1
|
Tenore G, Mohsen A, Del Vecchio A, Palaia G, Rocchetti F, Borghetti L, Vasile G, Graniero F, Romeo U. Surgical extraction with photobiomodulation as an adjunctive modality in patients at-risk for medication-related osteonecrosis of the jaw: retrospective study. BMC Oral Health 2025; 25:627. [PMID: 40275275 PMCID: PMC12023369 DOI: 10.1186/s12903-025-05776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/11/2025] [Indexed: 04/26/2025] Open
Abstract
AIM The study aims to retrospectively assess and share the experience of the use of photobiomodulation (PBM) as an adjunctive to surgical extraction in patients at-risk for medication-related osteonecrosis of the jaw (MRONJ) due to a treatment history with bone-modifying agents. METHODS The department database and medical records were examined in the period between 2016 and 2023. The inclusion criteria were; at-risk patients for MRONJ with current or previous treatment with bone-modifying agents, with or without a history of antiangiogenic agents administration, who underwent single or multiple dental extractions, subjected to PBM preventive protocol, and without a diagnosis or history of MRONJ development. The PBM protocol consisted of four sessions, two sessions before the intervention and two sessions after the intervention. The PBM parameters (per session) were; total power of 0.6 W, time of 15 min, frequency of 30 kHz, and total energy of 577.4 J. RESULTS A total of 62 patients (58 females and 4 males) fulfilled the inclusion criteria with a mean age of 67.5 years. Complete healing without the development of MRONJ was shown in 50 (80.65%) patients, and the development of MRONJ was shown in 12 (19.35%) patients. The statistical analysis revealed a higher risk of MRONJ in patients with a history of administration of zoledronic acid (p = 0.029) and in patients undergoing corticosteroid therapy (p = 0.039). While a lower risk was observed in patients in treatment for thyroid pathology (p = 0.055). CONCLUSIONS The majority of the included at-risk MRONJ patients showed complete healing after surgical extraction with the use of PBM as an adjunctive modality. Corticosteroid treatment as a systemic risk factor and zoledronic acid as a drug-related risk factor show significant associations with the development of MRONJ.
Collapse
Affiliation(s)
- Gianluca Tenore
- Department of Oral and Maxillofacial Sciences (SOMF), Sapienza University of Rome, Via Caserta 6, Rome, 00161, Italy
| | - Ahmed Mohsen
- Department of Oral and Maxillofacial Sciences (SOMF), Sapienza University of Rome, Via Caserta 6, Rome, 00161, Italy.
| | - Alessandro Del Vecchio
- Department of Oral and Maxillofacial Sciences (SOMF), Sapienza University of Rome, Via Caserta 6, Rome, 00161, Italy
| | - Gaspare Palaia
- Department of Oral and Maxillofacial Sciences (SOMF), Sapienza University of Rome, Via Caserta 6, Rome, 00161, Italy
| | - Federica Rocchetti
- Department of Oral and Maxillofacial Sciences (SOMF), Sapienza University of Rome, Via Caserta 6, Rome, 00161, Italy
| | - Lucia Borghetti
- Department of Oral and Maxillofacial Sciences (SOMF), Sapienza University of Rome, Via Caserta 6, Rome, 00161, Italy
| | - Giuseppe Vasile
- Department of Oral and Maxillofacial Sciences (SOMF), Sapienza University of Rome, Via Caserta 6, Rome, 00161, Italy
| | - Francesca Graniero
- Department of Oral and Maxillofacial Sciences (SOMF), Sapienza University of Rome, Via Caserta 6, Rome, 00161, Italy
| | - Umberto Romeo
- Department of Oral and Maxillofacial Sciences (SOMF), Sapienza University of Rome, Via Caserta 6, Rome, 00161, Italy
| |
Collapse
|
2
|
Durães C, Tabosa A, Santos E, Jesus S, Guimarães VH, Queiroz L, Farias L, Guimarães A. The effect of photobiomodulation on the radiosensitivity of cancer cells: a literature review. Lasers Med Sci 2025; 40:210. [PMID: 40266395 DOI: 10.1007/s10103-025-04465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
The goal of radiotherapy (RT) in cancer treatment is to destroy tumor tissue while preserving nearby healthy tissue. However, RT often causes adverse effects that significantly impact patients' quality of life. Tumor cells, which have high proliferation rates, are susceptible to radiation, especially during the G2 and mitosis phases of the cell cycle. Numerous studies have explored ways to enhance the Radiosensitivity of tumors to make RT more effective while minimizing harm to healthy cells. This review examines the potential use of photobiomodulation (PBM) as a radiosensitizer for cancer cells to improve the effectiveness and safety of radiotherapy. A literature search was conducted in the MEDLINE/PubMed and Google Scholar databases using keywords like "PBM, low-level light therapy, cancer cells, tumor cells, radiosensitizer, and ionizing radiation." Studies meeting the inclusion criteria were reviewed and analyzed. Several studies investigated PBM as a radiosensitizer for various cancer cell lines, including HeLa, HeLa Kyoto, A431, SCC9, and Cal 27. Most of these studies found that pre-exposure of cancer cells to PBM improved the effectiveness of radiation in destroying tumor cells. PBM is a promising, affordable, and noninvasive technique that could improve cancer treatment outcomes by increasing tumor sensitivity to radiation and reducing side effects. However, more research is needed to thoroughly assess the benefits of combining PBM with RT. Clinical trial number: not applicable. Clinical trial number: not applicable.
Collapse
Affiliation(s)
- Cristina Durães
- Universidade Estadual de Montes Claros, Montes Claros, Brazil
| | - Angeliny Tabosa
- Universidade Estadual de Montes Claros, Montes Claros, Brazil
| | - Eloá Santos
- Universidade Estadual de Montes Claros, Montes Claros, Brazil
| | - Sabrina Jesus
- Universidade Estadual de Montes Claros, Montes Claros, Brazil
| | | | - Lorena Queiroz
- Universidade Estadual de Montes Claros, Montes Claros, Brazil
| | - Lucyana Farias
- Universidade Estadual de Montes Claros, Montes Claros, Brazil
| | - André Guimarães
- Universidade Estadual de Montes Claros, Montes Claros, Brazil.
| |
Collapse
|
3
|
Arvate Alvares CM, Dos Reis Pessoa L, Cidreira Boaro LC, Kim YJ, Sendyk WR, Campos L. Single and dual-wavelength considerations of photobiomodulation therapy in the management of side effects related to hyaluronic acid fillers in lip augmentation. J COSMET LASER THER 2025; 27:24-30. [PMID: 39967370 DOI: 10.1080/14764172.2025.2468500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/17/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Lip augmentation (LA) procedures can cause complications such as edema, erythema, and pain. Photobiomodulation therapy (PBMT) has been indicated as a promissory alternative therapy. We evaluated different PBMT protocols on the management of its complications. Sixty-one patients post-LA were divided into four groups: control; PBMT λ660 nm; PBMT λ808 nm; and PBMT λ660 and 808 nm simultaneously. A higher analgesia was observed in the PBMT λ660 nm group. Upper-lip edema only decreased in the PBMT λ808 nm. Erythema increased in the control, whereas the PBMT groups had smaller score variations. PBMT emitting 660 or 808 nm was efficient for the treatment of edema and erythema post-LA.
Collapse
Affiliation(s)
| | - Letícia Dos Reis Pessoa
- School of Dentistry, Graduate Program in Implantology, University of Santo Amaro, Sao Paulo, SP, Brazil
| | | | - Yeon Jung Kim
- School of Dentistry, Graduate Program in Implantology, University of Santo Amaro, Sao Paulo, SP, Brazil
| | - Wilson Roberto Sendyk
- School of Dentistry, Graduate Program in Implantology, University of Santo Amaro, Sao Paulo, SP, Brazil
| | - Luana Campos
- School of Dentistry, Graduate Program in Implantology, University of Santo Amaro, Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Sachelarie L, Cristea R, Burlui E, Hurjui LL. Laser Technology in Dentistry: From Clinical Applications to Future Innovations. Dent J (Basel) 2024; 12:420. [PMID: 39727477 DOI: 10.3390/dj12120420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
This narrative review comprehensively synthesizes laser technology's clinical applications, advantages, and limitations in modern dentistry. The review of 67 articles published between 2018 and 2023 highlights the latest advancements, including photobiomodulation (PBM) for enhanced tissue healing and inflammation control, alongside innovative uses in implantology, endodontics, and teeth whitening. The findings underscore the transformative potential of lasers in improving dental treatment precision and patient outcomes while addressing the barriers to their widespread adoption, such as costs and training needs. This review emphasizes the integration of laser technology into routine clinical practice and identifies pathways for future innovations in dentistry.
