1
|
Ilabaca-Carrasco F, Peña-Raddatz C, Torres-Bustos C, Hernández-Cea M, Nourdin-Galindo G, Saldivia-Flandez P, Vargas C, Koch E, Bello-Toledo H, González-Rocha G, Opazo-Capurro A. Detection of KPC-producing Enterobacterales species in wastewater samples from the Gran Concepción Metropolitan area, Chile. Biol Res 2025; 58:35. [PMID: 40481605 PMCID: PMC12144836 DOI: 10.1186/s40659-025-00612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 05/06/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Carbapenemase-mediated resistance to carbapenems is a significant public health concern due to its potential for widespread dissemination. The KPC family of carbapenemases, encoded by the blaKPC gene and often associated with Tn4401-like transposons, is particularly important for its ability to be transferred through diverse plasmid types. In Chile, KPC-producing Gram-negative bacteria have been detected in clinical settings; however, their occurrence in wastewater (WW) remains unknown. This study addresses this gap by characterizing carbapenem-resistant Enterobacterales isolates from a wastewater treatment plant (WWTP) in the Gran Concepción Metropolitan Area, Chile. RESULTS This study identifies three carbapenem-resistant Enterobacterales isolates, namely Klebsiella pasteurii M2/A/C/34, Klebsiella pneumoniae subsp. pneumoniae M3/A/M/3, and Citrobacter freundii sensu stricto. M4/A/C/32, all exhibiting multidrug-resistant profiles and carrying the blaKPC-2 gene encoding KPC-like carbapenemases. These isolates also possessed genes for extended-spectrum β-lactamases (ESBLs) and aminoglycoside-modifying enzymes (AMEs). Sequence typing revealed that M2/A/C/34, M3/A/M/3, and M4/A/C/32 belonged to novel sequence types, specifically ST470, ST273, and ST214, respectively. All isolates carried plasmids belonging to groups commonly associated with ARGs, including IncF, IncP, and IncA. Both Klebsiella isolates (M2/A/C/34 and M3/A/M/3) carried the class 1 integron (intl1) gene. Phylogenomic analysis reveals that M2/A/C/34 is related to strains from China and Pakistan, while M3/A/M/3 shares similarities with a strain from Germany, indicating their potential dissemination. CONCLUSIONS This study represents the first detection of carbapenem-resistant Enterobacterales carrying blaKPC-2 in Chilean WW, including the novel identification of K. pasteurii. These findings emphasize the critical role of genomic surveillance in WW under the One Health framework, enabling the monitoring of carbapenemase-producing bacteria and associated ARGs. Sustained surveillance efforts are essential to comprehend the dynamics of antibiotic resistance in environmental reservoirs and to develop strategies for its containment and mitigation.
Collapse
Affiliation(s)
- Franco Ilabaca-Carrasco
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile
- Laboratorio de Biología, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello Sede Concepción, Talcahuano, Chile
| | - Carlos Peña-Raddatz
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Claudia Torres-Bustos
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | | | | | - Cristian Vargas
- Division of Biotechnology, MELISA Institute, Concepción, Chile
| | - Elard Koch
- Division of Biotechnology, MELISA Institute, Concepción, Chile
| | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile.
| | - Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
2
|
Zou H, Huang X, Xiao W, He H, Liu S, Zeng H. Recent advancements in bacterial anti-phage strategies and the underlying mechanisms altering susceptibility to antibiotics. Microbiol Res 2025; 295:128107. [PMID: 40023108 DOI: 10.1016/j.micres.2025.128107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
The rapid spread of multidrug-resistant bacteria and the challenges in developing new antibiotics have brought renewed international attention to phage therapy. However, in bacteria-phage co-evolution, the rapid development of bacterial resistance to phage has limited its clinical application. This review consolidates the latest advancements in research on anti-phage mechanisms, encompassing strategies such as systems associated with reduced nicotinamide adenine dinucleotide (NAD+) to halt the propagation of the phage, symbiotic bacteria episymbiont-mediated modulation of gene expression in host bacteria to resist phage infection, and defence-related reverse transcriptase (DRT) encoded by bacteria to curb phage infections. We conduct an in-depth analysis of the underlying mechanisms by which bacteria undergo alterations in antibiotic susceptibility after developing phage resistance. We also discuss the remaining challenges and promising directions for phage-based therapy in the future.
Collapse
Affiliation(s)
- Huanhuan Zou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyi Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenyue Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haoxuan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shenshen Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haiyan Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Muteeb G, Kazi RNA, Aatif M, Azhar A, Oirdi ME, Farhan M. Antimicrobial resistance: Linking molecular mechanisms to public health impact. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 33:100232. [PMID: 40216324 DOI: 10.1016/j.slasd.2025.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Antimicrobial resistance (AMR) develops into a worldwide health emergency through genetic and biochemical adaptations which enable microorganisms to resist antimicrobial treatment. β-lactamases (blaNDM, blaKPC) and efflux pumps (MexAB-OprM) working with mobile genetic elements facilitate fast proliferation of multidrug-resistant (MDR) and exttreme drug-resistant (XDR) phenotypes thus creating major concerns for healthcare systems and community health as well as the agricultural sector. OBJECTIVES The review dissimilarly unifies molecular resistance pathways with public health implications through the study of epidemiological data and monitoring approaches and innovative therapeutic solutions. Previous studies separating their attention between molecular genetics and clinical outcomes have been combined into our approach which delivers an all-encompassing analysis of AMR. KEY INSIGHTS The report investigates the resistance mechanisms which feature enzymatic degradation and efflux pump overexpression together with target modification and horizontal gene transfer because these factors represent important contributors to present-day AMR developments. This review investigates AMR effects on hospital and community environments where it affects pathogens including MRSA, carbapenem-resistant Klebsiella pneumoniae, and drug-resistant Pseudomonas aeruginosa. This document explores modern AMR management methods that comprise WHO GLASS molecular surveillance systems and three innovative strategies such as CRISPR-modified genome editing and bacteriophage treatments along with antimicrobial peptides and artificial intelligence diagnostic tools. CONCLUSION The resolution of AMR needs complete scientific and global operational methods alongside state-of-the-art therapeutic approaches. Worldwide management of drug-resistant infection burden requires both enhanced infection prevention procedures with next-generation antimicrobial strategies to reduce cases effectively.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Raisa Nazir Ahmed Kazi
- Department of Respiratory Therapy, College of Applied Medical Science, King Faisal, University, Al-Ahsa, Saudi Arabia
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Asim Azhar
- NAP Life Sciences; Metropolitan Region, Maharashtra 401208, India
| | - Mohamed El Oirdi
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia; Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia.
| |
Collapse
|
4
|
Kumari LS, Siriwardhana DM, Liyanapathirana V, Jinadasa R, Wijesinghe P. Rapid whole genome sequencing for AMR surveillance in low- and middle-income countries: Oxford Nanopore Technology reveals multidrug-resistant Enterobacter cloacae complex from dairy farms in Sri Lanka. BMC Vet Res 2025; 21:351. [PMID: 40382559 PMCID: PMC12084958 DOI: 10.1186/s12917-025-04800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major global challenge that disproportionately affects low- and middle-income countries (LMICs). Environmental contamination by resistant bacteria from animal production facilities is a major driver of the spread of AMR through the food chain, requiring a robust one-health control approach. Traditional culture-based AMR surveillance is time-consuming and less sensitive, and fails to fully capture the spectrum of AMR, evolutionary trends, and epidemiological patterns of AMR spread. Whole-genome sequencing (WGS) has revolutionized AMR surveillance capabilities. Rapid WGS captures the full AMR spectrum with minimum samples, aids source attribution, and provides insights into trends in AMR spread. The portable Oxford Nanopore® Technology (ONT) platform, coupled with open-source software such as Galaxy and Konstanz Information Miner (KNIME), enables the establishment of a potentially portable, transferable workflow for low-resource settings. This study aimed to assess the AMR burden on four dairy farms in Kandy, Sri Lanka, via a resource-limited LMIC using a low-cost high-throughput screening assay and rapid WGS via ONT with Galaxy and KNIME processing to obtain full antibiotic resistomes. RESULTS The four isolates exhibiting the highest minimum inhibitory concentrations for amoxicillin were identified as Enterobacter cloacae and E. hormaechei by WGS. Chromosomes (4.8 to 4.9 Mb) carry the strain-specific resistance genes blaCMH-1, blaACT-25, fosA_7, and ramA, which are associated with diverse antibiotic classes. Plasmids, including IncFIB (pECLA), IncFII (pECLA), and IncX3, carry multiple resistance genes, including AAC(3)-IIe, AAC(6')-Ib-cr, APH(3″)-Ib, APH(6)-Id, blaCTX-M-15, blaNDM, blaOXA-1, blaTEM-1, dfrA14, QnrB17, catII, determinant-of-bleomycin-resistance, and sul2. Novel arrangements of insertion sequences were observed in E. hormaechei plasmids. The phenotypic resistance of all the isolates matched the genotypic MDR profiles, including resistance to chloramphenicol, gentamicin, tetracycline, and cotrimoxazole. CONCLUSIONS ONT WGS with Galaxy and KNIME processing may be a feasible option for AMR surveillance in resource-limited LMICs. To the best of our knowledge, this is the first in-house whole-genome analysis workflow in the country tailored for AMR surveillance. The presence of potentially pathogenic high-MIC, MDR Enterobacter spp. with wide resistomes, including the blaNDM gene, emphasizes the urgent need to address AMR in animal production facilities within a one-health framework.
Collapse
Affiliation(s)
- Lakmini S Kumari
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Dinushika M Siriwardhana
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Veranja Liyanapathirana
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Rasika Jinadasa
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine & Animal Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Priyanga Wijesinghe
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
5
|
Xu C, Guo X, Li L. Metagenomic Comparison of Gut Microbes of Lemur catta in Captive and Semi-Free-Range Environments. Animals (Basel) 2025; 15:1442. [PMID: 40427319 PMCID: PMC12108194 DOI: 10.3390/ani15101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
In order to protect endangered species, many zoos adopt diverse rearing models to achieve optimal conservation outcomes. This study employed metagenomic approaches to assess differences in the fecal microbiome of captive and semi-free-ranging ring-tailed lemurs (Lemur catta). The results show that captivity significantly altered the microbial community structure. The inter-individual variability in the microbial community within the captive-bred (CB) group was lower than that in the semi-free-ranging (FR) group, yet these individuals harbored a higher abundance of potential pathogens (Treponema_D). In contrast, microbial genera associated with fiber degradation and short-chain fatty acid production in the FR group were significantly elevated (Faecalibacterium, Roseburia, and Megamonas) as compared to the CB group. Environmental variations between the two rearing systems led to distinct profiles in microbial functions and carbohydrate-active enzyme gene composition. Notably, the FR group of lemurs exhibited an increased abundance of enzyme genes associated with the degradation of complex polysaccharides (cellulose, hemicellulose, and pectin), suggesting that their diet, rich in natural plant fibers, enhances the capacity of their gut microbiota to extract essential energy and nutrients. Conversely, the CB group displayed a more homogeneous microbial community with a higher prevalence of potential pathogens, implying that a captive lifestyle may negatively impact gastrointestinal health. These findings offer valuable insights into the influence of rearing conditions on gut microbial ecology and its potential implications for the health management of ring-tailed lemurs.
Collapse
Affiliation(s)
- Chunzhong Xu
- Shanghai Wild Animal Park, Shanghai 201399, China;
| | - Xinzi Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
6
|
Kavaliauskas P, Acevedo W, Mickevičiūtė E, Grigalevičiūtė R, Grybaitė B, Sapijanskaitė-Banevič B, Pranaitytė G, Petraitis V, Petraitienė R, Mickevičius V. 3,3'-((3-Hydroxyphenyl)azanediyl)dipropionic Acid Derivatives as a Promising Scaffold Against Drug-Resistant Pathogens and Chemotherapy-Resistant Cancer. Pathogens 2025; 14:484. [PMID: 40430804 PMCID: PMC12115217 DOI: 10.3390/pathogens14050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
The synthesis and antimicrobial and anticancer activity of 3,3'-((3-hydroxyphenyl)azanediyl)dipropionic acid derivatives (2-25) against drug-resistant bacterial pathogens and FaDu head and neck cancer cells were investigated. The derivatives were synthesized through various methods, including esterification, hydrazinolysis, and condensation reactions. The compounds demonstrated structure-dependent antimicrobial activity, predominantly targeting Gram-positive pathogens. Compounds containing 4-nitrophenyl, 1-naphthyl, and 5-nitro-2-thienyl groups exhibited enhanced activity against S. aureus and E. faecalis. Additionally, compounds 5, 6, and 25 showed antiproliferative activity in cisplatin-resistant FaDu cells at low micromolar concentrations. The in silico modeling revealed that compound 25 interacts with the HER-2 and c-MET proteins. These compounds also induced significant oxidative stress in FaDu cells and demonstrated low cytotoxic activity in non-cancerous HEK293 cells. These results highlight the potential of N-aryl-substituted β-amino acid derivatives as promising scaffolds for the further development of novel amino acid-based antimicrobial and anticancer agents targeting drug-resistant pathogens and cancers.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania or (P.K.); (B.G.); (B.S.-B.); (G.P.)
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania;
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile;
| | - Eglė Mickevičiūtė
- Department of Information Systems, Kaunas University of Technology, LT-51368 Kaunas, Lithuania;
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania;
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania or (P.K.); (B.G.); (B.S.-B.); (G.P.)
| | - Birutė Sapijanskaitė-Banevič
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania or (P.K.); (B.G.); (B.S.-B.); (G.P.)
| | - Guoda Pranaitytė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania or (P.K.); (B.G.); (B.S.-B.); (G.P.)
| | - Vidmantas Petraitis
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (V.P.); (R.P.)
| | - Rūta Petraitienė
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (V.P.); (R.P.)
