1
|
McNeill TJ, Rooney AM, Ross FP, Bostrom MPG, van der Meulen MCH. PTH pre-treatment prior to tibial mechanical loading improves their synergistic anabolic effects in mice. Bone 2025; 196:117474. [PMID: 40164271 DOI: 10.1016/j.bone.2025.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Parathyroid hormone (PTH) increases bone mass and decreases fracture risk. However, the anabolic effects of PTH are limited to a period of approximately 24 months, motivating the need to maximize bone growth during this timeframe. Concurrent mechanical loading with weight-bearing exercise is synergistic with PTH treatment. We sought to determine if priming with PTH prior to initiating mechanical loading would enhance their synergistic effects. We pre-treated 10-week-old, female C57Bl/6J mice with either PTH or saline vehicle (VEH) for six weeks. We subsequently initiated cyclic tibial compression for either two or six weeks while continuing PTH or VEH treatment. We analyzed bone morphology in cortical and cancellous compartments of the proximal tibia. To further explore the effects of PTH and loading in cancellous bone, we measured bone cell presence and changes in bone morphology via histology, immunohistochemistry, and dynamic histomorphometry. Concurrent treatment with PTH enhanced load-induced increases in bone mass in cortical bone but blunted the effects of loading in cancellous bone. PTH pre-treatment further increased load-induced changes in cortical bone mass and rescued the load effects in cancellous bone, returning values to those of VEH-treated animals. Osteoclast populations decreased with loading, independent of PTH treatment. Active osteoblast populations increased with PTH pre-treatment but did not change with loading. Bone formation rate increased with PTH pre-treatment in the 2-week group but did not differ between treatment groups after 6-weeks. Collectively, pre-treating with PTH prior to mechanical loading primed the skeletal tissue and enhanced the anabolic response of concurrent treatment and loading.
Collapse
Affiliation(s)
- Tyler J McNeill
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Amanda M Rooney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Medical Metrics, Inc., Houston, TX, USA.
| | | | | | - Marjolein C H van der Meulen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Research Division, Hospital for Special Surgery, NY, New York, USA.
| |
Collapse
|
2
|
Golshan M, Dortaj H, Omidi Z, Golshan M, Pourentezari M, Rajabi M, Rajabi A. Cartilage repair: unleashing PRP's potential in organoid models. Cytotechnology 2025; 77:86. [PMID: 40190423 PMCID: PMC11968630 DOI: 10.1007/s10616-025-00739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Platelet-rich plasma (PRP) has emerged as a promising biological therapy in regenerative medicine due to its high concentration of growth factors and cytokines, which promote tissue healing and regeneration. In recent years, its application in cartilage tissue engineering has garnered significant attention. This study explores the synergistic interaction between PRP and cartilage organoids, a novel three-dimensional in vitro culture system that closely mimics the structural and functional properties of native cartilage. Cartilage organoids serve as a physiologically relevant model for studying cartilage development, disease progression, and regeneration. By integrating PRP with cartilage organoids, this review aims to enhance chondrogenesis, extracellular matrix synthesis, and cellular proliferation within the organoids. Emerging evidence suggests that PRP supplementation significantly improves chondrocyte viability, growth, and differentiation in cartilage organoids, thereby accelerating their maturation. This combination holds great potential for advancing cartilage repair strategies, providing a robust platform for preclinical studies, and paving the way for innovative therapeutic approaches for cartilage-related injuries and degenerative diseases. These key aspects-chondrogenesis, matrix synthesis, and cellular proliferation-were specifically selected due to their fundamental roles in cartilage tissue engineering and regeneration. Chondrogenesis is crucial for chondrocyte differentiation and maintenance, matrix synthesis ensures the structural integrity and functional properties of regenerated cartilage, and cellular proliferation supports tissue viability and repair. Addressing these factors is essential, as current cartilage regeneration strategies often suffer from limited long-term efficacy and inadequate extracellular matrix production. By elucidating the synergistic effects of PRP and cartilage organoids in these areas, this study seeks to bridge existing knowledge gaps and provide valuable insights for improving regenerative approaches in clinical applications, particularly for osteoarthritis and cartilage defects.
Collapse
Affiliation(s)
- Mahsa Golshan
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| | - Hengameh Dortaj
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Omidi
- Department of Cardiovascular Disease, Alzahra Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Golshan
- Shiraz Transplant Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Majid Pourentezari
- Department of Anatomical Sciences, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrdad Rajabi
- Postgraduate Student or Periodontist, Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rajabi
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| |
Collapse
|
3
|
Reul ON, Surowiec RK, Chowdhury NN, Segvich DM, Wallace JM. Skeletal impacts of dual in vivo compressive axial tibial and ulnar loading in mice. J Mech Behav Biomed Mater 2025; 165:106950. [PMID: 39961220 PMCID: PMC11893231 DOI: 10.1016/j.jmbbm.2025.106950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/12/2025]
Abstract
The use of compressive axial tibial loading for evaluation of bone adaptation and mechanotransduction has become a common technique in recent years. Despite its popularity, it only produces a single experimental limb per animal which can escalate sample sizes depending on study endpoints. We hypothesized the combination of compressive axial tibial and ulnar loading in a single animal would induce bone formation in loaded limbs, providing two experimental limbs per animal thereby reducing the animals required per study by half. Male and female C57BL/6J mice were purchased at 9 and 19 weeks (wks). Based on sex and age they were divided into 4 groups of N = 17. From each group, N = 5 were sacrificed at 10 and 20 wks for strain gauge calibration. At 11 wks and 21 wks, the left ulnae and right tibiae of the remaining animals (N = 12/group) were loaded 3 days/week for 4 weeks. Tibiae of all groups experienced significant increases in architectural properties due to loading in both trabecular and cortical compartments while there were no significant improvements in the ulna. Female tibiae showed improvements in mechanical properties, but these were not observed in the male tibiae where detrimental impacts were observed. In the ulna, females showed limited mechanical changes due to loading. Contrastingly, loading in males at 11 wks led to decreased mechanical properties while at 21 wks no impacts were observed. Overall, reported beneficial impacts of loading in tibiae were observed in architectural properties but were not maintained in the males' mechanical properties. Impacts of ulnar loading on architectural and whole bone mechanical properties that have been reported elsewhere were not observed in any groups. These data suggest when architectural and mechanical properties are end points, combined loading is not optimal for reducing the number of animals required per study.
Collapse
Affiliation(s)
- Olivia N Reul
- Weldon School of Biomedical Engineering, Purdue University, Indianapolis, IN, United States
| | - Rachel K Surowiec
- Weldon School of Biomedical Engineering, Purdue University, Indianapolis, IN, United States
| | - Nusaiba N Chowdhury
- Weldon School of Biomedical Engineering, Purdue University, Indianapolis, IN, United States
| | - Dyann M Segvich
- Weldon School of Biomedical Engineering, Purdue University, Indianapolis, IN, United States
| | - Joseph M Wallace
- Weldon School of Biomedical Engineering, Purdue University, Indianapolis, IN, United States.
| |
Collapse
|
4
|
Castoldi NM, Lagzouli A, Pickering E, Meakin L, Cooper DML, Delisser P, Pivonka P. Reverse engineering Frost's mechanostat model in mouse tibia: Insights from combined PTH and mechanical loading. Bone 2025; 197:117491. [PMID: 40274204 DOI: 10.1016/j.bone.2025.117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Osteoporosis is a widespread skeletal disease impacting billions, with treatments aimed at enhancing bone mass or preventing bone loss essential for reducing fracture risk and related health complications. Clinical evidence shows that intermittent parathyroid hormone (PTH) treatment increases cortical width at certain skeletal sites, with effects further amplified when combined with mechanical loading (ML), making this pharmacological and exercise approach promising for dual osteoporosis therapy. However, the mechanisms through which PTH enhances osteogenic response are not fully understood. This study uses μ CT endpoint imaging data from the mouse tibia loading model together with mechanical assessment of strain patterns in cortical bone to quantitatively compute parameters in Frost's mechanostat model. Particularly, we investigate the effects of PTH alone and in combination with ML on bone formation threshold and rate. Our analysis shows that PTH alone promotes periosteal bone formation independently of strain patterns induced by habitual loading in a dose-dependent manner. PTH lowers the bone formation modeling threshold (MESm) in bones undergoing ML in a dose-dependent and site-specific manner. The highest sensitivity is observed around 37 % of tibial height, where MESm decreases from 1060.6με in untreated bones to 212.1με at an 80μg/kg/day g PTH dose. This region also exhibits the highest adaptation response, with a maximum modeling velocity (MaxFL) of approximately 7με/day at 80μg/kg/day PTH. Although the formation velocity modulus (FVM) increases in PTH-treated bones compared to untreated ones across all regions, this change is not dose-dependent.
Collapse
Affiliation(s)
- Natalia M Castoldi
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
| | - Amine Lagzouli
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; MSME UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, Creteil, France
| | - Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Lee Meakin
- Langford Clinical Veterinary Service, University of Bristol, Bristol, United Kingdom
| | - David M L Cooper
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Peter Delisser
- School of Veterinary Medicine, UC Davis, Davis, United States
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
5
|
Dimnik JM, Wilde KH, Edwards WB. Optimization of the density-elasticity relationship for rabbit hindlimb bones. J Mech Behav Biomed Mater 2025; 163:106882. [PMID: 39756222 DOI: 10.1016/j.jmbbm.2024.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/27/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
The rabbit is a popular experimental model in orthopaedic biomechanics due to the presence of natural Haversian remodeling, allowing for better translational relevance to the mechanobiology of human bone over traditional rodent models. Although rabbits are often used with computational modeling approaches such as the finite element (FE) method, a validated and widely agreed upon density-elasticity relationship, which is required to make subject-specific predictions, does not exist. Therefore, the purpose of this study was to determine and validate an accurate density-elasticity relationship for rabbit hindlimb bones using mathematical optimization. Fourteen tibiae and thirteen femora were harvested from New Zealand White Rabbits, imaged with computed tomography (CT), and cyclically loaded in uniaxial compression while strain gauge rosette data were recorded. The CT images were processed into subject-specific FE models which were used in a Nelder-Mead optimization routine to determine a density-elasticity relationship that minimized the error between experimentally measured and FE-predicted principal strains. Optimizations were performed for the tibiae and femora independently, and for both bones combined. A subset of 4 tibiae and 4 femora that were excluded from the optimization were then used to validate the derived relationships. All equations that were determined by the initial optimization exhibited a Y=X type of relationship with strong correlations (Tibiae: R2=0.96; Femora: R2=0.85; Combined: R2=0.90) and good agreement. The validation groups yielded similar results with strong correlations (Tibiae: R2=0.94; Femora: R2=0.87; Combined: R2=0.91). These findings suggest that any of the derived density-elasticity relationships are suitable for computational modeling of the rabbit hindlimb and that a single relationship could be used for the whole rabbit hindlimb in studies where greater computational efficiency is necessary.
Collapse
Affiliation(s)
- Jonah M Dimnik
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Kurt H Wilde
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Ziemian SN, Antoinette AY, Witkowski A, Otero M, Goldring SR, Goldring MB, van der Meulen MCH. Joint damage is more severe following a single bout than multiple bouts of high magnitude loading in mice. Osteoarthritis Cartilage 2025:S1063-4584(25)00821-0. [PMID: 40020990 DOI: 10.1016/j.joca.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 03/03/2025]
Abstract
OBJECTIVE While physiological loads maintain cartilage health, both joint overload and abnormal joint mechanical loading contribute to osteoarthritis (OA) development. Here, we examined the role of abnormal mechanical loading on joint health by comparing the severity of OA development following a single overload event and repetitive joint overloads. METHOD Cyclic tibial compression was applied to the left limbs of 26-week-old male mice at a peak load of 9N for either a single bout or daily bouts to initiate OA disease. Joint damage severity was morphologically examined using histology and microcomputed tomography at 6 weeks following the start of loading. Early-stage transcriptomic responses to loading were evaluated. RESULTS Joint damage was more severe at 6 weeks following a single bout of loading than after daily loading bouts. Severe cartilage damage, subchondral plate erosions, and soft tissue calcifications occurred following the single bout of loading. Daily loading bouts resulted in less severe cartilage damage and preserved subchondral plate integrity. A diverging transcriptomic response was identified in cartilage at 1 week with increased expression of fibrosis- and inflammation-related genes following a single bout of loading compared to daily loading. CONCLUSIONS Even applied at hyperphysiological load magnitudes known to initiate cartilage damage, repetitive loading may induce protective effects in the joint and attenuate OA progression over time relative to a single bout of loading. Our findings suggest the potential of mechanotherapies that use repetitive loading as disease-modifying treatments for OA disease.