Collapse
Affiliation(s)
- Liliana Sachelarie
- Department of Preclinical Discipline, Apollonia University, 700511 Iasi, Romania
| | - Roxana Cristea
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Ecaterina Burlui
- Department of Clinical Discipline, Apollonia University, 700511 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences I, Discipline of Histology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Aoki A, Mizutani K, Taniguchi Y, Lin T, Ohsugi Y, Mikami R, Katagiri S, Meinzer W, Iwata T. Current status of Er:YAG laser in periodontal surgery. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:1-14. [PMID: 38148873 PMCID: PMC10750110 DOI: 10.1016/j.jdsr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023] Open
Abstract
Lasers have numerous advantageous tissue interactions such as ablation or vaporization, hemostasis, bacterial killing, as well as biological effects, which induce various beneficial therapeutic effects and biological responses in the tissues. Thus, lasers are considered an effective and suitable device for treating a variety of inflammatory and infectious conditions of periodontal disease. Among various laser systems, the Er:YAG laser, which can be effectively and safely used in both soft and hard tissues with minimal thermal side effects, has been attracting much attention in periodontal therapy. This laser can effectively and precisely debride the diseased root surface including calculus removal, ablate diseased connective tissues within the bone defects, and stimulate the irradiated surrounding periodontal tissues during surgery, resulting in favorable wound healing as well as regeneration of periodontal tissues. The safe and effective performance of Er:YAG laser-assisted periodontal surgery has been reported with comparable and occasionally superior clinical outcomes compared to conventional surgery. This article explains the characteristics of the Er:YAG laser and introduces its applications in periodontal surgery including conventional flap surgery, regenerative surgery, and flapless surgery, based on scientific evidence from currently available basic and clinical studies as well as cases reports.
Collapse
Affiliation(s)
- Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yoichi Taniguchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
- Taniguchi Dental Clinic, Kita 7−17, 18-chome, Nango-dori, Shiroishi-ku, Sapporo, Hokkaido, Japan
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University (CSMU), No.110, Section 1, Jianguo N. Rd., South Dist, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, No.110, Section 1, Jianguo N. Rd., South Dist, Taichung 402, Taiwan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Walter Meinzer
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
6
|
Palmisano B, Vecchio AD, Passaretti A, Stefano A, Miracolo G, Farinacci G, Corsi A, Riminucci M, Romeo U, Cicconetti A. Potential of combined red and near-infrared photobiomodulation to mitigate pro-osteoclastic and inflammatory gene expression in human mandibular osteogenic cells. Lasers Med Sci 2024; 39:247. [PMID: 39349883 PMCID: PMC11442520 DOI: 10.1007/s10103-024-04180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Appropriate regeneration of jawbone after dental or surgical procedures relies on the recruitment of osteoprogenitor cells able to differentiate into matrix-producing osteoblasts. In this context, photobiomodulation (PBM) has emerged as promising therapy to improve tissue regeneration and to facilitate wound healing processes. The aim of this study was to determine the effect of PBM on human osteoprogenitor cells isolated from mandibular trabecular bone.Bone marrow stromal cell cultures were established from 4 donors and induced toward osteogenic differentiation for 14 days in a standard osteogenic assay. Cells were irradiated with a combined red/near-infrared (NIR) laser following different schedules and expression of osteogenic, matrix-related, osteoclastogenic and inflammatory genes was analyzed by quantitative PCR.Gene expression analysis revealed no overall effects of PBM on osteogenic differentiation. However, a statistically significant reduction was observed in the transcripts of COL1A1 and MMP13, two important genes involved in the bone matrix homeostasis. Most important, PBM significantly downregulated the expression of RANKL, IL6 and IL1B, three genes that are involved in both osteoclastogenesis and inflammation.In conclusion, PBM with a red/NIR laser did not modulate the osteogenic phenotype of mandibular osteoprogenitors but markedly reduced their expression of matrix-related genes and their pro-osteoclastogenic and pro-inflammatory profile.
Collapse
Affiliation(s)
- Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Alessandro Del Vecchio
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy.
| | - Alfredo Passaretti
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy
| | - Alessia Stefano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giovanna Miracolo
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy
| | - Giorgia Farinacci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Umberto Romeo
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy
| | - Andrea Cicconetti
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy
| |
Collapse
|
7
|
Lawrence J, Sorra K. Photobiomodulation as Medicine: Low-Level Laser Therapy (LLLT) for Acute Tissue Injury or Sport Performance Recovery. J Funct Morphol Kinesiol 2024; 9:181. [PMID: 39449475 PMCID: PMC11503318 DOI: 10.3390/jfmk9040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Low-level laser therapy (LLLT) has gained traction in sports and exercise medicine as a non-invasive therapeutic for preconditioning the body, exertion recovery, repair and injury rehabilitation. LLLT is hypothesized to modulate cellular metabolism, tissue microenvironment(s) and to decrease inflammation while posing few adverse risks. This review critically examines the evidence-base for LLLT effectiveness focusing on immediate care settings and acute/subacute applications (<6 months post-injury). Methods: A comprehensive literature search was conducted, prioritizing systematic reviews, meta-analyses and their primary research papers. Results: Findings are relevant to trainers and athletes as they manage a wide range of issues from superficial abrasions to deeper tissue concerns. LLLT parameters in the research literature include wide ranges. For body surface structures, studies show that LLLT holds promise in accelerating wound healing. In sport performance studies, LLLT is typically delivered pre-exercise and reveals beneficial effects on exertion recovery, improvements in muscle strength, endurance and reduced fatigue. Evidence is less convincing for acute, deep tissue injury models, where most studies do not report significant benefits for functional outcomes over conventional therapeutic modalities. Conclusions: Variability in LLLT delivery parameters and findings across studies underscores a need for clear treatment guidelines for the profession. Technical properties of laser light delivery to the body also differ materially from LED devices. Sport physiotherapists, team physicians, trainers and athletes should understand limitations in the current evidence-base informing photobiomodulation use in high-performance sport settings and weigh potential benefits versus shortcomings of LLLT use in the mentioned therapeutic contexts.
Collapse
Affiliation(s)
| | - Karin Sorra
- Arroscience Inc., Toronto, ON M2J 4R3, Canada;
- Rotman School of Management, University of Toronto, Toronto, ON M5S 3E6, Canada
| |
Collapse
|
8
|
Selestin Raja I, Kim C, Oh N, Park JH, Hong SW, Kang MS, Mao C, Han DW. Tailoring photobiomodulation to enhance tissue regeneration. Biomaterials 2024; 309:122623. [PMID: 38797121 DOI: 10.1016/j.biomaterials.2024.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Photobiomodulation (PBM), the use of biocompatible tissue-penetrating light to interact with intracellular chromophores to modulate the fates of cells and tissues, has emerged as a promising non-invasive approach to enhancing tissue regeneration. Unlike photodynamic or photothermal therapies that require the use of photothermal agents or photosensitizers, PBM treatment does not need external agents. With its non-harmful nature, PBM has demonstrated efficacy in enhancing molecular secretions and cellular functions relevant to tissue regeneration. The utilization of low-level light from various sources in PBM targets cytochrome c oxidase, leading to increased synthesis of adenosine triphosphate, induction of growth factor secretion, activation of signaling pathways, and promotion of direct or indirect gene expression. When integrated with stem cell populations, bioactive molecules or nanoparticles, or biomaterial scaffolds, PBM proves effective in significantly improving tissue regeneration. This review consolidates findings from in vitro, in vivo, and human clinical outcomes of both PBM alone and PBM-combined therapies in tissue regeneration applications. It encompasses the background of PBM invention, optimization of PBM parameters (such as wavelength, irradiation, and exposure time), and understanding of the mechanisms for PBM to enhance tissue regeneration. The comprehensive exploration concludes with insights into future directions and perspectives for the tissue regeneration applications of PBM.