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania or (P.K.); (B.G.); (B.S.-B.); (G.P.)
| |
Collapse
|
7
|
Feng W, Ye Y, Xiang Y, Peng S, He S, Peng H, Zhang Z, Yang Z, Xiong W. Unraveling the dual role in enhancing methane production and mitigating antibiotic resistance gene spread in anaerobic co-digestion of microalgae and waste activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138606. [PMID: 40381349 DOI: 10.1016/j.jhazmat.2025.138606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/07/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Waste activated sludge (WAS) is a double-edged sword - a recognized repository for antibiotic resistance genes (ARGs) but also a renewable substrate for methane production. Developing effective WAS treatment strategies is therefore of both ecological and practical importance. In this study, we proposed an anaerobic co-digestion approach of WAS and microalgae Chlorella sp. at a 1:2 ratio (MAcoD-1:2). Results showed that MAcoD-1:2 notably increased cumulative methane production by 52.7 %. Co-digestion also demonstrated a significant increase in the abundance of hydrolyzing acidifying bacteria Candidatus_Promineofilum (12.25 %) and methanogenic archaea Methanothrix (61.2 %). This microbial shift suggested that cosubstrates availability fostered a stable bacterial community structure and synergistic metabolic interactions, thus enhancing methane production. Metagenomic analysis revealed a significant reduction in both ARGs and mobile genetic elements in MAcoD-1:2. Notably, substrate level regulation was found to drive restructuring of microbial communities and metabolic patterns. Investigation showed that the Embden-Meyerhof-Parnas pathways were significantly inhibited while the pentose phosphate pathway was promoted, which constrained the cellular energy budget available for ARG horizontal transfer. Partial least squares path modelling (PLS-PM) further substantiated these findings, revealing methane metabolism negatively affected ARGs (-4.52), whereas confirming its positive correlation with methane production (0.22). Our findings provided distinctive perspectives on WAS resource utilization and novel technologies to inhibit the spread of ARGs.
Collapse
Affiliation(s)
- Wenyi Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shudian Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Siying He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haihao Peng
- School of Chemistry and Chemical Engineering / Institute of Clean Energy and Materials / Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, PR China
| | - Zhenfeng Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
8
|
Touaitia R, Mairi A, Ibrahim NA, Basher NS, Idres T, Touati A. Staphylococcus aureus: A Review of the Pathogenesis and Virulence Mechanisms. Antibiotics (Basel) 2025; 14:470. [PMID: 40426537 PMCID: PMC12108373 DOI: 10.3390/antibiotics14050470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Staphylococcus aureus is a formidable human pathogen responsible for infections ranging from superficial skin lesions to life-threatening systemic diseases. This review synthesizes current knowledge on its pathogenesis, emphasizing colonization dynamics, virulence mechanisms, biofilm formation, and antibiotic resistance. By analyzing studies from PubMed, Scopus, and Web of Science, we highlight the pathogen's adaptability, driven by surface adhesins (e.g., ClfB, SasG), secreted toxins (e.g., PVL, TSST-1), and metabolic flexibility in iron acquisition and amino acid utilization. Nasal, skin, and oropharyngeal colonization are reservoirs for invasive infections, with biofilm persistence and horizontal gene transfer exacerbating antimicrobial resistance, particularly in methicillin-resistant S. aureus (MRSA). The review underscores the clinical challenges of multidrug-resistant strains, including vancomycin resistance and decolonization strategies' failure to target single anatomical sites. Key discussions address host-microbiome interactions, immune evasion tactics, and the limitations of current therapies. Future directions advocate for novel anti-virulence therapies, multi-epitope vaccines, and AI-driven diagnostics to combat evolving resistance. Strengthening global surveillance and interdisciplinary collaboration is critical to mitigating the public health burden of S. aureus.
Collapse
Affiliation(s)
- Rahima Touaitia
- Department of Natural and Life Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Tebessa, Tebessa 12002, Algeria;
| | - Assia Mairi
- Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie (FSNV), Université de Bejaia, Bejaia 06000, Algeria; (A.M.); (A.T.)
| | - Nasir Adam Ibrahim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia;
| | - Nosiba S. Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia;
| | - Takfarinas Idres
- Research Laboratory for Management of Local Animal Resources, Rabie Bouchama National Veterinary School of Algiers, Issad ABBAS Street, BP 161 Oued Semar, Algiers 16059, Algeria;
| | - Abdelaziz Touati
- Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie (FSNV), Université de Bejaia, Bejaia 06000, Algeria; (A.M.); (A.T.)
| |
Collapse
|
9
|
Xiao W, Sun R, Lou J, Xu Y, Li X, Xin K, Lu W, Sun C, Chen T, Gao Y, Wu D. LPS-enriched interaction drives spectrum conversion in antimicrobial peptides: Design and optimization of AA16 derivatives for targeting gram-negative bacteria. Eur J Med Chem 2025; 289:117462. [PMID: 40048797 DOI: 10.1016/j.ejmech.2025.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
The increasing prevalence of antibiotic-resistant Gram-negative bacteria necessitates the development of novel antimicrobial agents with targeted specificity. In this study, we designed and optimized derivatives of the antimicrobial peptide AA16, which truncated from CD14 protein α-helical region, to selectively target Gram-negative bacteria by enhancing lipopolysaccharide (LPS)-enriched interactions, thereby achieving antibacterial spectrum conversion. Starting from the parent peptide AA16 (Ac-AARIPSRILFGALRVL-Amide), we performed strategic amino acid substitutions based on structure-activity relationship analysis. This led to the identification of AA16-10R, a derivative with a specific substitution at position 10, which demonstrated significantly enhanced antibacterial activity against Gram-negative strains such as Escherichia coli and Pseudomonas aeruginosa, while maintaining low hemolytic activity. Mechanistic studies revealed that AA16-10R exhibited a strong binding affinity to LPS (Kd = 0.15 μM), and its interaction with LPS induced the formation of an α-helical structure. This conformational change facilitated its accumulation on the bacterial outer membrane and disrupted membrane integrity. Our innovative approach of exploiting LPS-enriched interactions successfully converted the antimicrobial spectrum of AA16 derivatives from broad-spectrum to Gram-negative-specific. This study highlights a novel strategy for the rational design of antimicrobial peptides based on specific protein-protein interactions, offering a promising avenue for targeted antimicrobial therapy against Gram-negative pathogens.
Collapse
Affiliation(s)
- Wanyang Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ruize Sun
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jietao Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China
| | - Yanyan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China
| | - Xiaokun Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Kaiyun Xin
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Weijie Lu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenhui Sun
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Tianbao Chen
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China.
| |
Collapse
|
10
|
Elalouf A, Elalouf H, Rosenfeld A, Maoz H. Artificial intelligence in drug resistance management. 3 Biotech 2025; 15:126. [PMID: 40235844 PMCID: PMC11996750 DOI: 10.1007/s13205-025-04282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/19/2025] [Indexed: 04/17/2025] Open
Abstract
This review highlights the application of artificial intelligence (AI), particularly deep learning and machine learning (ML), in managing antimicrobial resistance (AMR). Key findings demonstrate that AI models, such as Naïve Bayes, Decision Trees (DT), Random Forest (RF), Support Vector Machines (SVM), and Artificial Neural Networks (ANN), have significantly advanced the prediction of drug resistance patterns and the identification of novel antibiotics. These algorithms have effectively optimized antibiotic use, predicted resistance phenotypes, and identified new drug candidates. AI has also facilitated the detection of AMR-associated mutations, offering new insights into the spread of resistance and potential interventions. Despite data privacy and algorithm transparency challenges, AI presents a promising tool in combating AMR, with implications for improving patient outcomes, enhancing disease management, and addressing global public health concerns. However, realizing its full potential requires overcoming issues related to data scarcity, ethical considerations, and fostering interdisciplinary collaboration.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Hadas Elalouf
- Department of Management, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Ariel Rosenfeld
- Information Science Department, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Hanan Maoz
- Department of Management, Bar-Ilan University, 5290002 Ramat Gan, Israel
| |
Collapse
|
11
|
Huang J, Ding K, Chen J, Fan J, Huang L, Qiu S, Wang L, Du X, Wang C, Pan H, Yuan Z, Liu H, Song H. Comparison of CRISPR-Cas9, CRISPR-Cas12f1, and CRISPR-Cas3 in eradicating resistance genes KPC-2 and IMP-4. Microbiol Spectr 2025:e0257224. [PMID: 40293254 DOI: 10.1128/spectrum.02572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/22/2025] [Indexed: 04/30/2025] Open
Abstract
Bacterial plasmid encoding antibiotic resistance could be eradicated by various CRISPR systems, such as CRISPR-Cas9, Cas12f1, and Cas3. However, the efficacy of these gene editing tools against bacterial resistance has not been systematically assessed and compared. This study eliminates carbapenem resistance genes KPC-2 and IMP-4 via CRISPR-Cas9, Cas12f1, and Cas3 systems, respectively. The eradication efficiency of the three CRISPR systems was evaluated. First, the target sites for the three CRISPR systems were designed within the regions 542-576 bp of the KPC-2 gene and 213-248 bp of the IMP-4 gene, respectively. The recombinant CRISPR plasmids were transformed into Escherichia coli carrying KPC-2 or IMP-4-encoding plasmid. Colony PCR of transformants showed that KPC-2 and IMP-4 were eradicated by the three different CRISPR systems, and the elimination efficacy was both 100.00%. The drug sensitivity test results showed that the resistant E. coli strain was resensitized to ampicillin. In addition, the three CRISPR plasmids could block the horizontal transfer of drug-resistant plasmids, with a blocking rate as high as 99%. Importantly, a qPCR assay was performed to analyze the copy number changes of drug-resistant plasmids in E. coli cells. The results indicated that CRISPR-Cas3 showed higher eradication efficiency than CRISPR-Cas9 and Cas12f1 systems. IMPORTANCE With the continuous development and application of CRISPR-based resistance removal technologies, CRISPR-Cas9, Cas12f1, and Cas3 have gradually come into focus. However, it remains uncertain which system exhibits more potent efficacy in the removal of bacterial resistance. This study verifies that CRISPR-Cas9, Cas12f1, and Cas3 can eradicate the carbapenem-resistant genes KPC-2 and IMP-4 and restore the sensitivity of drug-resistant model bacteria to antibiotics. Among the three CRISPR systems, the CRISPR-Cas3 system showed the highest eradication efficiency. Although each system has its advantages and characteristics, our results provide guidance on the selection of the CRISPR system from the perspective of resistance gene removal efficiency, contributing to the further application of CRISPR-based bacterial resistance removal technologies.
Collapse
Affiliation(s)
- Jun Huang
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
- Department of Human Anatomy and Histology, School of Basic Medicine, Capital Medical University, Beijing, China
| | - Kanghui Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jiahui Chen
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Jiao Fan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Luyao Huang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Shaofu Qiu
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Ligui Wang
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Xinying Du
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Chao Wang
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Haifeng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhengquan Yuan
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Hongbo Liu
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
12
|
Mora Pincay NM, Villegas JL, Larrea-Álvarez CM, Briones Caiminagua DB, Torres-Elizalde L, Šefcová MA, Larrea-Álvarez M. A Cross-Sectional Study Assessing Antibiotic Resistance Awareness Among University Students in Samborondón, Greater Guayaquil, Ecuador. Antibiotics (Basel) 2025; 14:440. [PMID: 40426507 PMCID: PMC12108333 DOI: 10.3390/antibiotics14050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Education on antibiotic use has the potential to positively shape the practices and perspectives of future professionals. Assessing awareness levels of antibiotic resistance among university students is, therefore, critical, as they represent a vital demographic capable of influencing public health outcomes, especially in low- and middle-income countries. Methods: This cross-sectional study employed the World Health Organization's Antibiotic Resistance: Multi-Country Public Awareness Survey, which examines demographics, antibiotic use, knowledge, perspectives, and sources of information. A total of 922 surveys were collected from students across various disciplines at two universities in Greater Guayaquil. Results: Most participants reported obtaining antibiotics through healthcare professionals, adhering to proper usage instructions, and purchasing them primarily from pharmacies. However, only 56% of the responses were correct, with many students incorrectly associating antibiotic use with conditions where they are typically ineffective. Despite these gaps, the students expressed positive attitudes toward proposed measures to address antibiotic resistance. While the participants demonstrated familiarity with terms related to antibiotic resistance and identified doctors and educators as their main sources of information, educational campaigns were not widely recognized as important. Conclusions: These findings evidence knowledge gaps among an essential group, suggesting the need for targeted health programs, preventive strategies, and educational initiatives to combat misinformation regarding antimicrobial resistance.
Collapse
Affiliation(s)
- Norka Michelle Mora Pincay
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - José Luis Villegas
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | | | | | - Lilibeth Torres-Elizalde
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre Nationale de la Recherche Scientifique (CNRS), 31400 Toulouse, France
| | - Miroslava Anna Šefcová
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Marco Larrea-Álvarez
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| |
Collapse
|
13
|
Gasanov VAO, Kashirskikh DA, Khotina VA, Lee AA, Nikitochkina SY, Kuzmina DM, Mukhina IV, Vorotelyak EA, Vasiliev AV. Genetically Modified Mesenchymal Stromal/Stem Cells as a Delivery Platform for SE-33, a Cathelicidin LL-37 Analogue: Preclinical Pharmacokinetics and Tissue Distribution in C57BL/6 Mice. Antibiotics (Basel) 2025; 14:429. [PMID: 40426496 PMCID: PMC12108424 DOI: 10.3390/antibiotics14050429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND The genetic modification of mesenchymal stromal/stem cells (MSCs) to express antimicrobial peptides may provide a promising strategy for developing advanced cell-based therapies for bacterial infections, including those caused or complicated by antibiotic-resistant bacteria. We have previously demonstrated that genetically modified Wharton's jelly-derived MSCs expressing an antimicrobial peptide SE-33 (WJ-MSC-SE33) effectively reduce bacterial load, inflammation, and mortality in a mouse model of Staphylococcus aureus-induced pneumonia compared with native WJ-MSCs. The present study aimed to evaluate the pharmacokinetics and tissue distribution of the SE-33 peptide expressed by WJ-MSC-SE33 following administration to animals. METHODS WJ-MSC-SE33 were administered to C57BL/6 mice at therapeutic and excess doses. The biodistribution and pharmacokinetics of the SE-33 peptide were analyzed in serum, lungs, liver, and spleen using chromatographic methods after single and repeated administrations. RESULTS The SE-33 peptide exhibited dose-dependent pharmacokinetics. The highest levels of SE-33 peptide were detected in the liver and lungs, with persistence in tissues for up to 48 h at medium and high doses of administered WJ-MSC-SE33. A repeated administration of WJ-MSC-SE33 increased SE-33 levels in target organs. CONCLUSIONS The SE-33 peptide expressed by genetically modified WJ-MSCs demonstrated predictable pharmacokinetics and effective biodistribution. These findings, together with the previously established safety profile of WJ-MSC-SE33, support its potential as a promising cell-based therapy for bacterial infections, particularly those associated with antibiotic resistance.
