenosine A1 receptor might have postsynaptic physiological functions. Double-labeling of adenosine A1 receptors and anterogradely-labeled fibers from the supramammillary nucleus showed that the fibers from the supramammillary nucleus terminate directly on the cell soma of the A1 receptor-immunopositive neurons in CA2/CA3a and the dentate gyrus. These results indicate that the adenosine A 1 receptor in CA2/CA3a and the dentate gyrus are in a position to regulate hippocampal theta activity and that resultant strong synaptic depression in CA2/CA3a could play a role in regulating the intrinsic signal flow between CA3 and CA1.
Collapse
Affiliation(s)
- T Ochiishi
- Biosignalling Department, National Institute of Bioscience and Human Technology, Tsukuba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
We investigated the effect of adenosine on astrocyte morphology by using cell cultures prepared from the cerebral cortices of neonatal rats. Cultured rat cortical astrocytes exhibited flattened, polygonal morphology in the absence of stimulation, but differentiated into process-bearing stellate cells in response to adenosine (1-1000 microM). Adenosine-induced astrocyte stellation was abolished by treatment with microtubule inhibitors, colchicine and paclitaxel, indicating the involvement of cytoskeletal elements. The effect of adenosine was mimicked by other adenosine receptor agonists, and blocked by adenosine receptor antagonists and guanosine 5'-O-(2-thiodiphosphate), indicating that the effect of adenosine is mediated by G protein-coupled adenosine receptors. Although adenosine receptors are known to be linked to adenylate cyclase or phospholipase C, adenosine did not change intracellular cyclic AMP level nor intracellular Ca2+ concentration in astrocytes. Alternatively, adenosine-induced stellation was abolished by tyrosine phosphatase inhibitors, orthovanadate and phenylarsine oxide, suggesting that adenosine causes astrocyte stellation through tyrosine dephosphorylation. Adenosine may function as a factor regulating astrocyte differentiation.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
18
|
Brodie C, Blumberg PM, Jacobson KA. Activation of the A2A adenosine receptor inhibits nitric oxide production in glial cells. FEBS Lett 1998; 429:139-42. [PMID: 9650577 PMCID: PMC5454773 DOI: 10.1016/s0014-5793(98)00556-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selective adenosine receptor agonists and antagonists have marked effects on the outcome of cerebral ischemia, and adenosine receptors are expressed on astrocytes. In this study we examined the effects of various adenosine receptor agonists on the production of nitric oxide and the induction of iNOS in astrocytes activated by LPS/IFN-gamma and TNF-alpha/IL-1beta and on the production of TNF-alpha. Treatment of the cells with the A2A receptor agonist CGS 21680 inhibited both NO production and iNOS expression induced by stimulation with either LPS/IFN-gamma or TNF-alpha/IL-1beta, whereas the A1 and A3 receptor agonists, CPA and Cl-IB-MECA, respectively, did not have significant inhibitory effects. The inhibitory effect of the A2A receptor agonist was antagonized by the specific A2A receptor antagonist CSC. The A2A agonist also exerted a small inhibitory effect on the production of TNF-alpha. Similar inhibitory effects on the production of NO were obtained by cyclic AMP-elevating reagents, such as forskolin and dibutyryl cyclic AMP. Our findings suggest that activation of the A2A receptor inhibits NO production and iNOS expression likely via increased cAMP.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Science, Bar-Ilan University, Ramat Gan, Israel.
