1
|
Ambrozio-Marques D, Gagnon M, Radcliff AB, Meza AL, Baker TL, Watters JJ, Kinkead R. Gestational intermittent hypoxia increases FosB-immunoreactive perikaryas in the paraventricular nucleus of the hypothalamus of adult male (but not female) rats. Exp Physiol 2023; 108:1376-1385. [PMID: 37642495 PMCID: PMC10841242 DOI: 10.1113/ep091343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Sleep-disordered breathing is a respiratory disorder commonly experienced by pregnant women. The recurrent hypoxaemic events associated with sleep-disordered breathing have deleterious consequences for the mother and fetus. Adult male (but not female) rats born to dams subjected to gestational intermittent hypoxia (GIH) have a higher resting blood pressure than control animals and show behavioural/neurodevelopmental disorders. The origin of this persistent, sex-specific effect of GIH in offspring is unknown, but disruption of the neuroendocrine stress pathways is a key mechanism by which gestational stress increases disease risk in progeny. Using FosB immunolabelling as a chronic marker of neuronal activation, we determined whether GIH augments basal expression of FosB in the perikaryas of cells in the paraventricular nucleus of the hypothalamus (PVN), a key structure in the regulation of the stress response and blood pressure. From gestational day 10, female rats were subjected to GIH for 8 h/day (light phase) until the day before delivery (gestational day 21); GIH consisted of 2 min hypoxic bouts (10.5% O2 ) alternating with normoxia. Control rats were exposed to intermittent normoxia over the same period (GNX). At adulthood (10-15 weeks), the brains of male and female rats were harvested for FosB immunohistochemistry. In males, GIH augmented PVN FosB labelling density by 30%. Conversely, PVN FosB density in GIH females was 28% lower than that of GNX females. We conclude that GIH has persistent and sex-specific impacts on the development of stress pathways, thereby offering a plausible mechanism by which GIH can disturb neural development and blood pressure homeostasis in adulthood. NEW FINDINGS: What is the central question of this study? In pregnant women, sleep apnoea increases the risk of disease for the offspring at various life stages. Given that gestational stress disrupts the programming of the stress pathways, we determined whether exposing female rats to gestational intermittent hypoxia (GIH) activates hypothalamic neurons regulating the stress response in adult rats. What is the main finding and its importance? Using FosB immunolabelling as a marker of marker of neuronal activation, we showed that GIH augmented basal activation of the paraventricular nucleus of the hypothalamus in males, but not females. Disruption of the stress pathways is a new hypothesis to explain the persistent and sex-specific impacts of GIH on offspring health.
Collapse
Affiliation(s)
- Danuzia Ambrozio-Marques
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| | - Marianne Gagnon
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| | - Abigail B Radcliff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Armand L Meza
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Richard Kinkead
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
2
|
Kinkead R, Ambrozio-Marques D, Fournier S, Gagnon M, Guay LM. Estrogens, age, and, neonatal stress: panic disorders and novel views on the contribution of non-medullary structures to respiratory control and CO 2 responses. Front Physiol 2023; 14:1183933. [PMID: 37265841 PMCID: PMC10229816 DOI: 10.3389/fphys.2023.1183933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
CO2 is a fundamental component of living matter. This chemical signal requires close monitoring to ensure proper match between metabolic production and elimination by lung ventilation. Besides ventilatory adjustments, CO2 can also trigger innate behavioral and physiological responses associated with fear and escape but the changes in brain CO2/pH required to induce ventilatory adjustments are generally lower than those evoking fear and escape. However, for patients suffering from panic disorder (PD), the thresholds for CO2-evoked hyperventilation, fear and escape are reduced and the magnitude of those reactions are excessive. To explain these clinical observations, Klein proposed the false suffocation alarm hypothesis which states that many spontaneous panics occur when the brain's suffocation monitor erroneously signals a lack of useful air, thereby maladaptively triggering an evolved suffocation alarm system. After 30 years of basic and clinical research, it is now well established that anomalies in respiratory control (including the CO2 sensing system) are key to PD. Here, we explore how a stress-related affective disorder such as PD can disrupt respiratory control. We discuss rodent models of PD as the concepts emerging from this research has influenced our comprehension of the CO2 chemosensitivity network, especially structure that are not located in the medulla, and how factors such as stress and biological sex modulate its functionality. Thus, elucidating why hormonal fluctuations can lead to excessive responsiveness to CO2 offers a unique opportunity to gain insights into the neuroendocrine mechanisms regulating this key aspect of respiratory control and the pathophysiology of respiratory manifestations of PD.
Collapse
|
3
|
Sheng ZF, Zhang H, Zheng P, Chen S, Gu Z, Zhou JJ, Phaup JG, Chang HM, Yeh ETH, Pan HL, Li DP. Impaired Kv7 channel activity in the central amygdala contributes to elevated sympathetic outflow in hypertension. Cardiovasc Res 2022; 118:585-596. [PMID: 33512443 PMCID: PMC8803073 DOI: 10.1093/cvr/cvab031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/11/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Elevated sympathetic outflow is associated with primary hypertension. However, the mechanisms involved in heightened sympathetic outflow in hypertension are unclear. The central amygdala (CeA) regulates autonomic components of emotions through projections to the brainstem. The neuronal Kv7 channel is a non-inactivating voltage-dependent K+ channel encoded by KCNQ2/3 genes involved in stabilizing the neuronal membrane potential and regulating neuronal excitability. In this study, we investigated if altered Kv7 channel activity in the CeA contributes to heightened sympathetic outflow in hypertension. METHODS AND RESULTS The mRNA and protein expression levels of Kv7.2/Kv7.3 in the CeA were significantly reduced in spontaneously hypertensive rats (SHRs) compared with Wistar-Kyoto (WKY) rats. Lowering blood pressure with coeliac ganglionectomy in SHRs did not alter Kv7.2 and Kv7.3 channel expression levels in the CeA. Fluospheres were injected into the rostral ventrolateral medulla (RVLM) to retrogradely label CeA neurons projecting to the RVLM (CeA-RVLM neurons). Kv7 channel currents recorded from CeA-RVLM neurons in brain slices were much smaller in SHRs than in WKY rats. Furthermore, the basal firing activity of CeA-RVLM neurons was significantly greater in SHRs than in WKY rats. Bath application of specific Kv7 channel blocker 10, 10-bis (4-pyridinylmethyl)-9(10H)-anthracnose (XE-991) increased the excitability of CeA-RVLM neurons in WKY rats, but not in SHRs. Microinjection of XE-991 into the CeA increased arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA), while microinjection of Kv7 channel opener QO-58 decreased ABP and RSNA, in anaesthetized WKY rats but not SHRs. CONCLUSIONS Our findings suggest that diminished Kv7 channel activity in the CeA contributes to elevated sympathetic outflow in primary hypertension. This novel information provides new mechanistic insight into the pathogenesis of neurogenic hypertension.
Collapse
Affiliation(s)
- Zhao-Fu Sheng
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Hua Zhang
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| | - PeiRu Zheng
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Shanyan Chen
- Department of Pathology and Anatomical Sciences, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Jing-Jing Zhou
- Department of Anesthesiology and Perioperative Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Jeffery G Phaup
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Hui-Ming Chang
- Departments of Pharmacology and Toxicology and Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA
| | - Edward T H Yeh
- Departments of Pharmacology and Toxicology and Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
5
|
Neural substrates of fear-induced hypophagia in male and female rats. Brain Struct Funct 2018; 223:2925-2947. [PMID: 29704225 DOI: 10.1007/s00429-018-1668-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/19/2018] [Indexed: 12/18/2022]
Abstract
Cessation of eating under fear is an adaptive response that aids survival by prioritizing the expression of defensive behaviors over feeding behavior. However, this response can become maladaptive when persistent. Thus, accurate mediation of the competition between fear and feeding is important in health and disease; yet, the underlying neural substrates are largely unknown. The current study identified brain regions that were recruited when a fear cue inhibited feeding in male and female rats. We used a previously established behavioral paradigm to elicit hypophagia with a conditioned cue for footshocks, and Fos imaging to map activation patterns during this behavior. We found that distinct patterns of recruitment were associated with feeding and fear expression, and that these patterns were similar in males and females except within the medial prefrontal cortex (mPFC). In both sexes, food consumption was associated with activation of cell groups in the central amygdalar nucleus, hypothalamus, and dorsal vagal complex, and exposure to food cues was associated with activation of the anterior basolateral amygdalar nucleus. In contrast, fear expression was associated with activation of the lateral and posterior basomedial amygdalar nuclei. Interestingly, selective recruitment of the mPFC in females, but not in males, was associated with both feeding and freezing behavior, suggesting sex differences in the neuronal processing underlying the competition between feeding and fear. This study provided the first evidence of the neural network mediating fear-induced hypophagia, and important functional activation maps for future interrogation of the underlying neural substrates.