Collapse
Affiliation(s)
- Vagif Ali oglu Gasanov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | | | | | - Arthur Anatolievich Lee
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | | | - Daria Mikhailovna Kuzmina
- Department of Normal Physiology, Privolzhsky Research Medical University of Ministry of Health of the Russian Federation, Nizhny Novgorod 603005, Russia
| | - Irina Vasilievna Mukhina
- Department of Normal Physiology, Privolzhsky Research Medical University of Ministry of Health of the Russian Federation, Nizhny Novgorod 603005, Russia
| | - Ekaterina Andreevna Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia
- Department of Cell Biology, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | | |
Collapse
|
14
|
Sanyal D, Shivram A, Pandey D, Banerjee S, Uversky VN, Muzata D, Chivukula AS, Jasuja R, Chattopadhyay K, Chowdhury S. Mapping dihydropteroate synthase evolvability through identification of a novel evolutionarily critical substructure. Int J Biol Macromol 2025; 311:143325. [PMID: 40254194 DOI: 10.1016/j.ijbiomac.2025.143325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Protein evolution shapes pathogen adaptation-landscape, particularly in developing drug resistance. The rapid evolution of target proteins under antibiotic pressure leads to escape mutations, resulting in antibiotic resistance. A deep understanding of the evolutionary dynamics of antibiotic target proteins presents a plausible intervention strategy for disrupting the resistance trajectory. Mutations in Dihydropteroate synthase (DHPS), an essential folate pathway protein and sulfonamide antibiotic target, reduce antibiotic binding leading to anti-folate resistance. Deploying statistical analyses on the DHPS sequence-space and integrating deep mutational analysis with structure-based network-topology models, we identified critical DHPS subsequences. Our frustration landscape analysis suggests how conformational and mutational changes redistribute energy within DHPS substructures. We present an epistasis-based fitness prediction model that simulates DHPS adaptive walks, identifying residue positions that shape evolutionary constraints. Our optimality analysis revealed a substructure central to DHPS evolvability, and we assessed its druggability. Combining evolution and structure, this integrated framework identifies a DHPS substructure with significant evolutionary and structural impact. Targeting this region may constrain DHPS evolvability and slow resistance emergence, offering new directions for antibiotic development.
Collapse
Affiliation(s)
- Dwipanjan Sanyal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - A Shivram
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Deeptanshu Pandey
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | | | - Vladimir N Uversky
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Danny Muzata
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Aneesh Sreevallabh Chivukula
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Ravi Jasuja
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| | - Sourav Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India.
| |
Collapse
|
15
|
Liu G, Liu Y, Jiang Z, Liu K, Wang X, Hao J, Kong H, Yu Y, Ding Z, Li M, Han X. Genomic Characterization of Potential Opportunistic Zoonotic Streptococcus parasuis Isolated in China. Pathogens 2025; 14:395. [PMID: 40333201 PMCID: PMC12030105 DOI: 10.3390/pathogens14040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
(1) Background: S. parasuis is a potential opportunistic zoonotic pathogen that can infect pigs, cattle, and humans, composed of former members of S. suis serotypes 20, 22, and 26. In recent years, unclassified serotypes and a serotype 11 S. parasuis have been discovered. (2) Methods: We characterized two S. parasuis strains (FZ1 and FZ2) isolated from brain samples of paralyzed pigs and examined evolutionary divergence among 22 available S. parasuis and 8 serotype 2 S. suis genomes through whole-genome sequencing and comparative genomic analysis. We compared virulence genes (VGs) and antibiotic resistance genes (ARGs) and analyzed mobile genetic elements (MGEs) in FZ1 and FZ2. (3) Results: Comparative genomics revealed that srtC, ctpV, and sugC may represent key virulence determinants in S. parasuis, although their pathogenic potential appears attenuated compared to serotype 2 S. suis. In addition, S. parasuis exhibited primary resistance to aminoglycosides, macrolides, tetracyclines, and oxazolidinones, while demonstrating heightened susceptibility to oxazolidinone-class antibiotics. Moreover, we found an important association between MGEs and antibiotic resistance in S. parasuis FZ1 and FZ2. (4) Conclusions: This study provides new insights into the genomic and evolutionary characteristics of S. parasuis and provides a new basis for the study of bacterial pathogenesis and drug resistance in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xianjie Han
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
16
|
Niño-Vega GA, Ortiz-Ramírez JA, López-Romero E. Novel Antibacterial Approaches and Therapeutic Strategies. Antibiotics (Basel) 2025; 14:404. [PMID: 40298586 PMCID: PMC12024240 DOI: 10.3390/antibiotics14040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/30/2025] Open
Abstract
The increase in multidrug-resistant organisms worldwide is a major public health threat driven by antibiotic overuse, horizontal gene transfer (HGT), environmental drivers, and deficient infection control in hospitals. In this article, we discuss these factors and summarize the new drugs and treatment strategies suggested to combat the increasing challenges of multidrug-resistant (MDR) bacteria. New treatments recently developed involve targeting key processes involved in bacterial growth, such as riboswitches and proteolysis, and combination therapies to improve efficacy and minimize adverse effects. It also tackles the challenges of the Gram-negative bacterial outer membrane, stressing that novel strategies are needed to evade permeability barriers, efflux pumps, and resistance mechanisms. Other approaches, including phage therapy, AMPs, and AI in drug discovery, are also discussed as potential alternatives. Finally, this review points out the urgency for continued research and development (R&D), industry-academic partnerships, and financial engines to ensure that MDR microbes do not exceed the value of antibacterial therapies.
Collapse
Affiliation(s)
- Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato C.P. 36050, Mexico;
| | | | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato C.P. 36050, Mexico;
| |
Collapse
|
17
|
Sun S. Emerging antibiotic resistance by various novel proteins/enzymes. Eur J Clin Microbiol Infect Dis 2025:10.1007/s10096-025-05126-4. [PMID: 40232578 DOI: 10.1007/s10096-025-05126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND The emergence and dissemination of antibiotic resistance represents a significant and ever-increasing global threat to human, animal, and environmental health. The explosive proliferation of resistance has ultimately been seen in all clinically used antibiotics. Infections caused by antibiotic-resistant bacteria have been associated with an estimated 4,950,000 deaths annually, with extremely limited therapeutic options and only a few new antibiotics under development. To combat this silent pandemic, a better understanding of the molecular mechanisms of antibiotic resistance is immensely needed, which not only helps to improve the efficacy of current drugs in clinical use but also design new antimicrobial agents that are less susceptible to resistance. RESULTS The past few years have witnessed a number of new advances in revealing the molecular mechanisms of AMR. Following five sophisticated mechanisms (efflux pump, antibiotics inactivation by enzymes, alteration of membrane permeability, target modification, and target protection), the roles of various novel proteins/enzymes in the acquisition of antibiotic resistance are constantly being described. They are widely used by clinical bacterial strains, playing a key role in the emergence of resistance. CONCLUSION While most of these have so far received less attention, expanding our understanding of these emerging resistance mechanisms is of crucial importance to combat the antibiotic resistance crisis in the world. This review summarizes recent advances in our knowledge of emerging resistance mechanisms in bacteria, providing an update on the current antibiotic resistance threats and encouraging researchers to develop critical strategies for overcoming the resistance.
Collapse
Affiliation(s)
- Shengwei Sun
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, Tomtebodavägen 23, Solna, 171 65, Sweden.
| |
Collapse
|
18
|
Jian Z, Wu H, Yan S, Li T, Zhao R, Zhao J, Zi X, Wang K, Huang Y, Gu D, Zhao S, Ge C, Jia J, Liu L, Xu Z, Dou T. Species and functional composition of cecal microbiota and resistance gene diversity in different Yunnan native chicken breeds: A metagenomic analysis. Poult Sci 2025; 104:105138. [PMID: 40267563 DOI: 10.1016/j.psj.2025.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
The gut microbiota of chickens not only modulates host immune function and production performance through nutrient metabolism but also serves as a reservoir for antibiotic resistance genes (ARGs), whose accumulation exacerbates bacterial resistance. This study integrated 108 cecal microbiome samples from six Yunnan native chicken breeds under free-range and caged farming systems, constructing a comprehensive catalog comprising 12,715 microbial genomes. We systematically revealed the dual mechanisms by which the gut microbiota regulates host phenotypes and ARG dissemination. Metagenomic analysis demonstrated that Alistipes, Prevotella, and Spirochaeta synergistically regulate body weight and immune indices through metabolic networks, which are linked to the significant enrichment of carbohydrate-active enzymes. GH23 and GT2 presented the greatest abundance, highlighting their pivotal role in dietary fiber metabolism. A total of 1327 ARGs were identified, spanning seven resistance mechanisms dominated by antibiotic efflux and target alteration. Alistipes_sp._CAG:831 presented the highest ARG abundance and diversity, with ARG levels strongly correlated with host bacterial abundance. Metagenomic-phenotype association networks further revealed that environmental stress drives disparities in ARG enrichment by altering the microbial community structure. This study elucidates the gut microbiota-host interaction network in Yunnan native chickens and provides critical insights into ARG transmission dynamics, offering a theoretical foundation for antibiotic resistance risk assessment and sustainable poultry farming strategies.
Collapse
Affiliation(s)
- Zonghui Jian
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China; Faculty of Animal Husbandry and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, 650031, Yunnan Province, People's Republic of China
| | - Hao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Tengchuan Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ruohan Zhao
- Faculty of Animal Husbandry and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, 650031, Yunnan Province, People's Republic of China
| | - Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China; Insititute of Science and Technology, Chuxiong Normal University, Chuxiong, 675000, Yunnan Province, People's Republic of China
| | - Xiannian Zi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Ying Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Dahai Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Lixian Liu
- Insititute of Science and Technology, Chuxiong Normal University, Chuxiong, 675000, Yunnan Province, People's Republic of China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.
| |
Collapse
|
19
|
Chowdhury MSR, Hossain H, Rahman MN, Rahman A, Ghosh PK, Uddin MB, Nazmul Hoque M, Hossain MM, Rahman MM. Emergence of highly virulent multidrug and extensively drug resistant Escherichia coli and Klebsiella pneumoniae in buffalo subclinical mastitis cases. Sci Rep 2025; 15:11704. [PMID: 40188167 PMCID: PMC11972387 DOI: 10.1038/s41598-025-95914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
This study aimed to characterize virulence and antibiotic resistance genes in multidrug-resistant (MDR) and extensively drug-resistant (XDR) Escherichia coli and Klebsiella pneumoniae isolated from cases of subclinical mastitis (SCM) in buffaloes. A cross-sectional study was conducted on 1540 quarter milk samples collected from 385 buffaloes. Milk samples were screened using the California Mastitis Test and Modified Whiteside Test. Positive samples underwent bacterial culture, biochemical tests, biofilm detection and molecular analysis for pathogen identification and detection of virulence, resistance, and extended-spectrum beta-lactamase (ESBL) genes. The prevalence of SCM was 67.9% (1046/1540) at the quarter level and 80.8% (311/385) at the animal level. E. coli was identified in 9.5% (146/1540) of the samples, while K. pneumoniae was detected in 9.09% (140/1540). Virulence genes, such as stx1 (27.4%), and resistance genes, including aac(3)-iv (77.4%) and tetA (76.7%), exhibited higher prevalence. Additionally, β-lactamase genes, notably blaTEM (67.1%), and ESBL genes, such as blaCTX-M1, were detected. Biofilm formation was detected in 83.6% (122/146) of E. coli isolates and 75.7% (106/140) of K. pneumoniae isolates. Antimicrobial susceptibility testing revealed significant resistance to ampicillin, amoxicillin-clavulanic acid, and aminoglycosides. MDR was observed in 31.5% of E. coli and 39.3% of K. pneumoniae isolates, with XDR rates of 8.9% and 12.9%, respectively. These findings underscore the alarming spread of resistant pathogens in SCM-affected buffaloes, emphasizing the urgent need for ongoing surveillance and targeted intervention strategies.
Collapse
Affiliation(s)
| | - Hemayet Hossain
- Department of Anatomy and Histology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | | | - Asikur Rahman
- Department of Medicine, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Piash Kumar Ghosh
- Department of Medicine, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Bashir Uddin
- Department of Medicine, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - M Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Mukter Hossain
- Department of Medicine, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Mahfujur Rahman
- Department of Medicine, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
20
|
Dolatkhah Laein G, Raeesi J, Mokhtari A, Salehinia O, Mehri M, Shilanath Tiwary U. Telemedicine interventions for improving antibiotic stewardship and prescribing: A systematic review. PLoS One 2025; 20:e0320840. [PMID: 40179108 PMCID: PMC11967954 DOI: 10.1371/journal.pone.0320840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
The global antibiotic resistance crisis necessitates optimized stewardship programs, with telemedicine emerging as a promising delivery strategy. This systematic review evaluated the effectiveness of telemedicine interventions in improving antibiotic stewardship across clinical settings. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched seven databases from January 2010 to July 2024. Two independent reviewers assessed studies using Risk of Bias in Non-randomized Studies (ROBINS-I) and Cochrane Risk of Bias 2.0 tools, with evidence certainty evaluated using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Twenty-one studies met inclusion criteria (10 observational, 8 quasi-experimental, 2 Randomized Controlled Trials [RCTs], 1 mixed-methods), predominantly from the United States (57.0%, n = 12). Among studies reporting antibiotic use outcomes (52.4%, n = 11), 90.9% demonstrated significant reductions ranging from 5.3% to 62.7%, with the highest-quality evidence showing a 28% reduction (95% Confidence Interval [CI]: 22-34%). Guideline adherence studies (57.1%, n = 12) showed acceptance rates of 67.7% to 98%, with comparable effectiveness between telemedicine and in-person consultation (79.1% vs 80.4%, p = 0.36). Prescribing rate outcomes (38.1%, n = 8) revealed setting-dependent variations: inpatient implementations demonstrated significant reductions (Relative Risk [RR] 0.68; 95% CI: 0.63-0.75), while outpatient findings showed mixed results. Quality assessment revealed predominantly low risk of bias [ROB] (66.7%, n = 14). These findings suggest that telemedicine effectively improves antibiotic stewardship compared to traditional care models, particularly in hospital settings, while outpatient applications demonstrated variable effectiveness. This review was registered with the International Prospective Register of Systematic Reviews (PROSPERO: CRD42023454663).