| | | | | |
Collapse
|
19
|
Daval JL, Nicolas F. Non-selective effects of adenosine A1 receptor ligands on energy metabolism and macromolecular biosynthesis in cultured central neurons. Biochem Pharmacol 1998; 55:141-9. [PMID: 9448736 DOI: 10.1016/s0006-2952(97)00378-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate the effects of adenosine A1 receptor activation on energy metabolism and RNA and protein biosynthesis in central neurons, cultured neurons from the rat forebrain were exposed for 1 hr to 72 hr to various concentrations (10 nM-100 microM) of the selective A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA) or the A1 receptor antagonist 8-cyclopentyltheophylline (CPT). At all concentrations tested, the adenosinergic compounds did not affect cell viability within 72 hr of treatment, except for CPT, which reduced viability by 19.7% when used at the concentration of 100 microM. Energy metabolism was analysed by studying the specific uptake of 2-D-[3H]deoxyglucose ([3H]2DG). Rates of RNA and protein biosynthesis were assessed by the measurement of [3H]uridine and [3H]leucine incorporation, respectively. Neuronal [3H]2DG uptake was increased by 16% (P < 0.01) after 8 hr in the presence of 100 microM CCPA, whereas 100 microM CPT for 24 hr also increased [3H]2DG uptake (8%, P < 0.01). At these concentrations, both ligands inhibited [3H]uridine incorporation after a 3-hr treatment by 92% and 30%, respectively. CCPA never altered [3H]leucine incorporation when compared to controls, and CPT significantly inhibited protein synthesis only at 10-100 microM. Additional experiments to analyse the influence of A1 ligands on the transport of [3H]2DG, [3H]leucine and [3H]uridine suggested that CCPA and CPT, which interact functionally with adenosine receptors by regulating cyclic AMP production in this model, are able to alter energy metabolism and RNA synthesis in central neurons in a nonspecific manner by interacting with glucose and uridine transporters.
Collapse
Affiliation(s)
- J L Daval
- INSERM U.272, Université Henri Poincaré, Nancy, France.
| | | |
Collapse
|
20
|
Peakman MC, Hill SJ. Adenosine A1 receptor-mediated inhibition of cyclic AMP accumulation in type-2 but not type-1 rat astrocytes. Eur J Pharmacol 1996; 306:281-9. [PMID: 8813642 DOI: 10.1016/0014-2999(96)00202-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of adenosine receptor-selective ligands on [3H]cyclic AMP accumulation have been investigated in type-1 and type-2 astrocyte-enriched cultures derived from neonatal rat forebrains. In type-1 astrocytes, 5'-N-ethylcarboxamidoadenosine (NECA) caused a concentration-dependent increase in [3H]cyclic AMP accumulation (EC50 = 1.2 microM) which was antagonised by pretreatment with either xanthine amine congener (8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]oxy]-phenyl]- 1,3-dipropylxanthine, apparent Kd = 9 nM) or PD115,199 (N-[2-(dimethylamino)ethyl]-N-methyl-4-(1,3-dipropylxanthine) benzene sulphonamide, apparent Kd = 122 nM). In these cultures, N6-cyclopentyladenosine (CPA), did not affect forskolin- or isoprenaline-mediated elevations of [3H]cyclic AMP accumulation. These data indicate that type-1 astrocytes possess adenosine A2B but not adenosine A1 receptors coupled to adenylyl cyclase. In type-2 astrocyte-enriched cultures, 10 microM NECA caused significant elevations of [3H]cyclic AMP accumulation which were similarly inhibited by either 1 microM xanthine amine congener or 10 microM PD115,199 suggesting that they were primarily due to adenosine A2B receptor stimulation. However, CGS 21680 ((2-[[4-(2-carboxyethyl) phenethyl]-amino]adenosine-5'-N-ethylcarboxamide, 10 microM), also significantly increased [3H]cyclic AMP accumulation in type-2 astrocytes suggesting the additional presence of adenosine A2A receptors. Forskolin-mediated elevations of [3H]cyclic AMP accumulation in type-2 astrocytes were inhibited in a concentration-dependent manner by CPA. This effect was reversed by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 0.1 microM), confirming the presence of adenosine A1 receptors negatively coupled to adenylyl cyclase in type-2 astrocytes.