Collapse
Affiliation(s)
| | - Chuntae Kim
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
| | - Dong-Wook Han
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
9
|
Nairuz T, Sangwoo-Cho, Lee JH. Photobiomodulation Therapy on Brain: Pioneering an Innovative Approach to Revolutionize Cognitive Dynamics. Cells 2024; 13:966. [PMID: 38891098 PMCID: PMC11171912 DOI: 10.3390/cells13110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Photobiomodulation (PBM) therapy on the brain employs red to near-infrared (NIR) light to treat various neurological and psychological disorders. The mechanism involves the activation of cytochrome c oxidase in the mitochondrial respiratory chain, thereby enhancing ATP synthesis. Additionally, light absorption by ion channels triggers the release of calcium ions, instigating the activation of transcription factors and subsequent gene expression. This cascade of events not only augments neuronal metabolic capacity but also orchestrates anti-oxidant, anti-inflammatory, and anti-apoptotic responses, fostering neurogenesis and synaptogenesis. It shows promise for treating conditions like dementia, stroke, brain trauma, Parkinson's disease, and depression, even enhancing cognitive functions in healthy individuals and eliciting growing interest within the medical community. However, delivering sufficient light to the brain through transcranial approaches poses a significant challenge due to its limited penetration into tissue, prompting an exploration of alternative delivery methods such as intracranial and intranasal approaches. This comprehensive review aims to explore the mechanisms through which PBM exerts its effects on the brain and provide a summary of notable preclinical investigations and clinical trials conducted on various brain disorders, highlighting PBM's potential as a therapeutic modality capable of effectively impeding disease progression within the organism-a task often elusive with conventional pharmacological interventions.
Collapse
Affiliation(s)
| | | | - Jong-Ha Lee
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea; (T.N.); (S.-C.)
| |
Collapse
|
10
|
Yu L, Liu S, Yang Y, Geng S, Tian J, Yan K, Qin Z, Zhang H, Yin J. Enhanced forward scattering of a cell in line optical tweezers with an astigmatic beam. OPTICS EXPRESS 2024; 32:6765-6775. [PMID: 38439374 DOI: 10.1364/oe.515250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/20/2024] [Indexed: 03/06/2024]
Abstract
The line optical tweezers (LOT) has been proven to be an alternative technique to manipulating the biological cells because of the bigger potential compared with traditional optical tweezers with a highly focused spot. We deduce the 4 × 4 optical matrix of the astigmatic LOT to investigate the optical characteristics related to the systematic parameters. The comparison of the initial and scattered electric fields by the cell under the astigmatic and stigmatic LOT is implemented to illustrate that the forward scattered light from the astigmatic LOT is much stronger than that from the stigmatic LOT, so as to the cell deformations. It is demonstrated that the astigmatic LOT could provide a more efficient way to deform the cell not only in the focal plane, but also along the optical axis to screen large biomaterials in biomechanics.
Collapse
|
11
|
Modena DAO, Ferro AP, de Oliveira Guirro EC, Cazzo E, Chaim EA. Photobiomodulation therapy with light-emitting diode in stimulating adipose tissue mitochondria. Lasers Med Sci 2023; 38:238. [PMID: 37851070 DOI: 10.1007/s10103-023-03906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
Low-level laser therapy (LLLT) is known for its ability to induce a photochemical process, primarily targeting mitochondria, a process referred to as photobiomodulation (PBM). Recently, its use has been attributed as an adjunct in obesity treatment, to stimulate lipolysis and apoptosis. However, the pathway of stimulation remains uncertain. Thus, the objective of this study was to understand whether mitochondrial stimulation occurs in adipose tissue cells after PBM therapy, which could lead to the processes of lipolysis and apoptosis. A non-randomized clinical trial was conducted using a split abdomen design in obese women who received red and infrared LED photobiomodulation therapy (PBMT). The patients underwent bariatric surgery, and adipose tissue samples were collected for immunohistochemical analysis with primary mitochondrial antibodies. Adipose tissue samples subjected to LED intervention exhibited positivity in mitochondrial antibodies for cAMP, DRP1, FAS, FIS1, MFN2, and OPA1 (p<0.001) compared to the control group. In conclusion, we observed that PBMT was capable of generating mitochondrial stimulation in adipose tissue cells, as evidenced by the positive antibody signals. This finding suggests that mitochondrial stimulation could be the mechanism and action underlying adipose tissue lipolysis and apoptosis.
Collapse
Affiliation(s)
- Débora Aparecida Oliveira Modena
- Department of Surgery, Medical Sciences Institute, Campinas University (Unicamp), São Paulo, Brazil.
- Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Ana Paula Ferro
- Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Caldeira de Oliveira Guirro
- Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Everton Cazzo
- Department of Surgery, Medical Sciences Institute, Campinas University (Unicamp), São Paulo, Brazil
| | - Elinton Adami Chaim
- Department of Surgery, Medical Sciences Institute, Campinas University (Unicamp), São Paulo, Brazil
| |
Collapse
|
12
|
Mankar N, Burde K, Agrawal P, Chandak M, Ikhar A, Patel A. Application of Low-Level Laser Therapy in Endodontics: A Narrative Review. Cureus 2023; 15:e48010. [PMID: 38046501 PMCID: PMC10689117 DOI: 10.7759/cureus.48010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Low-level laser therapy (LLLT) stands out in the realm of dentistry for its unique attributes that set it apart from traditional therapeutic approaches. This non-invasive and painless modality harnesses the power of low-intensity lasers, offering a distinct advantage in terms of safety and patient comfort. Unlike many conventional methods, LLLT does not rely on pharmaceutical interventions or invasive procedures, making it a gentle yet effective option for various dental applications. Its non-thermal, photobiomodulatory effects on cellular and tissue functions mark a notable departure from the more aggressive treatment modalities commonly associated with dentistry. This article provides an extensive exploration of LLLT's applications in dentistry, focusing on its mechanisms of action and biological effects, and emphasizes the uniqueness of LLLT as a transformative tool in modern dental care.
Collapse
Affiliation(s)
- Nikhil Mankar
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - Karuna Burde
- Department of Public Health Dentistry, Saraswati Dhanwantari Dental College and Hospital, Parbhani, IND
| | - Paridhi Agrawal
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - Manoj Chandak
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - Anuja Ikhar
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - Aditya Patel
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| |
Collapse
|
13
|
Huang H, Xin R, Li X, Zhang X, Chen Z, Zhu Q, Tai Z, Bao L. Physical therapy in diabetic foot ulcer: Research progress and clinical application. Int Wound J 2023; 20:3417-3434. [PMID: 37095726 PMCID: PMC10502280 DOI: 10.1111/iwj.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Diabetes foot ulcer (DFU) is one of the most intractable complications of diabetes and is related to a number of risk factors. DFU therapy is difficult and involves long-term interdisciplinary collaboration, causing patients physical and emotional pain and increasing medical costs. With a rising number of diabetes patients, it is vital to figure out the causes and treatment techniques of DFU in a precise and complete manner, which will assist alleviate patients' suffering and decrease excessive medical expenditure. Here, we summarised the characteristics and progress of the physical therapy methods for the DFU, emphasised the important role of appropriate exercise and nutritional supplementation in the treatment of DFU, and discussed the application prospects of non-traditional physical therapy such as electrical stimulation (ES), and photobiomodulation therapy (PBMT) in the treatment of DFU based on clinical experimental records in ClinicalTrials.gov.
Collapse
Affiliation(s)
- Hao Huang
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of PharmacyThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Rujuan Xin
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaolong Li
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of PharmacyThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Zhongjian Chen
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Quangang Zhu
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Leilei Bao
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Department of PharmacyThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
14
|
Carvalho FR, Barros RQ, Gonçalves AS, Muragaki SP, Pedroni ACF, Oliveira KDCM, Freitas PM. Photobiomodulation Therapy on the Palliative Care of Temporomandibular Disorder and Orofacial/Cervical Skull Pain: Preliminary Results from a Randomized Controlled Clinical Trial. Healthcare (Basel) 2023; 11:2574. [PMID: 37761771 PMCID: PMC10531481 DOI: 10.3390/healthcare11182574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The main symptoms of temporomandibular disorders (TMDs) are pain from musculoskeletal and/or joint-in the head and neck region-and complaints of difficulty in mandibular movements. The photobiomodulation therapy (PBMT) has been reported as a promising treatment in the management of these symptoms. The objective of this research was to assess the effect of PBMT immediately after irradiation on TMDs symptoms under a prospective clinical trial, randomized, triple-blinded, placebo-controlled, and with two parallel arms. According to the RDC/TMD, maximum mouth opening (MMO) and pain in the orofacial/cervical muscles and temporomandibular joint (TMJ) were recorded. One hundred forty-five participants (71 placebo and 74 PBMT experimental) were analyzed after irradiation protocols (sham-PBMT or PBMT) at the orofacial/cervical skull musculature and at the TMJ. The results showed a reduction in the total pain score (p = 0.026), a reduction in the number of painful points (p = 0.013), and an increase in the MMO (p = 0.016) in the PBMT protocol group when compared to the placebo protocol (sham-PBMT). The PBMT was shown to be effective in reducing orofacial/cervical skull pain immediately after the irradiation. It is clinically relevant and should be taken into consideration by professionals who are dedicated to treating this pathology because, in addition to bringing comfort to patients who need dental treatment, it also consists of a low-cost and low technical complexity clinical approach.