Collapse
Affiliation(s)
- Sophia N Ziemian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Adrien Y Antoinette
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Ana Witkowski
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Miguel Otero
- Hospital for Special Surgery, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - Steven R Goldring
- Hospital for Special Surgery, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - Mary B Goldring
- Hospital for Special Surgery, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
7
|
Mathavan N, Singh A, Marques FC, Günther D, Kuhn GA, Wehrle E, Müller R. Spatial transcriptomics in bone mechanomics: Exploring the mechanoregulation of fracture healing in the era of spatial omics. SCIENCE ADVANCES 2025; 11:eadp8496. [PMID: 39742473 DOI: 10.1126/sciadv.adp8496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
In recent decades, the field of bone mechanobiology has sought experimental techniques to unravel the molecular mechanisms governing the phenomenon of mechanically regulated fracture healing. Each cell within a fracture site resides within different local microenvironments characterized by different levels of mechanical strain; thus, preserving the spatial location of each cell is critical in relating cellular responses to mechanical stimuli. Our spatial transcriptomics-based "mechanomics" platform facilitates spatially resolved analysis of the molecular profiles of cells with respect to their local in vivo mechanical environment by integrating time-lapsed in vivo micro-computed tomography, spatial transcriptomics, and micro-finite element analysis. We investigate the transcriptomic responses of cells as a function of the local strain magnitude by identifying the differential expression of genes in regions of high and low strain within a fracture site. Our platform thus has the potential to address fundamental open questions within the field and to discover mechano-responsive targets to enhance fracture healing.
Collapse
Affiliation(s)
| | - Amit Singh
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Denise Günther
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Zhao D, Tu C, Zhang L, Guda T, Gu S, Jiang JX. Activation of connexin hemichannels enhances mechanosensitivity and anabolism in disused and aged bone. JCI Insight 2024; 9:e177557. [PMID: 39641271 PMCID: PMC11623949 DOI: 10.1172/jci.insight.177557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Mechanical loading, essential for bone health, promotes bone formation and remodeling. However, the positive response diminishes in cases of disuse and aging, leading to bone loss and an increased fracture risk. This study demonstrates that activating hemichannels (HCs) using a connexin 43 (Cx43) antibody, Cx43(M2), in bone osteocytes revitalizes aging and disused bones. Using a hindlimb suspension (HLS) disuse model and a tibial mechanical loading model, we found that Cx43(M2) inhibited bone loss and osteocyte apoptosis induced by unloading in 16-week-old adult mice. Additionally, it enhanced bone mass in response to tibial loading in 22-month-old aged mice. The HC opening released bone anabolic factor prostaglandin E2 (PGE2) and suppressed catabolic factor sclerostin (SOST). This suppressed the increase of cortical bone formation and reduction of bone resorption during unloading and promoted trabecular and cortical bone formation during loading. Cx43(M2)-induced HC opening, coupled with PGE2 release, effectively rescued unloading-induced bone loss and restored the diminished anabolic response of aged bones to mechanical loading. Activating HCs with the Cx43 antibody holds promise as a de novo therapeutic approach, as it can overcome the limitations of existing treatment regimens for treating bone loss and osteoporosis associated with aging and disuse.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
- School of Medicine, Northwest University, Xi’an, China
| | - Chao Tu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lidan Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| |
Collapse
|
9
|
Rummler M, van Tol A, Schemenz V, Hartmann MA, Blouin S, Willie BM, Weinkamer R. The Lacunocanalicular Network is Denser in C57BL/6 Compared to BALB/c Mice. Calcif Tissue Int 2024; 115:744-758. [PMID: 39414712 PMCID: PMC11531440 DOI: 10.1007/s00223-024-01289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/10/2024] [Indexed: 10/18/2024]
Abstract
The lacunocanalicular network (LCN) is an intricate arrangement of cavities (lacunae) and channels (canaliculi), which permeates the mineralized bone matrix. In its porosity, the LCN accommodates the cell network of osteocytes. These two nested networks are attributed a variety of essential functions including transport, signaling, and mechanosensitivity due to load-induced fluid flow through the LCN. For a more quantitative assessment of the networks' function, the three-dimensional architecture has to be known. For this reason, we aimed (i) to quantitatively characterize spatial heterogeneities of the LCN in whole mouse tibial cross-sections of BALB/c mice and (ii) to analyze differences in LCN architecture by comparison with another commonly used inbred mouse strain, the C57BL/6 mouse. Both tibiae of five BALB/c mice (female, 26-week-old) were stained using rhodamine 6G and whole tibiae cross-sections were imaged using confocal laser scanning microscopy. Using image analysis, the LCN was quantified in terms of density and connectivity and lacunar parameters, such as lacunar degree, volume, and shape. In the same tibial cross-sections, the calcium content was measured using quantitative backscattered electron imaging (qBEI). A structural analysis of the LCN properties showed that spatially denser parts of the LCN are mainly due to a higher density of branching points in the network. While a high intra-individual variability of network density was detected within the cortex, the inter-individual variability between different mice was low. In comparison to C57BL/6J mice, BALB/c mice showed a distinct lower canalicular density. This reduced network was already detectable on a local network level with fewer canaliculi emanating from lacunae. Spatial correlation with qBEI images demonstrated that bone modeling resulted in disruptions in the network architecture. The spatial heterogeneity and differences in density of the LCN likely affects the fluid flow within the network and therefore bone's mechanoresponse to loading.
Collapse
Affiliation(s)
- Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Alexander van Tol
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Victoria Schemenz
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin - Berlin, Berlin, Germany
| | - Markus A Hartmann
- 1st Medical Department Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Stéphane Blouin
- 1st Medical Department Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Bettina M Willie
- Research Center, Shriners Hospital for Children, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
10
|
Tuladhar A, Shaver JC, McGee WA, Yu K, Dorn J, Horne JL, Alhamad DW, Hagan ML, Cooley MA, Zhong R, Bollag W, Johnson M, Hamrick MW, McGee-Lawrence ME. Prkd1 regulates the formation and repair of plasma membrane disruptions (PMD) in osteocytes. Bone 2024; 186:117147. [PMID: 38866124 PMCID: PMC11246118 DOI: 10.1016/j.bone.2024.117147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
We and others have seen that osteocytes sense high-impact osteogenic mechanical loading via transient plasma membrane disruptions (PMDs) which initiate downstream mechanotransduction. However, a PMD must be repaired for the cell to survive this wounding event. Previous work suggested that the protein Prkd1 (also known as PKCμ) may be a critical component of this PMD repair process, but the specific role of Prkd1 in osteocyte mechanobiology had not yet been tested. We treated MLO-Y4 osteocytes with Prkd1 inhibitors (Go6976, kbNB 142-70, staurosporine) and generated an osteocyte-targeted (Dmp1-Cre) Prkd1 conditional knockout (CKO) mouse. PMD repair rate was measured via laser wounding and FM1-43 dye uptake, PMD formation and post-wounding survival were assessed via fluid flow shear stress (50 dyn/cm2), and in vitro osteocyte mechanotransduction was assessed via measurement of calcium signaling. To test the role of osteocyte Prkd1 in vivo, Prkd1 CKO and their wildtype (WT) littermates were subjected to 2 weeks of unilateral axial tibial loading and loading-induced changes in cortical bone mineral density, geometry, and formation were measured. Prkd1 inhibition or genetic deletion slowed osteocyte PMD repair rate and impaired post-wounding cell survival. These effects could largely be rescued by treating osteocytes with the FDA-approved synthetic copolymer Poloxamer 188 (P188), which was previously shown to facilitate membrane resealing and improve efficiency in the repair rate of PMD in skeletal muscle myocytes. In vivo, while both WT and Prkd1 CKO mice demonstrated anabolic responses to tibial loading, the magnitude of loading-induced increases in tibial BMD, cortical thickness, and periosteal mineralizing surface were blunted in Prkd1 CKO as compared to WT mice. Prkd1 CKO mice also tended to show a smaller relative difference in the number of osteocyte PMD in loaded limbs and showed greater lacunar vacancy, suggestive of impaired post-wounding osteocyte survival. While P188 treatment rescued loading-induced increases in BMD in the Prkd1 CKO mice, it surprisingly further suppressed loading-induced increases in cortical bone thickness and cortical bone formation. Taken together, these data suggest that Prkd1 may play a pivotal role in the regulation and repair of the PMD response in osteocytes and support the idea that PMD repair processes can be pharmacologically targeted to modulate downstream responses, but suggest limited utility of PMD repair-promoting P188 in improving bone anabolic responses to loading.
Collapse
Affiliation(s)
- Anik Tuladhar
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Joseph C Shaver
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Wesley A McGee
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Jennifer Dorn
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - J Luke Horne
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Dima W Alhamad
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Mackenzie L Hagan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Roger Zhong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at AugustaUniversity, Augusta, GA, United States of America
| | - Wendy Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States of America; Charlie Norwood VA Medical Center, Augusta, GA, United States of America
| | - Maribeth Johnson
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at AugustaUniversity, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
11
|
Rindt WD, Krug M, Yamada S, Sennefelder F, Belz L, Cheng WH, Azeem M, Kuric M, Evers M, Leich E, Hartmann TN, Pereira AR, Hermann M, Hansmann J, Mussoni C, Stahlhut P, Ahmad T, Yassin MA, Mustafa K, Ebert R, Jundt F. A 3D bioreactor model to study osteocyte differentiation and mechanobiology under perfusion and compressive mechanical loading. Acta Biomater 2024; 184:210-225. [PMID: 38969078 DOI: 10.1016/j.actbio.2024.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Osteocytes perceive and process mechanical stimuli in the lacuno-canalicular network in bone. As a result, they secrete signaling molecules that mediate bone formation and resorption. To date, few three-dimensional (3D) models exist to study the response of mature osteocytes to biophysical stimuli that mimic fluid shear stress and substrate strain in a mineralized, biomimetic bone-like environment. Here we established a biomimetic 3D bone model by utilizing a state-of-art perfusion bioreactor platform where immortomouse/Dmp1-GFP-derived osteoblastic IDG-SW3 cells were differentiated into mature osteocytes. We evaluated proliferation and differentiation properties of the cells on 3D microporous scaffolds of decellularized bone (dBone), poly(L-lactide-co-trimethylene carbonate) lactide (LTMC), and beta-tricalcium phosphate (β-TCP) under physiological fluid flow conditions over 21 days. Osteocyte viability and proliferation were similar on the scaffolds with equal distribution of IDG-SW3 cells on dBone and LTMC scaffolds. After seven days, the differentiation marker alkaline phosphatase (Alpl), dentin matrix acidic phosphoprotein 1 (Dmp1), and sclerostin (Sost) were significantly upregulated in IDG-SW3 cells (p = 0.05) on LTMC scaffolds under fluid flow conditions at 1.7 ml/min, indicating rapid and efficient maturation into osteocytes. Osteocytes responded by inducing the mechanoresponsive genes FBJ osteosarcoma oncogene (Fos) and prostaglandin-endoperoxide synthase 2 (Ptgs2) under perfusion and dynamic compressive loading at 1 Hz with 5 % strain. Together, we successfully created a 3D biomimetic platform as a robust tool to evaluate osteocyte differentiation and mechanobiology in vitro while recapitulating in vivo mechanical cues such as fluid flow within the lacuno-canalicular network. STATEMENT OF SIGNIFICANCE: This study highlights the importance of creating a three-dimensional (3D) in vitro model to study osteocyte differentiation and mechanobiology, as cellular functions are limited in two-dimensional (2D) models lacking in vivo tissue organization. By using a perfusion bioreactor platform, physiological conditions of fluid flow and compressive loading were mimicked to which osteocytes are exposed in vivo. Microporous poly(L-lactide-co-trimethylene carbonate) lactide (LTMC) scaffolds in 3D are identified as a valuable tool to create a favorable environment for osteocyte differentiation and to enable mechanical stimulation of osteocytes by perfusion and compressive loading. The LTMC platform imitates the mechanical bone environment of osteocytes, allowing the analysis of the interaction with other cell types in bone under in vivo biophysical stimuli.