Collapse
Affiliation(s)
- M C Peakman
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham, UK
| | | |
Collapse
|
21
|
Doriat JF, Humbert AC, Daval JL. Brain maturation of high-affinity adenosine A2 receptors and their coupling to G-proteins. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 93:1-9. [PMID: 8804686 DOI: 10.1016/0165-3806(96)00009-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neuromodulator adenosine is acting through specific receptors, A1 and A2, coupled to their effector systems via G-proteins. The regulatory effects of adenosine on locomotor activity have been attributed to an interaction with A2 striatal receptors. The postnatal development of adenosine A2a receptors was analysed in rat striatal membranes and by quantitative autoradiography in brain sections using [3H]CGS 21680 as specific probe. At the concentration of radioligand used (5 nM), A2a sites were concentrated in the striatum at all ages, with minor developmental alterations in the expression pattern within the striatal regions. In membrane preparations, Scatchard analysis showed that the density of CGS 21680 binding sites was low at birth, around 3% of the adult value, and then increased, mostly between birth and 5 days and then from 15 days to adulthood. Concomitantly, the receptor affinity decreased sharply during brain development, Kd values varying from 2 to 15.5 nM. The addition of a GTP analogue, guanylyl-5'-imidodiphosphate (Gpp(NH)p, 10 microM), to the assay medium reduced significantly the receptor affinity throughout the postnatal development, reflecting a coupling to G-proteins at all ages, but it also suggested a weaker association at birth. These data show that the developmental properties of A2a receptors contrast with those of A1 receptors, and emphasize the role played by adenosine through its A2 receptors in the maturation of striatum-related cerebral pathways.
Collapse
Affiliation(s)
- J F Doriat
- INSERM U.272, Université de Nancy, France
| | | | | |
Collapse
|
22
|
Abstract
Microfluorimetric techniques were used to measure changes in intracellular calcium in astrocytes cultured from the forebrain of the adult rat. Application of ATP consistently raised intracellular calcium. The response persisted in the absence of extracellular calcium, but then quickly declined upon repeated agonist application. Thapsigargin abolished responses to nucleotides following depletion of the endoplasmic reticular calcium stores. Calcium release was inhibited by caffeine, but was dramatically increased through inositol phosphate receptor sensitization by the sulphydryl reagent thimerosal. Responses to repeated nucleotide applications resulted in a gradual decline of peak calcium concentrations, suggesting a (post)receptor-mediated desensitization or gradual depletion of the internal calcium stores. Subsequent application of ionomycin suggested intracellular calcium depletion as the relevant mechanism. Depletion of the internal calcium stores with ATP, ionomycin or thapsigargin failed to reveal a calcium influx pathway. These results suggest that the capacitative mechanism of calcium entry does not operate in response to nucleotide receptor activation in these cells, and that the immediate refilling of the internal calcium stores is primarily determined by re-uptake of cytosolic calcium into the endoplasmic reticulum. A complete refilling of this calcium store by extracellular calcium may be a much slower process. Control of these signal transduction pathways is crucial to the maintenance of the calcium/energy homeostasis of the adult astrocyte in the central nervous system.
Collapse
Affiliation(s)
- S Peuchen
- Department of Neurochemistry, Institute of Neurology, London, UK
| | | | | |
Collapse
|
23
|
Murphy MG. Effects of exogenous linoleic acid on fatty acid composition, receptor-mediated cAMP formation, and transport functions in rat astrocytes in primary culture. Neurochem Res 1995; 20:1365-75. [PMID: 8786824 DOI: 10.1007/bf00992513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have examined the effects of culturing neonatal rat-brain astrocytes in medium containing delipidated serum, with or without added linoleic acid (LA, 18:2 omega 6), on membrane fatty-acid composition and functions. After 18-21 days in culture, polyunsaturated fatty acids (PUFA) constituted approximately equal to 24 mol% of the total fatty acids in the astrocytes grown in delipidated media ("controls'); these proportions were increased by 35-40% to approximately equal to 33 mol% when the cells were supplemented with 35 microM LA. Notable differences