Collapse
Affiliation(s)
- Fernando Rodrigues Carvalho
- Department of Restorative Dentistry, Special Laboratory of Lasers in Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Alyne Simões Gonçalves
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo (USP), São Paulo 05508-000, Brazil
| | | | | | | | - Patrícia Moreira Freitas
- Department of Restorative Dentistry, Special Laboratory of Lasers in Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
15
|
Baldassarro VA, Alastra G, Lorenzini L, Giardino L, Calzà L. Photobiomodulation at Defined Wavelengths Regulates Mitochondrial Membrane Potential and Redox Balance in Skin Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7638223. [PMID: 37663921 PMCID: PMC10471456 DOI: 10.1155/2023/7638223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Starting from the discovery of phototherapy in the beginning of the last century, photobiomodulation (PBM) has been defined in late 1960s and, since then, widely described in different in vitro models. Robust evidence indicates that the effect of light exposure on the oxidative state of the cells and on mitochondrial dynamics, suggesting a great therapeutic potential. The translational scale-up of PBM, however, has often given contrasting and confusing results, mainly due to light exposure protocols which fail to adequately control or define factors such as emitting device features, emitted light characteristics, exposure time, cell target, and readouts. In this in vitro study, we describe the effects of a strictly controlled light-emitting diode (LED)-based PBM protocol on human fibroblasts, one of the main cells involved in skin care, regeneration, and repair. We used six emitter probes at different wavelengths (440, 525, 645, 660, 780, and 900 nm) with the same irradiance value of 0.1 mW/cm2, evenly distributed over the entire surface of the cell culture well. The PBM was analyzed by three main readouts: (i) mitochondrial potential (MitoTracker Orange staining), (ii) reactive oxygen species (ROS) production (CellROX staining); and (iii) cell death (nuclear morphology). The assay was also implemented by cell-based high-content screening technology, further increasing the reliability of the data. Different exposure protocols were also tested (one, two, or three subsequent 20 s pulsed exposures at 24 hr intervals), and the 645 nm wavelength and single exposure chosen as the most efficient protocol based on the mitochondrial potential readout, further confirmed by mitochondrial fusion quantification. This protocol was then tested for its potential to prevent H2O2-induced oxidative stress, including modulation of the light wave frequency. Finally, we demonstrated that the controlled PBM induced by the LED light exposure generates a preconditioning stimulation of the mitochondrial potential, which protects the cell from oxidative stress damage.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (Bologna) 40064, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, Ozzano dell'Emilia (Bologna) 40064, Italy
| | - Giuseppe Alastra
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (Bologna) 40064, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (Bologna) 40064, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, Ozzano dell'Emilia (Bologna) 40064, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (Bologna) 40064, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, Ozzano dell'Emilia (Bologna) 40064, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, Ozzano dell'Emilia (Bologna) 40064, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
- IRET Fundation, Via Tolara di Sopra 41/E, Ozzano dell'Emilia (Bologna) 40064, Italy
| |
Collapse
|
16
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Rathod A, Jaiswal P, Bajaj P, Kale B, Masurkar D. Implementation of Low-Level Laser Therapy in Dentistry: A Review. Cureus 2022; 14:e28799. [PMID: 36225465 PMCID: PMC9534528 DOI: 10.7759/cureus.28799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
A type of light therapy known as low-level laser therapy (LLLT) uses only one wavelength of light. Low-level lasers (LLL) do not have a warming effect on the tissues; instead, they have an effect called photobiostimulation. LLL do not evaporate the tissue. The use of LLL to manage a range of illnesses is known as LLLT. Helium-neon lasers are an illustration of an LLLT product. Gallium arsenide, the infrared semiconductor made of gallium aluminum arsenide, is also an example. The performance powers range from 50 to 500 mW with electromagnetic spectrum wavelengths in the red and near-infrared region spanning from 630 to 980 nm and pulsed or continuous-wave emission. In periodontics, LLLT has gained prominence for several applications, including wound healing and pain relief after non-surgical and surgical procedures.
Collapse
|
18
|
In Vitro Synergistic Effects of Ciprofloxacin, Vitamin E, And Low Power Laser on Human Dermal Fibroblasts. MEDICAL LABORATORY JOURNAL 2022. [DOI: 10.52547/mlj.16.5.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
19
|
Kitchen LC, Berman M, Halper J, Chazot P. Rationale for 1068 nm Photobiomodulation Therapy (PBMT) as a Novel, Non-Invasive Treatment for COVID-19 and Other Coronaviruses: Roles of NO and Hsp70. Int J Mol Sci 2022; 23:ijms23095221. [PMID: 35563611 PMCID: PMC9105035 DOI: 10.3390/ijms23095221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 01/08/2023] Open
Abstract
Researchers from across the world are seeking to develop effective treatments for the ongoing coronavirus disease 2019 (COVID-19) outbreak, which arose as a major public health issue in 2019, and was declared a pandemic in early 2020. The pro-inflammatory cytokine storm, acute respiratory distress syndrome (ARDS), multiple-organ failure, neurological problems, and thrombosis have all been linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fatalities. The purpose of this review is to explore the rationale for using photobiomodulation therapy (PBMT) of the particular wavelength 1068 nm as a therapy for COVID-19, investigating the cellular and molecular mechanisms involved. Our findings illustrate the efficacy of PBMT 1068 nm for cytoprotection, nitric oxide (NO) release, inflammation changes, improved blood flow, and the regulation of heat shock proteins (Hsp70). We propose, therefore, that PBMT 1068 is a potentially effective and innovative approach for avoiding severe and critical illness in COVID-19 patients, although further clinical evidence is required.
Collapse
Affiliation(s)
- Lydia C. Kitchen
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| | - Marvin Berman
- Quietmind Foundation, Philadelphia, PA 19147, USA; (M.B.); (J.H.)
| | - James Halper
- Quietmind Foundation, Philadelphia, PA 19147, USA; (M.B.); (J.H.)
| | - Paul Chazot
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
- Correspondence:
| |
Collapse
|
20
|
George S, Hamblin MR, Abrahamse H. Neuronal differentiation potential of primary and immortalized adipose stem cells by photobiomodulation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 230:112445. [PMID: 35453038 DOI: 10.1016/j.jphotobiol.2022.112445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 01/28/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
Adipose Stem Cells (ASCs) are capable of neuronal differentiation, which makes them an ideal choice for therapies in nerve injuries. Principally, the differentiation of autologous ASCs to neurons offers solutions for the replacement therapies of nervous system with patient's own genetic background. On the contrary, the use of genetically modified (immortalized) ASCs has the benefit of accessibility by surpassing ethical concerns and ease for propagation as a continuous cell culture. Photobiomodulation (PBM) is a therapeutic modality with laser or light, which is widely been used for modulating stem cell bioprocesses viz. proliferation and differentiation. A comparative analysis was performed to evaluate the neuronal differentiation potential of primary ASCs isolated from a healthy human subject with commercially obtained immortalized ASCs with PBM. The outcome of this analysis will help us to know either primary or immortalized ASCs are most suitable for biomedical applications. Both primary and immortalized ASCs were characterized using their surface protein markers CD44/90/133/166 and induced to differentiate into neuronal cells using Fibroblast Growth Factor, basic (bFGF) and forskolin following PBM using Near Infra-Red (NIR) lasers. Based on the expression of nestin, an early neuronal marker an exposure to 5, 10 and 15 J/cm2 of NIR and growth inducers for 14 days the primary ASCs demonstrated a higher neuronal differentiation potential compared to the immortalized ASCs. However, newly differentiated cells from either of these ASCs did not reveal βIII-tubulin, an intermediate neuronal marker even by 21 days of differentiation. This study gives an indication that immortalized ASCs have a phenotype and differentiation potential slightly less but comparable to the freshly isolated ASCs. We suggest that PBM along with growth inducers offer a better solution of differentiating ASCs to neurons.