Collapse
Affiliation(s)
| | - Javad Raeesi
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Ali Mokhtari
- Department of Biology, Faculty of Science, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Omid Salehinia
- Department of Electrical and Electronics Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | |
Collapse
|
21
|
Singh S, Rai PK, Khan AA, Fatima S, Choure K, Joo JC, Pandey A. Whole genome analysis and biocontrol potential of endophytic Bacillus cereus EMS1 against Fusarium wilt in banana. World J Microbiol Biotechnol 2025; 41:119. [PMID: 40164911 DOI: 10.1007/s11274-025-04326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Endophytic bacteria are essential for promoting plant growth and increasing plant resilience to various environmental stresses. Although it is well-documented that several endophytic Bacillus species exhibit plant growth-promoting properties, this is the first report on the genome study of Bacillus cereus EMS1, isolated from Musa acuminata G9 in India. This study analyzed the genomics, plant growth traits, and fusarium wilt mitigation potential of Bacillus cereus EMS1. This analysis identified specific genomic features, including potential mechanisms contributing to plant growth promotion, which were also submitted to NCBI (Bioproject ID: PRJNA784269). The in vivo study showed that EMS1 mitigated the impact of Fusarium oxysporum f. sp. cubense on banana plants. Although it did not affect the number of leaves, other parameters influenced by pathogen infection and EMS1 treatment showed notable differences, including fresh weight (Fusarium oxysporum only: 15 g; EMS1 + Fusarium oxysporum: 21 g), dry weight (Fusarium oxysporum only: 1 g; EMS1 + Fusarium oxysporum: 4.7 g), and root length (Fusarium oxysporum only: 6.5 cm; EMS1 + Fusarium oxysporum: 9 cm). Additionally, genomic analysis revealed that the EMS1 genome contains distinctive genes linked to plant growth and antimicrobial activity. Overall, the findings highlight the potential of endophytic Bacillus cereus EMS1 in promoting plant growth and enhancing banana plant resistance against Fusarium oxysporum.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Biotechnology, AKS University, Madhya Pradesh, 485001, Satna, India
| | - Piyush Kant Rai
- Department of Biotechnology, AKS University, Madhya Pradesh, 485001, Satna, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Madhya Pradesh, 485001, Satna, India.
| | - Jeong Chan Joo
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Deogyeong-daero, Giheung- gu, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Ashutosh Pandey
- Department of Biotechnology, AKS University, Madhya Pradesh, 485001, Satna, India
- University Center for Research and Development (UCRD), Chandigarh university, Punjab, 140413, Mohali, India
| |
Collapse
|
22
|
Liao X, Wang H, Wu D, Grossart HP, Yang X, Li L, Wang Y, Li S, Li J, Cao M, Chen N, Hu A. Geographical and Environmental Factors Differentially Shape Planktonic Microbial Community Assembly and Resistomes Composition in Urban Rivers. GLOBAL CHANGE BIOLOGY 2025; 31:e70211. [PMID: 40285533 DOI: 10.1111/gcb.70211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/28/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
Global urbanization accelerates pollution challenges in urban rivers, including increased transmission of bacterial antibiotic resistance genes (ARGs), severely threatening the health of aquatic ecosystems and human health. Yet, systematic knowledge of differences in distribution and community assembly patterns of bacterial resistance across urban rivers at a continental scale is still insufficient. In this study, we conducted extensive sampling in nine representative urban rivers across China. We used amplicon and shotgun metagenomic sequencing, state-of-the-art bioinformatics, and multivariate statistics to investigate distribution patterns and community assembly mechanisms of planktonic microbiomes (i.e., bacterioplankton and planktonic microeukaryotes), including their resistomes, i.e., ARGs and metal resistance genes (MRGs). Geographical and environmental factors played a pivotal role in shaping distribution patterns of planktonic microbiomes vs. resistomes in the studied urban rivers. Phylogenetic-bin-based null model analysis (iCAMP) indicated that planktonic microbiomes, dominated by dispersal limitation and drift, tend toward spatial heterogeneity. In contrast, planktonic resistomes, driven by deterministic processes, display more similar distribution patterns. Cross-validated Mantel tests revealed that geographical factors (i.e., geographic distance) were the primary regulators of planktonic microbial community assembly, while environmental factors (i.e., temperature) control assembly processes of planktonic resistomes. Our findings provide crucial insights into the mechanisms driving the biogeographical distribution and community assembly of planktonic microbial entities in urban rivers at a continental scale, offering valuable implications for mitigating and managing the spread of ARGs from the environment to humans.
Collapse
Affiliation(s)
- Xin Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Laiyi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuwen Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Shuang Li
- Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei, China
| | - Jiangwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meixian Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Carbon Neutral Innovation Research Center, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
Abbas S, Kanwar R, Ullah K, Kanwal R, Tajamal M, Aslam MA, Ahmad A, Qadeer A, Huang HY, Chen CC. Bacteriophage therapy: a possible alternative therapy against antibiotic-resistant strains of Klebsiella pneumoniae. Front Microbiol 2025; 16:1443430. [PMID: 40231234 PMCID: PMC11994585 DOI: 10.3389/fmicb.2025.1443430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
Klebsiella pneumoniae is a notorious, Gram-negative pathogen and is a leading cause of healthcare settings and community-acquired infections. This is the commensal of human microbiota and can invade and cause infections in different body parts. The global emergence of antibiotic resistance in K. pneumoniae has become a major challenge in the whole medical community. Alternative paths to treat the infections caused by these MDR pathogens are needed as these bacteria become resistant to last-resort antibiotics like colistin. The lytic bacteriophages (phages) are the bacteria's natural predators and can rapidly eliminate the bacterial cells. Phages are abundant in nature and have recently been found to be effective tools in modern biotechnology. They can be used to control the bacterial infectious diseases. They can be manipulated easily and potentially used in therapeutics, biotechnology, and research. Several studies, both in vitro and in vivo, have demonstrated the possible applications of the lytic phages in treating K. pneumoniae superbug strains. Phage endolysins have drawn the scientific world's attention because of their involvement in phage adsorption and bacterial capsules digestion. These phage-encoded enzymes digest the polysaccharide components of bacterial cell walls by recognizing and binding them. Phage lysins, being strong biological agents, are capable of effectively and swiftly eliminating bacteria. This review summarizes the information on phages of K. pneumoniae and phage-based therapies to target their bacterial hosts.
Collapse
Affiliation(s)
- Sadia Abbas
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Rabia Kanwar
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Kaleem Ullah
- Directorate General (Research) Livestock & Dairy Development Department Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Rimsha Kanwal
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mamoon Tajamal
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abid Ahmad
- Department of Animal Nutrition, The University of Agriculture Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hsun-Yu Huang
- Division of Endodontics, Department of Stomatology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Doctoral Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
24
|
Lu Z, He S, Adnan A, Fan W, Sheng J, Sun Y, Zhang Y, Wang G. Virulence and resistance gene analysis of Rothia nasimurium by whole gene sequencing. Sci Rep 2025; 15:10583. [PMID: 40148435 PMCID: PMC11950441 DOI: 10.1038/s41598-025-95405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
A batch of sheep in a sheep farm in Xinjiang, China, died suddenly; a bacterial strain was isolated from the abdominal fluid of the sick and dead sheep, and identified as Rothia nasimurium by 16S sequencing, and the strain Y1 was subjected to drug sensitivity test with Draft gene sequencing. The results of the drug sensitivity test revealed the strain's resistance to 9 antibiotics, with sensitivity exhibited solely towards amikacin and vancomycin. Phylogenetic tree analysis confirmed that it was related to Rothia nasimurium strain E1706032 and Rothia sp.SD9660Na. The draft genome sequencing results showed that the total length of the gene was 2,387,685 bp, and the GC content was 59.35%. VFDB database analysis identified 112 annotated genes in Y1, including those related to bacterial adhesion, regulation, nutrient metabolism factors, hemolysin, immunomodulation, and iron uptake proteins. CARD database analysis showed that Y1 was resistant to a variety of antibiotics such as glycopeptides, tetracyclines, aminoglycosides and polypeptides. Animal pathogenicity tests have shown that Y1 can cause lung damage, coat loss and skin inflammation. This study revealed a series of virulence and drug resistance genes and pathogenicity of Y1. The results of this study have important reference value for prevention and treatment of Rothia infection in the future.
Collapse
Affiliation(s)
- Ziyue Lu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Sun He
- TECON Pharmaceutical Co.,Ltd, Urumqi, 830011, China
| | - Ali Adnan
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenyu Fan
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yanming Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yanbing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China.
| | - Gang Wang
- TECON Pharmaceutical Co.,Ltd, Urumqi, 830011, China.
| |
Collapse
|
25
|
Feng Y, Li T, Zhao S, Li X, Zhai Y, Yuan L, Liu J, Hu G, He D, Pan Y. Genetic characterization and transmission of the multidrug resistance gene cfr in fecal and environmental pathways on a chicken farm in China. Poult Sci 2025; 104:105079. [PMID: 40158282 PMCID: PMC11997318 DOI: 10.1016/j.psj.2025.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
The emergence and spread of the multidrug-resistant gene cfr have raised significant public health concerns worldwide. To investigate its prevalence and dissemination dynamics, 18 cfr-positive strains were isolated in 2021 from fecal and environmental samples. Antimicrobial susceptibility testing showed that all strains were 100 % multidrug-resistant. Conjugation experiments demonstrated that a cfr- carrying IncFII(K)-IncR-IncFIB multi-replicon plasmid could transfer to E. coli J53. S1-nuclease digestion and Southern blotting identified cfr on plasmids of varying sizes, while whole-genome sequencing confirmed its presence on multiple plasmid types: IncX4, IncN, IncFII(K)-IncR-IncFIB, IncFIB-IncFII-IncR-IncHI2-IncHI2A multi-replicon plasmids, and two plasmids of unknown types. Genetic environment analysis revealed that cfr is categorized into five distinct structures (Types I-V). Reverse PCR results showed that Types I, II, and IV can form three circular intermediates of varying lengths (cfr-IS26). Network analysis further indicated strong association between cfr, tet(M), and dfrA14 mediated by IS26. Phylogenetic analysis revealed that the four ST1140 E. coli strains and all nine K. pneumoniae strains showed minimal genetic divergence. These findings suggest both clonal and horizontal transmission of cfr within the poultry farm. Continuous monitoring of cfr in animal-related environments is essential to mitigate its potential transfer to humans.
Collapse
Affiliation(s)
- Yiming Feng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Tiantian Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Shiyun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xuexue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Yajun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, PR China; Henan Province Key Laboratory of Animal Food Pathogens Surveillance, PR China
| | - Li Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, PR China; Henan Province Key Laboratory of Animal Food Pathogens Surveillance, PR China
| | - Jianhua Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, PR China; Henan Province Key Laboratory of Animal Food Pathogens Surveillance, PR China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, PR China; Henan Province Key Laboratory of Animal Food Pathogens Surveillance, PR China.
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China.
| |
Collapse
|
26
|
Jameel S, Khan MA, Asif A, Hameed H, Ur Rahman S, Irfan A, Shazly GA, Bin Jardan YA. Exploring the antibacterial efficacy of Opuntia monacantha in combatting methicillin-resistant Staphylococcus aureus. Sci Rep 2025; 15:9552. [PMID: 40108249 PMCID: PMC11923071 DOI: 10.1038/s41598-025-93939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Public health is seriously threatened by the rise of antibiotic-resistant strains of bacteria, especially methicillin resistant Staphylococcus aureus (MRSA). This study investigated the phytochemical compounds, and possible antibacterial effects of a methanolic extract of the cactus species Opuntia monacantha Haw. against MRSA. The powdered substance was extracted with methanol and filtered, and the filtrate was partitioned with n-hexane, chloroform and ethyl acetate. The fractions with higher percentage yields such as the n-hexane and chloroform fractions went through GC-MS analysis. They consist of various compounds that are known to have strong antioxidant and antimicrobial activities. The antimicrobial activity of the plant was measured via a diffusion assay. On the basis of these results, the Opuntia monacantha crude methanolic extract, and the n-hexane and chloroform fractions significantly inhibited all the MRSA strains used in the test at 100, 75 and 50 mg/mL. Furthermore, the minimum inhibitory concentrations of various fractions of the methanolic extract of Opuntia monacantha were also examined. Therefore, Opuntia could be a promising candidate for strengthening the existing formulations in pharmaceutical science for the treatment of MRSA. However, additional research is necessary before its therapeutic use is recommended. The results are intended to provide important new information for the creation of sustainable and alternative antimicrobial agents.
Collapse
Affiliation(s)
- Sana Jameel
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, Pakistan.