Collapse
|
6
|
Gilpin NW, Herman MA, Roberto M. The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biol Psychiatry 2015; 77:859-69. [PMID: 25433901 PMCID: PMC4398579 DOI: 10.1016/j.biopsych.2014.09.008] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 12/29/2022]
Abstract
The central amygdala (CeA) plays a central role in physiologic and behavioral responses to fearful stimuli, stressful stimuli, and drug-related stimuli. The CeA receives dense inputs from cortical regions, is the major output region of the amygdala, is primarily GABAergic (inhibitory), and expresses high levels of prostress and antistress peptides. The CeA is also a constituent region of a conceptual macrostructure called the extended amygdala that is recruited during the transition to alcohol dependence. We discuss neurotransmission in the CeA as a potential integrative hub between anxiety disorders and alcohol use disorder, which are commonly co-occurring in humans. Imaging studies in humans and multidisciplinary work in animals collectively suggest that CeA structure and function are altered in individuals with anxiety disorders and alcohol use disorder, the end result of which may be disinhibition of downstream "effector" regions that regulate anxiety-related and alcohol-related behaviors.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| | - Melissa A Herman
- Committee on the Neurobiology of Addictive Disorders (MAH, MR), The Scripps Research Institute, La Jolla, California
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders (MAH, MR), The Scripps Research Institute, La Jolla, California
| |
Collapse
|
7
|
Kinkead R, Tenorio L, Drolet G, Bretzner F, Gargaglioni L. Respiratory manifestations of panic disorder in animals and humans: a unique opportunity to understand how supramedullary structures regulate breathing. Respir Physiol Neurobiol 2014; 204:3-13. [PMID: 25038523 DOI: 10.1016/j.resp.2014.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/03/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
The control of breathing is commonly viewed as being a "brainstem affair". As the topic of this special issue of Respiratory Physiology and Neurobiology indicates, we should consider broadening this notion since the act of breathing is also tightly linked to many functions other than close regulation of arterial blood gases. Accordingly, "non-brainstem" structures can exert a powerful influence on the core elements of the respiratory control network and as it is often the case, the importance of these structures is revealed when their dysfunction leads to disease. There is a clear link between respiration and anxiety and key theories of the psychopathology of anxiety (including panic disorders; PD) focus on respiratory control and related CO2 monitoring system. With that in mind, we briefly present the respiratory manifestations of panic disorder and discuss the role of the dorso-medial/perifornical hypothalamus, the amygdalar complex, and the periaqueductal gray in respiratory control. We then present recent advances in basic research indicating how adult rodent previously subjected to neonatal stress may provide a very good model to investigate the pathophysiology of PD.
Collapse
Affiliation(s)
- Richard Kinkead
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Canada; Université Laval, Québec, QC, Canada.
| | - Luana Tenorio
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP FCAV at Jaboticabal, SP, Brazil
| | - Guy Drolet
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Canada; Université Laval, Québec, QC, Canada
| | - Frédéric Bretzner
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Canada; Université Laval, Québec, QC, Canada
| | | |
Collapse
|
8
|
Abstract
There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
9
|
Sajdyk TJ, Johnson PL, Leitermann RJ, Fitz SD, Dietrich A, Morin M, Gehlert DR, Urban JH, Shekhar A. Neuropeptide Y in the amygdala induces long-term resilience to stress-induced reductions in social responses but not hypothalamic-adrenal-pituitary axis activity or hyperthermia. J Neurosci 2008; 28:893-903. [PMID: 18216197 PMCID: PMC6671007 DOI: 10.1523/jneurosci.0659-07.2008] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 12/16/2022] Open
Abstract
Resilience to mental and physical stress is a key determinant for the survival and functioning of mammals. Although the importance of stress resilience has been recognized, the underlying neural mediators have not yet been identified. Neuropeptide Y (NPY) is a peptide known for its anti-anxiety-like effects mediated via the amygdala. The results of our current study demonstrate, for the first time that repeated administration of NPY directly into the basolateral nucleus of the amygdala (BLA) produces selective stress-resilient behavioral responses to an acute restraint challenge as measured in the social interaction test, but has no effect on hypothalamic-adrenal-pituitary axis activity or stress-induced hyperthermia. More importantly, the resilient behaviors observed in the NPY-treated animals were present for up to 8 weeks. Antagonizing the activity of calcineurin, a protein phosphatase involved in neuronal remodeling and present in NPY receptor containing neurons within the BLA, blocked the development of long-term, but not the acute increases in social interaction responses induced by NPY administration. This suggests that the NPY-induced long-term behavioral resilience to restraint stress may occur via mechanisms involving neuronal plasticity. These studies suggest one putative physiologic mechanism underlying stress resilience and could identify novel targets for development of therapies that can augment the ability to cope with stress.
Collapse
Affiliation(s)
- Tammy J Sajdyk
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hüttemann M, Lee I, Kreipke CW, Petrov T. Suppression of the inducible form of nitric oxide synthase prior to traumatic brain injury improves cytochrome c oxidase activity and normalizes cellular energy levels. Neuroscience 2007; 151:148-54. [PMID: 18037245 DOI: 10.1016/j.neuroscience.2007.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/11/2007] [Accepted: 10/11/2007] [Indexed: 01/09/2023]
Abstract
We have previously shown that the observed immediate increase in nitric oxide (NO) plays a significant role in the control of the cerebral microcirculation following traumatic brain injury (TBI). However, a second consequence of increased NO production after TBI may be impaired mitochondrial function, due to the fact that NO is a well-known inhibitor of cytochrome c oxidase (CcO). CcO is a key enzyme of the mitochondrial oxidative phosphorylation (OxPhos) machinery, which creates cellular energy in the form of ATP. NO competes with oxygen at the heme a(3)-Cu(B) reaction center of CcO. We thus hypothesized that TBI triggers inhibition of CcO, which would in turn lead to a decreased energy production by OxPhos at a time of an elevated energy demand for tissue remodeling. Here we show that TBI as induced by an acceleration weight drop model of diffuse brain injury in rats leads to CcO inhibition and dramatically decreased ATP levels in brain cortex. CcO inhibition can be partially restored by application of iNOS antisense oligonucleotides prior to TBI, which leads to a normalization of ATP levels similar to the controls. We propose that a lack of energy after TBI caused by inhibition of CcO is an important aspect of trauma pathology.
Collapse
Affiliation(s)
- M Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
11
|
Myers EA, Banihashemi L, Rinaman L. The anxiogenic drug yohimbine activates central viscerosensory circuits in rats. J Comp Neurol 2006; 492:426-41. [PMID: 16228990 DOI: 10.1002/cne.20727] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Systemic administration of the alpha(2)-adrenoceptor antagonist yohimbine (YO) activates the HPA stress axis and promotes anxiety in humans and experimental animals. We propose that visceral malaise contributes to the stressful and anxiogenic effects of systemic YO and that YO recruits brainstem noradrenergic (NA) and peptidergic neurons that relay viscerosensory signals to the hypothalamus and limbic forebrain. To begin testing these hypotheses, the present study explored dose-related effects of YO on food intake, conditioned flavor avoidance (CFA), and Fos immunolabeling in rats. Systemic YO (5.0 mg/kg BW, i.p.) inhibited food intake, supported CFA, and increased Fos immunolabeling in identified NA neurons in the ventrolateral medulla, nucleus of the solitary tract, and locus coeruleus. YO also increased Fos in the majority of corticotropin releasing hormone-positive neurons in the paraventricular nucleus of the hypothalamus. YO administered at 1.0 mg/kg BW did not inhibit food intake, did not support CFA, and did not increase Fos immunolabeling. Retrograde neural tracing demonstrated that neurons activated by YO at 5.0 mg/kg BW included medullary and pontine neurons that project to the central nucleus of the amygdala and to the lateral bed nucleus of the stria terminalis, the latter region receiving comparatively greater input by Fos-positive neurons. We conclude that YO produces anorexigenic and aversive effects that correlate with activation of brainstem viscerosensory inputs to the limbic forebrain. These findings invite continued investigation of how central viscerosensory signaling pathways interact with hypothalamic and limbic regions to influence interrelated physiological and behavioral components of anxiety, stress, and visceral malaise.