Collapse
Affiliation(s)
- Sajan George
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa; Wellman Centre for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
21
|
Lipko NB. Photobiomodulation: Evolution and Adaptation. Photobiomodul Photomed Laser Surg 2022; 40:213-233. [DOI: 10.1089/photob.2021.0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nancy B. Lipko
- Nancy B. Lipko, MD, MBA, Home Office, Beachwood, Ohio, USA
| |
Collapse
|
22
|
Suh H, Lee J, Ahn SH, Song W, Li L, Lee YM, Seol YJ, Koo KT. Repeated irradiation by light-emitting diodes may impede the spontaneous progression of experimental periodontitis: a preclinical study. J Periodontal Implant Sci 2022; 53:120-134. [PMID: 36468480 PMCID: PMC10133817 DOI: 10.5051/jpis.2202320116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE We investigated whether repeated irradiation with light-emitting diodes (LEDs) at a combination of 470 nm and 525 nm could suppress the progression of experimental periodontitis. METHODS A experimental periodontitis model was established in the second, third, and fourth premolars of the mandible in beagle dogs for 2 months. The spontaneous progression of periodontitis was monitored under the specified treatment regimen for 3 months. During this period, the animals were subjected to treatments of either plaque control only (control) or plaque control with LED application (test) at 2-week intervals. The clinical parameters included the probing pocket depth (PPD), gingival recession (GR), and the clinical attachment level (CAL). Histomorphometric analysis was performed using measurements of the length of the junctional epithelium, connective tissue (CT) zone, and total soft tissue (ST). RESULTS There were significant differences in PPD between the control and test groups at baseline and 12 weeks. When the change in PPD was stratified based on time intervals, it was shown that greater differences occurred in the test group, with statistical significance for baseline to 12 weeks, 6 to 12 weeks, and baseline to 6 weeks. There was no significant difference in GR between the control and test groups at any time points. Likewise, no statistically significant differences were found in GR at any time intervals. CAL showed a statistically significant difference between the control and test groups at baseline only, although significant differences in CAL were observed between baseline and 12 weeks and between 6 and 12 weeks. The proportion of CT to ST was smaller for both buccal and lingual areas in the control group than in the test group. CONCLUSIONS Repeated LED irradiation with a combination of 470-nm and 525-nm wavelengths may help suppress the progression of periodontal disease.
Collapse
Affiliation(s)
- Hyemee Suh
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea
| | - Jungwon Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
- One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, Korea
| | - Sun-Hee Ahn
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, Korea
| | - Woosub Song
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, Korea
| | - Ling Li
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea
| | - Yang-Jo Seol
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea
| | - Ki-Tae Koo
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea
| |
Collapse
|
23
|
Reza B, Soheil N, Ehsan B, Kourosh S, Reza F. Efficacy of photo bio-modulation therapy for pain relief and soft tissue wound healing after dental implant surgery: A double-blind randomized clinical trial. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
The role of UV and blue light in photo-eradication of microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Dawoud LE, Hegazy EM, Galhom RA, Youssef MM. Photobiomodulation therapy upregulates the growth kinetics and multilineage differentiation potential of human dental pulp stem cells-an in vitro Study. Lasers Med Sci 2021; 37:1993-2003. [PMID: 34787763 DOI: 10.1007/s10103-021-03461-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022]
Abstract
This study aims to evaluate the impact of red LED irradiation on the viability, proliferation, colonogenic potential, markers expression along with osteogenic and chondrogenic differentiation of dental pulp stem cells. DPSCs were isolated from sound human permanent teeth using enzymatic digestion method and seeded with regular culture media. Cells at P4 were irradiated using red LED Light (627 nm, 2 J/cm2) and examined for growth kinetics, and multilineage differentiation using the appropriate differentiation media. The irradiated groups showed an increase in cellular growth rates, cell viability, clonogenic potential, and decrease in population doubling time compared to the control group. Cells of the irradiated groups showed enhanced differentiation towards osteogenic and chondrogenic lineages as revealed by histochemical staining using alizarin red and alcian blue stains. Photobiomodulation is an emerging promising element of tissue engineering triad besides stem cells, scaffolds, and growth factors.
Collapse
Affiliation(s)
- Lama E Dawoud
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, Ismailia, 41523, Egypt.
| | - Enas M Hegazy
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, Ismailia, 41523, Egypt
| | - Rania A Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41523, Egypt
| | - Mervat M Youssef
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, Ismailia, 41523, Egypt
| |
Collapse
|
26
|
Chen IC, Su CY, Fang CH, Fang HW. Preventative treatment of red light-emitting diode protected osteoarthritis-like chondrocytes from oxidative stress-induced inflammation and promoted matrix gene expression. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Celebi F, Bicakci AA, Kelesoglu U. Effectiveness of low-level laser therapy and chewing gum in reducing orthodontic pain: A randomized controlled trial. Korean J Orthod 2021; 51:313-320. [PMID: 34556585 PMCID: PMC8461383 DOI: 10.4041/kjod.2021.51.5.313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/29/2021] [Indexed: 11/25/2022] Open
Abstract
Objective The purpose of this study was to evaluate the effects of chewing gum and low-level laser therapy in alleviating orthodontic pain induced by the initial archwire. Methods Patients with 3–6 mm maxillary crowding who planned to receive non-extraction orthodontic treatment were recruited for the study. Sixty-three participants (33 females and 30 males) were randomly allocated into three groups laser, chewing gum, and control. In the laser group, a gallium aluminum arsenide (GaAlAs) diode laser with a wavelength of 820 nm was used to apply a single dose immediately after orthodontic treatment began. In the chewing gum group, sugar-free gum was chewed three times for 20 minutes—immediately after starting treatment, and at the twenty-fourth and forty-eighth hours of treatment. Pain perception was measured using a visual analog scale at the second, sixth, and twenty-fourth hours, and on the second, third, and seventh days. Results There were no statistically significant differences between the groups at any measured time point (p > 0.05). The highest pain scores were detected at the twenty-fourth hour of treatment in all groups. Conclusions Within the limitations of the study, we could not detect whether low-level laser therapy and chewing gum had any clinically significant effect on orthodontic pain. Different results may be obtained with a higher number of participants or using lasers with different wavelengths and specifications. Although the study had a sufficient number of participants according to statistical analysis, higher number of participants could have provided more definitive outcomes.
Collapse
Affiliation(s)
- Fatih Celebi
- Department of Orthodontics, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Ali Altug Bicakci
- Department of Orthodontics, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Ufuk Kelesoglu
- Department of Orthodontics, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
28
|
Dourado DM, Matias R, da Silva BAK, Milanesi FF, Martello MD, Dos Santos CHM, Cardoso CAL, Vieira WF, da Cruz-Höfling MA. Benefits of Sebastiania hispida (Euphorbiaceae) extract and photobiomodulation therapy as potentially adjunctive strategies to be explored against snake envenoming. Photochem Photobiol Sci 2021; 20:1069-1085. [PMID: 34341968 DOI: 10.1007/s43630-021-00081-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to assess the topic use of Sebastiania hispida extract and low-level gallium-arsenide laser irradiation (GaAs, 904 nm) to reduce the local myonecrosis and edema of Bothrops moojeni snake venom-injected gastrocnemius. Wistar rats receiving intramuscular venom injection (VBm) were compared with saline control (S) and envenomed rats receiving local exposure to plant extract (VExt) or laser irradiation (VL). The phytochemistry and thin-layer chromatography of S. hispida extract indicated the presence of phenolic compounds like gallic acid and flavonoids including quercetin. Gastrocnemius of VExt and VL groups had a significant reduction of edema and creatine kinase (CK) activities and a greater Myogenin (MyoG) expression compared to VBm group, with the plant extract efficacy better than laser exposure. Reduction of edema and serum CK activities reflects a lessening of muscle damage, whereas the increase of MyoG indicates myoblast differentiation and acceleration of muscle repair. The S. hispida richness in phenolic compounds and flavonoids, such as the light modulatory ability to triggering a multitude of cell signalings likely underlie the positive outcomes. Our findings suggest both treatments as potential auxiliary tools to be explored in clinical trials in combination with anti-venom therapy after Bothropic snakebites.