- Institute of Clinical and Experimental Pharmacology & Toxicology, University of Lübeck, Lübeck, Germany.
| | - Ayesha Asif
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Shafeeq Ur Rahman
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
27
|
Ren L, Li Y, Ye Z, Wang X, Luo X, Lu F, Zhao H. Explore the Contamination of Antibiotic Resistance Genes (ARGs) and Antibiotic-Resistant Bacteria (ARB) of the Processing Lines at Typical Broiler Slaughterhouse in China. Foods 2025; 14:1047. [PMID: 40232101 PMCID: PMC11941655 DOI: 10.3390/foods14061047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Farms are a major source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB), and previous research mainly focuses on polluted soils and breeding environments. However, slaughtering is an important link in the transmission of ARGs and ARB from farmland to dining table. In this study, we aim to reveal the pollution of ARGs and ARB in the slaughter process of broilers. First, by qualitative and quantitative analysis of ARGs in samples collected from the broiler slaughtering and processing production chain, the contamination level of ARGs was reflected; secondly, potential hosts for ARGs and microbial community were analyzed to reflect the possible transmission rules; thirdly, through the antibiotic susceptibility spectrum analysis of four typical food-borne pathogens, the distribution of ARB was revealed. The results showed that 24 types of ARGs were detected positive on the broiler slaughter production line, and tetracycline-resistance genes (20.45%) were the most frequently detected. The types of ARGs vary with sampling process, and all sampling links contain high levels of sul2 and intI1. The most abundant ARGs were detected in chicken surface in the scalding stage and entrails surface in the evisceration stage. There was a significant correlation between intI1 and tetM, suggesting that tetM might be able to enter the human food chain through class-1 integrons. The host range of the oqxB gene is the most extensive, including Sphingobacterium, Bacteroidia unclassified, Rothia, Microbacterium, Algoriella, etc. In the relevant links of the slaughter production line, the microbial community structure is similar. Removing viscera may cause diffusion of ARGs carried by intestinal microorganisms and contaminate chicken and following processing production. The four food-borne pathogens we tested are widely present in all aspects of the slaughter process, and most of them have multi-drug resistance and even have a high degree of resistance to some veterinary drugs banned by the Ministry of Agriculture. Our study preliminarily revealed the pollution of ARGs and ARB in the slaughter process of broilers, and these results are helpful to carry out food safety risk assessment and formulate corresponding control measures.
Collapse
Affiliation(s)
- Lu Ren
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| | - Ying Li
- China Animal Disease Control Center, Slaughtering Technology Center, Ministry of Agriculture and Rural Affairs, Beijing 102600, China; (Y.L.)
| | - Ziyu Ye
- China Animal Disease Control Center, Slaughtering Technology Center, Ministry of Agriculture and Rural Affairs, Beijing 102600, China; (Y.L.)
| | - Xixi Wang
- China Animal Disease Control Center, Slaughtering Technology Center, Ministry of Agriculture and Rural Affairs, Beijing 102600, China; (Y.L.)
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| | - Huabing Zhao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| |
Collapse
|
28
|
Duan C, Zang Z, Xu Y, He H, Li S, Liu Z, Lei Z, Zheng JS, Li SZ. FGeneBERT: function-driven pre-trained gene language model for metagenomics. Brief Bioinform 2025; 26:bbaf149. [PMID: 40211978 PMCID: PMC11986344 DOI: 10.1093/bib/bbaf149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/22/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025] Open
Abstract
Metagenomic data, comprising mixed multi-species genomes, are prevalent in diverse environments like oceans and soils, significantly impacting human health and ecological functions. However, current research relies on K-mer, which limits the capture of structurally and functionally relevant gene contexts. Moreover, these approaches struggle with encoding biologically meaningful genes and fail to address the one-to-many and many-to-one relationships inherent in metagenomic data. To overcome these challenges, we introduce FGeneBERT, a novel metagenomic pre-trained model that employs a protein-based gene representation as a context-aware and structure-relevant tokenizer. FGeneBERT incorporates masked gene modeling to enhance the understanding of inter-gene contextual relationships and triplet enhanced metagenomic contrastive learning to elucidate gene sequence-function relationships. Pre-trained on over 100 million metagenomic sequences, FGeneBERT demonstrates superior performance on metagenomic datasets at four levels, spanning gene, functional, bacterial, and environmental levels and ranging from 1 to 213 k input sequences. Case studies of ATP synthase and gene operons highlight FGeneBERT's capability for functional recognition and its biological relevance in metagenomic research.
Collapse
Affiliation(s)
- Chenrui Duan
- College of Computer Science and Technology, Zhejiang University, No. 866, Yuhangtang Road, 310058 Zhejiang, P. R. China
- School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| | - Zelin Zang
- Centre for Artificial Intelligence and Robotics (CAIR), HKISI-CAS Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 310000, China
| | - Yongjie Xu
- College of Computer Science and Technology, Zhejiang University, No. 866, Yuhangtang Road, 310058 Zhejiang, P. R. China
- School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| | - Hang He
- School of Medicine and School of Life Sciences, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| | - Siyuan Li
- College of Computer Science and Technology, Zhejiang University, No. 866, Yuhangtang Road, 310058 Zhejiang, P. R. China
- School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| | - Zihan Liu
- College of Computer Science and Technology, Zhejiang University, No. 866, Yuhangtang Road, 310058 Zhejiang, P. R. China
- School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| | - Zhen Lei
- Centre for Artificial Intelligence and Robotics (CAIR), HKISI-CAS Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 310000, China
- State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS), Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Ju-Sheng Zheng
- School of Medicine and School of Life Sciences, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| | - Stan Z Li
- School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| |
Collapse
|
29
|
Gallegos-Monterrosa R, Cid-Uribe JI, Delgado-Prudencio G, Pérez-Morales D, Banda MM, Téllez-Galván A, Carcamo-Noriega EN, Garza-Ramos U, Zare RN, Possani LD, Bustamante VH. Blue benzoquinone from scorpion venom shows bactericidal activity against drug-resistant strains of the priority pathogen Acinetobacter baumannii. J Antibiot (Tokyo) 2025; 78:235-245. [PMID: 39966632 PMCID: PMC11946886 DOI: 10.1038/s41429-025-00809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
Antibiotic-resistant bacteria pose a significant global health threat, particularly pathogens resistant to last-resort antibiotics, such as those listed as priority pathogens by the World Health Organization. Addressing this challenge requires the development of novel antimicrobial agents. Previously, we identified a blue 1,4-benzoquinone isolated from the venom of the Mexican scorpion Diplocentrus melici as a potent antimicrobial compound effective against Staphylococcus aureus and Mycobacterium tuberculosis. Moreover, we devised a cost-effective synthetic route for its production. In this study, we demonstrate that the blue benzoquinone exhibits antibacterial activity against additional pathogens, including the priority pathogen Acinetobacter baumannii. Notably, the compound effectively killed clinical strains of A. baumannii resistant to multiple antibiotics, including carbapenem and colistin. Furthermore, A. baumannii did not develop resistance to the benzoquinone even after multiple growth cycles under sub-inhibitory concentrations, unlike the tested antibiotics. These findings underscore the potential of this blue benzoquinone as a lead compound for the development of a new class of antibiotics targeting multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ramses Gallegos-Monterrosa
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Jimena I Cid-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Gustavo Delgado-Prudencio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
- Programa de Biología de Sistemas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - María M Banda
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
- Programa de Microbiología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Alexis Téllez-Galván
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Edson N Carcamo-Noriega
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Ulises Garza-Ramos
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas, Laboratorio de Resistencia Bacteriana, C. P. 62210, Cuernavaca, Morelos, México
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México.
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
30
|
Faruk O, Jewel ZA, Bairagi S, Rasheduzzaman M, Bagchi H, Tuha ASM, Hossain I, Bala A, Ali S. Phage treatment of multidrug-resistant bacterial infections in humans, animals, and plants: The current status and future prospects. INFECTIOUS MEDICINE 2025; 4:100168. [PMID: 40104270 PMCID: PMC11919290 DOI: 10.1016/j.imj.2025.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 03/20/2025]
Abstract
Phages, including the viruses that lyse bacterial pathogens, offer unique therapeutic advantages, including their capacity to lyse antibiotic-resistant bacteria and disrupt biofilms without harming the host microbiota. The lack of new effective antibiotics and the growing limitations of existing antibiotics have refocused attention on phage therapy as an option in complex clinical cases such as burn wounds, cystic fibrosis, and pneumonia. This review describes clinical cases and preclinical studies in which phage therapy has been effective in both human and veterinary medicine, and in an agricultural context. In addition, critical challenges, such as the narrow host range of bacteriophages, the possibility of bacterial resistance, and regulatory constraints on the widespread use of phage therapy, are addressed. Future directions include optimizing phage therapy through strategies ranging from phage cocktails to broadening phage host range through genetic modification, and using phages as vaccines or biocontrol agents. In the future, if phage can be efficiently delivered, maintained in a stable state, and phage-antibiotic synergy can be achieved, phage therapy will offer much needed treatment options. However, the successful implementation of phage therapy within the current standards of practice will also require the considerable development of regulatory infrastructure and greater public acceptance. In closing, this review highlights the promise of phage therapy as a critical backup or substitute for antibiotics. It proposes a new role as a significant adjunct to, or even replacement for, antibiotics in treating multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Omor Faruk
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Zilhas Ahmed Jewel
- Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Sanjoy Bairagi
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Mohammad Rasheduzzaman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Hindol Bagchi
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Akber Subahan Mahbub Tuha
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Imran Hossain
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ayon Bala
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Sarafat Ali
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
31
|
Galgano M, Pellegrini F, Catalano E, Capozzi L, Del Sambro L, Sposato A, Lucente MS, Vasinioti VI, Catella C, Odigie AE, Tempesta M, Pratelli A, Capozza P. Acquired Bacterial Resistance to Antibiotics and Resistance Genes: From Past to Future. Antibiotics (Basel) 2025; 14:222. [PMID: 40149034 PMCID: PMC11939227 DOI: 10.3390/antibiotics14030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
The discovery, commercialization, and regular administration of antimicrobial agents have revolutionized the therapeutic paradigm, making it possible to treat previously untreatable and fatal infections. However, the excessive use of antibiotics has led to develop resistance soon after their use in clinical practice, to the point of becoming a global emergency. The mechanisms of bacterial resistance to antibiotics are manifold, including mechanisms of destruction or inactivation, target site modification, or active efflux, and represent the main examples of evolutionary adaptation for the survival of bacterial species. The acquirement of new resistance mechanisms is a consequence of the great genetic plasticity of bacteria, which triggers specific responses that result in mutational adaptation, acquisition of genetic material, or alteration of gene expression, virtually producing resistance to all currently available antibiotics. Understanding resistance processes is critical to the development of new antimicrobial agents to counteract drug-resistant microorganisms. In this review, both the mechanisms of action of antibiotic resistance (AMR) and the antibiotic resistance genes (ARGs) mainly found in clinical and environmental bacteria will be reviewed. Furthermore, the evolutionary background of multidrug-resistant bacteria will be examined, and some promising elements to control or reduce the emergence and spread of AMR will be proposed.
Collapse
Affiliation(s)
- Michela Galgano
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
| | - Francesco Pellegrini
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Elisabetta Catalano
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
| | - Alessio Sposato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Carlo Forlanini 2, 27100 Pavia, Italy
| | - Maria Stella Lucente
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Violetta Iris Vasinioti
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Cristiana Catella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Amienwanlen Eugene Odigie
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Maria Tempesta
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Annamaria Pratelli
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Paolo Capozza
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| |
Collapse
|
32
|
Sabença C, Rivière R, Costa E, Sousa S, Caniça M, Silva V, Igrejas G, Torres C, Poeta P. Whole-Genome Sequencing of Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae Isolated from Human Bloodstream Infections. Pathogens 2025; 14:205. [PMID: 40137690 PMCID: PMC11944550 DOI: 10.3390/pathogens14030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium commonly associated with bloodstream infections (BSIs), which can lead to severe clinical outcomes, especially in immunocompromised individuals or patients with underlying health conditions. The increasing prevalence of K. pneumoniae that produces extended-spectrum β-lactamases (ESBL) poses a significant challenge for treatment and infection control, necessitating a swift diagnostic approach and tailored antimicrobial therapy to improve patient outcomes. A total of 32 K. pneumoniae isolates were recovered from BSIs from December 2021 to August 2022. Whole-genome sequencing (WGS) was performed on the 14 ESBL-producing isolates. All ESBL isolates carried the blaCTX-M-15 gene, together with other β-lactamase-encoding genes (blaTEM-1, blaSHV-28, blaSHV-26, or blaOXA-1). Three of the isolates also carried the blaKPC-3 gene. Resistance genes to quinolones, sulfonamides, tetracycline, aminoglycosides, and chloramphenicol were also detected. We can conclude that the presence of ESBL-producing isolates among K. pneumoniae of BSIs raises concerns, since these enzymes limit the available treatment options, and future research must include studies on alternative therapies for dealing with resistant bacterial infections and developing new approaches to disease treatment.
Collapse
Affiliation(s)
- Carolina Sabença
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
| | - Rani Rivière
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Eliana Costa
- Hospital Centre of Trás-os-Montes and Alto Douro, Clinical Pathology Department, 5000-508 Vila Real, Portugal
| | - Sara Sousa
- Hospital Centre of Trás-os-Montes and Alto Douro, Clinical Pathology Department, 5000-508 Vila Real, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Vanessa Silva
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain
| | - Patrícia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
33
|
Tang H, Gao J, Wang H, Sun M, Zhang S, Song C, Li Q. Characterization of the genome editing with miniature DNA nucleases TnpB and IscB in Escherichia coli strains. Commun Biol 2025; 8:261. [PMID: 39972101 PMCID: PMC11840021 DOI: 10.1038/s42003-025-07521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/11/2025] [Indexed: 02/21/2025] Open
Abstract
DNA endonucleases TnpB and IscB are emerging candidates for combating drug-resistant bacteria, particularly Escherichia coli, due to their specificity in targeting DNA and smaller size. However, the genome-editing of TnpB/IscB in E. coli remains unclear. This study characterized the genome editing of TnpB/IscB in different E. coli strains. First, the toxicity and cleavage results indicated TnpB was effective only in MG1655, whereas IscB and enIscB demonstrated functionality in ATCC9637/BL21(DE3). Subsequently, a genome-editing tool was established in MG1655 by using TnpB (as a thermophilic programmable endonuclease), achieving up to 100% editing efficiency, while IscB/enIscB achieved editing in ATCC9637/BL21(DE3). Additionally, the editing plasmids were successfully cured. Finally, the mechanism underlying the escape of E. coli during TnpB/IscB editing was elucidated. Overall, this study successfully applied TnpB/IscB/enIscB to genome editing in E. coli, which will expand the genetic manipulation toolbox in E. coli and facilitate the development of the antimicrobial drugs.