in the PUFA profiles of the cells cultured with or without added LA included: (a) higher proportions of omega 6 PUFA in the LA-supplemented astrocytes (approximately equal to 25%, relative to approximately equal to 10% in controls) that were accompanied by an increase in the ratio of omega 6/omega 3 PUFA (from < 2 in controls to approximately equal to 5), and (b) higher proportions of 20:3 omega 9 and 22:3 omega 9 in the control astrocytes (> 5%) relative to the LA-supplemented cells (approximately equal to 1%). The major metabolites in the omega 6 PUFA-enriched cells were arachidonic (20:4 omega 6), adrenic (22:4 omega 6) and docosapentaenoic (22:5 omega 6) acids (15, 5 & 3 mol%, respectively). Enrichment of the astrocytes in omega 6 PUFA did not alter basal levels of cAMP, nor did it affect the amounts of cAMP formed in response to forskolin, isoproterenol, adenosine or histamine. However, dopamine-dependent increases in cAMP formation in the presence of the phosphodiesterase inhibitor, Ro 20-1724, were reduced by approximately equal to 25% relative to those in controls. LA supplementation modified uptake of [3H]adenosine into the astrocytes; values for Kt for a high affinity transport were increased relative to controls, and maximum capacity of a lower affinity process was reduced. Uptake of [3H]glutamate was not altered in the omega 6 PUFA-enriched astrocytes. This study demonstrated that cultured astrocytes take up exogenous linoleic acid and incorporate its metabolites into phospholipid, and that the resulting changes in membrane PUFA composition modify only specific cell functional properties.
Collapse
Affiliation(s)
- M G Murphy
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
24
|
Ciccarelli R, Di Iorio P, Ballerini P, Ambrosini G, Giuliani P, Tiboni GM, Caciagli F. Effects of exogenous ATP and related analogues on the proliferation rate of dissociated primary cultures of rat astrocytes. J Neurosci Res 1994; 39:556-66. [PMID: 7891391 DOI: 10.1002/jnr.490390507] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of ATP (5-500 microM) were evaluated on the proliferation rate of cultured astrocytes by measuring 3H-thymidine incorporation and by flow cytometric analysis of the cell cycle. Determinations after 16 hours showed that ATP present in the culture medium for the whole period caused a dose-dependent reduction of cell proliferation, while if the exposure to ATP was limited to the first 8 hours, the proliferation was increased (always in a dose-dependent manner). A time course study of 3H-thymidine incorporation showed that, in the presence of ATP, 3H-thymidine was incorporated at a slower rate than in controls; the replacement of the culture medium with an ATP-free fresh medium, at the 8th hour, was followed by a 3H-thymidine incorporation occurring at such a fast rate to overshoot the control values. High performance liquid chromatography (HPLC) analysis, carried out to identify purine compounds present in the culture medium during cell exposure to ATP, indicated that more than 95% of the added ATP was metabolized within 1 hr. Conversely, an increase of purine metabolites was measured, this accumulation being greater at the highest concentrations of added ATP. The presence of high levels of extracellular ATP catabolites suggested that these compounds may act on the regulation of cell replication via the different purine receptors. This hypothesis was tested and confirmed by using agonists and antagonists selective for the P1 and the P2 sites. One hundred microM 2methylthio-ATP (2MeSATP), a P2Y agonist metabolized as fast as ATP, reproduced effects very similar to the ATP-induced ones. On the other hand, the nonhydrolisable ATP analogue, adenosine 5'-(beta, gamma-imido)-triphosphate (AMP-PNP) at 100 microM, induced a mitogenic effect as well as the A2 site stimulation. On the contrary, the activation of A1 receptors by 5 microM R-phenyl-isopropyladenosine (R-PIA) inhibited astrocyte proliferation; moreover, 100 nM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), an A1 site antagonist, reversed the ATP-induced inhibition of cell proliferation. These results indicate that exogenous ATP, as a consequence of its rapid extracellular breakdown, exerts a dual influence on astrocyte proliferation by the involvement of both P1 and P2Y receptors. These findings might be relevant to such pathological conditions of the central nervous system (CNS), as seizures, hypoxia or ischemia, in which great amounts of purines released in the brain can influence a reactive astrocyte proliferative response to injury.