Collapse
Affiliation(s)
- Wyonna Darleen Rindt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Melanie Krug
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| | - Shuntaro Yamada
- Centre of Translational Oral Research (TOR)-Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | | | - Louisa Belz
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Wen-Hui Cheng
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Muhammad Azeem
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Martin Kuric
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| | | | - Ellen Leich
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Tanja Nicole Hartmann
- Department of Medicine I, Medical Center-University Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ana Rita Pereira
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
| | - Marietta Hermann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Würzburg, Germany; Department of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Schweinfurt, Germany
| | - Camilla Mussoni
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), and Bavarian Polymer Institute (BPI), University of Würzburg, Würzburg, Germany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), and Bavarian Polymer Institute (BPI), University of Würzburg, Würzburg, Germany
| | - Taufiq Ahmad
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), and Bavarian Polymer Institute (BPI), University of Würzburg, Würzburg, Germany
| | - Mohammed Ahmed Yassin
- Centre of Translational Oral Research (TOR)-Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Centre of Translational Oral Research (TOR)-Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
12
|
Zimmermann EA, DeVet T, Cilla M, Albiol L, Kavaseri K, Andrea C, Julien C, Tiedemann K, Panahifar A, Alidokht SA, Chromik R, Komarova SV, Reinhardt DP, Zaslansky P, Willie BM. Tissue material properties, whole-bone morphology and mechanical behavior in the Fbn1 C1041G/+ mouse model of Marfan syndrome. Matrix Biol Plus 2024; 23:100155. [PMID: 39049903 PMCID: PMC11267061 DOI: 10.1016/j.mbplus.2024.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by pathogenic mutations in FBN1. In bone, the protein fibrillin-1 is found in the extracellular matrix where it provides structural support of elastic fiber formation, stability for basement membrane, and regulates the bioavailability of growth factors. Individuals with MFS exhibit a range of skeletal complications including low bone mineral density and long bone overgrowth. However, it remains unknown if the bone phenotype is caused by alteration of fibrillin-1's structural function or distortion of its interactions with bone cells. To assess the structural effects of the fibrillin-1 mutation, we characterized bone curvature, microarchitecture, composition, porosity, and mechanical behavior in the Fbn1 C1041G/+ mouse model of MFS. Tibiae of 10, 26, and 52-week-old female Fbn1 C1041G/+ and littermate control (LC) mice were analyzed. Mechanical behavior was assessed via in vivo strain gauging, finite element analysis, ex vivo three-point bending, and nanoindentation. Tibial bone morphology and curvature were assessed with micro computed tomography (μCT). Bone composition was measured with Fourier transform infrared (FTIR) imaging. Vascular and osteocyte lacunar porosity were assessed by synchrotron computed tomography. Fbn1 C1041G/+ mice exhibited long bone overgrowth and osteopenia consistent with the MFS phenotype. Trabecular thickness was lower in Fbn1 C1041G/+ mice but cortical bone microarchitecture was similar in Fbn1 C1041G/+ and LC mice. Whole bone curvature was straighter below the tibio-fibular junction in the medial-lateral direction and more curved above in LC compared to Fbn1 C1041G/+ mice. The bone matrix crystallinity was 4 % lower in Fbn1 C1041G/+ mice compared to LC, implying that mineral platelets in LCs have greater crystal size and perfection than Fbn1 C1041G/+ mice. Structural and mechanical properties were similar between genotypes. Cortical diaphyseal lacunar porosity was lower in Fbn1 C1041G/+ mice compared to LC; this was a result of the average volume of an individual osteocyte lacunae being smaller. These data provide valuable insights into the bone phenotype and its contribution to fracture risk in this commonly used mouse model of MFS.
Collapse
Affiliation(s)
- Elizabeth A. Zimmermann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Taylor DeVet
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Myriam Cilla
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Laia Albiol
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kyle Kavaseri
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Christine Andrea
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Kerstin Tiedemann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Arash Panahifar
- BioMedical Imaging and Therapy Beamline, Canadian Light Source, Saskatoon, Canada
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Canada
| | - Sima A. Alidokht
- Department of Mechanical Engineering, Memorial University of Newfoundland, St. John’s, Canada
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Richard Chromik
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Svetlana V. Komarova
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Dieter P. Reinhardt
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, CC3 -Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
13
|
Tauer JT, Thiele T, Julien C, Ofer L, Zaslansky P, Shahar R, Willie BM. Swim training induces distinct osseous gene expression patterns in anosteocytic and osteocytic teleost fish. Bone 2024; 185:117125. [PMID: 38754573 DOI: 10.1016/j.bone.2024.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The traditional understanding of bone mechanosensation implicates osteocytes, canaliculi, and the lacunocanalicular network in biomechanical adaptation. However, recent findings challenge this notion, as shown in advanced teleost fish where anosteocytic bone lacking osteocytes are nevertheless responsive to mechanical load. To investigate specific molecular mechanisms involved in bone mechanoadaptation in osteocytic and anosteocytic fish bone, we conducted a 5-min single swim-training experiment with zebrafish and ricefish, respectively. Through RNASeq analysis of fish spines, analyzed at various time points following swim training, we uncovered distinct gene expression patterns in osteocytic and anosteocytic fish bones. Notably, osteocytic fish bone exhibited an early response to mechanical load, contrasting to a delayed response observed in anosteocytic fish bones, both within 8 h following stimulation. We identified an increase in osteoblast differentiation in anosteocytic bone following training, while chordoblast activity was delayed. This temporal response suggests a time-dependent adaptation in anosteocytic bone, indicating the presence of intricate feedback networks within bone that lacks osteocytes.
Collapse
Affiliation(s)
- Josephine T Tauer
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada; Department of Pediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Tobias Thiele
- Julius Wolff Institute and Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Lior Ofer
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot, Israel
| | - Paul Zaslansky
- Department of Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot, Israel
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
Creecy A, Segvich D, Metzger C, Kohler R, Wallace JM. Combining anabolic loading and raloxifene improves bone quantity and some quality measures in a mouse model of osteogenesis imperfecta. Bone 2024; 184:117106. [PMID: 38641232 PMCID: PMC11130993 DOI: 10.1016/j.bone.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Osteogenesis imperfecta (OI) increases fracture risk due to changes in bone quantity and quality caused by mutations in collagen and its processing proteins. Current therapeutics improve bone quantity, but do not treat the underlying quality deficiencies. Male and female G610C+/- mice, a murine model of OI, were treated with a combination of raloxifene and in vivo axial tibial compressive loading starting at 10 weeks of age and continuing for 6 weeks to improve bone quantity and quality. Bone geometry and mechanical properties were measured to determine whole bone and tissue-level material properties. A colocalized Raman/nanoindentation system was used to measure chemical composition and nanomechanical properties in newly formed bone compared to old bone to determine if bone formed during the treatment regimen differed in quality compared to bone formed prior to treatment. Lastly, lacunar geometry and osteocyte apoptosis were assessed. OI mice were able to build bone in response to the loading, but this response was less robust than in control mice. Raloxifene improved some bone material properties in female but not male OI mice. Raloxifene did not alter nanomechanical properties, but loading did. Lacunar geometry was largely unchanged with raloxifene and loading. However, osteocyte apoptosis was increased with loading in raloxifene treated female mice. Overall, combination treatment with raloxifene and loading resulted in positive but subtle changes to bone quality.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, United States of America.
| | - Dyann Segvich
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, United States of America
| | - Corinne Metzger
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, United States of America
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, United States of America
| |
Collapse
|
15
|
Roberts BC, Cheong VS, Oliviero S, Arredondo Carrera HM, Wang N, Gartland A, Dall'Ara E. Combining PTH(1-34) and mechanical loading has increased benefit to tibia bone mechanics in ovariectomised mice. J Orthop Res 2024; 42:1254-1266. [PMID: 38151816 DOI: 10.1002/jor.25777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/29/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
Combined treatment with PTH(1-34) and mechanical loading confers increased structural benefits to bone than monotherapies. However, it remains unclear how this longitudinal adaptation affects the bone mechanics. This study quantified the individual and combined longitudinal effects of PTH(1-34) and mechanical loading on the bone stiffness and strength evaluated in vivo with validated micro-finite element (microFE) models. C57BL/6 mice were ovariectomised at 14-week-old and treated either with injections of PTH(1-34), compressive tibia loading or both interventions concurrently. Right tibiae were in vivo microCT-scanned every 2 weeks from 14 until 24-week-old. MicroCT images were rigidly registered to reference tibia and the cortical organ level (whole bone) and tissue level (midshaft) morphometric properties and bone mineral content were quantified. MicroCT images were converted into voxel-based homogeneous, linear elastic microFE models to estimate the bone stiffness and strength. This approach allowed us for the first time to quantify the longitudinal changes in mechanical properties induced by combined treatments in a model of accelerated bone resorption. Both changes of stiffness and strength were higher with co-treatment than with individual therapies, consistent with increased benefits with the tibia bone mineral content and cortical area, properties strongly associated with the tibia mechanics. The longitudinal data shows that the two bone anabolics, both individually and combined, had persistent benefit on estimated mechanical properties, and that benefits (increased stiffness and strength) remained after treatment was withdrawn.
Collapse
Affiliation(s)
- Bryant C Roberts
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- Adelaide Microscopy, Division of Research and Innovation, The University of Adelaide, Adelaide, South Australia, Australia
| | - Vee San Cheong
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| | - Sara Oliviero
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Ning Wang
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Alison Gartland
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Enrico Dall'Ara
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Chen J, Aido M, Roschger A, van Tol A, Checa S, Willie BM, Weinkamer R. Spatial variations in the osteocyte lacuno-canalicular network density and analysis of the connectomic parameters. PLoS One 2024; 19:e0303515. [PMID: 38743675 PMCID: PMC11093372 DOI: 10.1371/journal.pone.0303515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Osteocyte lacuno-canalicular network (LCN) is comprised of micrometre-sized pores and submicrometric wide channels in bone. Accumulating evidence suggests multiple functions of this network in material transportation, mechanobiological signalling, mineral homeostasis and bone remodelling. Combining rhodamine staining and confocal laser scanning microscopy, the longitudinal cross-sections of six mouse tibiae were imaged, and the connectome of the network was quantified with a focus on the spatial heterogeneities of network density, connectivity and length of canaliculi. In-vivo loading and double calcein labelling on these tibiae allowed differentiating the newly formed bone from the pre-existing regions. The canalicular density of the murine cortical bone varied between 0.174 and 0.243 μm/μm3, and therefore is three times larger than the corresponding value for human femoral midshaft osteons. The spatial heterogeneity of the network was found distinctly more pronounced across the cortex than along the cortex. We found that in regions with a dense network, the LCN conserves its largely tree-like character, but increases the density by including shorter canaliculi. The current study on healthy mice should serve as a motivating starting point to study the connectome of genetically modified mice, including models of bone diseases and of reduced mechanoresponse.
Collapse
Affiliation(s)
- Junning Chen
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Marta Aido
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Andreas Roschger
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Physics of Materials, Paris-Lodron-University of Salzburg, Salzburg, Austria
| | - Alexander van Tol
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M. Willie
- Department of Pediatric Surgery, Research Centre, Shriners Hospital for Children-Canada, McGill University, Montreal, Canada
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
17
|
Antoinette AY, Ziemian SN, Brown AR, Hudson EB, Chlebek C, Wright TM, Goldring SR, Goldring MB, Otero M, van der Meulen MC. PTH treatment before cyclic joint loading improves cartilage health and attenuates load-induced osteoarthritis development in mice. SCIENCE ADVANCES 2024; 10:eadk8402. [PMID: 38640238 PMCID: PMC11029811 DOI: 10.1126/sciadv.adk8402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
Osteoarthritis (OA) treatment is limited by the lack of effective nonsurgical interventions to slow disease progression. Here, we examined the contributions of the subchondral bone properties to OA development. We used parathyroid hormone (PTH) to modulate bone mass before OA initiation and alendronate (ALN) to inhibit bone remodeling during OA progression. We examined the spatiotemporal progression of joint damage by combining histopathological and transcriptomic analyses across joint tissues. The additive effect of PTH pretreatment before OA initiation and ALN treatment during OA progression most effectively attenuated load-induced OA pathology. Individually, PTH directly improved cartilage health and slowed the development of cartilage damage, whereas ALN primarily attenuated subchondral bone changes associated with OA progression. Joint damage reflected early transcriptomic changes. With both treatments, the structural changes were associated with early modulation of immunoregulation and immunoresponse pathways that may contribute to disease mechanisms. Overall, our results demonstrate the potential of subchondral bone-modifying therapies to slow the progression of OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Miguel Otero
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
18
|
Farage-O’Reilly SM, Cheong VS, Pickering E, Pivonka P, Bellantuono I, Kadirkamanathan V, Dall’Ara E. The loading direction dramatically affects the mechanical properties of the mouse tibia. Front Bioeng Biotechnol 2024; 12:1335955. [PMID: 38380263 PMCID: PMC10877372 DOI: 10.3389/fbioe.2024.1335955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction: The in vivo tibial loading mouse model has been extensively used to evaluate bone adaptation in the tibia after mechanical loading treatment. However, there is a prevailing assumption that the load is applied axially to the tibia. The aim of this in silico study was to evaluate how much the apparent mechanical properties of the mouse tibia are affected by the loading direction, by using a validated micro-finite element (micro-FE) model of mice which have been ovariectomized and exposed to external mechanical loading over a two-week period. Methods: Longitudinal micro-computed tomography (micro-CT) images were taken of the tibiae of eleven ovariectomized mice at ages 18 and 20 weeks. Six of the mice underwent a mechanical loading treatment at age 19 weeks. Micro-FE models were generated, based on the segmented micro-CT images. Three models using unitary loads were linearly combined to simulate a range of loading directions, generated as a function of the angle from the inferior-superior axis (θ, 0°-30° range, 5° steps) and the angle from the anterior-posterior axis (ϕ, 0°: anterior axis, positive anticlockwise, 0°-355° range, 5° steps). The minimum principal strain was calculated and used to estimate the failure load, by linearly scaling the strain until 10% of the nodes reached the critical strain level of -14,420 με. The apparent bone stiffness was calculated as the ratio between the axial applied force and the average displacement along the longitudinal direction, for the loaded nodes. Results: The results demonstrated a high sensitivity of the mouse tibia to the loading direction across all groups and time points. Higher failure loads were found for several loading directions (θ = 10°, ϕ 205°-210°) than for the nominal axial case (θ = 0°, ϕ = 0°), highlighting adaptation of the bone for loading directions far from the nominal axial one. Conclusion: These results suggest that in studies which use mouse tibia, the loading direction can significantly impact the failure load. Thus, the magnitude and direction of the applied load should be well controlled during the experiments.