Collapse
Affiliation(s)
- Hongjie Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Jie Gao
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Hengyi Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Mingjun Sun
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Suyi Zhang
- Luzhou Laojiao Co. Ltd, Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Chuan Song
- Luzhou Laojiao Co. Ltd, Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| |
Collapse
|
34
|
Herrera-Espejo S, Rubio A, Ceballos-Romero L, Pachón J, Cordero E, Pérez-Pulido AJ, Pachón-Ibáñez ME. Detection of Possible Resistance Mechanisms in Uropathogenic Escherichia coli Strains Isolated from Kidney Transplant Recipients Based on Whole Genome Sequencing. Biomolecules 2025; 15:260. [PMID: 40001563 PMCID: PMC11853403 DOI: 10.3390/biom15020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Urinary tract infections are a global health concern, with uropathogenic Escherichia coli (UPEC) accounting for 80-90% of cases. Given the rise in antimicrobial resistance, our aim was to elucidate the genetic mechanisms behind low-level resistance to ciprofloxacin and fosfomycin (LLCR and LLFR) in UPEC strains, using whole-genome sequencing (WGS) to identify point mutations in chromosomal and plasmid genes. METHODS A cohort UPEC was collected from kidney transplant recipients at the Virgen del Rocío University Hospital, Spain. Minimum inhibitory concentrations were determined for ciprofloxacin and fosfomycin to categorize strains into LLCR and LLFR. Twenty strains were selected for WGS, with genome annotations. Point mutations were identified and analyzed using alignment tools, and protein stability changes were predicted. RESULTS LLCR strains exhibited mutations in key quinolone resistance-determining regions of the gyrA gene, in 83% of cases. The qnrS1 plasmid gene was found in 17% of LLCR strains. LLFR strains showed mutations in the glpT and cyaA genes. Mutations in the uhp gene family were linked to the fosfomycin-resistant phenotype, suggesting a multi-step resistance evolution mechanism. CONCLUSIONS This study highlights the complex interplay between chromosomal and plasmid genes in UPEC's resistance to ciprofloxacin and fosfomycin. The findings contribute to understanding low-level resistance mechanisms and may guide the development of novel therapeutic strategies to combat multidrug-resistant strains.
Collapse
Affiliation(s)
- Soraya Herrera-Espejo
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (L.C.-R.); (M.E.P.-I.)
| | - Alejandro Rubio
- Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Area), University Pablo de Olavide, 41013 Seville, Spain;
| | - Lucía Ceballos-Romero
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (L.C.-R.); (M.E.P.-I.)
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain;
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Elisa Cordero
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (L.C.-R.); (M.E.P.-I.)
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio J. Pérez-Pulido
- Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Area), University Pablo de Olavide, 41013 Seville, Spain;
| | - María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (L.C.-R.); (M.E.P.-I.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
35
|
Stein M, Brinks E, Habermann D, Cho GS, Franz CMAP. Exogenous plasmid capture to characterize tetracycline-resistance plasmids in sprouts obtained from retail in Germany. Front Microbiol 2025; 16:1538973. [PMID: 40012786 PMCID: PMC11863281 DOI: 10.3389/fmicb.2025.1538973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025] Open
Abstract
This study aimed to characterize antibiotic-resistance plasmids present in microorganisms from sprout samples using exogenous plasmid capture. Fresh mung bean sprouts were predominantly colonized by bacteria from the phyla Proteobacteria and Bacteroidetes. To capture plasmids, a plasmid-free Escherichia (E.) coli CV601 strain, containing a green fluorescent protein gene for selection, was used as the recipient strain in exogenous plasmid capture experiments. Transconjugants were selected on media containing cefotaxime or tetracycline antibiotics. While no cefotaxime-resistant transconjugants were obtained, 40 tetracycline-resistant isolates were obtained and sequenced by Illumina NextSeq short read and Nanopore MinION long read sequencing. Sequences were assembled using Unicycler hybrid assembly. Most of the captured long plasmids carried either the tet(A) or tet(D) resistance gene, belonged to the IncFI or IncFII replicon types, and were predicted as conjugative. While the smaller plasmids contained the tet(A) tetracycline resistance gene as well as additional quinolone (qnrS1), sulfonamide (sul1) and trimethoprim (dfrA1) resistance genes, the larger plasmids only contained the tet(D) resistance gene. An exception was the largest 192 kbp plasmid isolated, which contained the tet(D), as well as sulfonamide (sul1) and streptomycin (aadA1) resistance genes. The smaller plasmid was isolated from different sprout samples more often and showed a 100% identity in size (71,155 bp), while the 180 kbp plasmids showed some smaller or larger differences (in size between 157,683 to 192,360 bp). This suggested that the plasmids obtained from the similar sprout production batches could be clonally related. Nanopore MinION based 16S metagenomics showed the presence of Enterobacter (En.) cloacae, En. ludwigii, En. kobei, Citrobacter (C.) werkmanii, C. freundii, Klebsiella (K.) oxytoca and K. pneumonia, which have previously been isolated from fresh produce in Germany. These bacteria may harbor antibiotic resistance genes on plasmids that could potentially be transferred to similar genera. This study demonstrated that bacteria present in sprouts may act as the donors of antibiotic resistance plasmids which can transfer resistance to other bacteria on this product via conjugation.
Collapse
Affiliation(s)
| | | | | | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann, Kiel, Germany
| | | |
Collapse
|
36
|
Kaktcham PM, Kujawska M, Kouam EMF, Piame LT, Tientcheu MLT, Mueller J, Felsl A, Truppel BA, Ngoufack FZ, Hall LJ. Genomic insights into the beneficial potential of Bifidobacterium and Enterococcus strains isolated from Cameroonian infants. Microb Genom 2025; 11:001354. [PMID: 39969280 PMCID: PMC11840169 DOI: 10.1099/mgen.0.001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
A healthy early-life gut microbiota plays an important role in maintaining immediate and long-term health. Perturbations, particularly in low- to middle-income communities, are associated with increased infection risk. Thus, a promising avenue for restoring a healthy infant microbiota is to select key beneficial bacterial candidates from underexplored microbiomes for developing new probiotic-based therapies. This study aimed to recover bifidobacteria and lactic acid bacteria from the faeces of healthy Cameroonian infants and unravel the genetic basis of their beneficial properties. Faecal samples were collected from 26 infants aged 0-5 months recruited in Dschang (Cameroon). Recovered bacterial isolates were subjected to whole-genome sequencing and in silico analysis to assess their potential for carbohydrate utilization, their antimicrobial capacities, host-adaptation capabilities and their safety. From the range of infant-associated Bifidobacterium and Enterococcus strains identified, Bifidobacterium species were found to harbour putative gene clusters implicated in human milk oligosaccharide metabolism. Genes linked to the production of antimicrobial peptides such as class IV lanthipeptides were found in Bifidobacterium pseudocatenulatum, while those implicated in biosynthesis of cytolysins, enterolysins, enterocins and propeptins, among others, were identified in enterococci. Bifidobacterial isolates did not contain genes associated with virulence; however, we detected the presence of putative tetracycline resistance genes in several strains belonging to Bifidobacterium animalis subsp. lactis and Bifidobacterium longum subsp. longum. Among the enterococci, Enterococcus mundtii PM10 did not carry any genes associated with antimicrobial resistance or virulence. The latter, together with all the Bifidobacterium strains, also encoded several putative adaptive and stress-response-related genes, suggesting robust gastroinstestinal tract colonization potential. This work provides the first genomic characterization of Bifidobacterium and Enterococcus isolates from Cameroonian infants. Several strains showed the genomic potential to confer beneficial properties. Further phenotypic and clinical investigations are needed to confirm their suitability as customized probiotics.
Collapse
Affiliation(s)
- Pierre Marie Kaktcham
- Research Unit of Biochemistry of Medicinal Plants, Food Science and Nutrition (URBPMAN) – Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon. P.O Box 67, Dschang, Cameroon
| | - Magdalena Kujawska
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 42TT, UK
| | - Edith Marius Foko Kouam
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Laverdure Tchamani Piame
- Research Unit of Biochemistry of Medicinal Plants, Food Science and Nutrition (URBPMAN) – Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon. P.O Box 67, Dschang, Cameroon
| | - Michele Letitia Tchabou Tientcheu
- Research Unit of Biochemistry of Medicinal Plants, Food Science and Nutrition (URBPMAN) – Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon. P.O Box 67, Dschang, Cameroon
| | - Julia Mueller
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
| | - Angela Felsl
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
| | - Bastian-Alexander Truppel
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
| | - François Zambou Ngoufack
- Research Unit of Biochemistry of Medicinal Plants, Food Science and Nutrition (URBPMAN) – Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon. P.O Box 67, Dschang, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Lindsay J. Hall
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 42TT, UK
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK
| |
Collapse
|
37
|
Shen D, Li C, Guo Z. Dynamics of antibiotic resistance in poultry farms via multivector analysis. Poult Sci 2025; 104:104673. [PMID: 39693773 PMCID: PMC11720940 DOI: 10.1016/j.psj.2024.104673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024] Open
Abstract
This study examines the distribution of microbial communities and antibiotic resistance genes (ARGs) across various vectors in poultry farm environments. The results show that airborne particulate matter (PM) and soil harbor the highest counts of microbial genes, exceeding those found in poultry visceral samples, which display lower microbial diversity and ARG levels. This highlights environmental vectors, particularly soil and PM, as major reservoirs for ARGs. Proteobacteria, predominantly present in feces and feed, are identified as key carriers of ARGs, with resistance mechanisms primarily involving efflux and target modification. Notably, Chlamydia spp. in visceral samples, despite lower overall abundance, show a high proportion of ARGs, raising concerns about ARG persistence in poultry microbiota. Furthermore, a significant correlation between different ARGs was detected, indicating the possibility of cooperative transmission processes. The findings underline the role of PM in ARG transmission due to its mobility and capacity to retain ARGs across distances. Additionally, therapeutic antibiotics in feed may contribute to ARG proliferation in animal microbiomes, suggesting a need for improved management practices to mitigate ARG spread in poultry farming environments.
Collapse
Affiliation(s)
- Dan Shen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, 573 Tulip Street, Changchun 130122, Jilin, PR China..
| |
Collapse
|
38
|
Cook K, Premchand-Branker S, Nieto-Rosado M, Portal EAR, Li M, Rubio CO, Mathias J, Aziz J, Iregbu K, Afegbua SL, Aliyu A, Mohammed Y, Nwafia I, Oduyebo O, Ibrahim A, Tanko Z, Walsh TR, Achi C, Sands K. Flies as carriers of antimicrobial resistant (AMR) bacteria in Nigerian hospitals: A workflow for surveillance of AMR bacteria carried by arthropod pests in hospital settings. ENVIRONMENT INTERNATIONAL 2025; 196:109294. [PMID: 39862724 DOI: 10.1016/j.envint.2025.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The dissemination of antimicrobial resistant (AMR) bacteria by flies in hospitals is concerning as nosocomial AMR infections pose a significant threat to public health. This threat is compounded in low- and middle-income countries (LMICs) by several factors, including limited resources for sufficient infection prevention and control (IPC) practices and high numbers of flies in tropical climates. In this pilot study, 1,396 flies were collected between August and September 2022 from eight tertiary care hospitals in six cities (Abuja, Enugu, Kaduna, Kano, Lagos and Sokoto) in Nigeria. Flies were screened via microbiological culture and bacterial isolates were phenotypically and genetically characterised to determine carriage of clinically important antibiotic resistance genes (ARGs). Several clinically relevant ARGs were found in bacteria isolated from flies across all hospitals. blaNDM was detected in 8% of flies and was predominantly carried by Providencia spp. alongside clinically relevant Enterobacter spp, Escherichia coli and Klebsiella pneumoniae isolates, which all exhibited a multidrug resistant phenotype. mecA was detected at a prevalence of 6.4%, mostly in coagulase-negative Staphylococci (CoNS) as well as some Staphylococcus aureus, of which 86.8% were multidrug resistant. 40% of flies carried bacteria with at least one of the two ESBL genes tested (blaOXA-1 and blaCTX-M-15). This multi-site study emphasised that flies in hospital settings carry bacteria that are resistant to multiple classes of antibiotics, including both routinely used and reserve antibiotics. A greater understanding of the global clinical significance and burden of AMR attributable to insect pests is required.