Collapse
|
12
|
Thompson BL, Rosen JB. Immediate-early gene expression in the central nucleus of the amygdala is not specific for anxiolytic or anxiogenic drugs. Neuropharmacology 2005; 50:57-68. [PMID: 16185722 DOI: 10.1016/j.neuropharm.2005.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 07/28/2005] [Indexed: 11/26/2022]
Abstract
The lateral, basal, and central nuclei of the amygdala are part of a circuitry that instantiates many fear and anxious behaviors. One line of support indicates that immediate-early gene (IEG) expression (e.g., c-fos and egr-1 (zif268)) is increased in these nuclei following fear conditioning. Other research finds that anxiogenic drugs working through various mechanisms induce IEG expression in the central nucleus of the amygdala (CeA) suggesting that expression is a neural marker for fear and anxiety. However, several studies have also found that anxiolytic drugs induce IEG expression in the CeA. Expression of egr-1 in the CeA and lateral nucleus of the amygdala following administration of anxiolytic and anxiogenic benzodiazepine and serotonin agonists and antagonists was investigated. The first experiment determined behaviorally active anxiolytic and anxiogenic doses for two anxiogenic drugs (FG 7142 and mCPP) and two anxiolytic drugs (diazepam and buspirone). The effects of anxiogenic and anxiolytic doses of these drugs on egr-1 expression in the amygdala were then tested in a second experiment. All four drugs increased egr-1 in the CeA indicating that increased egr-1 mRNA expression in the CeA is not specific to anxiolytic or anxiogenic effects of the drugs. We suggest that IEG expression in the CeA may be due to activation of circuits that are associated with systemic physiological homeostasis perturbed by a number of drugs including anxiogenic and anxiolytic compounds.
Collapse
|
13
|
Saha S. ROLE OF THE CENTRAL NUCLEUS OF THE AMYGDALA IN THE CONTROL OF BLOOD PRESSURE: DESCENDING PATHWAYS TO MEDULLARY CARDIOVASCULAR NUCLEI. Clin Exp Pharmacol Physiol 2005; 32:450-6. [PMID: 15854157 DOI: 10.1111/j.1440-1681.2005.04210.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. One of the key areas that links psychologically induced stress with the blood pressure-regulatory system is the central nucleus of the amygdala (CeA). This is an integratory forebrain nucleus that receives input from higher centres in the forebrain and has extensive connections with the hypothalamus and the medulla oblongata, areas involved in the regulation of the cardiovascular reflexes. 2. Based on studies using electrical or chemical stimulation or electrolytic lesions of the CeA, it has become clear that the CeA plays an important role in the regulation of blood pressure in response to stressful or fearful stimuli. 3. Two important medullary areas known to receive projections from the CeA are the nucleus tractus solitarius (NTS) and the rostral ventrolateral medulla (RVLM). The NTS is the site of the first synapse for afferent fibres originating from baroreceptors, chemoreceptors and the heart, whereas the RVLM contains neurons that maintain resting blood pressure and sympathetic nerve activity via projections to sympathetic preganglionic neurons in the intermediolateral cell column of the thoracolumbar spinal cord. 4. Electron microscopic studies using combined anterograde tracing and pre- and post-embedding immunogold labelling have shown that the pathways originating from the CeA to the NTS are inhibitory and may use GABA as a neurotransmitter. The results of these studies suggest that blood pressure changes produced by activation of the CeA may be mediated by attenuation of baroreceptor reflexes through a GABAergic mechanism at the level of the NTS. 5. Neuronal tract tracing combined with neurofunctional studies using the Fos protein as a marker of activated neurons indicate that the CeA projects directly to baroreceptive neurons in the NTS and RVLM that are activated by changes in blood pressure. 6. In conclusion, studies that have examined the efferent pathways of the CeA suggest that CeA neurons with projections to medullary baroreceptive neurons may play a vital role in the reflex changes in sympathetic nerve activity that are involved in blood pressure regulation in response to stress or anxiety.
Collapse
Affiliation(s)
- S Saha
- Academic Unit of Cardiovascular Research, School of Medicine, University of Leeds, Leeds, UK.
| |
Collapse
|
14
|
Myers EA, Rinaman L. Trimethylthiazoline supports conditioned flavor avoidance and activates viscerosensory, hypothalamic, and limbic circuits in rats. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1716-26. [PMID: 15661969 DOI: 10.1152/ajpregu.00479.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interoceptive stimuli modulate stress responses and emotional state, in part, via ascending viscerosensory inputs to the hypothalamus and limbic forebrain. It is unclear whether similar viscerosensory pathways are recruited by emotionally salient exteroceptive stimuli, such as odors. To address this question, we investigated conditioned avoidance and central c-Fos activation patterns in rats exposed to synthetic trimethylthiazoline (TMT), an odiferous natural component of fox feces. Experiment 1 demonstrated that rats avoid consuming novel flavors that previously were paired with TMT exposure, evidence that TMT supports conditioned flavor avoidance. Experiment 2 examined central neural systems activated by TMT. Odor-naive rats were acutely exposed to low or high levels of TMT or a novel nonaversive control odor and were perfused with fixative 60-90 min later. A subset of rats received retrograde neural tracer injections into the central nucleus of the amygdala (CeA) 7-10 days before odor exposure and perfusion. Brain sections were processed for dual-immunocytochemical detection of c-Fos and other markers to identify noradrenergic (NA) neurons, corticotropin-releasing hormone (CRH) neurons, and retrogradely labeled neurons projecting to the CeA. Significantly greater proportions of medullary and pontine NA neurons, hypothalamic CRH neurons, and CeA-projecting neurons were activated in rats exposed to TMT compared with activation in rats exposed to the nonaversive control odor. Thus the ability of TMT to support conditioned avoidance behavior is correlated with significant odor-induced recruitment of hypothalamic CRH neurons and brain stem viscerosensory inputs to the CeA.
Collapse
Affiliation(s)
- Elizabeth A Myers
- Department of Neuroscience, University of Pittsburgh, 446 Crawford Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
15
|
Steiner J, Rafols D, Park HK, Katar MS, Rafols JA, Petrov T. Attenuation of iNOS mRNA exacerbates hypoperfusion and upregulates endothelin-1 expression in hippocampus and cortex after brain trauma. Nitric Oxide 2005; 10:162-9. [PMID: 15158696 DOI: 10.1016/j.niox.2004.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/22/2004] [Indexed: 10/26/2022]
Abstract
Nitric oxide (NO, a vasodilator) and endothelin-1 (ET-1, a powerful vasoconstrictor) participate in the regulation of brain's microcirculation influencing each other's expression and synthesis. Following injury to the brain, NO is derived largely from the inducible form of nitric oxide synthase (iNOS). We used Marmarou's model of traumatic brain injury (TBI) to study the cerebral blood flow and expression (mRNA) of ET-1 in rats that were pretreated with antisense iNOS oligodeoxynucleotides (ODNs). Intracerebroventricular application of iNOS ODNs resulted in reduced synthesis of iNOS as detected by Western blot analysis. The cerebral blood flow (measured by laser Doppler flowmetry), generally decreased after TBI, was further markedly reduced in the treated animals and remained at low levels up to 48 h post-TBI. The expression of ET-1 (detected by in situ hybridization in cortex and hippocampus) was increased 2-3-fold following TBI alone and this increase reached 5-6-fold in animals pretreated with antisense iNOS ODNs. The results indicate that most likely, NO, generated primarily by iNOS, suppresses ET-1 production and that a decrease of NO results in upregulation of ET-1 via transcriptional and translational mechanisms. Increased availability of ET-1 at the vascular bed and the neuropil may contribute to the altered microvascular reactivity and reduced perfusion of the brain following TBI.
Collapse
Affiliation(s)
- J Steiner
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Ave., Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
In recent years, the amygdala has emerged as a critical site of plasticity for the acquisition of various forms of Pavlovian learning, either aversive or appetitive. In most of these models, the critical site of plasticity has been localized to the basolateral complex of the amygdala (BLA). In contrast, the central nucleus of the amygdala has emerged as a passive relay of potentiated BLA outputs toward downstream effectors. At odds with this view, however, recent studies suggest that the central nucleus may also be a site of plasticity and play an active role in some forms of Pavlovian learning. The present review summarizes the evidence supporting this possibility.
Collapse
Affiliation(s)
- Rachel D Samson
- Center for Molecular & Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA
| | | | | |
Collapse
|
17
|
Abstract
Obesity is quickly becoming one of the most common and debilitating disorders of the developed world. More than 60% of American adults are now overweight or obese, predisposing them to a host of chronic diseases. To understand the etiology of obesity, and to discover new therapies for obesity, we must understand the components of energy balance. In simple terms, energy intake (feeding) must equal energy expenditure (physical activity, basal metabolism and adaptive thermogenesis) for body weight homeostasis. To maintain homeostasis, neurocircuitry must sense both immediate nutritional status and the amount of energy stored in adipose tissue, and must be able to provide appropriate output to balance energy intake and energy expenditure. The brain receives various signals that carry information about nutritional and metabolic status including neuropeptide PYY(3-36), ghrelin, cholecystokinin, leptin, glucose and insulin. Circulating satiety signals access the brain either by "leakage" across circumventricular organs or transport across the blood-brain barrier. Signals can also activate sensory vagal terminals that innervate the whole gastrointestinal tract.