Collapse
Affiliation(s)
- Saira Mary Farage-O’Reilly
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Vee San Cheong
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Future Health Technologies Programme, Singapore-ETH Centre, Singapore, Singapore
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ilaria Bellantuono
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Visakan Kadirkamanathan
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall’Ara
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
Briggs EN, Lynch ME. The Role of Osteocytes in Pre-metastatic Niche Formation. Curr Osteoporos Rep 2024; 22:105-114. [PMID: 38198034 DOI: 10.1007/s11914-023-00857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF REVIEW The formation of a pre-metastatic niche (PMN), in which primary cancer cells prime the distant site to be favorable to their engraftment and survival, may help explain the strong osteotropism observed in multiple cancers, such as breast and prostate. PMN formation, which includes extracellular matrix remodeling, increased angiogenesis and vascular permeability, enhanced bone marrow-derived cell recruitment and immune suppression, has mostly been described in soft tissues. In this review, we summarize current literature of PMN formation in bone. We also present evidence of a potential role for osteocytes to be the primary mediators of PMN development. RECENT FINDINGS Osteocytes regulate the bone microenvironment in myriad ways beyond canonical bone tissue remodeling, including changes that contribute to PMN formation. Perilacunar tissue remodeling, which has been observed in both bone and non-bone metastatic cancers, is a potential mechanism by which osteocyte-cancer cell signaling stimulates changes to the bone microenvironment. Osteocytes also protect against endothelial permeability, including that induced by cancer cells, in a loading-mediated process. Finally, osteocytes are potent regulators of cells within the bone marrow, including progenitors and immune cells, and might be involved in this aspect of PMN formation. Osteocytes should be examined for their role in PMN formation.
Collapse
Affiliation(s)
- Emma N Briggs
- Department of Mechanical Engineering, University of Colorado, 427 UCB, Boulder, CO, 80309, USA
| | - Maureen E Lynch
- Department of Mechanical Engineering, University of Colorado, 427 UCB, Boulder, CO, 80309, USA.
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
20
|
Prideaux M, Smargiassi A, Peng G, Brotto M, Robling AG, Bonewald LF. L-BAIBA Synergizes with Sub-Optimal Mechanical Loading to Promote New Bone Formation. JBMR Plus 2023; 7:e10746. [PMID: 37283651 PMCID: PMC10241089 DOI: 10.1002/jbm4.10746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/08/2023] Open
Abstract
The L-enantiomer of β-aminoisobutyric acid (BAIBA) is secreted by contracted muscle in mice, and exercise increases serum levels in humans. In mice, L-BAIBA reduces bone loss with unloading, but whether it can have a positive effect with loading is unknown. Since synergism can be more easily observed with sub-optimal amounts of factors/stimulation, we sought to determine whether L-BAIBA could potentiate the effects of sub-optimal loading to enhance bone formation. L-BAIBA was provided in drinking water to C57Bl/6 male mice subjected to either 7 N or 8.25 N of sub-optimal unilateral tibial loading for 2 weeks. The combination of 8.25 N and L-BAIBA significantly increased the periosteal mineral apposition rate and bone formation rate compared to loading alone or BAIBA alone. Though L-BAIBA alone had no effect on bone formation, grip strength was increased, suggesting a positive effect on muscle function. Gene expression analysis of the osteocyte-enriched bone showed that the combination of L-BAIBA and 8.25 N induced the expression of loading-responsive genes such as Wnt1, Wnt10b, and the TGFb and BMP signaling pathways. One dramatic change was the downregulation of histone genes in response to sub-optimal loading and/or L-BAIBA. To determine early gene expression, the osteocyte fraction was harvested within 24 hours of loading. A dramatic effect was observed with L-BAIBA and 8.25 N loading as genes were enriched for pathways regulating the extracellular matrix (Chad, Acan, Col9a2), ion channel activity (Scn4b, Scn7a, Cacna1i), and lipid metabolism (Plin1, Plin4, Cidec). Few changes in gene expression were observed with sub-optimal loading or L-BAIBA alone after 24 hours. These results suggest that these signaling pathways are responsible for the synergistic effects between L-BAIBA and sub-optimal loading. Showing that a small muscle factor can enhance the effects of sub-optimal loading of bone may be of relevance for individuals unable to benefit from optimal exercise. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Matt Prideaux
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of MedicineIndiana UniversityIndianapolisINUSA
| | - Alberto Smargiassi
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of MedicineIndiana UniversityIndianapolisINUSA
| | - Gang Peng
- Indiana Center for Musculoskeletal Health, Department of Medicine and Molecular Genetics, School of MedicineIndiana UniversityIndianapolisINUSA
| | - Marco Brotto
- Bone‐Muscle Research Center, College of Nursing and Health InnovationUniversity of Texas‐ArlingtonArlingtonTXUSA
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of MedicineIndiana UniversityIndianapolisINUSA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of MedicineIndiana UniversityIndianapolisINUSA
| |
Collapse
|
21
|
Shrivas NV, Badhyal S, Tiwari AK, Mishra A, Tripathi D, Patil S. Computation of physiological loading induced interstitial fluid motion in muscle standardized femur: Healthy vs. osteoporotic bone. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 237:107592. [PMID: 37209515 DOI: 10.1016/j.cmpb.2023.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Physiological loading-induced mechanical environments regulate bone modeling and remodeling. Thus, loading-induced normal strain is typically considered a stimulus to osteogenesis. However, several studies noticed new bone formation near the sites of minimal normal strain, e.g., the neutral axis of bending in long bones, which raises a question on how bone mass is maintained near these sites. Secondary mechanical components such as shear strain and interstitial fluid flow also stimulate bone cells and regulate bone mass. However, the osteogenic potential of these components is not well established. Accordingly, the present study estimates the distribution of physiological muscle loading-induced mechanical environments such as normal strain, shear strain, pore pressure, and interstitial fluid flow in long bones. METHODS A poroelastic finite element muscle standardized femur (MuscleSF) model is developed to compute the distribution of the mechanical environment as a function of bone porosities associated with osteoporotic and disuse bone loss. RESULTS The results indicate the presence of higher shear strain and interstitial fluid motion near the minimal strain sites, i.e., the neutral axis of bending of femoral cross-sections. This suggests that secondary stimuli may maintain the bone mass at these locations. Pore pressure and interstitial fluid motion reduce with the increased porosity associated with bone disorders, possibly resulting in diminished skeletal mechano-sensitivity to exogenous loading. CONCLUSIONS These outcomes present a better understanding of mechanical environment-mediated regulation of site-specific bone mass, which can be beneficial in developing prophylactic exercise to prevent bone loss in osteoporosis and muscle disuse.
Collapse
Affiliation(s)
- Nikhil Vivek Shrivas
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan 303007, India; Department of Mechatronics Engineering, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Subham Badhyal
- Bubba Watson and PING Golf Motion Analysis Laboratory, Herbert J Louis Center for Pediatric Orthopedics, Phoenix Children...s Hospital, Phoenix, Arizona, 85016, USA
| | - Abhishek Kumar Tiwari
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Ashutosh Mishra
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Dharmendra Tripathi
- Department of Mathematics, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand 246174, India.
| | - Santosh Patil
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| |
Collapse
|
22
|
Xu X, Yang H, Bullock WA, Gallant MA, Ohlsson C, Bellido TM, Main RP. Osteocyte Estrogen Receptor β (Ot-ERβ) Regulates Bone Turnover and Skeletal Adaptive Response to Mechanical Loading Differently in Male and Female Growing and Adult Mice. J Bone Miner Res 2023; 38:186-197. [PMID: 36321245 PMCID: PMC10108310 DOI: 10.1002/jbmr.4731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Age-related bone loss is a failure of balanced bone turnover and diminished skeletal mechanoadaptation. Estrogen receptors, ERα and ERβ, play critical roles in osteoprotective regulation activated by estrogen and mechanical signals. Previous studies mainly focused on ERα and showed that osteocyte-ERα (Ot-ERα) regulated trabecular, but not cortical bone, and played a minor role in load-induced cortical adaptation. However, the role of Ot-ERβ in bone mass regulation remains unrevealed. To address this issue, we characterized bone (re)modeling and gene expression in male and female mice with Ot-ERβ deletion (ERβ-dOT) and littermate control (LC) at 10 weeks (young) or 28 weeks (adult) of age, as well as their responses to in vivo tibial compressive loading. Increased cancellous bone mass appeared in the L4 vertebral body of young male ERβ-dOT mice. At the same time, femoral cortical bone gene expression showed signs consistent with elevated osteoblast and osteoclast activities (type-I collagen, Cat K, RANKL). Upregulated androgen receptor (AR) expression was observed in young male ERβ-dOT mice relative to LC, suggesting a compensatory effect of testosterone on male bone protection. In contrast, bone mass in L4 decreased in adult male ERβ-dOT mice, attributed to potentially increased bone resorption activity (Cat K) with no change in bone formation. There was no effect of ERβ-dOT on bone mass or gene expression in female mice. Sex-dependent regulation of Ot-ERβ also appeared in load-induced cortical responsiveness. Young female ERβ-dOT mice showed an enhanced tibial cortical anabolic adaptation compared with LC. In contrast, an attenuated cortical anabolic response presented at the proximal tibia in male ERβ-dOT mice at both ages. For the first time, our findings suggest that Ot-ERβ regulates bone (re)modeling and the response to mechanical signals through different mechanisms in males and females. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaoyu Xu
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | | | - Maxim A. Gallant
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical NutritionInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Drug TreatmentSahlgrenska University HospitalGothenburgSweden
| | - Teresita M. Bellido
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Russell P. Main
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
23
|
Pei S, Zhou Y, Li Y, Azar T, Wang W, Kim DG, Liu XS. Instrumented nanoindentation in musculoskeletal research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:38-51. [PMID: 35660010 DOI: 10.1016/j.pbiomolbio.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Musculoskeletal tissues, such as bone, cartilage, and muscle, are natural composite materials that are constructed with a hierarchical structure ranging from the cell to tissue level. The component differences and structural complexity, together, require comprehensive multiscale mechanical characterization. In this review, we focus on nanoindentation testing, which is used for nanometer to sub-micrometer length scale mechanical characterization. In the following context, we will summarize studies of nanoindentation in musculoskeletal research, examine the critical factors that affect nanoindentation testing results, and briefly summarize other commonly used techniques that can be conjoined with nanoindentation for synchronized imaging and colocalized characterization.