Collapse
Affiliation(s)
- Doroty Mesquita Dourado
- Laboratory of Toxicology and Medicinal Plants, Anhanguera-Uniderp University, Campo Grande, MS, Brazil
- Postgraduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rosemary Matias
- Postgraduate Program in Environment and Regional Development, Anhanguera-Uniderp University, Campo Grande, MS, Brazil
| | - Baldomero Antonio Kato da Silva
- Postgraduate Program in Biomedical Sciences, Federal University of Delta do Parnaíba (UFDPar), Av. São Sebastião 2819, Parnaíba, PI, 64202-020, Brazil.
| | - Fiorela Faria Milanesi
- Health and Environment: Biodiversity Program at Oswaldo Cruz Foundation MS, Campo Grande, MS, Brazil
| | - Mayra Duarte Martello
- Postgraduate Program in Biochemistry and Molecular Biology, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | | | | | - Willians Fernando Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
29
|
Razzaghi MR, Ghazimoradi MH, Afzali S, Kamani E, Mohajerani E, Shirkavand A, Farivar S. Effect of a Low-Level Laser on Liposomal Doxorubicin Efficacy in a Melanoma Cell Line. J Lasers Med Sci 2021; 12:e28. [PMID: 34733751 PMCID: PMC8558725 DOI: 10.34172/jlms.2021.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022]
Abstract
Introduction: The cytotoxicity of chemotherapy drugs is a significant challenge in the way of surmounting cancer. Liposomal drug delivery has proven to be efficacious in increasing the function of the drugs. Its potential to accumulate drugs in the target site and enhance the efficiency of anti-cancer agents with lower doses hinders their cytotoxicity on normal healthy cells. Since the release of drugs from liposomes is not generally on a controlled basis, several studies have suggested that external stimuli including lasers could be used to induce controlled release and boost the efficiency of liposomal drug delivery systems (LDDSs). Methods: The A375 cancer cell line was used and exposed to the liposomes containing doxorubicin in the presence of a low-level laser beam to investigate its effect on the liposomal stimuli-responsiveness release and its toxicity on cancer cells. So as to achieve that goal, Annexin V/PI was employed to analyze the number of cells that underwent apoptosis and necrosis. Results: Here, we report the effect of laser irradiation on LDDSs. According to the results obtained from the annexin V/PI assay, the pattern of viability status has shifted, so that the number of pre-apoptotic cells treated with liposomal doxorubicin and a laser beam was more than that of cells treated with only liposomal doxorubicin. Conclusion: The use of stimuli-responsive LDDSs, in this case, laser-responsive, has led to favorable circumstances in the treatment of cancer, offering enhanced cancer cell cytotoxicity.
Collapse
Affiliation(s)
- Mohammad Reza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghazimoradi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shervin Afzali
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ehsan Kamani
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ezeddin Mohajerani
- POMP Lab, Photonics Department, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Afshan Shirkavand
- POMP Lab, Photonics Department, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Shirin Farivar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
30
|
Li X, Liu C, Wang R. Light Modulation of Brain and Development of Relevant Equipment. J Alzheimers Dis 2021; 74:29-41. [PMID: 32039856 DOI: 10.3233/jad-191240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Light modulation plays an important role in understanding the pathology of brain disorders and improving brain function. Optogenetic techniques can activate or silence targeted neurons with high temporal and spatial accuracy and provide precise control, and have recently become a method for quick manipulation of genetically identified types of neurons. Photobiomodulation (PBM) is light therapy that utilizes non-ionizing light sources, including lasers, light emitting diodes, or broadband light. It provides a safe means of modulating brain activity without any irreversible damage and has established optimal treatment parameters in clinical practice. This manuscript reviews 1) how optogenetic approaches have been used to dissect neural circuits in animal models of Alzheimer's disease, Parkinson's disease, and depression, and 2) how low level transcranial lasers and LED stimulation in humans improves brain activity patterns in these diseases. State-of-the-art brain machine interfaces that can record neural activity and stimulate neurons with light have good prospects in the future.
Collapse
Affiliation(s)
- Xiaoran Li
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
31
|
Del Vecchio A, Tenore G, Luzi MC, Palaia G, Mohsen A, Pergolini D, Romeo U. Laser Photobiomodulation (PBM)-A Possible New Frontier for the Treatment of Oral Cancer: A Review of In Vitro and In Vivo Studies. Healthcare (Basel) 2021; 9:healthcare9020134. [PMID: 33572840 PMCID: PMC7911589 DOI: 10.3390/healthcare9020134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/06/2023] Open
Abstract
The treatment of oral squamous cell carcinoma (OSCC) is particularly complex due to its aggressive behavior, location, the patient’s age, and its spread at diagnosis. In recent years, photobiomodulation (PBM) has been introduced in different medical fields; however, its application, in patients suffering from OSCC for palliative support or to induce analgesia, has been hotly debated due to the possibility that the cell growth stimuli induced by PBM could lead to a worsening of the lesions. The aim of this study is to review the literature to observe the available data investigating the effect of PBM on cancer cells in vitro and in vivo. A review was conducted on the PubMed and Scopus databases. A total of twelve studies met the inclusion criteria and were therefore included for quality assessment and data extraction. The analysis showed that the clinical use of PBM is still only partially understood and is, therefore, controversial. Some authors stated that it could be contraindicated for clinical use in patients suffering from SCC, while others noted that it could have beneficial effects. According to the data that emerged from this review, it is possible to hypothesize that there are possibilities for PBM to play a beneficial role in treating cancer patients, but further evidence about its clinical efficacy and the identification of protocols and correct dosages is still needed.
Collapse
|
32
|
Glass GE. Photobiomodulation: A review of the molecular evidence for low level light therapy. J Plast Reconstr Aesthet Surg 2020; 74:1050-1060. [PMID: 33436333 DOI: 10.1016/j.bjps.2020.12.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/18/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022]
Abstract
Light energy is harnessed for therapeutic use in a number of ways, most recently by way of photobiomodulation (PBM). This phenomenon is a cascade of physiological events induced by the nonthermal exposure of tissue to light at the near infrared end of the visible spectrum. Therapeutic PBM has become a highly commercialized interest, marketed for everything from facial rejuvenation to fat loss, and diode-based devices are popular in both the clinic setting and for use at home. The lack of regulatory standards makes it difficult to draw clear conclusions about efficacy and safety but it is crucial that we understand the theoretical basis for PBM, so that we can engage in an honest dialogue with our patients and design better clinical studies to put claims of efficacy to the test. This article presents a summary of the science of PBM and examines the differences between laser light, on which much of the preclinical evidence is based and light from diodes, which are typically used in a clinical setting.
Collapse
Affiliation(s)
- Graeme E Glass
- Department of Surgery, Sidra Medicine, Doha, Qatar; Chair, laser safety committee, Sidra Medicine, Doha, Qatar; Weill Cornell Medical College, New York and Qatar.
| |
Collapse
|
33
|
Sundaram P, Abrahamse H. Phototherapy Combined with Carbon Nanomaterials (1D and 2D) and their Applications in Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4830. [PMID: 33126750 PMCID: PMC7663006 DOI: 10.3390/ma13214830] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Carbon-based materials have attracted research interest worldwide due to their physical and chemical properties and wide surface area, rendering them excellent carrier molecules. They are widely used in biological applications like antimicrobial activity, cancer diagnosis, bio-imaging, targeting, drug delivery, biosensors, tissue engineering, dental care, and skin care. Carbon-based nanomaterials like carbon nanotubes and graphene have drawn more attention in the field of phototherapy due to their unique properties such as thermal conductivity, large surface area, and electrical properties. Phototherapy is a promising next-generation therapeutic modality for many modern medical conditions that include cancer diagnosis, targeting, and treatment. Phototherapy involves the major administration of photosensitizers (PSs), which absorb light sources and emit reactive oxygen species under cellular environments. Several types of nontoxic PSs are functionalized on carbon-based nanomaterials and have numerous advantages in cancer therapy. In this review, we discuss the potential role and combined effect of phototherapy and carbon nanomaterials, the mechanism and functionalization of PSs on nanomaterials, and their promising advantages in cancer therapy.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
34
|
Dose Analysis of Photobiomodulation Therapy in Stomatology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8145616. [PMID: 33014111 PMCID: PMC7519198 DOI: 10.1155/2020/8145616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022]
Abstract
The penetration depth and the power density of photobiomodulation (PBM) in human tissue under real conditions remain unclear to date. A novel quantitative measurement method was proposed in this study. This study aimed to design a noninvasive measurement system for the quantitative calculation of PBM dose on the attached gingiva. A flexible facial fixture appliance (FFFA) and nine piece detectors were mounted on the retainer to detect the real dose of 660 and 830 nm lasers on the attached gingiva. In addition, the angular distribution of light scattering and the light propagation in the biotissue were obtained. Two cases (a female and a male) are presented in this study. Experimental results demonstrated that the real power density of laser in the target tissue can be measured exactly after the laser light penetrates the orbicularis oris. Simulation results match with real conditions. Conversely, slight differences in power density are observed in the tissue radiated with collimated and uncollimated laser. The proposed method can be used to calculate the real dose in the target tissue for stomatology and deep acupoint stimulation.
