1
|
Wang Z, Zhou G, Chen J, Miao X, Xia Y, Du Z, Liu J. Research on using Aquilaria sinensis callus to evaluate the agarwood-inducing potential of fungi. PLoS One 2024; 19:e0316178. [PMID: 39724209 DOI: 10.1371/journal.pone.0316178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Agarwood is a precious resinous heartwood highly valued for its cultural, religious, and medicinal significance. With the increasing market demand, natural agarwood resources are rapidly depleting, making the development of effective artificial induction methods for agarwood highly significant. This study aims to explore the feasibility of using callus tissue to assess the ability of fungi to induce agarwood formation. We selected two fungi isolated from Aquilaria sinensis, W-1 (Podospora setosa) and W-15 (Alternaria alstroemeriae), and used the known agarwood-inducing fungi YMY (Pestalotiopsis sp.) as a positive control, by treating A. sinensis callus with their fermented filtrates. The experimental results showed that W-1 and W-15 treatments significantly enhanced the activity of Superoxide dismutase (SOD) and Peroxidase (POD) in the callus tissue and upregulated the expression of 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), and sesquiterpene synthase (ASS-1). GC-MS analysis further confirmed that the contents of sesquiterpenes and aromatic compounds in A. sinensis treated with W-1 and W-15 were significantly elevated, suggesting that these fungi possess the capacity to induce the formation of agarwood. This study demonstrates that using callus tissue to screen fungi capable of inducing agarwood is feasible and effective, providing new insights for screening fungi resources that efficiently induce agarwood formation in the future.
Collapse
Affiliation(s)
- Zhikai Wang
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| | - Jungang Chen
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| | - Xinyu Miao
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| | - Yandong Xia
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| | - Zhuang Du
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
2
|
Barp L, Miklavčič Višnjevec A, Moret S. Analytical Determination of Squalene in Extra Virgin Olive Oil and Olive Processing By-Products, and Its Valorization as an Ingredient in Functional Food-A Critical Review. Molecules 2024; 29:5201. [PMID: 39519842 PMCID: PMC11547617 DOI: 10.3390/molecules29215201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Squalene is a bioactive compound with significant health benefits, predominantly found in extra virgin olive oil (EVOO) and its processing by-products. This critical review explores the analytical determination of squalene in EVOO and various by-products from olive oil production, highlighting its potential as a valuable ingredient in functional foods. An overview of existing analytical methods is provided, focusing on different approaches to sample preparation before analytical determination, evaluating their effectiveness in quantifying squalene concentrations. Studies not primarily centered on analytical methodologies or squalene quantification were excluded. A critical gap identified is the absence of an official method for squalene determination, which hinders comparability and standardization across studies, underscoring the importance of developing a reliable, standardized method to ensure accurate quantification. The valorization of squalene involves advocating for its extraction from olive oil processing by-products to enhance sustainability in the olive oil industry. By recovering squalene, the industry can not only reduce waste but also enhance functional food products with this health-promoting compound. Additionally, there is a need for economically sustainable and environmentally friendly extraction techniques that can be scaled up for industrial application, thus contributing to a circular economy within the olive oil sector.
Collapse
Affiliation(s)
- Laura Barp
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Ana Miklavčič Višnjevec
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia;
| | - Sabrina Moret
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| |
Collapse
|
3
|
Alhaji AM, Almeida ES, Carneiro CR, da Silva CAS, Monteiro S, Coimbra JSDR. Palm Oil ( Elaeis guineensis): A Journey through Sustainability, Processing, and Utilization. Foods 2024; 13:2814. [PMID: 39272579 PMCID: PMC11394976 DOI: 10.3390/foods13172814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Palm oil, derived from Elaeis guineensis, is a critical component of the global edible oil and industrial fat market. This review provides a comprehensive overview of the sustainability of the palm oil chain, focusing on industrial applications, environmental implications, and economic sustainability. The processing of palm oil, from fruit pulp to refined oil, is detailed, highlighting the importance of refining in maintaining quality and extending application ranges. While palm oil offers health benefits because of its rich fatty acid composition and antioxidant properties, its production poses significant environmental challenges. This review underscores ongoing efforts to balance technological and culinary demands with environmental stewardship and sustainable economic growth. Emerging trends, including interspecific hybrids such as E. guineensis and E. oleifera, are discussed for their potential to increase sustainability and productivity.