Collapse
Affiliation(s)
- R Ciccarelli
- Institute of Pharmacology and Bio-Medical Technologies, School of Medicine, University of Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Nicolas F, Oillet J, Koziel V, Daval JL. Characterization of adenosine receptors in a model of cultured neurons from rat forebrain. Neurochem Res 1994; 19:507-15. [PMID: 8065505 DOI: 10.1007/bf00967331] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The neuromodulator adenosine is acting through specific receptors coupled to adenylate cyclase via G-proteins. The expression of both adenosine receptors A1 and A2 as well as forskolin binding sites was investigated by radioligand binding techniques in 8-day-old neurons isolated from fetal rat forebrain and cultured in chemically-defined medium. Adenosine A1 receptors were specifically labeled with [3H]chloro-N6-cyclopentyladenosine (CCPA), whereas [3H]CGS 21680 was used for the analysis of A2 receptors. Cultured neurons exhibited high affinity binding sites for CCPA (Bmax = 160 fmol/mg protein; Kd = 2.9 nM), and for CGS 21680 (Bmax = 14 fmol/mg protein; Kd = 1.7 nM). These data correlate well with those obtained in crude membranes isolated from the newborn rat forebrain. The incubation of culture membranes in the additional presence of guanylyl-5'-imidodiphosphate (Gpp(NH)p, a GTP analogue) led to significantly increased Kd-values, suggesting the association of adenosine receptors with G-proteins. Finally, cultured neurons also bound specifically [3H]forskolin with characteristics close to those found in the newborn brain, indicating that cultured neurons appear as an appropriate model for studying the neuromodulatory properties of adenosine.
Collapse
Affiliation(s)
- F Nicolas
- INSERM U.272, Université de Nancy, France
| | | | | | | |
Collapse
|
26
|
Abbracchio MP, Saffrey MJ, Höpker V, Burnstock G. Modulation of astroglial cell proliferation by analogues of adenosine and ATP in primary cultures of rat striatum. Neuroscience 1994; 59:67-76. [PMID: 8190273 DOI: 10.1016/0306-4522(94)90099-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have studied the possible purinoceptor-mediated modulation of astroglial cell proliferation in neuron-glia primary cultures obtained from rat corpus striatum. Cultures were grown for three days in the presence of either 2-chloro-adenosine or alpha beta-methylene-ATP (which behave as agonists of adenosine/P1 and ATP/P2 purinoceptors, respectively), and then immunostained with an antibody to glial fibrillary acidic protein. 2-Chloro-adenosine decreased and alpha beta-methylene-ATP increased the number of astroglial cells in culture. For both derivatives, the effect was dose-dependent. The effect of alpha beta-methylene-ATP was antagonized by the trypanoside suramin, suggesting the involvement of a suramin-sensitive P2 purinoceptor, whereas the effect of 2-chloro-adenosine was not reversed by the P1 purinoceptor antagonist p-sulphonyl-phenyl-theophylline, implying the activation of a xanthine-insensitive adenosine purinoceptor subtype. In order to evaluate the extent of astrocyte proliferation in the presence of these two analogues, some cultures were incubated with bromodeoxyuridine for 24 h before fixing, and then double-immunostained for glial fibrillary acidic protein and bromodeoxyuridine. The percentage of bromodeoxyuridine positive astrocytes was significantly increased after exposure to both agents. It is therefore concluded that purines can modulate astroglial cells in opposite ways, inducing decreases or increases of cell number by activation of P1 and P2 purinoceptors, respectively. For the P2 purinoceptor-mediated effect, there was a quantitative correlation between the percentage of bromodeoxyuridine positive astrocytes and the cell number. For the P1 purinoceptor-mediated effect, no apparent correlation between these two parameters was found. This suggests the activation of independent effects, which involve other mechanisms besides the stimulation of DNA synthesis, and which eventually result in a reduction of cell number. The possible relevance of these findings to in vivo regulation of astrocyte cell function as well as in trauma- and ischaemia-associated hypergliosis is discussed.