Collapse
Affiliation(s)
- Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yilu Zhou
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Tala Azar
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
24
|
Chlebek C, Moore JA, Ross FP, van der Meulen MCH. Molecular Identification of Spatially Distinct Anabolic Responses to Mechanical Loading in Murine Cortical Bone. J Bone Miner Res 2022; 37:2277-2287. [PMID: 36054133 DOI: 10.1002/jbmr.4686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Osteoporosis affects over 200 million women worldwide, one-third of whom are predicted to suffer from an osteoporotic fracture in their lifetime. The most promising anabolic drugs involve administration of expensive antibodies. Because mechanical loading stimulates bone formation, our current data, using a mouse model, replicates the anabolic effects of loading in humans and may identify novel pathways amenable to oral treatment. Murine tibial compression produces axially varying deformations along the cortical bone, inducing highest strains at the mid-diaphysis and lowest at the metaphyseal shell. To test the hypothesis that load-induced transcriptomic responses at different axial locations of cortical bone would vary as a function of strain magnitude, we loaded the left tibias of 10-week-old female C57Bl/6 mice in vivo in compression, with contralateral limbs as controls. Animals were euthanized at 1, 3, or 24 hours post-loading or loaded for 1 week (n = 4-5/group). Bone marrow and cancellous bone were removed, cortical bone was segmented into the metaphyseal shell, proximal diaphysis, and mid-diaphysis, and load-induced differential gene expression and enriched biological processes were examined for the three segments. At each time point, the mid-diaphysis (highest strain) had the greatest transcriptomic response. Similarly, biological processes regulating bone formation and turnover increased earlier and to the greatest extent at the mid-diaphysis. Higher strain induced greater levels of osteoblast and osteocyte genes, whereas expression was lower in osteoclasts. Among the top differentially expressed genes at 24-hours post-loading, 17 had known functions in bone biology, of which 12 were present only in osteoblasts, 3 exclusively in osteoclasts, and 2 were present in both cell types. Based on these results, we conclude that murine tibial loading induces spatially unique transcriptomic responses correlating with strain magnitude in cortical bone. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Carolyn Chlebek
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jacob A Moore
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
25
|
Niu D, Zhang Y, Chen J, Li D, He C, Liu H. Mechanobiology Platform Realized Using Photomechanical Mxene Nanocomposites: Bilayer Photoactuator Design and In Vitro Mechanical Forces Stimulation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6869. [PMID: 36234210 PMCID: PMC9570783 DOI: 10.3390/ma15196869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Mechanotransduction is the process by which cells convert external forces and physical constraints into biochemical signals that control several aspects of cellular behavior. A number of approaches have been proposed to investigate the mechanisms of mechanotransduction; however, it remains a great challenge to develop a platform for dynamic multivariate mechanical stimulation of single cells and small colonies of cells. In this study, we combined polydimethylsiloxane (PDMS) and PDMS/Mxene nanoplatelets (MNPs) to construct a soft bilayer nanocomposite for extracellular mechanical stimulation. Fast backlash actuation of the bilayer as a result of near-infrared irradiation caused mechanical force stimulation of cells in a controllable manner. The excellent controllability of the light intensity and frequency allowed backlash bending acceleration and frequency to be manipulated. As gastric gland carcinoma cell line MKN-45 was the research subject, mechanical force loading conditions could trigger apoptosis of the cells in a stimulation duration time-dependent manner. Cell apoptotic rates were positively related to the duration time. In the case of 6 min mechanical force loading, apoptotic cell percentage rose to 34.46% from 5.5% of the control. This approach helps apply extracellular mechanical forces, even with predesigned loading cycles, and provides a solution to study cell mechanotransduction in complex force conditions. It is also a promising therapeutic technique for combining physical therapy and biomechanics.
Collapse
Affiliation(s)
- Dong Niu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanli Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Medical College, Xizang Minzu University, Xianyang 712082, China
| | - Jinlan Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Dachao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chunmeng He
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hongzhong Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- The Joint Key Laboratory of Graphene, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
26
|
McKenzie JA, Galbreath IM, Coello AF, Hixon KR, Silva MJ. VEGFA from osteoblasts is not required for lamellar bone formation following tibial loading. Bone 2022; 163:116502. [PMID: 35872107 PMCID: PMC9624127 DOI: 10.1016/j.bone.2022.116502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
The relationship between osteogenesis and angiogenesis is complex. Normal bone development requires angiogenesis, mediated by vascular endothelial growth factor A (VEGFA). Studies have demonstrated through systemic inhibition or genetic modification that VEGFA is indispensable for several types of bone repair, presumably via its role in supporting angiogenesis. But a direct role for VEGFA within osteoblasts, in the absence of angiogenesis, has also been suggested. To address the question of whether VEGFA from osteoblasts supports bone formation directly, we applied anabolic loading to induce lamellar bone formation in mice, a process shown to be independent of angiogenesis. We hypothesized that VEGFA from osteoblasts is required for lamellar bone formation. To test this hypothesis, we applied axial tibial compression to inducible Cre/LoxP mice from three lines. Vegfafl/fl mice were crossed with Ubiquitin C (UBC), Osterix (Osx) and Dentin-Matrix Protein 1 (DMP1) Cre-ERT2 mice to target all cells, (pre)osteoblast-lineage cells, and mature osteoblasts and osteocytes, respectively. Genotype effects were determined by comparing control (Vegfafl/fl) and Cre+ (VegfaΔ) mice for each line. At 5 months of age tamoxifen was injected for 5 days followed by a 3-week clearance prior to loading. Female and male mice (N = 100) were loaded for 5 days to peak forces to engender -3100 με peak compressive strain and processed for dynamic histomorphometry (day 12). Percent MS/BS increased 20-70 % as a result of loading, with no effect of genotype in Osx or Dmp1 lines. In contrast, the UBC groups had a significant decrease in relative periosteal BFR/BS in VegfaΔ vs. Vegfafl/fl mice. The UBC line did not have any cortical bone phenotype in non-loaded femurs. In summary, dynamic histomorphometry data confirmed that tibial loading induces lamellar bone formation. Contrary to our hypothesis, there was no decrease in loading-induced bone formation in the Osx or Dmp1 lines in the absence of VEGFA. There was a decrease in bone formation in the UBC line where all cells were targeted. This result indicates that VEGFA from a non-osteoblast cell source supports loading-induced lamellar bone formation, although osteoblast/osteocyte VEGFA is dispensable. These findings support a paracrine model whereby non-osteoblast VEGFA supports lamellar bone formation, independent of angiogenesis.
Collapse
Affiliation(s)
- Jennifer A McKenzie
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Ian M Galbreath
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America; St. Louis University, St. Louis, MO, United States of America
| | - Andre F Coello
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Katherine R Hixon
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America; Dartmouth Engineering, Dartmouth College, Hanover, NH, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America.
| |
Collapse
|
27
|
Yang C, Liu Y, Wang Z, Lin M, Liu C. Controlled mechanical loading improves bone regeneration by regulating type H vessels in a S1Pr1-dependent manner. FASEB J 2022; 36:e22530. [PMID: 36063128 DOI: 10.1096/fj.202200339rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Despite the best treatment, approximately 10% of fractures still face undesirable repair and result in delayed unions or non-unions. Dynamic mechanical stimulation promotes bone formation, when applied at the correct time frame, with optimal loading magnitude, frequency, and repetition. Controlled mechanical loading significantly increases osteogenic cells during the matrix deposition phase of bone repair. In the bone defect, the blood vessel network guides the initial bone formation activities. A unique blood vessel subtype (Type H) exists in bone, which expresses high levels of CD31 and endomucin, and functions to couple angiogenesis and osteogenesis. However, how this form of controlled mechanical loading regulates the Type H vessels and promotes bone formation is still not clear. Sphingosine 1-phosphate (S1P) participates in the bone anabolic process and is a key regulator of the blood vessel. Its receptor, sphingosine 1-phosphate receptor 1 (S1Pr1), is a mechanosensitive protein that regulates vascular integrity. Therefore, we hypothesis that controlled anabolic mechanical loading promotes bone repair by acting on Type H vessels. To study the effect of S1Pr1 on loading induced-bone repair, we utilized a stabilized tibial defect model, which allows for the application of anabolic mechanical loading. Mechanical loading upregulated S1Pr1 within the entire defect, with up to 80% expressed in blood vessels, as observed by deep tissue imaging. Additionally, S1Pr1 antagonism by W146 inhibited the anabolic effects of mechanical loading. We showed that mechanical loading or activating S1Pr1 could induce YAP nuclear translocation, a key regulator in the cell's mechanical response, in endothelial cells (ECs) in vitro. Inhibition of S1Pr1 in endothelial cells by siRNA reduced loading-induced YAP nuclear translocation and expressions of angiogenic genes. In vivo, YAP nuclear translocation in Type H vessels was up-regulated after mechanical loading but was inhibited by antagonizing S1Pr1. S1Pr1 agonist, FTY720, increased bone volume and Type H vessel volume, similar to that of mechanical stimulation. In conclusion, controlled anabolic mechanical loading enhanced bone formation mainly through Type H vessels in a S1Pr1-dependent manner.
Collapse
Affiliation(s)
- Chengyu Yang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Yang Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Ziyan Wang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Minmin Lin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
28
|
Lawson LY, Migotsky N, Chermside-Scabbo CJ, Shuster JT, Joeng KS, Civitelli R, Lee B, Silva MJ. Loading-induced bone formation is mediated by Wnt1 induction in osteoblast-lineage cells. FASEB J 2022; 36:e22502. [PMID: 35969160 PMCID: PMC9430819 DOI: 10.1096/fj.202200591r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Mechanical loading on the skeleton stimulates bone formation. Although the exact mechanism underlying this process remains unknown, a growing body of evidence indicates that the Wnt signaling pathway is necessary for the skeletal response to loading. Recently, we showed that Wnts produced by osteoblast lineage cells mediate the osteo-anabolic response to tibial loading in adult mice. Here, we report that Wnt1 specifically plays a crucial role in mediating the mechano-adaptive response to loading. Independent of loading, short-term loss of Wnt1 in the Osx-lineage resulted in a decreased cortical bone area in the tibias of 5-month-old mice. In females, strain-matched loading enhanced periosteal bone formation in Wnt1F/F controls, but not in Wnt1F/F; OsxCreERT2 knockouts. In males, strain-matched loading increased periosteal bone formation in both control and knockout mice; however, the periosteal relative bone formation rate was 65% lower in Wnt1 knockouts versus controls. Together, these findings show that Wnt1 supports adult bone homeostasis and mediates the bone anabolic response to mechanical loading.
Collapse
Affiliation(s)
- Lisa Y. Lawson
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - John T. Shuster
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Kyu Sang Joeng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Roberto Civitelli
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Waco, TX, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| |
Collapse
|
29
|
Young SAE, Rummler M, Taïeb HM, Garske DS, Ellinghaus A, Duda GN, Willie BM, Cipitria A. In vivo microCT-based time-lapse morphometry reveals anatomical site-specific differences in bone (re)modeling serving as baseline parameters to detect early pathological events. Bone 2022; 161:116432. [PMID: 35569733 DOI: 10.1016/j.bone.2022.116432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
Abstract
The bone structure is very dynamic and continuously adapts its geometry to external stimuli by modeling and remodeling the mineralized tissue. In vivo microCT-based time-lapse morphometry is a powerful tool to study the temporal and spatial dynamics of bone (re)modeling. Here an advancement in the methodology to detect and quantify site-specific differences in bone (re)modeling of 12-week-old BALB/c nude mice is presented. We describe our method of quantifying new bone surface interface readouts and how these are influenced by bone curvature. This method is then used to compare bone surface (re)modeling in mice across different anatomical regions to demonstrate variations in the rate of change and spatial gradients thereof. Significant differences in bone (re)modeling baseline parameters between the metaphyseal and epiphyseal, as well as cortical and trabecular bone of the distal femur and proximal tibia are shown. These results are validated using conventional static in vivo microCT analysis. Finally, the insights from these new baseline values of physiological bone (re)modeling were used to evaluate pathological bone (re)modeling in a pilot breast cancer bone metastasis model. The method shows the potential to be suitable to detect early pathological events and track their spatio-temporal development in both cortical and trabecular bone. This advancement in (re)modeling surface analysis and defined baseline parameters according to distinct anatomical regions will be valuable to others investigating various disease models with site-distinct local alterations in bone (re)modeling.
Collapse
Affiliation(s)
- Sarah A E Young
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Hubert M Taïeb
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Daniela S Garske
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute & Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute & Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Biodonostia Health Research Institute, Group of Bioengineering in Regeneration and Cancer, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
30
|
Wang H, Du T, Li R, Main RP, Yang H. Interactive effects of various loading parameters on the fluid dynamics within the lacunar-canalicular system for a single osteocyte. Bone 2022; 158:116367. [PMID: 35181573 DOI: 10.1016/j.bone.2022.116367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/26/2022]
Abstract
The osteocyte lacunar-canalicular system (LCS) serves as a mechanotransductive core where external loading applied to the skeleton is transduced into mechanical signals (e.g., fluid shear) that can be sensed by mechanosensors (osteocytes). The fluid velocity and shear stress within the LCS are affected by various loading parameters. However, the interactive effect of distinct loading parameters on the velocity and shear stress in the LCS remains unclear. To address this issue, we developed a multiscale modeling approach, combining a poroelastic finite element (FE) model with a single osteocytic LCS unit model to calculate the flow velocity and shear stress within the LCS. Next, a sensitivity analysis was performed to investigate individual and interactive effects of strain magnitude, strain rate, number of cycles, and intervening short rests between loading cycles on the velocity and shear stress around the osteocyte. Lastly, we developed a relatively simple regression model to predict those outcomes. Our results demonstrated that the strain magnitude or rate alone were the main factors affecting the velocity and shear stress; however, the combination of these two was not directly additive, and addition of a short rest between cycles could enhance the combination of these two related factors. These results show highly interactive effects of distinct loading parameters on fluid velocity and shear stress in the LCS. Specifically, our results suggest that an enhanced fluid dynamics environment in the LCS can be achieved with a brief number of load cycles combined with short rest insertion and high strain magnitude and rate.