Collapse
Affiliation(s)
- Adamu Muhammad Alhaji
- Department of Food Technology, Universidade Federal de Viçosa, Avenida PH Rolfs, s/n, Viçosa 36570-000, Minas Gerais, Brazil
- Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Aliko Dangote University of Science and Technology, Wudil P.O. Box 3244, Nigeria
| | - Erislene S Almeida
- Department of Mechanical Engineering, Faculty of Technology, University of Brasilia, Brasília 70910-900, Brazil
| | - Camila Rodrigues Carneiro
- Department of Chemistry, Universidade Federal de Viçosa, Avenida PH Rolfs, s/n, Viçosa 36570-000, Minas Gerais, Brazil
| | - César Augusto Sodré da Silva
- Department of Food Technology, Universidade Federal de Viçosa, Avenida PH Rolfs, s/n, Viçosa 36570-000, Minas Gerais, Brazil
| | - Simone Monteiro
- Department of Mechanical Engineering, Faculty of Technology, University of Brasilia, Brasília 70910-900, Brazil
- Institute of Chemistry, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil
| | - Jane Sélia Dos Reis Coimbra
- Department of Food Technology, Universidade Federal de Viçosa, Avenida PH Rolfs, s/n, Viçosa 36570-000, Minas Gerais, Brazil
| |
Collapse
|
4
|
Hernández ML, Muñoz-Ocaña C, Posada P, Sicardo MD, Hornero-Méndez D, Gómez-Coca RB, Belaj A, Moreda W, Martínez-Rivas JM. Functional Characterization of Four Olive Squalene Synthases with Respect to the Squalene Content of the Virgin Olive Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15701-15712. [PMID: 37815987 PMCID: PMC10723762 DOI: 10.1021/acs.jafc.3c05322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
The release of new olive cultivars with an increased squalene content in their virgin olive oil is considered an important target in olive breeding programs. In this work, the variability of the squalene content in a core collection of 36 olive cultivars was first studied, revealing two olive cultivars, 'Dokkar' and 'Klon-14', with extremely low and high squalene contents in their oils, respectively. Next, four cDNA sequences encoding squalene synthases (SQS) were cloned from olive. Sequence analysis and functional expression in bacteria confirmed that they encode squalene synthases. Transcriptional analysis in distinct olive tissues and cultivars indicated that expression levels of these four SQS genes are spatially and temporally regulated in a cultivar-dependent manner and pointed to OeSQS2 as the gene mainly involved in squalene biosynthesis in olive mesocarp and, therefore, in the olive oil. In addition, the biosynthesis of squalene appears to be transcriptionally regulated in water-stressed olive mesocarp.
Collapse
Affiliation(s)
- M. Luisa Hernández
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - Cristina Muñoz-Ocaña
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - Pilar Posada
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - M. Dolores Sicardo
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - Dámaso Hornero-Méndez
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - Raquel B. Gómez-Coca
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - Angjelina Belaj
- IFAPA
Centro Alameda del Obispo, Avda. Menéndez Pidal s/n, 14080 Córdoba, Spain
| | - Wenceslao Moreda
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - José M. Martínez-Rivas
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| |
Collapse
|
5
|
Ali MK, Liu X, Li J, Zhu X, Sen B, Wang G. Alpha-Tocopherol Significantly Improved Squalene Production Yield of Aurantiochytrium sp. TWZ-97 through Lowering ROS levels and Up-Regulating Key Genes of Central Carbon Metabolism Pathways. Antioxidants (Basel) 2023; 12:antiox12051034. [PMID: 37237900 DOI: 10.3390/antiox12051034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Media supplementation has proven to be an effective technique for improving byproduct yield during microbial fermentation. This study explored the impact of different concentrations of bioactive compounds, namely alpha-tocopherol, mannitol, melatonin, sesamol, ascorbic acid, and biotin, on the Aurantiochytrium sp. TWZ-97 culture. Our investigation revealed that alpha-tocopherol was the most effective compound in reducing the reactive oxygen species (ROS) burden, both directly and indirectly. Adding 0.7 g/L of alpha-tocopherol led to an 18% improvement in biomass, from 6.29 g/L to 7.42 g/L. Moreover, the squalene concentration increased from 129.8 mg/L to 240.2 mg/L, indicating an 85% improvement, while the squalene yield increased by 63.2%, from 19.82 mg/g to 32.4 mg/g. Additionally, our comparative transcriptomics analysis suggested that several genes involved in glycolysis, pentose phosphate pathway, TCA cycle, and MVA pathway were overexpressed following alpha-tocopherol supplementation. The alpha-tocopherol supplementation also lowered ROS levels by binding directly to ROS generated in the fermentation medium and indirectly by stimulating genes that encode antioxidative enzymes, thereby decreasing the ROS burden. Our findings suggest that alpha-tocopherol supplementation can be an effective method for improving squalene production in Aurantiochytrium sp. TWZ-97 culture.