Collapse
|
35
|
Vafaei-Nezhad S, Pour Hassan M, Noroozian M, Aliaghaei A, Shirazi Tehrani A, Abbaszadeh HA, Khoshsirat S. A Review of Low-Level Laser Therapy for Spinal Cord Injury: Challenges And Safety. J Lasers Med Sci 2020; 11:363-368. [PMID: 33425285 DOI: 10.34172/jlms.2020.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: Damage to the spinal cord is a central nervous system disorder that results in direct damage to neural cells (axons, cell bodies) and glia, followed by autonomic, motor and sensory impairments. Inflammatory response after this injury can contribute to secondary tissue damage that leads to further behavioral and functional disorders. Inflammation is a complex process, which occurs after an injury. If this progressive process is not well controlled can lead to additional damage to the spinal cord which is preventing neural improvement and regeneration and, which ultimately will not provide good clinical consequences. Inflammation in the injured spinal cord is a physiological response that causes the death of glial and neuronal cells. The reduction of the initial inflammatory process after damage to the spinal cord is one of the important therapeutic strategies. It has been proposed that low-level laser (LLL) therapy, as a noninvasive manner, can modulate inflammatory processes, which leads to a significant improvement in neurological symptoms after spinal cord injury (SCI). Methods: A comprehensive review was performed on SCI, the etiologies, and treatment methods using the keywords spinal cord injury, low-level laser, and inflammation in valid medical databases such as Google Scholar, PubMed, and Elsevier (76 articles). Among the collected papers, articles that were most relevant to the purposes of the study were selected and studied. Results: LLL therapy was able to reduce inflammation and also attenuate neuronal damage after spinal cord damage. Conclusion: The present study illustrates that LLL therapy has positive effects on improving functional recovery and regulating the inflammatory function in the SCI.
Collapse
Affiliation(s)
- Saeed Vafaei-Nezhad
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Pour Hassan
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Noroozian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Shirazi Tehrani
- Faculty of Paramedical Science, Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Khoshsirat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Santinoni CS, Neves APC, Almeida BFM, Kajimoto NC, Pola NM, Caliente EA, Belem ELG, Lelis JB, Fucini SE, Messora MR, Garcia VG, Bomfim SRM, Ervolino E, Nagata MJH. Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization. J Biomed Mater Res A 2020; 109:849-858. [PMID: 32815657 DOI: 10.1002/jbm.a.37076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
The present study evaluated bone marrow aspirate (BMA) and low-level laser therapy (LLLT) on bone healing. It was created critical-size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt-related transcription factor-2 (Runx2), bone morphogenetic protein-2 (BMP-2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP-2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP-2, OPN, and OCN.
Collapse
Affiliation(s)
- Carolina S Santinoni
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), UNOESTE-University of Western Sao Paulo, Presidente Prudente, Brazil.,Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Adrieli P C Neves
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), UNOESTE-University of Western Sao Paulo, Presidente Prudente, Brazil.,Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Breno F M Almeida
- Division of Clinical, Surgery and Animal Reproduction, Veterinary School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Natália C Kajimoto
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Natália M Pola
- Division of Periodontics, Dental School of Pelotas, Federal University of Pelotas-UFPel, Pelotas, Brazil
| | - Eliana A Caliente
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Eduarda L G Belem
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Joilson B Lelis
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Stephen E Fucini
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil.,Periodontics, Private Practice, Hanover, New Hampshire, USA
| | - Michel R Messora
- Division of Periodontics, School of Dentistry of Ribeirão Preto, University of São Paulo-USP, São Paulo, Brazil
| | - Valdir G Garcia
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Suely R M Bomfim
- Division of Clinical, Surgery and Animal Reproduction, Veterinary School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Edilson Ervolino
- Division of Histology, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Maria J H Nagata
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| |
Collapse
|
37
|
Tripodi N, Feehan J, Husaric M, Kiatos D, Sidiroglou F, Fraser S, Apostolopoulos V. Good, better, best? The effects of polarization on photobiomodulation therapy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960230. [PMID: 32077232 DOI: 10.1002/jbio.201960230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Photobiomodulation therapy (PBMT) is a widely adopted form of phototherapy used to treat many chronic conditions that effect the population at large. The exact physiological mechanisms of PBMT remain unsolved; however, the prevailing theory centres on changes in mitochondrial function. There are many irradiation parameters to consider when investigating PBMT, one of which is the state of polarization. There is some evidence to show that polarization of red and near-infrared light may promote different and/or increased biological activity when compared to otherwise identical non-polarized light. These enhanced cellular effects may also be present when the polarized light is applied linear to the tissue direction. Herein, we synthesize the current experimental and clinical evidence pertaining to polarized photobiomodulation therapy; ultimately, to better inform future research into this area of phototherapy.
Collapse
Affiliation(s)
- Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- First Year College, Victoria University, Melbourne, Australia
| | - Jack Feehan
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
| | - Maja Husaric
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- First Year College, Victoria University, Melbourne, Australia
| | - Dimitrios Kiatos
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Fotios Sidiroglou
- First Year College, Victoria University, Melbourne, Australia
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | | |
Collapse
|
38
|
Lou Z, Gong T, Kang J, Xue C, Ulmschneider C, Jiang JJ. The Effects of Photobiomodulation on Vocal Fold Wound Healing: In Vivo and In Vitro Studies. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 37:532-538. [PMID: 31503536 DOI: 10.1089/photob.2019.4641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Photobiomodulation (PBM) is increasingly used in dermatology and dentistry due to its benefit of promoting wound healing and relieving pain; however, there is no corresponding research report on the application of PBM to vocal fold wound healing. Objective: To assess the potential wound-healing effects of PBM on the vocal folds via in vivo and in vitro experiments. Materials and methods: In in vitro study, vocal fold fibroblasts (VFFs) were irradiated under a diode laser with wavelength of 635 nm at energy density of 8 J/cm2. The Cell Counting Kit-8 (CCK-8) assay was used to study the viability of VFFs, and the gene expressions of COL1A2, COL3A1, IL-6, HAS2, and COX-2 were investigated by real-time polymerase chain reaction (RT-PCR). In in vivo study, 15 rabbits were used. Lamina propria of the left vocal folds of 12 rabbits was unilaterally stripped, and 6 of them were treated with PBM. The remaining three rabbits served as normal controls. After 3 months, all animals were sacrificed to obtain histological results. We used laryngoscope to record images of the healing phase. Results: Irradiation with energy density of 8 J/cm2 resulted in a 2.8% increase in cell proliferation (p < 0.05). However, the difference between the experimental and the control group became larger after 48 and 72 h of subsequent irradiation. RT-PCR results showed that the expression of COL1A2, COL3A1, and HAS2 was higher, and the expression of IL-6 and COX-2 was lower. Histological examination showed that, compared with the injury group, hyaluronic acid (HA) increased significantly, collagen deposition decreased, and the configuration of collagen was more organized after PBM treatment. Conclusions: PBM can inhibit inflammatory reaction and promote the secretion of HA to decrease the deposition of collagen and regenerate vocal fold tissue without scar.