Collapse
Affiliation(s)
- Huiru Wang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rui Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Russell P Main
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences, Purdue University, IN, USA; Weldon School of Biomedical Engineering, Purdue University, IN, USA
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
31
|
Goldsmith M, Crooks SD, Condon SF, Willie BM, Komarova SV. Bone strength and composition in spacefaring rodents: systematic review and meta-analysis. NPJ Microgravity 2022; 8:10. [PMID: 35418128 PMCID: PMC9008045 DOI: 10.1038/s41526-022-00195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
Studying the effects of space travel on bone of experimental animals provides unique advantages, including the ability to perform post-mortem analysis and mechanical testing. To synthesize the available data to assess how much and how consistently bone strength and composition parameters are affected by spaceflight, we systematically identified studies reporting bone health in spacefaring animals from Medline, Embase, Web of Science, BIOSIS, and NASA Technical reports. Previously, we reported the effect of spaceflight on bone architecture and turnover in rodents and primates. For this study, we selected 28 articles reporting bone strength and composition in 60 rats and 60 mice from 17 space missions ranging from 7 to 33 days in duration. Whole bone mechanical indices were significantly decreased in spaceflight rodents, with the percent difference between spaceflight and ground control animals for maximum load of −15.24% [Confidence interval: −22.32, −8.17]. Bone mineral density and calcium content were significantly decreased in spaceflight rodents by −3.13% [−4.96, −1.29] and −1.75% [−2.97, −0.52] respectively. Thus, large deficits in bone architecture (6% loss in cortical area identified in a previous study) as well as changes in bone mass and tissue composition likely lead to bone strength reduction in spaceflight animals.
Collapse
Affiliation(s)
- Matthew Goldsmith
- Research Centre, Shriners Hospital for Children - Canada, Montréal, QC, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Sequoia D Crooks
- Research Centre, Shriners Hospital for Children - Canada, Montréal, QC, Canada
| | - Sean F Condon
- Research Centre, Shriners Hospital for Children - Canada, Montréal, QC, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children - Canada, Montréal, QC, Canada.,Department of Pediatric Surgery, McGill University, Montréal, QC, Canada
| | - Svetlana V Komarova
- Research Centre, Shriners Hospital for Children - Canada, Montréal, QC, Canada. .,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada.
| |
Collapse
|
32
|
Lawson LY, Brodt MD, Migotsky N, Chermside-Scabbo CJ, Palaniappan R, Silva MJ. Osteoblast-Specific Wnt Secretion Is Required for Skeletal Homeostasis and Loading-Induced Bone Formation in Adult Mice. J Bone Miner Res 2022; 37:108-120. [PMID: 34542191 PMCID: PMC8770559 DOI: 10.1002/jbmr.4445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023]
Abstract
Wnt signaling is critical to many aspects of skeletal regulation, but the importance of Wnt ligands in the bone anabolic response to mechanical loading is not well established. Recent transcriptome profiling studies by our laboratory and others show that mechanical loading potently induces genes encoding Wnt ligands, including Wnt1 and Wnt7b. Based on these findings, we hypothesized that mechanical loading stimulates adult bone formation by inducing Wnt ligand expression. To test this hypothesis, we inhibited Wnt ligand secretion in adult (5 months old) mice using a systemic (drug) and a bone-targeted (conditional gene knockout) approach, and subjected them to axial tibial loading to induce lamellar bone formation. Mice treated with the Wnt secretion inhibitor WNT974 exhibited a decrease in bone formation in non-loaded bones as well as a 54% decline in the periosteal bone formation response to tibial loading. Next, osteoblast-specific Wnt secretion was inhibited by dosing 5-month-old Osx-CreERT2; WlsF/F mice with tamoxifen. Within 1 to 2 weeks of Wls deletion, skeletal homeostasis was altered with decreased bone formation and increased resorption, and the anabolic response to loading was reduced 65% compared to control (WlsF/F ). Together, these findings show that Wnt ligand secretion is required for adult bone homeostasis, and furthermore establish a role for osteoblast-derived Wnts in mediating the bone anabolic response to tibial loading. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lisa Y. Lawson
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael D. Brodt
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramya Palaniappan
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| |
Collapse
|
33
|
Bouchard AL, Dsouza C, Julien C, Rummler M, Gaumond MH, Cermakian N, Willie BM. Bone adaptation to mechanical loading in mice is affected by circadian rhythms. Bone 2022; 154:116218. [PMID: 34571201 DOI: 10.1016/j.bone.2021.116218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Physical forces are critical for successful function of many organs including bone. Interestingly, the timing of exercise during the day alters physiology and gene expression in many organs due to circadian rhythms. Circadian clocks in tissues, such as bone, express circadian clock genes that target tissue-specific genes, resulting in tissue-specific rhythmic gene expression (clock-controlled genes). We hypothesized that the adaptive response of bone to mechanical loading is regulated by circadian rhythms. First, mice were sham loaded and sacrificed 8 h later, which amounted to tissues being collected at zeitgeber time (ZT)2, 6, 10, 14, 18, and 22. Cortical bone of the tibiae collected from these mice displayed diurnal expression of core clock genes and key osteocyte and osteoblast-related genes, such as the Wnt-signaling inhibitors Sost and Dkk1, indicating these are clock-controlled genes. Serum bone turnover markers did not display rhythmicity. Second, mice underwent a single bout of in vivo loading at either ZT2 or ZT14 and were sacrificed 1, 8, or 24 h after loading. Loading at ZT2 resulted in Sost upregulation, while loading at ZT14 led to Sost and Dkk1 downregulation. Third, mice underwent daily in vivo tibial loading over 2 weeks administered either in the morning, (ZT2, resting phase) or evening (ZT14, active phase). In vivo microCT was performed at days 0, 5, 10, and 15 and conventional histomorphometry was performed at day 15. All outcome measures indicated a robust response to loading, but only microCT-based time-lapse morphometry showed that loading at ZT14 resulted in a greater endocortical bone formation response compared to mice loaded at ZT2. The decreased Sost and Dkk1 expression coincident with the modest, but significant time-of-day specific increase in adaptive bone formation, suggests that circadian clocks influence bone mechanoresponse.
Collapse
Affiliation(s)
- Alice L Bouchard
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Chrisanne Dsouza
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Marie-Hélène Gaumond
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada.
| |
Collapse
|
34
|
Cheong VS, Roberts BC, Kadirkamanathan V, Dall'Ara E. Positive interactions of mechanical loading and PTH treatments on spatio-temporal bone remodelling. Acta Biomater 2021; 136:291-305. [PMID: 34563722 DOI: 10.1016/j.actbio.2021.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
Osteoporosis is one of the most common skeletal diseases, but current therapies are limited to generalized antiresorptive or anabolic interventions, which do not target regions that would benefit from improvements to skeletal health. To improve the evaluation of treatment plans, we used a spatio-temporal multiscale approach that combines longitudinal in vivo micro-computed tomography (micro-CT) and in silico subject-specific finite element modeling to quantitatively map bone adaptation changes due to disease and treatment at high resolution. Our findings show time and region-dependent modifications in bone remodelling following one and two sets of mechanical loading and/or pharmacological interventions. The multiscale results highlighted that the distal section was unaffected by mechanical loading alone but the proximal tibia had the greatest gain from positive interactions of combined therapies. Mechanical loading abated the catabolic effect of PTH, but the main benefit of combined treatments occurred from the additive interactions of the two therapies in periosteal apposition. These results provide detailed insight into the efficacy of combined treatments, facilitating the optimisation of dosage and treatment duration in preclinical mouse studies, and the development of novel interventions for skeletal diseases. STATEMENT OF SIGNIFICANCE: Combined mechanical loading and pharmacotherapy have the potential to slow osteoporosis-induced bone loss but current therapies do not target the regions in need of strengthening. We show for the first time spatial region-dependant interactions between PTH and mechanical loading treatment in OVX mouse tibiae, highlighting local regions in the tibia that benefitted from separate and combined treatments. Combined experimental-computational analysis also detailed the lasting period of each treatment per location in the tibia, the extent of positive (or negative) interactions of the combined therapies, and the impact of each treatment on the regulation of bone adaptation spatio-temporally. This approach can be used to create hypothesis about the interactions of different treatments to optimise the design of biomaterials and medical interventions.
Collapse
|
35
|
Li Y, de Bakker CMJ, Lai X, Zhao H, Parajuli A, Tseng WJ, Pei S, Meng T, Chung R, Wang L, Liu XS. Maternal bone adaptation to mechanical loading during pregnancy, lactation, and post-weaning recovery. Bone 2021; 151:116031. [PMID: 34098162 PMCID: PMC8504362 DOI: 10.1016/j.bone.2021.116031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022]
Abstract
The maternal skeleton undergoes dramatic bone loss during pregnancy and lactation, and substantial bone recovery post-weaning. The structural adaptations of maternal bone during reproduction and lactation exert a better protection of the mechanical integrity at the critical load-bearing sites, suggesting the importance of physiological load-bearing in regulating reproduction-induced skeletal alterations. Although it is suggested that physical exercise during pregnancy and breastfeeding improves women's physical and psychological well-being, its effects on maternal bone health remain unclear. Therefore, the objective of this study was to investigate the maternal bone adaptations to external mechanical loading during pregnancy, lactation, and post-weaning recovery. By utilizing an in vivo dynamic tibial loading protocol in a rat model, we demonstrated improved maternal cortical bone structure in response to dynamic loading at tibial midshaft, regardless of reproductive status. Notably, despite the minimal loading responses detected in the trabecular bone in virgins, rat bone during lactation experienced enhanced mechano-responsiveness in both trabecular and cortical bone compartments when compared to rats at other reproductive stages or age-matched virgins. Furthermore, our study showed that the lactation-induced elevation in osteocyte peri-lacunar/canalicular remodeling (PLR) activities led to enlarged osteocyte lacunae. This may result in alterations in interstitial fluid flow-mediated mechanical stimulation on osteocytes and an elevation in solute transport through the lacunar-canalicular system (LCS) during high-frequency dynamic loading, thus enhancing mechano-responsiveness of maternal bone during lactation. Taken together, findings from this study provide important insights into the relationship between reproduction- and lactation-induced skeletal changes and external mechanical loading, emphasizing the importance of weight-bearing exercise on maternal bone health during reproduction and postpartum.
Collapse
Affiliation(s)
- Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Xiaohan Lai
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ashutosh Parajuli
- Center for Biomechanical Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Biomechanical Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Tan Meng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Chung
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liyun Wang
- Center for Biomechanical Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
36
|
Fu R, Feng Y, Liu Y, Yang H. Mechanical regulation of bone regeneration during distraction osteogenesis. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
37
|
Cheong VS, Kadirkamanathan V, Dall'Ara E. The Role of the Loading Condition in Predictions of Bone Adaptation in a Mouse Tibial Loading Model. Front Bioeng Biotechnol 2021; 9:676867. [PMID: 34178966 PMCID: PMC8225949 DOI: 10.3389/fbioe.2021.676867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The in vivo mouse tibial loading model is used to evaluate the effectiveness of mechanical loading treatment against skeletal diseases. Although studies have correlated bone adaptation with the induced mechanical stimulus, predictions of bone remodeling remained poor, and the interaction between external and physiological loading in engendering bone changes have not been determined. The aim of this study was to determine the effect of passive mechanical loading on the strain distribution in the mouse tibia and its predictions of bone adaptation. Longitudinal micro-computed tomography (micro-CT) imaging was performed over 2 weeks of cyclic loading from weeks 18 to 22 of age, to quantify the shape change, remodeling, and changes in densitometric properties. Micro-CT based finite element analysis coupled with an optimization algorithm for bone remodeling was used to predict bone adaptation under physiological loads, nominal 12N axial load and combined nominal 12N axial load superimposed to the physiological load. The results showed that despite large differences in the strain energy density magnitudes and distributions across the tibial length, the overall accuracy of the model and the spatial match were similar for all evaluated loading conditions. Predictions of densitometric properties were most similar to the experimental data for combined loading, followed closely by physiological loading conditions, despite no significant difference between these two predicted groups. However, all predicted densitometric properties were significantly different for the 12N and the combined loading conditions. The results suggest that computational modeling of bone's adaptive response to passive mechanical loading should include the contribution of daily physiological load.