Collapse
Affiliation(s)
- Memon Kashif Ali
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiuping Liu
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqian Li
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xingyu Zhu
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Qingdao Institute for Ocean Technology of Tianjin University Co., Ltd., Qingdao 266237, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Recent advances in the microbial production of squalene. World J Microbiol Biotechnol 2022; 38:91. [PMID: 35426523 PMCID: PMC9010451 DOI: 10.1007/s11274-022-03273-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 11/06/2022]
Abstract
Squalene is a triterpene hydrocarbon, a biochemical precursor for all steroids in plants and animals. It is a principal component of human surface lipids, in particular of sebum. Squalene has several applications in the food, pharmaceutical, and medical sectors. It is essentially used as a dietary supplement, vaccine adjuvant, moisturizer, cardio-protective agent, anti-tumor agent and natural antioxidant. With the increased demand for squalene along with regulations on shark-derived squalene, there is a need to find alternatives for squalene production which are low-cost as well as sustainable. Microbial platforms are being considered as a potential option to meet such challenges. Considerable progress has been made using both wild-type and engineered microbial strains for improved productivity and yields of squalene. Native strains for squalene production are usually limited by low growth rates and lesser titers. Metabolic engineering, which is a rational strain engineering tool, has enabled the development of microbial strains such as Saccharomyces cerevisiae and Yarrowia lipolytica, to overproduce the squalene in high titers. This review focuses on key strain engineering strategies involving both in-silico and in-vitro techniques. Emphasis is made on gene manipulations for improved precursor pool, enzyme modifications, cofactor regeneration, up-regulation of limiting reactions, and downregulation of competing reactions during squalene production. Process strategies and challenges related to both upstream and downstream during mass cultivation are detailed.
Collapse
|
7
|
Mendes A, Azevedo-Silva J, Fernandes JC. From Sharks to Yeasts: Squalene in the Development of Vaccine Adjuvants. Pharmaceuticals (Basel) 2022; 15:265. [PMID: 35337064 PMCID: PMC8951290 DOI: 10.3390/ph15030265] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Squalene is a natural linear triterpene that can be found in high amounts in certain fish liver oils, especially from deep-sea sharks, and to a lesser extent in a wide variety of vegeTable oils. It is currently used for numerous vaccine and drug delivery emulsions due to its stability-enhancing properties and biocompatibility. Squalene-based vaccine adjuvants, such as MF59 (Novartis), AS03 (GlaxoSmithKline Biologicals), or AF03 (Sanofi) are included in seasonal vaccines against influenza viruses and are presently being considered for inclusion in several vaccines against SARS-CoV-2 and future pandemic threats. However, harvesting sharks for this purpose raises serious ecological concerns that the exceptional demand of the pandemic has exacerbated. In this line, the use of plants to obtain phytosqualene has been seen as a more sustainable alternative, yet the lower yields and the need for huge investments in infrastructures and equipment makes this solution economically ineffective. More recently, the enormous advances in the field of synthetic biology provided innovative approaches to make squalene production more sustainable, flexible, and cheaper by using genetically modified microbes to produce pharmaceutical-grade squalene. Here, we review the biological mechanisms by which squalene-based vaccine adjuvants boost the immune response, and further compare the existing sources of squalene and their environmental impact. We propose that genetically engineered microbes are a sustainable alternative to produce squalene at industrial scale, which are likely to become the sole source of pharmaceutical-grade squalene in the foreseeable future.
Collapse
Affiliation(s)
- Adélia Mendes
- Centro de Biotecnologia e Química Fina (CBQF), Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Amyris Bio Products Portugal, 4169-005 Porto, Portugal; (J.A.-S.); (J.C.F.)
| | | | | |
Collapse
|
8
|
Zhou C, Li M, Lu S, Cheng Y, Guo X, He X, Wang Z, He XP. Engineering of cis-Element in Saccharomyces cerevisiae for Efficient Accumulation of Value-Added Compound Squalene via Downregulation of the Downstream Metabolic Flux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12474-12484. [PMID: 34662105 DOI: 10.1021/acs.jafc.1c04978] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transcriptional downregulation is widely used for metabolic flux control. Here, marO, a cis-element of Escherichia coli mar operator, was explored to engineer promoters of Saccharomyces cerevisiae for downregulation. First, the ADH1 promoter (PADH1) and its enhanced variant PUADH1 were engineered by insertion of marO into different sites, which resulted in decrease in both gfp5 transcription and GFP fluorescence intensity to various degrees. Then, marO was applied to engineer the native ERG1 and ERG11 promoters due to their importance for accumulation of value-added intermediates squalene and lanosterol. Elevated squalene content (4.9-fold) or lanosterol content (4.8-fold) and 91 or 28% decrease in ergosterol content resulted from the marO-engineered promoter PERG1(M5) or PERG11(M3), respectively, indicating the validity of the marO-engineered promoters in metabolic flux control. Furthermore, squalene production of 3.53 g/L from cane molasses, a cheap and bulk substrate, suggested the cost-effective and promising potential for squalene production.