Collapse
Affiliation(s)
- Erin E Jobst
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health Sciences University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | | | |
Collapse
|
18
|
Dayas CV, Buller KM, Day TA. Hypothalamic paraventricular nucleus neurons regulate medullary catecholamine cell responses to restraint stress. J Comp Neurol 2004; 478:22-34. [PMID: 15334647 DOI: 10.1002/cne.20259] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN.
Collapse
Affiliation(s)
- Christopher V Dayas
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | |
Collapse
|
19
|
Buller KM, Allen T, Wilson LD, Munro F, Day TA. A critical role for the parabrachial nucleus in generating central nervous system responses elicited by a systemic immune challenge. J Neuroimmunol 2004; 152:20-32. [PMID: 15223234 DOI: 10.1016/j.jneuroim.2004.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 01/26/2004] [Accepted: 03/15/2004] [Indexed: 11/21/2022]
Abstract
Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflammatory cytokine interleukin-1beta (1 microg/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1beta. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1beta administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1beta-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1beta administration.
Collapse
Affiliation(s)
- K M Buller
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
20
|
Pompeiano O, d'Ascanio P, Balaban E, Centini C, Pompeiano M. Gene expression in autonomic areas of the medulla and the central nucleus of the amygdala in rats during and after space flight. Neuroscience 2004; 124:53-69. [PMID: 14960339 DOI: 10.1016/j.neuroscience.2003.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2003] [Indexed: 11/19/2022]
Abstract
During space flight astronauts show vestibular-related changes in balance, eye movements, and spontaneous and reflex control of cardiovascular, respiratory and gastrointestinal function, sometimes associated with space motion sickness. These symptoms undergo compensation over time. Here we used changes in the expression of two immediate-early gene (IEG) products to identify cellular and molecular changes occurring in autonomic brainstem regions of adult male albino rats killed at different times during the Neurolab Space Mission (STS-90). Both direct effects of gravitational changes, as well as indirect effects of gravitational changes on responses to light exposure were examined. Regions under the direct control of vestibular afferents such as the area postrema and the caudal part of the nucleus of the tractus solitarius (NTSC) were both directly and indirectly affected by gravity changes. These areas showed no changes in the expression of IEG products during exposure to microgravity with respect to ground controls, but did show a significant increase 24 h after return to 1 G (gravity). Exposure to microgravity significantly inhibited gene responses to light exposure seen after return to 1 G. A similar direct and indirect response pattern was also shown by the central nucleus of the amygdala, a basal forebrain structure anatomically and functionally related to the NTS. The rostral part of the NTS (NTSR) receives different afferent projections than the NTSC. This region did not show any direct gravity-related changes in IEG expression, but showed an indirect effect of gravity on IEG responses to light. A similar pattern was also obtained in the intermediate reticular nucleus and the parvocellular reticular nucleus. Two other medullary reticular structures, the dorsal and the ventral medullary reticular nuclei showed a less well defined pattern of responses that differed from those seen in the NTSC and NTSR. The short- and long-lasting molecular changes in medullary and basal forebrain gene expression described here are thought to play an important role in the integration of autonomic and vestibular signals that ultimately regulate neural adaptations to space flight.
Collapse
Affiliation(s)
- O Pompeiano
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Via San Zeno 31, I-56127 Pisa, Italy.
| | | | | | | | | |
Collapse
|
21
|
Petrov T, Steiner J, Braun B, Rafols JA. Sources of endothelin-1 in hippocampus and cortex following traumatic brain injury. Neuroscience 2003; 115:275-83. [PMID: 12401340 DOI: 10.1016/s0306-4522(02)00345-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endothelin 1 (ET-1) exerts normally a powerful vasoconstrictor role in the control of the brain microcirculation. In altered states, such as following traumatic brain injury (TBI), it may contribute to the development of ischemia and/or secondary cell injury. Because little is known of ET-1's cellular compartmentalization and its association to vulnerable neurons after TBI, we assessed its expression (both mRNA and protein) in cerebral cortex and hippocampus using correlative in situ hybridization and immunocytochemical techniques.Sprague-Dawley male rats were killed at 4, 24 or 48 h after TBI (450 g from 2 m, Marmarou's model). Semiquantitative analysis of our in situ hybridization results indicated a 2.5- and a 2.0-fold increase in ET-1 mRNA content in the hippocampus and cortex respectively which persisted up to 48 h post TBI. At 4 and 24 h after TBI enzyme-linked immunosorbent assay showed a tendency for increased ET-1 synthesis. In animals subjected to TBI, qualitative immunocytochemical analysis revealed a shift in ET-1 expression from astrocytes (in control animals) to endothelial cells, macrophages and neurons. Astrocytes and macrophages were identified unequivocally by using double immunofluorescence revealing ET-1 and glial fibrillary acidic protein or ED-1, respectively, the markers being specific for these cellular types. While this redistribution was most prominent at 4 and 24 h post TBI, at 48 h the endothelial cells remained strongly ET-1 immunopositive. The results suggest that cellular types which in the intact animal synthesize little or no ET-1 provide novel sources of the peptide after TBI. These sources may contribute to the sustained cerebrovascular hypoperfusion observed post TBI.
Collapse
Affiliation(s)
- Th Petrov
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
22
|
Saleh TM, Connell BJ. Central nuclei mediating estrogen-induced changes in autonomic tone and baroreceptor reflex in male rats. Brain Res 2003; 961:190-200. [PMID: 12531486 DOI: 10.1016/s0006-8993(02)03928-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The current investigation examines the significance of estrogen in central cardiovascular regulatory nuclei in modulating autonomic tone and baroreceptor reflex function. Experiments were done in anaesthetized male Sprague-Dawley rats. Changes in autonomic tone were assessed by monitoring vagal and renal efferent nerve activities before and following bilateral injection of estrogen into select central autonomic nuclei. In the first study, selective blockade of neurotransmission through the central nucleus of the amygdala (CNA), lateral hypothalamic area (LHA) and ventral posteromedial thalamic nucleus (VPM) using the local anaesthetic lidocaine was done to determine which nuclei were involved in mediating the autonomic changes observed following bilateral injections of estrogen into the insular cortex (IC). In the second study, the role of the parabrachial nucleus (PBN) in mediating the autonomic changes observed following bilateral estrogen injections into the CNA, LHA, VPM and IC was determined by blocking neurotransmission through the PBN using lidocaine.Injections of estrogen into the IC produced a significant increase in renal sympathetic nerve activity (RSNA; from 10+/-2 to 24+/-4 microV/sec; p<0.05). This estrogen-induced increase in RSNA was significantly attenuated when lidocaine was pre-injected into the LHA, CNA or PBN (55+/-6, 33+/-4 and 91+/-7% decrease respectively; p<0.05) but not when injected into the VPM (16+/-6% decrease; p>0.05). Injection of estrogen into the CNA resulted in a significant decrease in RSNA (48+/-5%; p<0.05) whereas estrogen injection into the LHA resulted in a significant increase (28+/-4%; p<0.05) in RSNA. Pre-injection of lidocaine into the PBN resulted in complete blockade of the autonomic changes observed following estrogen injection into the CNA but did not affect the changes observed following estrogen injection into the LHA. These results suggest that estrogen acting in forebrain and midbrain cardiovascular nuclei activated efferent pathways which synapse in the LHA, CNA and/or PBN prior to projecting to autonomic preganglionic nuclei to affect autonomic tone. These nuclei may therefore provide an added level of processing and/or integration of the autonomic response(s) following activation by local or systemic estrogen.