Collapse
Affiliation(s)
- M P Abbracchio
- Department of Anatomy and Developmental Biology, University College, London, U.K
| | | | | | | |
Collapse
|
27
|
Neary JT, Baker L, Jorgensen SL, Norenberg MD. Extracellular ATP induces stellation and increases glial fibrillary acidic protein content and DNA synthesis in primary astrocyte cultures. Acta Neuropathol 1994; 87:8-13. [PMID: 8140897 DOI: 10.1007/bf00386249] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of factors appear to be involved in the proliferative and hypertrophic processes which characterize reactive astrocytosis. We have investigated the possibility that ATP, an agent that is released by injured cells following tissue destruction, may be one such factor. For this purpose, we utilized primary cultures of astrocytes derived from cerebral cortices of neonatal rats to study the effect of extracellular ATP on properties associated with astrogliosis. Light microscopic studies disclosed marked stellation of astrocytes after 30-60 min of exposure to 100 microM-1 mM ATP. In addition, the content of the astrocyte-specific intermediate filament, glial fibrillary acidic protein (GFAP), was increased 35-40% following 60-min exposure to ATP; this effect persisted for 1-3 days of exposure to 100 microM ATP. [3H]Thymidine incorporation increased progressively from 1-3 days; a 3.6-fold increase in DNA synthesis was observed following 3 days of exposure to 1 mM ATP, suggesting stimulation of cellular proliferation. These findings show that high micromolar to low millimolar concentrations of extracellular ATP reproduce several features associated with reactive gliosis and suggest that extracellular ATP may be involved in the activation of astrocytes following CNS injury.
Collapse
Affiliation(s)
- J T Neary
- Laboratory of Neuropathology, VA Medical Center, University of Miami School of Medicine, FL 33101
| | | | | | | |
Collapse
|
28
|
Abstract
1. The effects of adenosine receptor agonists and antagonists on the accumulation of cyclic AMP have been investigated in primary cultures of rat astrocytes. 2. Adenosine A2-receptor stimulation caused a concentration-dependent increase in the accumulation of [3H]-cyclic AMP in cells prelabelled with [3H]-adenine. The rank order of agonist potencies was 5'-N-ethylcarboxamidoadenosine (NECA; EC50 = 1 microM) > adenosine (EC50 = 5 microM) > 2-chloroadenosine (EC50 = 20 microM) >> CGS 21680 (EC50 > 10 microM). The presence of 0.5 microM dipyridamole, an adenosine uptake blocker, had no effect on the potency of adenosine. 3. The response to 10 microM NECA was antagonized in a concentration-dependent manner by the non-selective adenosine receptor antagonists, xanthine amine congener (apparent KD = 12 nM), PD 115,199 (apparent KD = 134 nM) and 8-phenyltheophylline (apparent KD = 126 nM). However, the A1-receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, had no significant effect on the responses to NECA or 2-chloroadenosine at concentrations up to 1 microM. 4. Stimulation of A1-receptors with the selective agonist, N6-cyclopentyladenosine, did not alter the basal accumulation of [3H]-cyclic AMP but inhibited a forskolin-mediated elevation of [3H]-cyclic AMP accumulation by a maximal value of 42%. This inhibition was fully reversed in the presence of 0.1 microM, 8-cyclopentyl-1,3-dipropylxanthine. 5. The time course for NECA-mediated [3H]-cyclic AMP accumulation was investigated. The results suggest that there is a substantial efflux of cyclic AMP from the cells in addition to the rapid and sustained elevation of intracellular cyclic AMP (5 fold over basal) which was also observed. 6. These data indicate that rat astrocytes in primary culture express an A2B-adenosine receptor coupled positively to adenylyl cyclase. Furthermore, the presence of A1-receptors negatively coupled to adenylyl cyclase appears to have no significant effect on the A2B-receptor-mediated cyclic AMP responses to NECA and 2-chloroadenosine.
Collapse
Affiliation(s)
- M C Peakman
- Department of Physiology & Pharmacology, Medical School, Queen's Medical Centre, Nottingham
| | | |
Collapse
|
29
|
|