Collapse
Affiliation(s)
- Chenyao Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjie Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Surui Lu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfei Cheng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxian He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Ping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Mastralexi A, Tsimidou MZ. Quality aspects of European virgin olive oils with registered geographical indications: Emphasis on nutrient and non-nutrient bioactives. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:257-293. [PMID: 33745514 DOI: 10.1016/bs.afnr.2020.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
European virgin olive oil with geographical indications are strictly regulated and are of importance for the producing member states, Spain, Italy, Greece, Portugal, France, Slovenia and Croatia. These products are consumed locally, or within the European Union but are also exported worldwide. The chapter stresses on the importance of combining origin indications with other certifications or opportunities raising from European legislation in the agri-food sector so that to tighten consumer loyalty for this category of products. Emphasis is given to the richness of virgin olive oil in bioactive compounds that are already covered by nutritional and health claims (oleic acid, vitamin E, "polyphenols") and to those compounds that can be exploited in the future toward the same direction (squalene, oleanolic and maslinic acids).
Collapse
Affiliation(s)
- Aspasia Mastralexi
- Aristotle University of Thessaloniki, School of Chemistry, Laboratory of Food Chemistry and Technology, Thessaloniki, Greece
| | - Maria Z Tsimidou
- Aristotle University of Thessaloniki, School of Chemistry, Laboratory of Food Chemistry and Technology, Thessaloniki, Greece.
| |
Collapse
|
10
|
Tateno M, Stone BJ, Srodulski SJ, Reedy S, Gawriluk TR, Chambers TM, Woodward J, Chappell J, Kempinski CF. Synthetic Biology-derived triterpenes as efficacious immunomodulating adjuvants. Sci Rep 2020; 10:17090. [PMID: 33051497 PMCID: PMC7553918 DOI: 10.1038/s41598-020-73868-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022] Open
Abstract
The triterpene oil squalene is an essential component of nanoemulsion vaccine adjuvants. It is most notably in the MF59 adjuvant, a component in some seasonal influenza vaccines, in stockpiled, emulsion-based adjuvanted pandemic influenza vaccines, and with demonstrated efficacy for vaccines to other pandemic viruses, such as SARS-CoV-2. Squalene has historically been harvested from shark liver oil, which is undesirable for a variety of reasons. In this study, we have demonstrated the use of a Synthetic Biology (yeast) production platform to generate squalene and novel triterpene oils, all of which are equally as efficacious as vaccine adjuvants based on physiochemical properties and immunomodulating activities in a mouse model. These Synthetic Biology adjuvants also elicited similar IgG1, IgG2a, and total IgG levels compared to marine and commercial controls when formulated with common quadrivalent influenza antigens. Injection site morphology and serum cytokine levels did not suggest any reactogenic effects of the yeast-derived squalene or novel triterpenes, suggesting their safety in adjuvant formulations. These results support the advantages of yeast produced triterpene oils to include completely controlled growth conditions, just-in-time and scalable production, and the capacity to produce novel triterpenes beyond squalene.
Collapse
Affiliation(s)
- Mizuki Tateno
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, USA
| | | | | | - Stephanie Reedy
- Gluck Equine Research Center, University of Kentucky, Lexington, 40546-0099, USA
| | | | - Thomas M Chambers
- Gluck Equine Research Center, University of Kentucky, Lexington, 40546-0099, USA
| | - Jerold Woodward
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Joe Chappell
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, USA
- Enepret Incorporated, Lexington, KY, 40506, USA
| | - Chase F Kempinski
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, USA.
- Enepret Incorporated, Lexington, KY, 40506, USA.
| |
Collapse
|
11
|
Miranda AF, Nham Tran TL, Abramov T, Jehalee F, Miglani M, Liu Z, Rochfort S, Gupta A, Cheirsilp B, Adhikari B, Puri M, Mouradov A. Marine Protists and Rhodotorula Yeast as Bio-Convertors of Marine Waste into Nutrient-Rich Deposits for Mangrove Ecosystems. Protist 2020; 171:125738. [PMID: 32544845 DOI: 10.1016/j.protis.2020.125738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 01/27/2023]
Abstract
This paper represents a comprehensive study of two new thraustochytrids and a marine Rhodotorula red yeast isolated from Australian coastal waters for their abilities to be a potential renewable feedstock for the nutraceutical, food, fishery and bioenergy industries. Mixotrophic growth of these species was assessed in the presence of different carbon sources: glycerol, glucose, fructose, galactose, xylose, and sucrose, starch, cellulose, malt extract, and potato peels. Up to 14g DW/L (4.6gDW/L-day and 2.8gDW/L-day) of biomass were produced by Aurantiochytrium and Thraustochytrium species, respectively. Thraustochytrids biomass contained up to 33% DW of lipids, rich in omega-3 polyunsaturated docosahexaenoic acid (C22:6, 124mg/g DW); up to 10.2mg/gDW of squalene and up to 61μg/gDW of total carotenoids, composed of astaxanthin, canthaxanthin, echinenone, and β-carotene. Along with the accumulation of these added-value chemicals in biomass, thraustochytrid representatives showed the ability to secrete extracellular polysaccharide matrixes containing lipids and proteins. Rhodotorula sp lipids (26% DW) were enriched in palmitic acid (C16:0, 18mg/gDW) and oleic acid (C18:1, 41mg/gDW). Carotenoids (87μg/gDW) were mainly represented by β-carotene (up to 54μg/gDW). Efficient growth on organic and inorganic sources of carbon and nitrogen from natural and anthropogenic wastewater pollutants along with intracellular and extracellular production of valuable nutrients makes the production of valuable chemicals from isolated species economical and sustainable.