Collapse
Affiliation(s)
- Kate Cook
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom.
| | - Shonnette Premchand-Branker
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom.
| | - Maria Nieto-Rosado
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Edward A R Portal
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom
| | - Mei Li
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Claudia Orbegozo Rubio
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Jordan Mathias
- Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom
| | - Jawaria Aziz
- Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom
| | - Kenneth Iregbu
- Department of Medical Microbiology, National Hospital Abuja, Nigeria
| | - Seniyat Larai Afegbua
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria; Department of Biotechnology, Nigerian Defence Academy, Kaduna, Nigeria
| | - Aminu Aliyu
- Department of Medical Microbiology, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Yahaya Mohammed
- Department of Medical Microbiology, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria
| | - Ifeyinwa Nwafia
- Department of Medical Microbiology, University of Nigeria Teaching Hospital Ituku-Ozalla, Enugu, Nigeria
| | - Oyinlola Oduyebo
- Department of Medical Microbiology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Abdulrasul Ibrahim
- Department of Medical Microbiology, Ahmadu Bello University, Zaria, Nigeria
| | - Zainab Tanko
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Medicine, Kaduna State University, Kaduna State, Nigeria
| | - Timothy R Walsh
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Chioma Achi
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Kirsty Sands
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
39
|
Coltro EP, Cafferati Beltrame L, da Cunha CR, Zamparette CP, Feltrin C, Benetti Filho V, Vanny PDA, Beduschi Filho S, Klein TCR, Scheffer MC, Palmeiro JK, Wagner G, Sincero TCM, Zárate-Bladés CR. Evaluation of the resistome and gut microbiome composition of hospitalized patients in a health unit of southern Brazil coming from a high animal husbandry production region. FRONTIERS IN ANTIBIOTICS 2025; 3:1489356. [PMID: 39896720 PMCID: PMC11782142 DOI: 10.3389/frabi.2024.1489356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025]
Abstract
Introduction Antimicrobial resistance (AMR) poses a significant threat to global public health. The One Health approach, which integrates human, animal, and environmental health, highlights the roles of agricultural and hospital settings in the propagation of AMR. This study aimed to analyze the resistome and gut microbiome composition of individuals from a high-intensity animal husbandry area in the western region of Santa Catarina, Southern Brazil, who were subsequently admitted to the University Hospital in the city of Florianopolis, located in the eastern part of the same state. Methods Rectal swab samples were collected upon admission and discharge. Metagenomic sequencing and resistome analysis were employed to identify antimicrobial resistance genes (ARGs) and their associated bacterial taxa. Additionally, the impact of the hospital environment on the resistome and microbiome profiles of these patients was assessed. Results A total of 247 genetic elements related to AMR were identified, with 66.4% of these elements present in both admission and discharge samples. Aminoglycoside resistance genes were the most prevalent, followed by resistance genes for tetracyclines and lincosamides. Notably, unique resistance genes, including dfrF and mutations in gyrB, were identified at discharge. ARGs were associated with 55 bacterial species, with Lactobacillus fermentum, harboring the ermB gene. (MLSB), detected in both admission and discharge samples. The most prevalent bacterial families included Mycobacteriaceae, Enterobacteriaceae, and Bacteroidaceae. Among these, Mycobacteriaceae was the most abundant, with ARGs primarily associated with mutations in the 16S rRNA gene, RNA polymerase subunits, and gyrases. Discussion The study revealed a high prevalence of genes related to aminoglycoside and tetracycline resistance, with a notable increase in certain resistance determinants at discharge, likely influenced by extended antimicrobial use. The presence of mcr genes, associated with colistin resistance, in both admission and discharge samples from a single patient highlights a concerning trend in AMR, particularly in relation to animal husbandry. These findings underscore the substantial impact of antimicrobial use on resistance development and the complex dynamics of the resistome in hospital settings. They also emphasize the influence of local factors, such as intensive animal production, on resistance patterns and advocate for ongoing surveillance and policy development to manage multidrug-resistant bacteria eVectively.
Collapse
Affiliation(s)
- Elisa Pires Coltro
- Center for Dysbiosis Control (CCDis), Federal University of Santa Catarina, Florianopolis, Brazil
- Laboratory of Immunoregulation (iREG), Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Lucas Cafferati Beltrame
- Center for Dysbiosis Control (CCDis), Federal University of Santa Catarina, Florianopolis, Brazil
- Laboratory of Immunoregulation (iREG), Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, Brazil
- Laboratory of Applied Molecular Microbiology (MIMA), Department of Clinical Analysis, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Caroline Ribeiro da Cunha
- Laboratory of Applied Molecular Microbiology (MIMA), Department of Clinical Analysis, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Caetana Paes Zamparette
- Laboratory of Applied Molecular Microbiology (MIMA), Department of Clinical Analysis, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Clarissa Feltrin
- Laboratory of Applied Molecular Microbiology (MIMA), Department of Clinical Analysis, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Vilmar Benetti Filho
- Laboratory of Bioinformatics, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Patrícia de Almeida Vanny
- Intrahospitalar Infection Service, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Sérgio Beduschi Filho
- Intrahospitalar Infection Service, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Taíse Costa Ribeiro Klein
- Intrahospitalar Infection Service, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Mara Cristina Scheffer
- Molecular Biology, Microbiology and Serology, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Jussara Kasuko Palmeiro
- Center for Dysbiosis Control (CCDis), Federal University of Santa Catarina, Florianopolis, Brazil
- Laboratory of Applied Molecular Microbiology (MIMA), Department of Clinical Analysis, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Glauber Wagner
- Laboratory of Bioinformatics, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Thaís Cristine Marques Sincero
- Center for Dysbiosis Control (CCDis), Federal University of Santa Catarina, Florianopolis, Brazil
- Laboratory of Applied Molecular Microbiology (MIMA), Department of Clinical Analysis, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Carlos Rodrigo Zárate-Bladés
- Center for Dysbiosis Control (CCDis), Federal University of Santa Catarina, Florianopolis, Brazil
- Laboratory of Immunoregulation (iREG), Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
40
|
Ma J, Lu Z. Developing a Versatile Arsenal: Novel Antimicrobials as Offensive Tools Against Pathogenic Bacteria. Microorganisms 2025; 13:172. [PMID: 39858940 PMCID: PMC11767912 DOI: 10.3390/microorganisms13010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The pervasive and often indiscriminate use of antibiotics has accelerated the emergence of drug-resistant bacterial strains, thus presenting an acute threat to global public health. Despite a growing acknowledgment of the severity of this crisis, the current suite of strategies to mitigate antimicrobial resistance remains markedly inadequate. This paper asserts the paramount need for the swift development of groundbreaking antimicrobial strategies and provides a comprehensive review of an array of innovative techniques currently under scrutiny. Among these, nano-antimicrobials, antimicrobials derived from ribosomal proteins, CRISPR/Cas-based systems, agents that undermine bacterial bioenergetics, and antimicrobial polysaccharides hold particular promise. This analysis gives special attention to CRISPR/Cas-based antimicrobials, scrutinizing their underlying mechanisms, exploring their potential applications, delineating their distinct advantages, and noting their likely limitations. Furthermore, we extend our exploration by proposing theoretical advancements in antimicrobial technology and evaluating feasible methods for the effective delivery of these agents. This includes leveraging these advances for broader biomedical applications, potentially revolutionizing how we confront bacterial pathogens in the future, and laying a foundation for extended research in multimodal therapeutic strategies.
Collapse
Affiliation(s)
- Junze Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, Institute of Marine Sciences, Shantou University, Shantou 515063, China;
| | - Zheng Lu
- Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| |
Collapse
|
41
|
Ma R, Peng L, Tang R, Jiang T, Chang J, Li G, Wang J, Yang Y, Yuan J. Bioaerosol emission characteristics and potential risks during composting: Focus on pathogens and antimicrobial resistance. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136466. [PMID: 39549575 DOI: 10.1016/j.jhazmat.2024.136466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
In this study, we analyzed bioaerosol emission characteristics and potential risks of antimicrobial resistance (AMR) during composting using the impaction culture method and metagenomic sequencing. The results showed that the highly saturated water vapor in the emission gas mitigated particulate matter emission during the thermophilic period. About the bioaerosols, the airborne aerobic bacterial emissions were suppressed as composting enters the mature period, and the airborne fungi are usually present as single-cell or small-cell aggregates (< 3.3 µm). In addition, the microbial community structure in bioaerosols was stable and independent of composting time. Most importantly, the PM2.5 in bioaerosols contained large amounts of antibiotic resistance genes (ARGs), potential pathogens, and multidrug resistant pathogens, which were diverse and present in high concentrations. Among them, ARGs concentrations encoding 21 antibiotics ranged from - 4.50 to 0.70 ppm/m3 (Log10 ARGs). Among the 89 potential human pathogens detected, Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, and Staphylococcus aureus were the only culturable potentially multidrug resistant pathogens carrying multiple ARGs encoding resistance at high concentrations (- 0.57 to 1.15 ppm/m3 (Log10 ARGs)), and were more likely to persist and multiply in oligotrophic environments. Our findings indicate that composting technology can transfer AMR from solid compost to gas phase and increase the risk of AMR transmission.
Collapse
Affiliation(s)
- Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Lijuan Peng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruolan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Tao Jiang
- School of New Energy Materials and Chemistry, Leshan Normal University, Sichuan 614000, China
| | - Jiali Chang
- School of New Energy Materials and Chemistry, Leshan Normal University, Sichuan 614000, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
42
|
Shen H, Li Y, Pi Q, Tian J, Xu X, Huang Z, Huang J, Pian C, Mao S. Unveiling novel antimicrobial peptides from the ruminant gastrointestinal microbiomes: A deep learning-driven approach yields an anti-MRSA candidate. J Adv Res 2025:S2090-1232(25)00005-0. [PMID: 39756573 DOI: 10.1016/j.jare.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
INTRODUCTION Antimicrobial peptides (AMPs) present a promising avenue to combat the growing threat of antibiotic resistance. The ruminant gastrointestinal microbiome serves as a unique ecosystem that offers untapped potential for AMP discovery. OBJECTIVES The aims of this study are to develop an effective methodology for the identification of novel AMPs from ruminant gastrointestinal microbiomes, followed by evaluating their antimicrobial efficacy and elucidating the mechanisms underlying their activity. METHODS We developed a deep learning-based model to identify AMP candidates from a dataset comprising 120 metagenomes and 10,373 metagenome-assembled genomes derived from the ruminant gastrointestinal tract. Both in vivo and in vitro experiments were performed to examine and validate the antimicrobial activities of the AMP candidates that were selected through bioinformatic analysis and subsequently synthesized chemically. Additionally, molecular dynamics simulations were conducted to explore the action mechanism of the most potent AMP candidate. RESULTS The deep learning model identified 27,192 potential secretory AMP candidates. Following bioinformatic analysis, 39 candidates were synthesized and tested. Remarkably, all synthesized peptides demonstrated antimicrobial activity against Staphylococcus aureus, with 79.5% showing effectiveness against multiple pathogens. Notably, Peptide 4, which exhibited the highest antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), confirmed this effect in a mouse model with wound infection, exhibiting a low propensity for resistance development and minimal cytotoxicity and hemolysis towards mammalian cells. Molecular dynamics simulations provided insights into the mechanism of Peptide 4, primarily its ability to disrupt bacterial cell membranes, leading to cell death. CONCLUSION This study highlights the power of combining deep learning with microbiome research to uncover novel therapeutic candidates, paving the way for the development of next-generation antimicrobials like Peptide 4 to combat the growing threat of MRSA would infections. It also underscores the value of utilizing ruminant microbial resources.
Collapse
Affiliation(s)
- Hong Shen
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yanru Li
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qingjie Pi
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Junru Tian
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xianghan Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zan Huang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jinghu Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Cong Pian
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China.
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
43
|
Zhao Y, Zhang J, Gui Y, Ji G, Huang X, Xie F, Shen H. Probing the interaction mechanisms between three β-lactam antibiotics and penicillin-binding proteins of Escherichia coli by molecular dynamics simulations. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110057. [PMID: 39447853 DOI: 10.1016/j.cbpc.2024.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The presence of antibiotic residues in the aquatic environments poses great potential risks to the aquatic organisms, and even human health. Elucidating the interaction mechanisms between antibiotics and biomacromolecules is crucial for accurately assessing and preventing their potential risks. Therefore, the toxicity of three beta-lactam antibiotics on Escherichia coli (E. coli) was investigated by using the time-dependent toxicity microplate analysis method in this study. Then, molecular docking and molecular dynamics simulation technologies were used to elucidate the potential molecular interactions between β-lactam antibiotics and penicillin-binding proteins of E. coli, and their correlation with the physical and chemical behaviors observed in the physiological and biochemical experiments. The results show that three antibiotics exert inhibitory effects on E. coli cells by modifying their membrane permeability, and even more severe cell damage including rupture, wrinkling, adhesion, indentation, elongation and size alterations. But, toxic effect of the three antibiotics on E. coli varies, and toxicity order is followed by meropenem > cefoperazone > amoxicillin. Van der Waals forces play a vital role in the molecular interactions between the three antibiotics penicillin binding protein of E. coli and the sequence of binding free energy is consistent with the observed toxicity order. Shape compensation is the principal determinant for the binding of antibiotics to penicillin binding proteins, which pertains to the drug-induced alteration in the three-dimensional conformation of penicillin binding proteins.
Collapse
Affiliation(s)
- Yuanfan Zhao
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China.
| | - Yixin Gui
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Guangzhen Ji
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Xianhuai Huang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Fazhi Xie
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Huiyan Shen
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| |
Collapse
|
44
|
González Román AC, Dib AL, González Domenech CM, García Valdés LM, López Guarnido O, Espigares Rodríguez E. A phenotypic study of the resistome in a peri-urban ecosystem. ENVIRONMENTAL RESEARCH 2025; 264:120388. [PMID: 39557147 DOI: 10.1016/j.envres.2024.120388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/28/2024] [Accepted: 11/16/2024] [Indexed: 11/20/2024]
Abstract
Since the discovery of antibiotics, the dispersion of resistance genes has increased exponentially, leading to the current state in which it has become increasingly difficult to achieve an effective treatment for infectious diseases. The enormous capacity for genetic exchange between microorganisms is causing resistance genes to be able to reach all environments, even those where there is no anthropogenic impact or exposure to these drugs. In this work, a phenotypic study of the resistome has been conducted in a peri-urban ecosystem (Granada, Spain), wherein the resistance to 32 antibiotics of 710 bacterial strains isolated from 70 samples from different ecological niches with varying levels of exposure to antibiotics and anthropic action has been determined. The study of resistances using phenotypic procedures constitutes a very useful and complementary alternative to genomic methods. The obtained results show a high percentage of resistance in all the subsystems analysed, stating high multi-resistance profiles. Vancomycin and erythromycin were the antibiotics to which the highest levels of resistance were observed, whereas the lowest levels were obtained in chloramphenicol. Regarding the environments studied, the highest percentages of resistance were found in wastewater, farms and food. It should be noted that in natural soil samples (not exposed to antibiotics or anthropogenic activities), worrying levels of resistance to practically all the groups of antibiotics analysed were detected. These results support the generally accepted conclusion that an appropriate control and management of wastewater and solid waste that may contain antibiotics or resistant bacteria is really important to prevent the wide propagation of the resistome in the environment.