Collapse
Affiliation(s)
- Vee San Cheong
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Visakan Kadirkamanathan
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall'Ara
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
38
|
Ayoubi M, van Tol AF, Weinkamer R, Roschger P, Brugger PC, Berzlanovich A, Bertinetti L, Roschger A, Fratzl P. 3D Interrelationship between Osteocyte Network and Forming Mineral during Human Bone Remodeling. Adv Healthc Mater 2021; 10:e2100113. [PMID: 33963821 PMCID: PMC11469304 DOI: 10.1002/adhm.202100113] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Indexed: 01/13/2023]
Abstract
During bone remodeling, osteoblasts are known to deposit unmineralized collagenous tissue (osteoid), which mineralizes after some time lag. Some of the osteoblasts differentiate into osteocytes, forming a cell network within the lacunocanalicular network (LCN) of bone. To get more insight into the potential role of osteocytes in the mineralization process of osteoid, sites of bone formation are three-dimensionally imaged in nine forming human osteons using focused ion beam-scanning electron microscopy (FIB-SEM). In agreement with previous observations, the mineral concentration is found to gradually increase from the central Haversian canal toward pre-existing mineralized bone. Most interestingly, a similar feature is discovered on a length scale more than 100-times smaller, whereby mineral concentration increases from the LCN, leaving around the canaliculi a zone virtually free of mineral, the size of which decreases with progressing mineralization. This suggests that the LCN controls mineral formation but not just by diffusion of mineralization precursors, which would lead to a continuous decrease of mineral concentration from the LCN. The observation is, however, compatible with the codiffusion and reaction of precursors and inhibitors from the LCN into the bone matrix.
Collapse
Affiliation(s)
- Mahdi Ayoubi
- Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdam14476Germany
- Berlin‐Brandenburg School of Regenerative Therapies (BSRT)Charité Campus Virchow‐KlinikumBerlinD‐13353Germany
| | - Alexander F. van Tol
- Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdam14476Germany
- Berlin‐Brandenburg School of Regenerative Therapies (BSRT)Charité Campus Virchow‐KlinikumBerlinD‐13353Germany
| | - Richard Weinkamer
- Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdam14476Germany
| | - Paul Roschger
- Ludwig Boltzmann Institute of OsteologyHanusch Hospital of OEGK and AUVA Trauma CentreViennaA‐1140Austria
| | - Peter C. Brugger
- Department of AnatomyCenter for Anatomy and Cell BiologyMedical University of ViennaViennaA‐1090Austria
| | - Andrea Berzlanovich
- Center of Forensic ScienceMedical University of ViennaSensengasse 2ViennaA‐1090Austria
| | - Luca Bertinetti
- Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdam14476Germany
- B CUBE—Center for Molecular BioengineeringTechnische Universität DresdenDresden01307Germany
| | - Andreas Roschger
- Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdam14476Germany
- Department for Chemistry and Physics of MaterialsParis Lodron University of SalzburgSalzburg5020Austria
| | - Peter Fratzl
- Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdam14476Germany
| |
Collapse
|
39
|
Yang H, Bullock WA, Myhal A, DeShield P, Duffy D, Main RP. Cancellous Bone May Have a Greater Adaptive Strain Threshold Than Cortical Bone. JBMR Plus 2021; 5:e10489. [PMID: 33977205 PMCID: PMC8101616 DOI: 10.1002/jbm4.10489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 01/12/2023] Open
Abstract
Strain magnitude has a controlling influence on bone adaptive response. However, questions remain as to how and if cancellous and cortical bone tissues respond differently to varied strain magnitudes, particularly at a molecular level. The goal of this study was to characterize the time‐dependent gene expression, bone formation, and structural response of the cancellous and cortical bone of female C57Bl/6 mice to mechanical loading by applying varying load levels (low: −3.5 N; medium: −5.2 N; high: −7 N) to the skeleton using a mouse tibia loading model. The loading experiment showed that cortical bone mass at the tibial midshaft was significantly enhanced following all load levels examined and bone formation activities were particularly elevated at the medium and high loads applied. In contrast, for the proximal metaphyseal cancellous bone, only the high load led to significant increases in bone mass and bone formation indices. Similarly, expression of genes associated with inhibition of bone formation (e.g., Sost) was altered in the diaphyseal cortical bone at all load levels, but in the metaphyseal cortico‐cancellous bone only by the high load. Finite element analysis determined that the peak tensile or compressive strains that were osteogenic for the proximal cancellous bone under the high load were significantly greater than those that were osteogenic for the midshaft cortical tissues under the low load. These results suggest that the magnitude of the strain stimulus regulating structural, cellular, and molecular responses of bone to loading may be greater for the cancellous tissues than for the cortical tissues. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life Beijing University of Technology Beijing China
| | | | - Alexandra Myhal
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences Purdue University West Lafayette IN USA
| | - Philip DeShield
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences Purdue University West Lafayette IN USA
| | - Daniel Duffy
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
| | - Russell P Main
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences Purdue University West Lafayette IN USA.,Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
| |
Collapse
|
40
|
Luna M, Guss JD, Vasquez-Bolanos LS, Alepuz AJ, Dornevil S, Strong J, Alabi D, Shi Q, Pannellini T, Otero M, Brito IL, van der Meulen MCH, Goldring SR, Hernandez CJ. Obesity and load-induced posttraumatic osteoarthritis in the absence of fracture or surgical trauma. J Orthop Res 2021; 39:1007-1016. [PMID: 32658313 PMCID: PMC7855296 DOI: 10.1002/jor.24799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is increasingly viewed as a heterogeneous disease with multiple phenotypic subgroups. Obesity enhances joint degeneration in mouse models of posttraumatic osteoarthritis (PTOA). Most models of PTOA involve damage to surrounding tissues caused by surgery/fracture; it is unclear if obesity enhances cartilage degeneration in the absence of surgery/fracture. We used a nonsurgical animal model of load-induced PTOA to determine the effect of obesity on cartilage degeneration 2 weeks after loading. Cartilage degeneration was caused by a single bout of cyclic tibial loading at either a high or moderate load magnitude in adult male mice with severe obesity (C57Bl6/J + high-fat diet), mild obesity (toll-like receptor 5 deficient mouse [TLR5KO]), or normal adiposity (C57Bl6/J mice + normal diet and TLR5KO mice in which obesity was prevented by manipulation of the gut microbiome). Two weeks after loading, cartilage degeneration occurred in limbs loaded at a high magnitude, as determined by OARSI scores (P < .001). However, the severity of cartilage damage did not differ among groups. Osteophyte width and synovitis of loaded limbs did not differ among groups. Furthermore, obesity did not enhance cartilage damage in limbs evaluated 6 weeks after loading. Constituents of the gut microbiota differed among groups. Our findings suggest that, in the absence of surgery/fracture, obesity may not influence cartilage loss after a single mechanical insult, suggesting that either damage to surrounding tissues or repeated mechanical insult is necessary for obesity to influence cartilage degeneration. These findings further illustrate heterogeneity in PTOA phenotypes and complex interactions between mechanical/metabolic factors in cartilage loss.
Collapse
Affiliation(s)
- Marysol Luna
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jason D. Guss
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Adrian J. Alepuz
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Sophie Dornevil
- College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Jasmin Strong
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Denise Alabi
- College of Arts and Sciences, Cornell University, Ithaca, NY, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Marjolein C. H. van der Meulen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA
| | | | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
41
|
Ziouti F, Rummler M, Steyn B, Thiele T, Seliger A, Duda GN, Bogen B, Willie BM, Jundt F. Prevention of Bone Destruction by Mechanical Loading Is Not Enhanced by the Bruton's Tyrosine Kinase Inhibitor CC-292 in Myeloma Bone Disease. Int J Mol Sci 2021; 22:ijms22083840. [PMID: 33917250 PMCID: PMC8067978 DOI: 10.3390/ijms22083840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Limiting bone resorption and regenerating bone tissue are treatment goals in myeloma bone disease (MMBD). Physical stimuli such as mechanical loading prevent bone destruction and enhance bone mass in the MOPC315.BM.Luc model of MMBD. It is unknown whether treatment with the Bruton’s tyrosine kinase inhibitor CC-292 (spebrutinib), which regulates osteoclast differentiation and function, augments the anabolic effect of mechanical loading. CC-292 was administered alone and in combination with axial compressive tibial loading in the MOPC315.BM.Luc model for three weeks. However, neither CC-292 alone nor its use in combination with mechanical loading was more effective in reducing osteolytic bone disease or rescuing bone mass than mechanical stimuli alone, as evidenced by microcomputed tomography (microCT) and histomorphometric analysis. Further studies are needed to investigate novel anti-myeloma and anti-resorptive strategies in combination with physical stimuli to improve treatment of MMBD.
Collapse
Affiliation(s)
- Fani Ziouti
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (M.R.); (B.S.)
- Department of Pediatric Surgery, McGill University, Montreal, QC H4A 3J1, Canada
- Julius Wolff Institute and Berlin Institute of Health Center for Regenerative Therapies, Charité−Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.T.); (A.S.); (G.N.D.)
| | - Beatrice Steyn
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (M.R.); (B.S.)
- Department of Pediatric Surgery, McGill University, Montreal, QC H4A 3J1, Canada
| | - Tobias Thiele
- Julius Wolff Institute and Berlin Institute of Health Center for Regenerative Therapies, Charité−Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.T.); (A.S.); (G.N.D.)
| | - Anne Seliger
- Julius Wolff Institute and Berlin Institute of Health Center for Regenerative Therapies, Charité−Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.T.); (A.S.); (G.N.D.)
| | - Georg N. Duda
- Julius Wolff Institute and Berlin Institute of Health Center for Regenerative Therapies, Charité−Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.T.); (A.S.); (G.N.D.)
| | - Bjarne Bogen
- Institute of Clinical Medicine, University of Oslo and Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway;
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (M.R.); (B.S.)
- Department of Pediatric Surgery, McGill University, Montreal, QC H4A 3J1, Canada
- Julius Wolff Institute and Berlin Institute of Health Center for Regenerative Therapies, Charité−Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.T.); (A.S.); (G.N.D.)
- Correspondence: (B.M.W.); (F.J.)
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany;
- Comprehensive Cancer Center Mainfranken, 97080 Würzburg, Germany
- Correspondence: (B.M.W.); (F.J.)
| |
Collapse
|
42
|
Coates BA, McKenzie JA, Yoneda S, Silva MJ. Interleukin-6 (IL-6) deficiency enhances intramembranous osteogenesis following stress fracture in mice. Bone 2021; 143:115737. [PMID: 33181349 PMCID: PMC8408837 DOI: 10.1016/j.bone.2020.115737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/08/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022]
Abstract
Interleukin-6 (IL-6) is highly upregulated in response to skeletal injury, suggesting it plays a role in the inflammatory phase of fracture repair. However, the impact of IL-6 on successful repair remains incompletely defined. Therefore, we investigated the role of IL-6 in two models of fracture repair (full fracture and stress fracture) using 12-week old IL-6 global knockout mice (IL-6 KO) and wild type (WT) littermate controls. Callus morphology and mineral density 14 days after full femur fracture did not differ between IL-6 knockout mice and controls. In contrast, IL-6 KO mice had an enhanced bone response 7 days after ulnar stress fracture compared to WT, with increased total callus volume (p = 0.020) and callus bone volume (p = 0.045). IL-6 KO did not alter the recruitment of immune cells (Gr-1 or F4/80 positive) to the stress fracture callus. IL-6 KO also did not alter the number of osteoclasts in the stress fracture callus. Using RNA-seq, we identified differentially expressed genes in stress fracture vs. contralateral control ulnae, and observed that IL-6 KO resulted in only modest alterations to the gene expression response to stress fracture (SFx). Wnt1 was more highly upregulated in IL-6 KO SFx callus at both day 1 (fold change 12.5 in KO vs. 5.7 in WT) and day 3 (fold change 4.7 in KO vs. 1.9 in WT). Finally, using tibial compression to induce bone formation without bone injury, we found that IL-6 KO directly impacted osteoblast function, increasing the propensity for woven bone formation. In summary, we report that IL-6 knockout enhanced formation of callus and bone following stress fracture injury, likely through direct action on the osteoblast's ability to produce woven bone. This suggests a novel role of IL-6 as a suppressor of intramembranous bone formation.
Collapse
Affiliation(s)
- Brandon A Coates
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America.
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Susumu Yoneda
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| |
Collapse
|
43
|
Rummler M, Ziouti F, Bouchard AL, Brandl A, Duda GN, Bogen B, Beilhack A, Lynch ME, Jundt F, Willie BM. Mechanical loading prevents bone destruction and exerts anti-tumor effects in the MOPC315.BM.Luc model of myeloma bone disease. Acta Biomater 2021; 119:247-258. [PMID: 33130307 DOI: 10.1016/j.actbio.2020.10.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Bone continually adapts to changing external loading conditions via (re)modeling (modeling and remodeling) processes. While physical activity is known to beneficially enhance bone mass in healthy individuals, little is known in how physical stimuli affect osteolytic bone destruction in patients suffering from multiple myeloma bone disease. Multiple myeloma (MM) is caused by malignant plasma cells in the bone marrow, shifting the balance in bone remodeling towards massive resorption. We hypothesized that in vivo tibial mechanical loading has anabolic effects in mice with locally injected MOPC315.BM.Luc cells. Conventional microCT analysis revealed enhanced cortical bone mass and microstructure in loaded compared to nonloaded mice. State-of-the-art time-lapse microCT based image analysis demonstrated bone (re)modeling processes at the endosteal and periosteal surfaces as the underlying causes of increased bone mass. Loading prevented the progression and development of osteolytic destruction. Physical stimuli also diminished local MM cell growth and dissemination evidenced by quantification of MM cell-specific immunoglobulin A levels in the serum of mice and by bioluminescence analysis. These data indicate that mechanical loading not only rescues the bone phenotype, but also exerts cell-extrinsic anti-myeloma effects in the MOPC315.BM.Luc model. In conclusion, the use of physical stimuli should be further investigated as an anabolic treatment for osteolytic bone destruction in patients with MM.