Collapse
Affiliation(s)
- Tarek M Saleh
- Department of Anatomy and Physiology, University of Prince Edward Island, 550 University Avenue, Charlottetown, Canada C1A 4P3.
| | | |
Collapse
|
23
|
Zhu L, Onaka T. Involvement of medullary A2 noradrenergic neurons in the activation of oxytocin neurons after conditioned fear stimuli. Eur J Neurosci 2002; 16:2186-98. [PMID: 12473086 DOI: 10.1046/j.1460-9568.2002.02285.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fear-related stimuli activate oxytocin neurons in the hypothalamus and facilitate oxytocin release from the pituitary. Oxytocin neurons in the supraoptic nucleus receive direct noradrenergic innervations from the A1 and A2 cell groups in the medulla oblongata. In the present study, we investigated the role of hypothalamic-projecting noradrenergic neurons in controlling oxytocin cell activity following fear-related stimuli in rats. An unconditioned fear stimulus (intermittently applied footshock) or conditioned fear stimulus induced expression of Fos protein, a protein product of an immediate-early gene, in magnocellular oxytocin neurons in the supraoptic or paraventricular nucleus. A neurotoxin, 5-amino-2,4-dihydroxy-alpha-methylphenylethylamine, microinjected into the vicinity of the supraoptic nucleus, selectively depleted the noradrenaline contents of the nucleus and blocked the Fos expression in the supraoptic nucleus after the unconditioned or conditioned fear stimulus. In the medulla oblongata, the unconditioned fear stimulus induced expression of Fos protein in both A2/C2 and A1/C1 catecholaminergic neurons. On the other hand, the conditioned fear stimulus induced expression of Fos protein preferentially in the A2/C2 neurons. Furthermore, the unconditioned fear stimulus induced Fos expression in the A1/C1 and A2/C2 catecholaminergic neurons labelled with retrograde tracers previously injected into the supraoptic nucleus. The conditioned fear stimulus induced Fos expression preferentially in the A2/C2 catecholaminergic neurons labelled with the retrograde tracers. These data suggest that the conditioned fear-induced oxytocin cell activity is mediated by the A2 noradrenergic neurons projecting to oxytocin neurons, while the unconditioned fear response is mediated by both A2 and A1 noradrenergic neurons.
Collapse
Affiliation(s)
- Lingling Zhu
- Department of Physiology, Jichi Medical School, Minamikawachi-machi, Tochigi-ken, Japan 329-0498
| | | |
Collapse
|
24
|
Jhamandas JH, Mactavish D. Central administration of neuropeptide FF (NPFF) causes increased neuronal activation and up-regulation of NPFF gene expression in the rat brainstem. J Comp Neurol 2002; 447:300-7. [PMID: 11984823 DOI: 10.1002/cne.10246] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuropeptide FF (NPFF) is a morphine modulatory peptide that plays an important role in a wide variety of physiological functions, including those related to nociception and central autonomic regulation. NPFF fibers and cells have been shown to be discretely localized in key autonomic centers within the brain, including the brainstem nucleus of the solitary tract (NTS). Central applications of NPFF evoke a number of important biological effects through activation of central neuronal circuits whose identities remain unknown at present. NPFF administered in this manner may also be capable of up- or down-regulating its own gene expression. In this study, we investigated the effects of intracerebroventricular (i.c.v.) administration of NPFF on the activation and the gene expression of NPFF in NTS neurons. Conscious rats received saline or NPFF (8 or 10 microg i.c.v.), with concomitant monitoring of arterial blood pressure. Brains were prepared for Fos immunohistochemistry to identify neuronal activation and NPFF in situ hybridization to determine cells expressing NPFF mRNA in the NTS. At a dose of 8 microg, i.c.v., NPFF did not evoke alterations in blood pressure, but, at 10 microg, there was an increase in arterial blood pressure of 30-40 mmHg. Image analysis showed a dose-dependent increase in number of NPFF neurons that were activated in rats receiving i.c.v. NPFF compared with saline controls. NPFF gene expression in the NTS showed a similar dose-dependent increase following i.c.v. administration of either 8 or 10 microg of NPFF. Significantly greater numbers of activated neurons expressing the NPFF gene (double labeled) were observed in the NTS at the level of the area postrema in animals receiving i.c.v. NPFF compared with saline controls. These data indicate that centrally administered NPFF is capable of up-regulating its own gene expression in the NTS and that this effect appears in part to be independent of elevations in arterial blood pressure that this peptide can evoke when administered i.c.v. at the higher dose. The up-regulation of NPFF may play a homeostatic role in response to specific cardiovascular challenges, such as hypotension.
Collapse
Affiliation(s)
- Jack H Jhamandas
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| | | |
Collapse
|
25
|
Dayas CV, Day TA. Opposing roles for medial and central amygdala in the initiation of noradrenergic cell responses to a psychological stressor. Eur J Neurosci 2002; 15:1712-8. [PMID: 12059979 DOI: 10.1046/j.1460-9568.2001.02011.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Psychological stressors trigger the activation of medullary noradrenergic cells, an effect that has been shown to depend upon yet-to-be-identified structures located higher in the brain. To test whether the amygdala is important in this regard, we examined the effects of amygdala lesions on noradrenergic cell responses to restraint, and also looked at whether any amygdala cells that respond to restraint project directly to the medulla. Ibotenic acid lesions of the medial amygdala completely abolished restraint-induced Fos expression in A1 and A2 noradrenergic cells. In contrast, lesions of the central amygdala actually facilitated noradrenergic cell responses to restraint. Tracer deposits in the dorsomedial (but not ventrolateral) medulla retrogradely labelled many cells in the central nucleus of the amygdala, but none of these cells expressed Fos in response to restraint. These data suggest for the first time that the medial amygdala is critical to the activation of medullary noradrenergic cells by a psychological stressor whereas the central nucleus exerts an opposing, inhibitory influence upon noradrenergic cell recruitment. The initiation of noradrenergic cell responses by the medial amygdala does not involve a direct projection to the medulla. Accordingly, a relay through some other structure, such as the hypothalamic paraventricular nucleus, warrants careful consideration.
Collapse
Affiliation(s)
- C V Dayas
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Australia
| | | |
Collapse
|
26
|
Buller KM, Crane JW, Day TA. The central nucleus of the amygdala; a conduit for modulation of HPA axis responses to an immune challenge? Stress 2001; 4:277-87. [PMID: 22432147 DOI: 10.3109/10253890109014752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Physical stressors such as infection, inflammation and tissue injury elicit activation of the hypothalamic-pituitary-adrenal (HPA) axis. This response has significant implications for both immune and central nervous system function. Investigations in rats into the neural substrates responsible for HPA axis activation to an immune challenge have predominantly utilized an experimental paradigm involving the acute administration of the pro-inflammatory cytokine interleukin- 1β (IL-1β). It is well recognized that medial parvocellular corticotrophin-releasing factor cells of the paraventricular nucleus (mPVN CRF) are critical in generating HPA axis responses to an immune challenge but little is known about how peripheral immune signals can activate and/or modulate the mPVN CRF cells. Studies that have examined the afferent control of the mPVN CRF cell response to systemic IL-1β have centred largely on the inputs from brainstem catecholamine cells. However, other regulatory neuronal populations also merit attention and one such region is a component of the limbic system, the central nucleus of the amygdala (CeA). A large number of CeA cells are recruited following systemic IL-lβ administration and there is a significant body of work indicating that the CeA can influence HPA axis function. However, the contribution of the CeA to HPA axis responses to an immune challenge is only just beginning to be addressed. This review examines three aspects of HPA axis control by systemic IL-1β: (i) whether the CeA has a role in generating HPA axis responses to systemic IL-1β, (ii) the identity of the neural connections between the CeA and mPVN CRF cells that might be important to HPA axis responses and(iii) the mechanisms by which systemic IL-Iβ triggers the recruitment of CeA cells.
Collapse
Affiliation(s)
- K M Buller
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Qld 4072, Australia.
| | | | | |
Collapse
|
27
|
Petrov T, Underwood BD, Braun B, Alousi SS, Rafols JA. Upregulation of iNOS expression and phosphorylation of eIF-2alpha are paralleled by suppression of protein synthesis in rat hypothalamus in a closed head trauma model. J Neurotrauma 2001; 18:799-812. [PMID: 11526986 DOI: 10.1089/089771501316919166] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
When the inducible form of nitric oxide synthase (iNOS) is expressed after challenge to the nervous system, it results in abnormally high concentrations of nitric oxide (NO). Under such conditions, NO could phosphorylate the eukaryotic translation initiation factor (eIF)-2alpha, thus suppressing protein synthesis in neurons that play a role in endocrine and autonomic functions. Using the Marmarou model of traumatic brain injury (TBI), we observed a rapid increase (at 4 h after TBI) of iNOS mRNA in magno- and parvocellular supraoptic and paraventricular neurons, declining gradually by approximately 30% at 24 h and by approximately 80% at 48 h. Western analysis indicated a trend towards increased iNOS protein synthesis at 4 h, which peaked at 8 h, and tended to decrease at the later time points. At the same time points, we detected immunocytochemically the phosphorylated form of eIF-2alpha (eIF-2alpha[P]) as cytoplasmic and more often as nuclear labeling. The incidence of double-labeled [iNOS and eIF-2alpha(P)] neuronal profiles, particularly at 24 h and 48 h after TBI, was high. De novo protein synthesis assessed quantitatively after infusion of 35S methionine/cysteine was reduced by approximately 20% at 4 h, remained depressed at 24 h, and did not return to control levels up to 48 h following the trauma. The results suggest that iNOS may trigger phosphorylation of eIF-2alpha, which in turn interferes with protein synthesis at the translational (ribosomal complex) and transcriptional (chromatin) levels. The depression in protein synthesis may include downregulation of iNOS itself, which could be an autoregulatory inhibitory feedback mechanism for NO synthesis. Excessive amounts of NO may also participate in dysfunction of hypothalamic circuits that underlie endocrine and autonomic alterations following TBI.