Collapse
Affiliation(s)
- Ana Carmen González Román
- Preventive Medicine and Public Health Department, Faculty of Pharmacy, University of Granada, Granada, Andalusia, Spain.
| | - Amira Leila Dib
- Animal Health and Production Management Research Laboratory, Institute of Veterinary Sciences El-Khroub, University of Frères Mentouri Constantine 1, Constantine, Algeria.
| | | | - Luz María García Valdés
- Preventive Medicine and Public Health Department, Faculty of Pharmacy, University of Granada, Granada, Andalusia, Spain.
| | - Olga López Guarnido
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Granada, Andalusia, Spain.
| | - Elena Espigares Rodríguez
- Preventive Medicine and Public Health Department, Faculty of Pharmacy, University of Granada, Granada, Andalusia, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
45
|
Girma A, Alamnie G, Bekele T, Mebratie G, Mekuye B, Abera B, Workineh D, Tabor A, Jufar D. Green-synthesised silver nanoparticles: antibacterial activity and alternative mechanisms of action to combat multidrug-resistant bacterial pathogens: a systematic literature review. GREEN CHEMISTRY LETTERS AND REVIEWS 2024; 17. [DOI: 10.1080/17518253.2024.2412601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/30/2024] [Indexed: 01/07/2025]
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Getachew Alamnie
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Tigabu Bekele
- Department of Chemistry, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Gedefaw Mebratie
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Bawoke Mekuye
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Birhanu Abera
- Department of Physics, College of Natural and Computational Science, Injibara University, Injibara, Ethiopia
| | - Dereba Workineh
- Department of Forensic Science, College of Crime Investigation and Forensic Science, Ethiopian Police University, Sendafa, Ethiopia
| | - Abay Tabor
- Department of Biology, College of Natural and Computational Science, Mizan-Tepi University, Tepi, Ethiopia
| | - Debela Jufar
- Department of Chemistry, College of Natural and Computational Science, Mizan-Tepi University, Tepi, Ethiopia
| |
Collapse
|
46
|
Khatiebi S, Kiprotich K, Onyando Z, Mwaura J, Wekesa C, Chi CN, Mulambalah C, Okoth P. High-Throughput Shotgun Metagenomics of Microbial Footprints Uncovers a Cocktail of Noxious Antibiotic Resistance Genes in the Winam Gulf of Lake Victoria, Kenya. J Trop Med 2024; 2024:7857069. [PMID: 39741524 PMCID: PMC11685326 DOI: 10.1155/jotm/7857069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Background: A diverse range of pollutants, including heavy metals, agrochemicals, pharmaceutical residues, illicit drugs, personal care products, and other anthropogenic contaminants, pose a significant threat to aquatic ecosystems. The Winam Gulf of Lake Victoria, heavily impacted by surrounding human activities, faces potential contamination from these pollutants. However, studies exploring the presence of antibiotic resistance genes (ARGs) in the lake remain limited. In the current study, a shotgun metagenomics approach was employed to identify ARGs and related pathways. Genomic DNA was extracted from water and sediment samples and sequenced using the high-throughput Illumina NovaSeq platform. Additionally, phenotypic antibiotic resistance was assessed using the disk diffusion method with commonly used antibiotics. Results: The analysis of metagenomes sequences from the Gulf ecosystem and Comprehensive Antibiotic Resistance Database (CARD) revealed worrying levels of ARGs in the lake. The study reported nine ARGs from the 37 high-risk resistant gene families previously documented by the World Health Organization (WHO). Proteobacteria had the highest relative abundance of antibiotic resistance (53%), Bacteriodes (4%), Verrucomicrobia (2%), Planctomycetes Chloroflexi, Firmicutes (2%), and other unclassified bacteria (39%). Genes that target protection, replacement, change, and antibiotic-resistant efflux were listed in order of dominance. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed antibiotic resistance to beta-lactamase and vancomycin. Phenotypic resistance to vancomycin, tetracycline, sulfamethoxazole, erythromycin, trimethoprim, tetracycline, and penicillin was reported through the zone of inhibition. Conclusions: This study highlights that the Winam Gulf of Lake Victoria in Kenya harbors a diverse array of antibiotic-resistant genes, including those conferring multidrug resistance. These findings suggest that the Gulf could be serving as a reservoir for more antibiotic-resistant genes, posing potential risks to both human health and aquatic biodiversity. The insights gained from this research can guide policy development for managing antibiotic resistance in Kenya.
Collapse
Affiliation(s)
- Sandra Khatiebi
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Kelvin Kiprotich
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
- Department of Soil Sciences, Faculty of Agrisciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Zedekiah Onyando
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - John Mwaura
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Clabe Wekesa
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena 8 07745, Germany
| | - Celestine N. Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, P.O. Box 582751 23, Uppsala, Sweden
| | - Chrispinus Mulambalah
- Department of Medical Microbiology and Parasitology, School of Medicine, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Patrick Okoth
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| |
Collapse
|
47
|
Wang K, Shen D, Guo Z, Zhong Q, Huang K. Contamination Characteristics of Antibiotic Resistance Genes in Multi-Vector Environment in Typical Regional Fattening House. TOXICS 2024; 12:916. [PMID: 39771131 PMCID: PMC11728509 DOI: 10.3390/toxics12120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Antibiotic resistance genes (ARGs) are emerging as significant environmental contaminants, posing potential health risks worldwide. Intensive livestock farming, particularly swine production, is a primary contributor to the escalation of ARG pollution. In this study, we employed metagenomic sequencing and quantitative polymerase chain reaction to analyze the composition of microorganisms and ARGs across four vectors in a typical swine fattening facility: dung, soil, airborne particulate matter (PM), and fodder. Surprisingly, soil and PM harbored a higher abundance of microorganisms and ARGs than dung. At the same time, fodder was more likely to carry eukaryotes. Proteobacteria exhibited the highest propensity for carrying ARGs, with proportions 9-20 times greater than other microorganisms. Furthermore, a strong interrelation among various ARGs was observed, suggesting the potential for cooperative transmission mechanisms. These findings underscore the importance of recognizing soil and PM as significant reservoirs of ARGs in swine facilities alongside dung. Consequently, targeted measures should be implemented to mitigate their proliferation, mainly focusing on airborne PM, which can rapidly disseminate via air currents. Proteobacteria, given their remarkable carrying capacity for ARGs with the primary resistance mechanism of efflux, represent a promising avenue for developing novel control strategies against antibiotic resistance.
Collapse
Affiliation(s)
- Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.W.); (Q.Z.); (K.H.)
| | - Dan Shen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.W.); (Q.Z.); (K.H.)
| | - Zhendong Guo
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130117, China;
| | - Qiuming Zhong
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.W.); (Q.Z.); (K.H.)
| | - Kai Huang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.W.); (Q.Z.); (K.H.)
| |
Collapse
|
48
|
Shoaib M, Tang M, Aqib AI, Zhang X, Wu Z, Wen Y, Hou X, Xu J, Hao R, Wang S, Pu W. Dairy farm waste: A potential reservoir of diverse antibiotic resistance and virulence genes in aminoglycoside- and beta-lactam-resistant Escherichia coli in Gansu Province, China. ENVIRONMENTAL RESEARCH 2024; 263:120190. [PMID: 39427936 DOI: 10.1016/j.envres.2024.120190] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Aminoglycosides (AGs) and beta-lactams are the most commonly used antimicrobials in animal settings, particularly on dairy farms. Dairy farm waste is an important reservoir of antibiotic resistance genes (ARGs) and virulence genes (VGs) in environmental Escherichia coli, which is an important indicator of environmental contamination and foodborne pathogen that potentially threaten human and animal health. In the present study, we aimed to characterize the ARGs and VGs in AG- and beta-lactam-resistant E. coli from dairy farm waste in Gansu Province, China. The dairy farm waste consisted of fecal (n = 265) and sewage (n = 54) samples processed using standard microbiological techniques and the Clinical & Laboratory Standards Institute guidelines. The total DNA of AG- and beta-lactam-resistant E. coli was extracted, and whole-genome sequencing (WGS) was performed using the Illumina NovaSeq platform and analyzed using various bioinformatics tools. In this study, among 84.3% (269/319) of the E. coli strains, 23.8% (64/269) were identified as AG- and beta-lactam-resistant E. coli. WGS analysis revealed a large pool of ARGs belonging to multiple classes such as AGs, beta-lactams, aminocoumarins, fluoroquinolones, macrolides, phenicol, tetracyclines, phosphonic acid, disinfecting and antiseptic agents, elfamycin, rifamycin, and multidrug resistance genes. Furthermore, virulome analysis of 64 E. coli strains revealed clinically important virulence factors associated with adherence, biofilm, invasion, auto-transportation, siderophores, secretion systems, toxins, anti-phagocytosis, quorum sensing, regulation, metabolism, and motility. We identified dairy farm feces and sewage waste as important reservoirs of antimicrobial resistance and virulence determinants in E. coli in Gansu, China, which can threaten human and animal health through ecological exposure and contamination of food and water. We recommend continuous large-scale surveillance in dairy farm settings to formulate protective guidelines for public health safety.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Minjia Tang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Xuejing Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Zhongyong Wu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Yang Wen
- Animal Husbandry Company of Jinchang Jujia Ecological Agriculture Co. Ltd., Jinchang, 737100, PR China
| | - Xiao Hou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Jinpeng Xu
- Animal Husbandry Company of Jinchang Jujia Ecological Agriculture Co. Ltd., Jinchang, 737100, PR China
| | - Ruochen Hao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China.
| |
Collapse
|
49
|
Rodríguez-Miranda E, Reyes-Escogido MDL, Olmedo-Ramírez V, Jiménez-Garza O, López-Briones S, Hernández-Luna MA. Differential Expression of fimH, ihf, upaB, and upaH Genes in Biofilms- and Suspension-Grown Bacteria From Samples of Different Uropathogenic Strains of Escherichia coli. Int J Microbiol 2024; 2024:5235071. [PMID: 39703715 PMCID: PMC11658850 DOI: 10.1155/ijm/5235071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/27/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains are the main bacteria that cause urinary tract infections (UTIs). UPEC are a significant public health hazard due to their high proliferation, antibiotic resistance, and infection recurrence. The ability to form biofilms is a mechanism of antibiotic resistance, which requires the expression of different genes such as fimH, ihf, upaB, and upaH. Despite the relevance of biofilm formation in bacterial pathogenicity, differences in the expression level of these genes among bacterial growth conditions have been little studied. Here, we have characterized the expression of fimH, ihf, upaB, and upaH genes in biofilms and suspension-grown bacteria of different E. coli strains. These included the UPEC CFT073, the multidrug-resistant strain CDC-AR-0346, and clinical isolates obtained from UTI patients. The expression of fimH, ihf, upaB, and upaH was markedly heterogeneous in clinical isolates, both in terms of transcript levels and response to suspension or biofilm conditions. That expression pattern was distinct from the one in UPEC CFT073, where upaB and upaH were upregulated and ihf and fimH were slightly downregulated in biofilm. In conclusion, the data presented here show that the pattern of biofilm-associated genes in the clinical isolates from UTI patients is not fully related to the reference strain of UPEC CFT073. However, analysis of a larger number of samples is required.
Collapse
Affiliation(s)
- Esmeralda Rodríguez-Miranda
- Translational Biomedicine Laboratory, Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| | - María de Lourdes Reyes-Escogido
- Metabolism Laboratory, Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| | - Viridiana Olmedo-Ramírez
- Clinic Laboratory, Silao General Hospital, Ministry of Health of the State of Guanajuato, Silao, Guanajuato, Mexico
| | - Octavio Jiménez-Garza
- Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca, Hidalgo, Mexico
| | - Sergio López-Briones
- Translational Biomedicine Laboratory, Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| | - Marco Antonio Hernández-Luna
- Translational Biomedicine Laboratory, Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| |
Collapse
|
50
|
Wang W, Zhao B, Zhang H, Jie Z, Hu C, Guo H, Wang P, Li Y, Zhu J, Mei H, Ye J. Research progress and application of bacterial traceability technology. Forensic Sci Int 2024; 365:112275. [PMID: 39489139 DOI: 10.1016/j.forsciint.2024.112275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Bacterial traceability refers to the use of a range of techniques to trace the origins and transmission pathways of bacteria. It is crucial in controlling the spread of diseases, analyzing bioterrorism incidents, and advancing microbial forensics. In recent years, the frequency and scope of bacterial outbreaks have continued to escalate, exerting significant impacts on global biosecurity, public health, and other areas. Consequently, it is required to process traceability of bacteria timely and accurately around the globe. The rapid development of biological and physicochemical traceability techniques provides convenience for tracing bacteria. These techniques not only surpass traditional methods in terms of sensitivity, traceability and throughput, but also find more extensive applications in elucidating bacterial growth mechanisms, transmission routes, and geographical origins. This paper systematically reviews the latest research progress and applications of technologies of bacterial traceability, highlighting key advancements and projecting future trends, with the intent of providing a valuable reference for researchers, facilitating further studies and innovations in this field.
Collapse
Affiliation(s)
- Wei Wang
- School of Criminal Investigation, People's Public Security University of China; Institute of Forensic Science, Ministry of Public Security, PR China; Department of public security of Shanxi Province, Shanxi 030001, China
| | - Bichun Zhao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hanyu Zhang
- School of Criminal Investigation, People's Public Security University of China; Institute of Forensic Science, Ministry of Public Security, PR China
| | - Zhaowei Jie
- School of Criminal Investigation, People's Public Security University of China; Institute of Forensic Science, Ministry of Public Security, PR China
| | - Can Hu
- Institute of Forensic Science, Ministry of Public Security, PR China
| | - Hongling Guo
- Institute of Forensic Science, Ministry of Public Security, PR China
| | - Ping Wang
- Institute of Forensic Science, Ministry of Public Security, PR China
| | - Yajun Li
- Institute of Forensic Science, Ministry of Public Security, PR China
| | - Jun Zhu
- Institute of Forensic Science, Ministry of Public Security, PR China.
| | - Hongcheng Mei
- Institute of Forensic Science, Ministry of Public Security, PR China.
| | - Jian Ye
- Institute of Forensic Science, Ministry of Public Security, PR China.
| |
Collapse
|