Collapse
Affiliation(s)
- Ana F Miranda
- School of Sciences, RMIT University, Melbourne, VIC, Australia
| | | | - Tomer Abramov
- School of Sciences, RMIT University, Melbourne, VIC, Australia
| | - Faridah Jehalee
- School of Sciences, RMIT University, Melbourne, VIC, Australia; Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Mohini Miglani
- School of Sciences, RMIT University, Melbourne, VIC, Australia
| | - Zhiqian Liu
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3083, Australia
| | - Simone Rochfort
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3083, Australia
| | - Adarsha Gupta
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Benjamas Cheirsilp
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Benu Adhikari
- School of Sciences, RMIT University, Melbourne, VIC, Australia
| | - Munish Puri
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Aidyn Mouradov
- School of Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Kawashima H, Okuda Y, Kijima M, Fujitani T, Choi JC. Epoxidation of microalgal biomass-derived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Nham Tran TL, Miranda AF, Gupta A, Puri M, Ball AS, Adhikari B, Mouradov A. The Nutritional and Pharmacological Potential of New Australian Thraustochytrids Isolated from Mangrove Sediments. Mar Drugs 2020; 18:E151. [PMID: 32155832 PMCID: PMC7142457 DOI: 10.3390/md18030151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023] Open
Abstract
Mangrove sediments represent unique microbial ecosystems that act as a buffer zone, biogeochemically recycling marine waste into nutrient-rich depositions for marine and terrestrial species. Marine unicellular protists, thraustochytrids, colonizing mangrove sediments have received attention due to their ability to produce large amounts of long-chain ω3-polyunsaturated fatty acids. This paper represents a comprehensive study of two new thraustochytrids for their production of valuable biomolecules in biomass, de-oiled cakes, supernatants, extracellular polysaccharide matrixes, and recovered oil bodies. Extracted lipids (up to 40% of DW) rich in polyunsaturated fatty acids (up to 80% of total fatty acids) were mainly represented by docosahexaenoic acid (75% of polyunsaturated fatty acids). Cells also showed accumulation of squalene (up to 13 mg/g DW) and carotenoids (up to 72 µg/g DW represented by astaxanthin, canthaxanthin, echinenone, and β-carotene). Both strains showed a high concentration of protein in biomass (29% DW) and supernatants (2.7 g/L) as part of extracellular polysaccharide matrixes. Alkalinization of collected biomass represents a new and easy way to recover lipid-rich oil bodies in the form of an aqueous emulsion. The ability to produce added-value molecules makes thraustochytrids an important alternative to microalgae and plants dominating in the food, pharmacological, nutraceutical, and cosmetics industries.
Collapse
Affiliation(s)
- Thi Linh Nham Tran
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Ana F. Miranda
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Adarsha Gupta
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, 5042 Adelaide, Australia; (A.G.); (M.P.)
| | - Munish Puri
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, 5042 Adelaide, Australia; (A.G.); (M.P.)
| | - Andrew S. Ball
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Benu Adhikari
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Aidyn Mouradov
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| |
Collapse
|
14
|
Paramasivan K, Kumar HN P, Mutturi S. Systems-based Saccharomyces cerevisiae strain design for improved squalene synthesis. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Gohil N, Bhattacharjee G, Khambhati K, Braddick D, Singh V. Corrigendum: Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2019; 7:114. [PMID: 31192199 PMCID: PMC6547300 DOI: 10.3389/fbioe.2019.00114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/07/2019] [Indexed: 01/05/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fbioe.2019.00050.].