Collapse
Affiliation(s)
- T Petrov
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|
28
|
Malakhova OE, Davenport PW. c-Fos expression in the central nervous system elicited by phrenic nerve stimulation. J Appl Physiol (1985) 2001; 90:1291-8. [PMID: 11247926 DOI: 10.1152/jappl.2001.90.4.1291] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phrenic nerve afferents (PNa) have been shown to activate neurons in the spinal cord, brain stem, and forebrain regions. The c-Fos technique has been widely used as a method to identify neuronal regions activated by afferent stimulation. This technique was used to identify central neural areas activated by PNa. The right phrenic nerve of urethane-anesthetized rats was stimulated in the thorax. The spinal cord and brain were sectioned and stained for c-Fos expression. Labeled neurons were found in the dorsal horn laminae I and II of the C3-C5 spinal cord ipsilateral to the site of PNa stimulation. c-Fos-labeled neurons were found bilaterally in the medial subnuclei of the nucleus of the solitary tract, rostral ventral respiratory group, and ventrolateral medullary reticular formation. c-Fos-labeled neurons were found bilaterally in the paraventricular and supraoptic hypothalamic nuclei, in the paraventricular thalamic nucleus, and in the central nucleus of the amygdala. The presence of c-Fos suggests that these neurons are involved in PNa information processing and a component of the central mechanisms regulating respiratory function.
Collapse
Affiliation(s)
- O E Malakhova
- Department of Physiological Sciences, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
29
|
Salomé N, Viltart O, Leman S, Sequeira H. Activation of ventrolateral medullary neurons projecting to spinal autonomic areas after chemical stimulation of the central nucleus of amygdala: a neuroanatomical study in the rat. Brain Res 2001; 890:287-95. [PMID: 11164795 DOI: 10.1016/s0006-8993(00)03178-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several studies have shown that the central nucleus of amygdala is involved in cardiovascular regulation. The control of this function may be mediated by activation of the ventrolateral medulla neurons that project to preganglionic neurons located in the intermediolateral nucleus of the spinal cord. The aim of the present study was to examine whether stimulation of the central nucleus of amygdala activated ventrolateral medulla neurons projecting to the intermediolateral nucleus. For this purpose, the injection of a retrograde tracer, the cholera toxin b subunit (CTb), into the intermediolateral nucleus of the T2 segment was combined with immunohistochemical detection of Fos protein following chemical stimulation of the central nucleus of amygdala. Results showed that retrogradely labeled neurons were found throughout the ventrolateral medulla. Moreover, chemical stimulation of the central nucleus of amygdala induced: (1) a decrease of arterial blood pressure; (2) an expression of Fos protein mainly in sub-populations of neurons located in the intermediate and caudal parts of the ventrolateral medulla; (3) a significantly higher number of double labeled neurons (CTb-immunoreactive/Fos-immunoreactive) in the rostral part of the ventrolateral medulla than in the other parts of this region. These results show that the central nucleus of amygdala influences the activity of brainstem neurons projecting to the intermediolateral nucleus. Data were discussed in terms of descending amygdalofugal pathways involved in the hypotension.
Collapse
Affiliation(s)
- N Salomé
- Laboratoire de Neurosciences du Comportement, SN4, Université de Lille 1, 59655 Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
30
|
Ikonomov OC, Petrov T, Soden K, Shisheva A, Manji HK. Lithium treatment in ovo: effects on embryonic heart rate, natural death of ciliary ganglion neurons, and brain expression of a highly conserved chicken homolog of human MTG8/ETO. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 123:13-24. [PMID: 11020546 DOI: 10.1016/s0165-3806(00)00074-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding the action of the mood stabilizer lithium is dependent on availability of experimental models where lithium treatment at clinically relevant concentrations induces marked phenotypic and genotypic changes. Here we report on such changes in the chicken embryo. Lithium chloride (0.6 mM), applied in ovo 60 h after incubation, markedly delayed the heart rate increase observed from ED2.5 to ED5, and induced the brain expression of a new chicken gene cETO from ED7 to ED15. At the same time the overall developmental dynamics and embryo survival, or the expression of chicken gephyrin were not significantly affected. Furthermore, lithium treatment (0.3 mM, 48 h after incubation) abolished the difference in neuronal number between ED12 ciliary ganglia developing in the presence or absence of postganglionic target muscles. We show that cETO is a close homologue of the human transcription factor MTG8/ETO; named after its location on chromosome 8, and participation in chromosomal translocation 8;21 in myeloid leukemia. The mRNA and protein levels of ETO and gephyrin had a parallel course in chicken brain development suggesting that the expression of both genes is regulated mainly at the level of gene transcription. However, the patterns of expression were markedly different. ETO peaked at ED7 and decreased five-fold at ED15. In contrast, gephyrin levels increased five-fold from ED7 to ED15. We propose that the induction of ETO expression, in concert with lithium-induced upregulation of other genes, such as PEBP2beta and bcl-2, is participating in the neuroprotective effect of chronic lithium treatment.
Collapse
Affiliation(s)
- O C Ikonomov
- Laboratory of Molecular Pathophysiology, Department of Psychiatry and Behavioral Neurosciences, Wayne State University, School of Medicine, 4237 Scott Hall, 540 E. Canfield, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
31
|
Wang L, Martínez V, Vale W, Taché Y. Fos induction in selective hypothalamic neuroendocrine and medullary nuclei by intravenous injection of urocortin and corticotropin-releasing factor in rats. Brain Res 2000; 855:47-57. [PMID: 10650129 DOI: 10.1016/s0006-8993(99)02200-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CRF and urocortin, administrated systemically, exert peripheral biological actions which may be mediated by brain pathways. We identified brain neuronal activation induced by intravenous (i.v.) injection of CRF and urocortin in conscious rats by monitoring Fos expression 60 min later. Both peptides (850 pmol/kg, i.v.) increased the number of Fos immunoreactive cells in the paraventricular nucleus of the hypothalamus, supraoptic nucleus, central amygdala, nucleus tractus solitarius and area postrema compared with vehicle injection. Urocortin induced a 4-fold increase in the number of Fos-positive cells in the supraoptic nucleus and a 3.4-fold increase in the lateral magnocellular part of the paraventricular nucleus compared with CRF. Urocortin also elicited Fos expression in the accessory hypothalamic neurosecretory nuclei, ependyma lining the ventricles and choroid plexus which was not observed after CRF. The intensity and pattern of the Fos response were dose-related (85, 255 and 850 pmol/kg, i.v.) and urocortin was more potent than CRF. Neither CRF nor urocortin induced Fos expression in the lateral septal nucleus, Edinger-Westphal nucleus, dorsal raphe nucleus, locus coeruleus, or hypoglossal nucleus. These results show that urocortin, and less potently CRF, injected into the circulation at picomolar doses activate selective brain nuclei involved in the modulation of autonomic/endocrine function; in addition, urocortin induces a distinct activation of hypothalamic neuroendocrine neurons.
Collapse
Affiliation(s)
- L Wang
- CURE: Digestive Diseases Research Center, V.A. Medical Center, Bldg. 115, Rm. 203, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA
| | | | | | | |
Collapse
|
32
|
Sequeira H, Poulain P, Ba-M'Hamed S, Viltart O. Immunocytochemical detection of fos protein combined with anterograde tract-tracing using biotinylated dextran. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2000; 5:49-56. [PMID: 10719265 DOI: 10.1016/s1385-299x(99)00052-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present report deals with an axonal tract-tracing procedure in rat enabling visualization of anterogradely transported biotinylated dextran amine (BDA) combined with immnunocytochemical detection of Fos protein following electrical stimulation of the brain. This method allows us to evaluate whether a given structure, receiving both injection of BDA and electrical stimulation, elicits neuronal activation in another part of the brain via direct or indirect projections. We have used the method at the light microscopic level to determine the connectivity of the sensorimotor cortex in the rat. In various parts of the forebrain and brainstem, BDA-labeled fibers originating from the cortex were observed in close apposition to Fos-like immunoreactive cells (FLI) activated by stimulation. This result suggests a direct (probably monosynaptic) projection. On the contrary, FLI neurons were observed in areas devoid of direct afferents, indicating a cascade of activations. The method described in this protocol is applicable for functional anatomy purposes elsewhere within the central nervous system. It constitutes a preliminary step in identifying the validity of a pathway before examination of the reality of the monosynaptic relationship at the electron microscopic level.