Collapse
|
44
|
Pickering E, Silva MJ, Delisser P, Brodt MD, Gu Y, Pivonka P. Estimation of load conditions and strain distribution for in vivo murine tibia compression loading using experimentally informed finite element models. J Biomech 2020; 115:110140. [PMID: 33348259 DOI: 10.1016/j.jbiomech.2020.110140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
The murine tibia compression model, is the gold standard for studying bone adaptation due to mechanical loading in vivo. Currently, a key limitation of the experimental protocol and associated finite element (FE) models is that the exact load transfer, and consequently the loading conditions on the tibial plateau, is unknown. Often in FE models, load is applied to the tibial plateau based on inferences from micro-computed tomography (μCT). Experimental models often use a single strain gauge to assess the three-dimensional (3D) loading state. However, a single strain gauge is insufficient to validate such FE models. To address this challenge, we develop an experimentally calibrated method for identifying the load application region on the tibial plateau based upon measurements from three strain gauges. To achieve this, axial compression was conducted on mouse tibiae (n=3), with strains gauges on three surfaces. FE simulations were performed to compute the strains at the gauge locations as a function of a variable load location. By minimising the error between experimental and FE strains, the precise load location was identified; this was found to vary between tibia specimens. It was further shown that commonly used FE loading conditions, found in literature, did not replicate the experimental strain distribution, highlighting the importance of load calibration. This work provides critical insights into how load is transferred to the tibial plateau. Importantly, this work develops an experimentally informed technique for loading the tibial plateau in FE models.
Collapse
Affiliation(s)
- Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, Saint Louis, MO, USA; Department of Biomedical Engineering, Washington University, Saint Louis, MO, USA
| | - Peter Delisser
- University of Bristol School of Veterinary Science, Bristol, UK; Veterinary Specialist Services, Brisbane, QLD, Australia
| | - Michael D Brodt
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, Saint Louis, MO, USA
| | - YuanTong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
45
|
The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture. Proc Natl Acad Sci U S A 2020; 117:32251-32259. [PMID: 33288694 PMCID: PMC7768754 DOI: 10.1073/pnas.2011504117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The explanation of how bone senses and adapts to mechanical stimulation still relies on hypotheses. The fluid flow hypothesis claims that a load-induced fluid flow through the lacunocanalicular network can be sensed by osteocytes, which reside within the network structure. We show that considering the network architecture results in a better prediction of bone remodeling than mechanical strain alone. This was done by calculating the fluid flow through the lacunocanalicular network in bone volumes covering the complete cross-sections of mouse tibiae, which underwent controlled in vivo loading. The established relationship between mechanosensitivity and network architecture in individual animals implies possibilities for patient-specific therapies. A new connectomics approach to analyze lacunocanalicular network properties is necessary to understand skeletal mechanobiology. Organisms rely on mechanosensing mechanisms to adapt to changes in their mechanical environment. Fluid-filled network structures not only ensure efficient transport but can also be employed for mechanosensation. The lacunocanalicular network (LCN) is a fluid-filled network structure, which pervades our bones and accommodates a cell network of osteocytes. For the mechanism of mechanosensation, it was hypothesized that load-induced fluid flow results in forces that can be sensed by the cells. We use a controlled in vivo loading experiment on murine tibiae to test this hypothesis, whereby the mechanoresponse was quantified experimentally by in vivo micro-computed tomography (µCT) in terms of formed and resorbed bone volume. By imaging the LCN using confocal microscopy in bone volumes covering the entire cross-section of mouse tibiae and by calculating the fluid flow in the three-dimensional (3D) network, we could perform a direct comparison between predictions based on fluid flow velocity and the experimentally measured mechanoresponse. While local strain distributions estimated by finite-element analysis incorrectly predicts preferred bone formation on the periosteal surface, we demonstrate that additional consideration of the LCN architecture not only corrects this erroneous bias in the prediction but also explains observed differences in the mechanosensitivity between the three investigated mice. We also identified the presence of vascular channels as an important mechanism to locally reduce fluid flow. Flow velocities increased for a convergent network structure where all of the flow is channeled into fewer canaliculi. We conclude that, besides mechanical loading, LCN architecture should be considered as a key determinant of bone adaptation.
Collapse
|
46
|
Cheong VS, Roberts BC, Kadirkamanathan V, Dall'Ara E. Bone remodelling in the mouse tibia is spatio-temporally modulated by oestrogen deficiency and external mechanical loading: A combined in vivo/in silico study. Acta Biomater 2020; 116:302-317. [PMID: 32911105 DOI: 10.1016/j.actbio.2020.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022]
Abstract
Osteoporosis disrupts the healthy remodelling process in bone and affects its mechanical properties. Mechanical loading has been shown to be effective in stimulating bone formation to mitigate initial bone loss. However, no study has investigated the effects of repeated mechanical loading, with a pause of one week in between, in the mouse tibia with oestrogen deficiency. This study uses a combined experimental and computational approach, through longitudinal monitoring with micro-computed tomography, to evaluate the effects of loading on bone adaptation in the tibiae of ovariectomised (OVX) C57BL/6 mice from 14 to 22 weeks of age. Micro-FE models coupled with bone adaptation algorithms were used to estimate changes in local tissue strains due to OVX and mechanical loading, and to quantify the relationship between local strain and remodelling. The first in vivo mechanical loading increased apposition, by 50-150%, while resorption decreased by 50-60%. Both endosteal and periosteal resorption increased despite the second mechanical loading, and periosteal resorption was up to 70% higher than that after the first loading. This was found to correlate with an initial decrease in average strain energy density after the first loading, which was lower and more localised after the second loading. Predictions of bone adaptation showed that between 50 and 90% of the load-induced bone apposition is linearly strain driven at the organ-level, but resorption is more biologically driven at the local level. The results imply that a systematic increase in peak load or loading rate may be required to achieve a similar bone adaptation rate in specific regions of interests.
Collapse
|
47
|
Herrmann M, Engelke K, Ebert R, Müller-Deubert S, Rudert M, Ziouti F, Jundt F, Felsenberg D, Jakob F. Interactions between Muscle and Bone-Where Physics Meets Biology. Biomolecules 2020; 10:biom10030432. [PMID: 32164381 PMCID: PMC7175139 DOI: 10.3390/biom10030432] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Muscle and bone interact via physical forces and secreted osteokines and myokines. Physical forces are generated through gravity, locomotion, exercise, and external devices. Cells sense mechanical strain via adhesion molecules and translate it into biochemical responses, modulating the basic mechanisms of cellular biology such as lineage commitment, tissue formation, and maturation. This may result in the initiation of bone formation, muscle hypertrophy, and the enhanced production of extracellular matrix constituents, adhesion molecules, and cytoskeletal elements. Bone and muscle mass, resistance to strain, and the stiffness of matrix, cells, and tissues are enhanced, influencing fracture resistance and muscle power. This propagates a dynamic and continuous reciprocity of physicochemical interaction. Secreted growth and differentiation factors are important effectors of mutual interaction. The acute effects of exercise induce the secretion of exosomes with cargo molecules that are capable of mediating the endocrine effects between muscle, bone, and the organism. Long-term changes induce adaptations of the respective tissue secretome that maintain adequate homeostatic conditions. Lessons from unloading, microgravity, and disuse teach us that gratuitous tissue is removed or reorganized while immobility and inflammation trigger muscle and bone marrow fatty infiltration and propagate degenerative diseases such as sarcopenia and osteoporosis. Ongoing research will certainly find new therapeutic targets for prevention and treatment.
Collapse
Affiliation(s)
- Marietta Herrmann
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, IZKF Research Group Tissue regeneration in musculoskeletal diseases, University Hospital Würzburg, University of Wuerzburg, 97070 Würzburg, Germany;
| | - Klaus Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
| | - Regina Ebert
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, IGZ, 97076 Würzburg, Germany; (R.E.)
| | - Sigrid Müller-Deubert
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, IGZ, 97076 Würzburg, Germany; (R.E.)
| | - Maximilian Rudert
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, 97074 Würzburg, Germany;
| | - Fani Ziouti
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; (F.Z.); (F.J.)
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; (F.Z.); (F.J.)
| | - Dieter Felsenberg
- Privatpraxis für Muskel- und Knochenkrankheiten, 12163 Berlin Germany;
| | - Franz Jakob
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, IGZ, 97076 Würzburg, Germany; (R.E.)
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, 97074 Würzburg, Germany;
- Correspondence:
| |
Collapse
|
48
|
In Vivo and In Vitro Mechanical Loading of Mouse Achilles Tendons and Tenocytes-A Pilot Study. Int J Mol Sci 2020; 21:ijms21041313. [PMID: 32075290 PMCID: PMC7072865 DOI: 10.3390/ijms21041313] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical force is a key factor for the maintenance, adaptation, and function of tendons. Investigating the impact of mechanical loading in tenocytes and tendons might provide important information on in vivo tendon mechanobiology. Therefore, the study aimed at understanding if an in vitro loading set up of tenocytes leads to similar regulations of cell shape and gene expression, as loading of the Achilles tendon in an in vivo mouse model. In vivo: The left tibiae of mice (n = 12) were subject to axial cyclic compressive loading for 3 weeks, and the Achilles tendons were harvested. The right tibiae served as the internal non-loaded control. In vitro: tenocytes were isolated from mice Achilles tendons and were loaded for 4 h or 5 days (n = 6 per group) based on the in vivo protocol. Histology showed significant differences in the cell shape between in vivo and in vitro loading. On the molecular level, quantitative real-time PCR revealed significant differences in the gene expression of collagen type I and III and of the matrix metalloproteinases (MMP). Tendon-associated markers showed a similar expression profile. This study showed that the gene expression of tendon markers was similar, whereas significant changes in the expression of extracellular matrix (ECM) related genes were detected between in vivo and in vitro loading. This first pilot study is important for understanding to which extent in vitro stimulation set-ups of tenocytes can mimic in vivo characteristics.
Collapse
|
49
|
Willie BM, Zimmermann EA, Vitienes I, Main RP, Komarova SV. Bone adaptation: Safety factors and load predictability in shaping skeletal form. Bone 2020; 131:115114. [PMID: 31648080 DOI: 10.1016/j.bone.2019.115114] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/06/2019] [Accepted: 10/17/2019] [Indexed: 02/09/2023]
Abstract
Much is known about skeletal adaptation in relation to the mechanical functions that bones serve. This includes how bone adapts to mechanical loading during an individual's lifetime as well as over evolutionary time. Although controlled loading in animal models allows us to observe short-term bone adaptation (epigenetic mechanobiology), examining an assemblage of extant vertebrate bones or a group of fossils' bony structures can reveal the combined effects of long-term trends in loading history and the effects of natural selection. In this survey we examine adaptations that take place over both time scales and highlight a few of the extraordinary insights first published by John Currey. First, we provide a historical perspective on bone adaptation control mechanisms, followed by a discussion of safety factors in bone. We then summarize examples of structural- and material-level adaptations and mechanotransduction, and analyze the relationship between these structural- and material-level adaptations observed in situations where loading modes are either predictable or unpredictable. We argue that load predictability is a major consideration for bone adaptation broadly across an evolutionary timescale, but that its importance can also be seen during ontogenetic growth trajectories, which are subject to natural selection as well. Furthermore, we suggest that bones with highly predictable load patterns demonstrate more precise design with lower safety factors, while bones that experience less predictable loads or those that are less capable of repair and adaptation are designed with a higher safety factor. Finally, exposure to rare loading events with high potential costs of failure leads to design of structures with very high safety factor compared to everyday loading experience. Understanding bone adaptations at the structural and material levels, which take place over an individual's lifetime or over evolutionary time has numerous applications in translational and clinical research to understand and treat musculoskeletal diseases, as well as to permit the furthering of human extraterrestrial exploration in environments with altered gravity.
Collapse
Affiliation(s)
- Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada.
| | - Elizabeth A Zimmermann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Isabela Vitienes
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Russell P Main
- Department of Basic Medical Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Svetlana V Komarova
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Faculty of Dentistry, McGill University, Montreal, Canada
| |
Collapse
|