Collapse
Affiliation(s)
- Nisarg Gohil
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Gargi Bhattacharjee
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Khushal Khambhati
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Darren Braddick
- Department of R&D, Cementic S. A. S., Genopole, Paris, France
| | - Vijai Singh
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| |
Collapse
|
16
|
Gohil N, Bhattacharjee G, Khambhati K, Braddick D, Singh V. Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2019; 7:50. [PMID: 30968019 PMCID: PMC6439483 DOI: 10.3389/fbioe.2019.00050] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
The triterpene squalene is a natural compound that has demonstrated an extraordinary diversity of uses in pharmaceutical, nutraceutical, and personal care industries. Emboldened by this range of uses, novel applications that can gain profit from the benefits of squalene as an additive or supplement are expanding, resulting in its increasing demand. Ever since its discovery, the primary source has been the deep-sea shark liver, although recent declines in their populations and justified animal conservation and protection regulations have encouraged researchers to identify a novel route for squalene biosynthesis. This renewed scientific interest has profited from immense developments in synthetic biology, which now allows fine-tuning of a wider range of plants, fungi, and microorganisms for improved squalene production. There are numerous naturally squalene producing species and strains; although they generally do not make commercially viable yields as primary shark liver sources can deliver. The recent advances made toward improving squalene output from natural and engineered species have inspired this review. Accordingly, it will cover in-depth knowledge offered by the studies of the natural sources, and various engineering-based strategies that have been used to drive the improvements in the pathways toward large-scale production. The wide uses of squalene are also discussed, including the notable developments in anti-cancer applications and in augmenting influenza vaccines for greater efficacy.
Collapse
Affiliation(s)
- Nisarg Gohil
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Gargi Bhattacharjee
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Khushal Khambhati
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Darren Braddick
- Department of R&D, Cementic S. A. S., Genopole, Paris, France
| | - Vijai Singh
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| |
Collapse
|
17
|
Paramasivan K, Rajagopal K, Mutturi S. Studies on Squalene Biosynthesis and the Standardization of Its Extraction Methodology from Saccharomyces cerevisiae. Appl Biochem Biotechnol 2018; 187:691-707. [DOI: 10.1007/s12010-018-2845-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
|
18
|
Chhikara N, Devi HR, Jaglan S, Sharma P, Gupta P, Panghal A. Bioactive compounds, food applications and health benefits of Parkia speciosa (stinky beans): a review. ACTA ACUST UNITED AC 2018. [DOI: 10.1186/s40066-018-0197-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Paramasivan K, Mutturi S. Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8162-8170. [PMID: 28845666 DOI: 10.1021/acs.jafc.7b02945] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although overexpression of the tHMG1 gene is a well-known strategy for terpene synthesis in Saccharomyces cerevisiae, the optimal level for tHMG1p has not been established. In the present study, it was observed that two copies of the tHMG1 gene on a dual gene expression cassette improved squalene synthesis in laboratory strain by 16.8-fold in comparison to single-copy expression. It was also observed that tHMG1p is limited by its cofactor (NADPH), as the overexpression of NADPH regenerating genes', viz., ZWF1 and POS5 (full length and without mitochondrial presequence), has led to its increased enzyme activity. Further, it was demonstrated that overexpression of full-length POS5 has improved squalene synthesis in cytosol. Finally, when tHMG1 and full-length POS5 were co-overexpressed there was a net 27.5-fold increase in squalene when compared to control strain. These results suggest novel strategies to increase squalene accumulation in S. cerevisiae.
Collapse
Affiliation(s)
- Kalaivani Paramasivan
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute , Mysore, India
- Academy of Scientific and Innovative Research , Mysore, New Delhi, India
| | - Sarma Mutturi
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute , Mysore, India
- Academy of Scientific and Innovative Research , Mysore, New Delhi, India
| |
Collapse
|
20
|
Pandarus V, Ciriminna R, Béland F, Pagliaro M, Kaliaguine S. Solvent-Free Chemoselective Hydrogenation of Squalene to Squalane. ACS OMEGA 2017; 2:3989-3996. [PMID: 31457702 PMCID: PMC6641624 DOI: 10.1021/acsomega.7b00625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/13/2017] [Indexed: 06/10/2023]
Abstract
Squalene is selectively and entirely converted into squalane over the spherical sol-gel-entrapped Pd catalyst SiliaCat Pd(0) under solvent-free and mild reaction conditions of 3 bar H2 and 70 °C. The catalyst was reused successfully in eight consecutive cycles, with palladium leaching values <2 ppm, opening the route to sustainable and less-expensive hydrogenation of phytosqualene with important sustainability consequences.