Collapse
Affiliation(s)
- H Sequeira
- Laboratoire de Neurosciences du Comportement, Université de Lille I, SN4, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | |
Collapse
|
33
|
Xu Y, Day TA, Buller KM. The central amygdala modulates hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1beta administration. Neuroscience 1999; 94:175-83. [PMID: 10613507 DOI: 10.1016/s0306-4522(99)00311-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the present study we examined the role of the central nucleus of the amygdala in hypothalamic-pituitary-adrenal axis responses to an immune challenge in the form of systemic administration of the proinflammatory cytokine interleukin-1beta (1 microg/kg). We found that bilateral ibotenic acid lesions of the central amygdala substantially reduced adrenocorticotropin hormone release and hypothalamic corticotropin-releasing factor and oxytocin cell c-fos expression responses to interleukin-1,8 suggesting a facilitatory role for this structure in the generation of hypothalamic-pituitary-adrenal axis responses to an immune challenge. Since only a small number of central amygdala cells project directly to the paraventricular nucleus, we then examined the effect of central amygdala lesions on the activity of other brain nuclei that might act as relay sites in the control of the hypothalamic-pituitary-adrenal axis function. We found that bilateral central amygdala lesions significantly reduced interleukin-1beta-induced c-fos expression in cells of the ventromedial and ventrolateral subdivisions of the bed nucleus of the stria terminalis and brainstem catecholamine cell groups of the nucleus tractus solitarius (A2 noradrenergic cells) and ventrolateral medulla (A1 noradrenergic and C1 adrenergic cells). These findings, in conjunction with previous evidence of bed nucleus of the stria terminalis and catecholamine cell group involvement in hypothalamic-pituitary-adrenal axis regulation, suggest that ventromedial and ventrolateral bed nucleus of the stria terminalis cells and medullary catecholamine cells might mediate the influence of the central amygdala on hypothalamic-pituitary-adrenal axis responses to an immune challenge. Thus these data establish that the central amygdala influences hypothalamic-pituitary-adrenal axis responses to a systemic immune challenge but indicate that it primarily acts by modulating the activity of other control mechanisms.
Collapse
Affiliation(s)
- Y Xu
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
34
|
Semenenko FM, Lumb BM. Excitatory projections from the anterior hypothalamus to periaqueductal gray neurons that project to the medulla: a functional anatomical study. Neuroscience 1999; 94:163-74. [PMID: 10613506 DOI: 10.1016/s0306-4522(99)00317-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study was designed to investigate the organization of excitatory projections from regions of the anterior hypothalamus that are known to co-ordinate autonomic and sensory functions to medullo-output neurons in the periaqueductal gray. The induction of Fos protein was used to identify neurons in the periaqueductal gray that were activated synaptically by chemical stimulation at sites in the anterior hypothalamus from which either increases or decreases in arterial blood pressure were evoked (pressor sites and depressor sites, respectively). This was combined with retrograde tracing using fluorescent latex microspheres from sites in the medulla. When compared to control animals, neuronal activation at pressor sites in the anterior hypothalamus evoked Fos-like immunoreactivity in significantly more neurons in all but one sub-division of the periaqueductal gray (P at least < 0.05). The majority of Fos-positive neurons following a pressor response were located in the caudal half of the periaqueductal gray where significantly more neurons contained Fos-like immunoreactivity in lateral than in any other sub-division (P < 0.01). In all but two of 14 subdivisions of the periaqueductal gray, the numbers of neurons that expressed Fos-like immunoreactivity following stimulation at depressor sites in the anterior hypothalamus were not significantly different from controls. When neuronal activation at pressor or depressor sites in the anterior hypothalamus was combined with retrograde tracing from the rostral ventrolateral medulla, nucleus raphe magnus and/or nucleus raphe obscurus the majority of double-labelled neurons were located in the caudal half of the periaqueductal gray. Comparisons between the numbers of double-labelled neurons that resulted from different combinations of hypothalamic and medullary injection sites revealed that neuronal activation at pressor sites in the anterior hypothalamus combined with retrograde tracing from the rostral ventrolateral medulla resulted in the greatest numbers of double-labelled neurons. The identification of double-labelled neurons indicates that medullo-output neurons in the periaqueductal gray receive excitatory inputs predominantly from pressor compared to depressor sites in the anterior hypothalamus. These results are discussed in relation to the roles of the different longitudinal columns of the periaqueductal gray, and the organisation of their projections to the medulla, in the co-ordination of autonomic and sensory functions.
Collapse
Affiliation(s)
- F M Semenenko
- Department of Physiology, School of Medical Sciences, University of Bristol, UK
| | | |
Collapse
|
35
|
Zhang X, Fogel R, Renehan WE. Stimulation of the paraventricular nucleus modulates the activity of gut-sensitive neurons in the vagal complex. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G79-90. [PMID: 10409154 DOI: 10.1152/ajpgi.1999.277.1.g79] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
There is good evidence that stimulation of the lateral hypothalamus excites neurons in the dorsal vagal complex (DVC), but the data regarding the role of the paraventricular nucleus (PVN) in vagal function are less clear. The purpose of this study was to clarify the effect of PVN stimulation on the activity of neurons in the DVC. We utilized extracellular and intracellular neuronal recordings with intracellular injections of a neuronal tracer to label individual, physiologically characterized neurons in the DVC of rats anesthetized with pentobarbital sodium. Most (80%) of the gut-sensitive dorsal motor nucleus of the vagus (DMNV) neurons characterized in this study exhibited a change in activity during electrical stimulation of the PVN. Stimulation of the PVN caused an increase in the spontaneous activity of 59% of the PVN-sensitive DMNV neurons, and the PVN was capable of modulating the response of a small subset of DMNV neurons to gastrointestinal stimuli. This study also demonstrated that the PVN was capable of influencing the activity of neurons in the nucleus of the solitary tract (NST). Electrical stimulation of the PVN decreased the basal activity of 66% of the NST cells that we characterized and altered the gastrointestinal response of a very small subset of NST neurons. It is likely that these interactions play a role in the modulation of a number of gut-related homeostatic processes. Increased or decreased activity in the descending pathway from the PVN to the DVC has the potential to alter ascending satiety signals, modulate vago-vagal reflexes and the cephalic phase of feeding, and affect the absorption of nutrients from the gastrointestinal tract.
Collapse
Affiliation(s)
- X Zhang
- Division of Gastroenterology, Henry Ford Health System, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
36
|
Peden EM, Sweazey RD. Chemical stimulation of the laryngopharynx increases Fos-like immunoreactivity in the rat hypothalamus and amygdala. Brain Res Bull 1999; 48:629-39. [PMID: 10386844 DOI: 10.1016/s0361-9230(99)00050-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Using immunohistochemical detection of the Fos protein as a cellular marker of neuronal activation, we examined forebrain areas that may be activated upon chemical stimulation of the laryngeal opening. Anesthetized rats were subject to multiple infusions of a chemical solution into the laryngopharynx. These animals were compared to two control groups: a surgical control group in which the animals were subject to the surgical procedure but received no stimulus infusions and a flow control group in which physiological saline replaced the chemical stimulus. Comparing the numbers of Fos-like-immunoreactive neurons in regions of the forebrain across groups revealed that infusing the chemical stimulus solution into the laryngopharyngeal opening selectively increased the number of Fos-like-immunoreactive nuclei in the paraventricular nucleus of the hypothalamus and the central nucleus of the amygdala, two autonomic-visceral related forebrain regions. Within the paraventricular nucleus of the hypothalamus, Fos-like-immunoreactive nuclei were significantly increased in the parvocellular subdivision while in the central nucleus of the amygdala, significant increases in Fos-like-immunoreactive nuclei were limited to the lateral capsular subdivision. These data suggest that in the rat laryngopharyngeal chemosensory stimulation activates forebrain regions that receive oral sensory information and are involved in visceral and autonomic functions.