Collapse
Affiliation(s)
- Valerica Pandarus
- SiliCycle, 2500, Parc-Technologique Boulevard, Quebec
City, Quebec, Canada G1P 4S6
- Department
of Chemical Engineering, Laval University, 2325 Rue de l’Université, Quebec City, Quebec, Canada G1V 0A6
| | - Rosaria Ciriminna
- Istituto
per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | - François Béland
- SiliCycle, 2500, Parc-Technologique Boulevard, Quebec
City, Quebec, Canada G1P 4S6
| | - Mario Pagliaro
- Istituto
per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | - Serge Kaliaguine
- Department
of Chemical Engineering, Laval University, 2325 Rue de l’Université, Quebec City, Quebec, Canada G1V 0A6
| |
Collapse
|
21
|
Nakaji Y, Oya SI, Watanabe H, Watanabe MM, Nakagawa Y, Tamura M, Tomishige K. Production of Gasoline Fuel from Alga-Derived Botryococcene by Hydrogenolysis over Ceria-Supported Ruthenium Catalyst. ChemCatChem 2017. [DOI: 10.1002/cctc.201700200] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yosuke Nakaji
- Department of Applied Chemistry, School of Engineering; Tohoku University; 6-6-07, Aoba, Aramaki Aoba-ku Sendai 980-8579 Japan
| | - Shin-ichi Oya
- Department of Applied Chemistry, School of Engineering; Tohoku University; 6-6-07, Aoba, Aramaki Aoba-ku Sendai 980-8579 Japan
| | - Hideo Watanabe
- Algae Biomass and Energy System R&D Center; University of Tsukuba; Tennodai 1-1-1 Tsukuba Ibaraki 305-8572 Japan
| | - Makoto M. Watanabe
- Algae Biomass and Energy System R&D Center; University of Tsukuba; Tennodai 1-1-1 Tsukuba Ibaraki 305-8572 Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering; Tohoku University; 6-6-07, Aoba, Aramaki Aoba-ku Sendai 980-8579 Japan
- Research Center for Rare Metal and Green Innovation; Tohoku University; 468-1, Aoba, Aramaki Aoba-ku Sendai 980-0845 Japan
| | - Masazumi Tamura
- Department of Applied Chemistry, School of Engineering; Tohoku University; 6-6-07, Aoba, Aramaki Aoba-ku Sendai 980-8579 Japan
- Research Center for Rare Metal and Green Innovation; Tohoku University; 468-1, Aoba, Aramaki Aoba-ku Sendai 980-0845 Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering; Tohoku University; 6-6-07, Aoba, Aramaki Aoba-ku Sendai 980-8579 Japan
- Research Center for Rare Metal and Green Innovation; Tohoku University; 468-1, Aoba, Aramaki Aoba-ku Sendai 980-0845 Japan
| |
Collapse
|
22
|
Nakagawa Y, Oya SI, Kanno D, Nakaji Y, Tamura M, Tomishige K. Regioselectivity and Reaction Mechanism of Ru-Catalyzed Hydrogenolysis of Squalane and Model Alkanes. CHEMSUSCHEM 2017; 10:189-198. [PMID: 27863013 DOI: 10.1002/cssc.201601204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/12/2016] [Indexed: 05/25/2023]
Abstract
The dependence of the C-C hydrogenolysis activity on reaction parameters and the structure of the substrate alkanes was investigated for Ru/CeO2 catalyst with very small (dispersion: H/Ru=0.89) Ru particles. The substrate concentration and reaction temperature did not have a significant effect on the selectivity pattern, except that methane production was promoted at high temperatures. However, the hydrogen pressure had a marked effect on the selectivity pattern. Ctertiary -C bond dissociation, terminal Csecondary -Cprimary bond dissociation, and fragmentation to form excess methane had negative reaction order with respect to hydrogen partial pressure, whereas Csecondary -Csecondary bond dissociation had an approximately zero reaction order. Therefore, a high hydrogen pressure is essential for the regioselective hydrogenolysis of Csecondary -Csecondary bonds in squalane. Ru/SiO2 catalyst with larger Ru particles showed similar changes in the product distribution during the change in hydrogen pressure. The reaction mechanism for each type of C-C bond dissociation is proposed based on reactivity trends and DFT calculations. The proposed intermediate species for the internal Csecondary -Csecondary dissociation, terminal Csecondary -Cprimary dissociation, and Ctertiary -C dissociation is alkyls, alkylidynes, and alkenes, respectively.
Collapse
Affiliation(s)
- Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| | - Shin-Ichi Oya
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Daisuke Kanno
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Yosuke Nakaji
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Masazumi Tamura
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| |
Collapse
|
23
|
Naziri E, Glisic SB, Mantzouridou FT, Tsimidou MZ, Nedovic V, Bugarski B. Advantages of supercritical fluid extraction for recovery of squalene from wine lees. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Oya SI, Kanno D, Watanabe H, Tamura M, Nakagawa Y, Tomishige K. Catalytic production of branched small alkanes from biohydrocarbons. CHEMSUSCHEM 2015; 8:2472-5. [PMID: 26097221 DOI: 10.1002/cssc.201500375] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 05/25/2023]
Abstract
Squalane, C30 algae-derived branched hydrocarbon, was successfully converted to smaller hydrocarbons without skeletal isomerization and aromatization over ruthenium on ceria (Ru/CeO2 ). The internal CH2 CH2 bonds located between branches are preferably dissociated to give branched alkanes with very simple distribution as compared with conventional methods using metal-acid bifunctional catalysts.