Collapse
Affiliation(s)
- E M Peden
- Department of Anatomy, Indiana University School of Medicine, Fort Wayne 46805-1499, USA
| | | |
Collapse
|
37
|
Giraudo SQ, Kotz CM, Billington CJ, Levine AS. Association between the amygdala and nucleus of the solitary tract in mu-opioid induced feeding in the rat. Brain Res 1998; 802:184-8. [PMID: 9748566 DOI: 10.1016/s0006-8993(98)00602-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The central nucleus of the amygdala (CNA) and the nucleus of the solitary tract (NTS) are important in the regulation of ingestive behavior. We evaluated whether opioid-opioid signaling between the CNA and rostral NTS (rNTS) affect feeding behavior. To test this, rats were doubly cannulated with one cannula placed in the rNTS and one cannula in the CNA, allowing for co-administration of an opioid agonist into one site and an opioid antagonist into the other. Tyr-D-Ala-Gly-(me) Phe-Gly-ol (DAMGO) (2 nmol) injected into the CNA (CNA DAMGO) increased feeding more than two-fold compared to the vehicle-injected rats. This increase in food intake was blocked when doses of 26.5 and 79 nmol of naltrexone (NTX) were injected into the rNTs. In the reverse situation, rNTS DAMGO increased food intake above control levels, and CNA NTX blocked DAMGO-induced feeding when administrated in doses of 26.5 and 79 nmol. This suggests that a bi-directional opioid-opioid signaling pathway exists between the CNA and the rNTS which influences feeding via mu-opioid receptors.
Collapse
|
38
|
Wang L, Martínez V, Barrachina MD, Taché Y. Fos expression in the brain induced by peripheral injection of CCK or leptin plus CCK in fasted lean mice. Brain Res 1998; 791:157-66. [PMID: 9593872 DOI: 10.1016/s0006-8993(98)00091-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously reported a synergistic interaction between leptin and cholecystokinin (CCK) to reduce food intake through CCK-A receptors in lean mice fasted for 24 h. To identify the activated neuronal pathways, we investigated changes in Fos expression in brain nuclei 2 h after single or combined intraperitoneal (i.p.) injections of leptin (120 microg/kg) and sulfated CCK-8 (3.5 microg/kg) in male lean mice (C57BL/6) fasted for 24 h using immunohistochemistry for Fos, the protein product of the early gene, c-fos. Leptin did not increase Fos expression in the brain compared with vehicle-treated mice. CCK increased the numbers of Fos-positive neurons in the nucleus of the solitary tract (NTS)/area postrema (AP), central nucleus of the amygdala (CeA) and, to a smaller extent, in the paraventricular nucleus of the hypothalamus (PVN) (5.2-, 2.3- and 0. 3-fold respectively). Injections of leptin-CCK further enhanced Fos expression by 40% in the PVN compared with that induced by CCK alone, but not in the other nuclei. Devazepide (a CCK-A receptor antagonist, 1 mg/kg, i.p.) prevented the increase in Fos expression induced by leptin-CCK in the PVN and by CCK alone in the PVN, CeA and NTS/AP. These results indicate that in fasted mice, i.p. injection of CCK increases Fos expression in specific brain nuclei through CCK-A receptors while leptin alone had no effect. Leptin in conjunction with CCK selectively enhanced Fos expression in the PVN. The PVN may be an important site mediating the synergistic effect of leptin-CCK to regulate food intake.
Collapse
Affiliation(s)
- L Wang
- CURE/Digestive Diseases Research Center, West Los Angeles VA Medical Center, Department of Medicine and Brain Research Institute, University of California, Los Angeles, CA 90073, USA
| | | | | | | |
Collapse
|
39
|
Giraudo SQ, Billington CJ, Levine AS. Effects of the opioid antagonist naltrexone on feeding induced by DAMGO in the central nucleus of the amygdala and in the paraventricular nucleus in the rat. Brain Res 1998; 782:18-23. [PMID: 9519245 DOI: 10.1016/s0006-8993(97)01140-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) and the central nucleus of the amygdala (CNA) are two forebrain structures which are important in regulation of ingestive behavior. DAMGO is one of the most reliable and potent mu-selective opioid ligands that increases feeding in both of these brain nuclei. Administration of naloxone, an opioid antagonist, into the CNA prior to DAMGO blocks DAMGO-induced increases in food intake. The effect of this drug combination on food intake has not been evaluated in the PVN. However, intra-PVN injection of naloxone decreases deprivation and NPY-induced feeding. It has been suggested that CNA may modulate activity of midbrain and caudal brainstem centers via the hypothalamus. Based on these data, we evaluated whether an opioid-opioid interaction is present between the CNA and PVN which might affect feeding behavior. To test this, rats were doubly cannulated with 1 cannula placed in the PVN and 1 cannula in the CNA, allowing for co-administration of the opioid agonist into the PVN and the opioid antagonist into the CNA, and vice versa. CNA DAMGO increased feeding more than two-fold as compared to the vehicle-injected rats. When doses of 10, 12.5 and 25 micrograms of naltrexone (NTX) were injected into the PVN, CNA DAMGO no longer increased food intake above control levels. In the reverse situation, PVN DAMGO also increased food intake above control levels. However, when NTX was administrated unilaterally into the CNA at a relatively high dose (25 micrograms) or bilaterally (12.5 micrograms), PVN DAMGO-induced feeding was not altered. This suggests that an opioid-opioid signaling pathway exists from the CNA to the PVN which influences feeding via mu opioid receptors, whereas such a pathway from the PVN to the CNA does not seem to exist.
Collapse
Affiliation(s)
- S Q Giraudo
- Minnesota Obesity Center, VA Medical Center, Minneapolis, USA
| | | | | |
Collapse
|
40
|
Interaction of the hypothalamic paraventricular nucleus and central nucleus of the amygdala in naloxone blockade of neuropeptide Y-induced feeding revealed by c-fos expression. J Neurosci 1997. [PMID: 9185555 DOI: 10.1523/jneurosci.17-13-05175.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide Y (NPY) is a powerful inducer of food intake with a key site of action in the paraventricular nucleus (PVN) of the hypothalamus. An effective method for inhibiting the effects of NPY is pretreatment with the opioid antagonists naloxone or naltrexone. In the present study, we used immunohistochemistry for cFos as a marker of neuronal activity to map the effects of PVN-injected NPY and blockade of these effects by peripheral injection of naloxone. Injection of NPY into the PVN resulted in an increase in food intake that was blocked by peripheral administration of naloxone. PVN NPY also resulted in increased cFos immunoreactivity (cFos-IR) in the PVN independent of food intake, and although peripheral naloxone inhibited NPY-induced feeding, it did not alter cFos-IR in the PVN. cFos-IR in the central nucleus of the amygdala (CNA) increased in response to both NPY and naloxone. Furthermore, the response to NPY and naloxone was additive, suggesting that peripheral naloxone and PVN NPY activate different neuronal populations in the CNA. Three other brain regions, the nucleus of the solitary tract, the ventrolateral medulla, and the supraoptic nucleus, all showed increases in cFos-IR in this study, but these changes came only as a result of increased food intake after PVN-injected NPY. The current data suggest that the CNA is a site important for the integration of the NPY and opioid systems.
Collapse
|
41
|
Bonaz B, Taché Y. Corticotropin-releasing factor and systemic capsaicin-sensitive afferents are involved in abdominal surgery-induced Fos expression in the paraventricular nucleus of the hypothalamus. Brain Res 1997; 748:12-20. [PMID: 9067440 DOI: 10.1016/s0006-8993(96)01281-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We previously reported that abdominal surgery induces Fos expression in specific hypothalamic and medullary nuclei and also causes gastric stasis. The gastric ileus is reduced by systemic capsaicin and abolished by central injection of corticotropin-releasing factor (CRF) antagonist. We studied the influence of systemic capsaicin and intracerebroventricular (i.c.v.) injection of the CRF antagonist, alpha-helical CRF9-41, on Fos expression in the brain 1 h after abdominal surgery in conscious rats using immunocytochemical detection. In control groups (vehicle s.c. or i.c.v.), abdominal surgery (laparotomy with cecal manipulation) performed under 7-8 min of enflurane anesthesia induced Fos staining in neurons of the spinal trigeminal, C1/A1 group, ventrolateral medulla, central amygdala, parabrachial nucleus, cuneate nucleus, nucleus tractus solitarii (NTS), paraventricular nucleus of the hypothalamus (PVN) and supraoptic nucleus (SON). Capsaicin (125 mg/kg s.c., 2 weeks before) or alpha-helical CRF9-41 (50 microg i.c.v., before surgery) reduced the number of Fos-positive cells by 50% in the PVN while not modifying the number of Fos-labelled cells in the other nuclei. These results indicate that capsaicin-sensitive primary afferents and brain CRF receptors are part of the pathways and biochemical coding through which abdominal surgery activates PVN neurons 1 h post surgery.
Collapse
Affiliation(s)
- B Bonaz
- Department of Medicine and Brain Research Institute, University of California at Los Angeles, 90073, USA
| | | |
Collapse
|