Collapse
Affiliation(s)
- Shin-ichi Oya
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan)
| | - Daisuke Kanno
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan)
| | - Hideo Watanabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 (Japan)
| | - Masazumi Tamura
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan)
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan).
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan).
| |
Collapse
|
25
|
Methods for obtaining and determination of squalene from natural sources. BIOMED RESEARCH INTERNATIONAL 2015; 2015:367202. [PMID: 25695064 PMCID: PMC4324104 DOI: 10.1155/2015/367202] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/25/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022]
Abstract
Squalene is a natural dehydrotriterpenic hydrocarbon (C30H50) with six double bonds, known as an intermediate in the biosynthesis of phytosterol or cholesterol in plants or animals. We have briefly reviewed the natural sources for squalene and focused on the main methods and techniques to obtain and to determine it. Some of its applications in different fields of human activity are also mentioned.
Collapse
|
26
|
Naziri E, Nenadis N, Mantzouridou FT, Tsimidou MZ. Valorization of the major agrifood industrial by-products and waste from Central Macedonia (Greece) for the recovery of compounds for food applications. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Pandarus V, Ciriminna R, Kaliaguine S, Béland F, Pagliaro M. Heterogeneously Catalyzed Hydrogenation of Squalene to Squalane under Mild Conditions. ChemCatChem 2014. [DOI: 10.1002/cctc.201402668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Naziri E, Consonni R, Tsimidou MZ. Squalene oxidation products: Monitoring the formation, characterisation and pro-oxidant activity. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201300506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Eleni Naziri
- Laboratory of Food Chemistry and Technology; School of Chemistry; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Roberto Consonni
- Istituto per lo Studio delle Macromolecole; Lab. NMR; Milan Italy
| | - Maria Z. Tsimidou
- Laboratory of Food Chemistry and Technology; School of Chemistry; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
29
|
Kalogeropoulos N, Tsimidou MZ. Antioxidants in Greek Virgin Olive Oils. Antioxidants (Basel) 2014; 3:387-413. [PMID: 26784878 PMCID: PMC4665486 DOI: 10.3390/antiox3020387] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/31/2014] [Accepted: 04/10/2014] [Indexed: 01/10/2023] Open
Abstract
Greece is ranked third after Spain and Italy in virgin olive oil production. The number of Greek olive cultivars-excluding clonal selections-is greater than 40; however, more than 90% of the acreage is cultivated with 20 cultivars, adapted to a wide range of environmental conditions. Greek virgin olive oils, produced mainly with traditional, non-intensive cultivation practices, are mostly of exceptional quality. The benefits of consuming virgin olive oil, originally attributed to its high oleic acid content, are now considered to be the combined result of several nutrient and non-nutrient phytochemicals. The present work summarizes available data regarding natural antioxidants in Greek virgin olive oils (VOO) namely, polar phenolic compounds, tocopherols, squalene, and triterpenic acids. The literature survey indicated gaps in information, which should be filled in the near future so that the intrinsic properties of this major agricultural product of Greece will be substantiated on a solid scientific basis.
Collapse
Affiliation(s)
- Nick Kalogeropoulos
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Str., Athens 17661, Greece.
| | - Maria Z Tsimidou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
30
|
Naziri E, Mantzouridou F, Tsimidou MZ. Recovery of squalene from wine lees using ultrasound assisted extraction-a feasibility study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9195-9201. [PMID: 22888984 DOI: 10.1021/jf301059y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The present work is a systematic approach for valorization of wine lees regarding the recovery of squalene, a bioactive lipid. Such a study is presented for the first time in literature. Separate examination of squalene content in "light" and "heavy" lees from different vinification processes by RP-HPLC demonstrated that these waste streams can be used as a source for this lipid, despite variations due to technological or genetic effects. Next, ultrasound assisted extraction of squalene from the "industrial waste" (the mixture of wine lees generated from different wines) using n-hexane was optimized with the aid of response surface methodology (independent variables: sonication duration and duty cycles). Autolysis was monitored through optical microscopy. Squalene yield (0.6 ± 0.08 g SQ/kg dry lees) was comparable to that of recently examined potential sources (0.2-0.35 g SQ/kg dry olive pomace and 0.06 g SQ/kg olive leaves).
Collapse
Affiliation(s)
- Eleni Naziri
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | |
Collapse
|