Collapse
Affiliation(s)
- Zhewei Lou
- The Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Ting Gong
- The Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Jing Kang
- The Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Chao Xue
- The Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Christopher Ulmschneider
- Division of Otolaryngology-Head and Neck Surgery, The Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jack J Jiang
- The Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| |
Collapse
|
39
|
Sommer AP. Mitochondrial solar sensitivity: evolutionary and biomedical implications. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:161. [PMID: 32310246 PMCID: PMC7154450 DOI: 10.21037/atm.2019.11.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Sommer AP, Schemmer P, Pavláth AE, Försterling HD, Mester ÁR, Trelles MA. Quantum biology in low level light therapy: death of a dogma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:440. [PMID: 32395484 PMCID: PMC7210155 DOI: 10.21037/atm.2020.03.159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background It is shown that despite exponential increase in the number of clinically exciting results in low level light therapy (LLLT), scientific progress in the field is retarded by a wrong fundamental model employed to explain the photon-cell interaction as well as by an inadequate terminology. This is reflected by a methodological stagnation in LLLT, persisting since 1985. The choice of the topics is, by necessity, somewhat arbitrary. Obviously, we are writing more about the fields we know more about. In some cases, there are obvious objective reasons for the choice. Progress in LLLT is currently realized by a trial and error process, as opposed to a systematic approach based on a valid photon-cell interaction model. Methods The strategy to overcome the current problem consists in a comprehensive analysis of the theoretical foundation of LLLT, and if necessary, by introducing new interaction models and checking their validity on the basis of the two pillars of scientific advance (I) agreement with experiment and (II) predictive capability. The list of references used in this work, does contain a representative part of what has been done in the photon-cell interaction theory in recent years, considered as ascertained by the scientific community. Results Despite the immense literature on the involvement of cytochrome c oxidase (COX) in LLLT, the assumption that COX is the main mitochondrial photoacceptor for R-NIR photons no longer can be counted as part of the theoretical framework proper, at least not after we have addressed the misleading points in the literature. Here, we report the discovery of a coupled system in mitochondria whose working principle corresponds to that of field-effect transistor (FET). The functional interplay of cytochrome c (emitter) and COX (drain) with a nanoscopic interfacial water layer (gate) between the two enzymes forms a biological FET in which the gate is controlled by R-NIR photons. By reducing the viscosity of the nanoscopic interfacial water layers within and around the mitochondrial rotary motor in oxidatively stressed cells R-NIR light promotes the synthesis of extra adenosine triphosphate (ATP). Conclusions Based on the results of our own work and a review of the published literature, we present the effect of R-NIR photons on nanoscopic interfacial water layers in mitochondria and cells as a novel understanding of the biomedical effects R-NIR light. The novel paradigm is in radical contrast to the theory that COX is the main absorber for R-NIR photons and responsible for the increase in ATP synthesis, a dogma propagated for more than 20 years.
Collapse
Affiliation(s)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria
| | - Attila E Pavláth
- Past President American Chemical Society, Western Regional Research Center, Albany, CA, USA
| | | | - Ádám R Mester
- National Laser Therapy Centre, Péterfy Sándor Teaching Hospital, Budapest, Hungary
| | - Mario A Trelles
- Plastic-Aesthetic Surgery, Vilafortuny Laser Centre, Jumeirah, Dubai, United Arab Emirates
| |
Collapse
|
41
|
Pereira FLC, Ferreira MVL, da Silva Mendes P, Rossi FM, Alves MP, Alves BLP. Use of a High-Power Laser for Wound Healing: A Case Report. J Lasers Med Sci 2020; 11:112-114. [PMID: 32099637 DOI: 10.15171/jlms.2020.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: The use of low-level laser therapy to treat wounds and accelerate tissue healing has extensively been studied in recent years. The aim of this article is to describe a clinical case using an unfocused high-power laser instead of a low-power laser for therapy. Case Report: In the present article, we present the use of a high-power diode laser to treat an extensive knee injury that occurred after surgical treatment for total prosthesis due to border ischemia resulting from prolonged use of autostatic retractors. Conclusion: It is possible to use an unfocused high-power laser at a decreased intensity to accelerate healing as an adjuvant in the treatment of complicated wounds. This procedure results in reduced application time and cost and an excellent tissue response pattern similar to that reported in the literature with low-power lasers.
Collapse
|
42
|
Shen D, Wei J, Chen L, Shen X, Wang L. Besides Photothermal Effects, Low-Level CO 2 Laser Irradiation Can Potentiate Skin Microcirculation Through Photobiomodulation Mechanisms. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 37:151-158. [PMID: 31050951 DOI: 10.1089/photob.2018.4570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Improvement of microcirculation is one of the important mechanisms of low-level laser therapy (LLLT) to treat some diseases such as wound healing. Most previous studies have been carried out with multiple lasers other than the 10,600-nm CO2 laser. Recently, the CO2 laser has been used not only as a tool for excision of soft tissues but also for therapeutic applications. Objective: To study whether low-level CO2 laser irradiation can influence microcirculation and further explore the underlying mechanisms. Methods: Seventy-milliwatt (70-mW) CO2 lasers irradiated the forearms of 12 participants and skin blood perfusion (SkBP) was measured with a laser speckle imager. The thermal effect of irradiation was evaluated by measuring the irradiated skin in vivo and the exposed cell suspensions in vitro. Extracellular adenosine triphosphate (eATP) of the human mast cell line (HMC-1) is assessed by luciferin-luciferase assay to explore the potential mechanisms. Results: Irradiation caused dose-dependent increase in SkBP. At a medium dose of 262 J/cm2, SkBP reached its maximum value at 195.8% ± 18.6% of the baseline (n = 12, p < 0.01). Such laser irradiation had a mild thermal effect, heating local skin temperature (SkT) by 6.1°C ± 0.3°C (n = 10) and warming cell suspensions by 4.5°C ± 0.8°C (n = 6). Irradiation dose-dependently lowered eATP levels of HMC-1 cells in vitro. At a medium dose of 262 J/cm2, eATP levels declined to the minimum at 74.8% ± 5.5% of the baseline (n = 12, p < 0.01). This downregulation effect could be significantly inhibited by 100-μM ARL67156, a nonspecific ecto-ATPase inhibitor. On the contrary, heating itself slightly raised the level of eATP. Conclusions: Low-level CO2 laser irradiation can improve microcirculation. Besides the thermal effect, regulation of extravascular eATP by the photobiomodulation mechanism may be involved. This implies that CO2 lasers might be used in LLLT.
Collapse
Affiliation(s)
- Dan Shen
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianzi Wei
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianjing Chen
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,2 Shanghai Research Center for Acupuncture and Meridians, Shanghai, China.,3 Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, Shanghai, China
| | - Lina Wang
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,2 Shanghai Research Center for Acupuncture and Meridians, Shanghai, China.,3 Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, Shanghai, China
| |
Collapse
|
43
|
Yamada EF, Bobinski F, Martins DF, Palandi J, Folmer V, da Silva MD. Photobiomodulation therapy in knee osteoarthritis reduces oxidative stress and inflammatory cytokines in rats. JOURNAL OF BIOPHOTONICS 2020; 13:e201900204. [PMID: 31568634 DOI: 10.1002/jbio.201900204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Knee osteoarthritis (OA) is a chronic disease that causes pain and gradual degeneration of the articular cartilage. In this study, MIA-induced OA knee model was used in rats to test the effects of the photobiomodulation therapy (PBM). We analyzed the inflammatory process (pain and cytokine levels), and its influence on the oxidative stress and antioxidant capacity. Knee OA was induced by monosodium iodoacetate (MIA) intra-articular injection (1.5 mg/50 μL) and the rats were treated with eight sessions of PBM 3 days/week (904 nm, 6 or 18 J/cm2 ). For each animal, mechanical and cold hyperalgesia and spontaneous pain were evaluated; biological analyses were performed in blood serum, intra-articular lavage, knee structures, spinal cord and brainstem. Cytokine assays were performed in knee, spinal cord and brainstem samples. The effects of the 18 J/cm2 dose of PBM were promising in reducing pain and neutrophil activity in knee samples, together with reducing oxidative stress damage in blood serum and spinal cord samples. PBM improved the antioxidant capacity in blood serum and brainstem, and decreased the knee pro-inflammatory cytokine levels. Our study demonstrated that PBM decreased oxidative damage, inflammation and pain. Therefore, this therapy could be an important tool in the treatment of knee OA.
Collapse
Affiliation(s)
- Eloá F Yamada
- Department of Physical Therapy, Universidade Federal do Pampa (Unipampa), Uruguaiana, Rio Grande do Sul, Brazil
| | - Franciane Bobinski
- Laboratory of Experimental Neuroscience (LaNEx), Universidade do Sul de Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Daniel F Martins
- Laboratory of Experimental Neuroscience (LaNEx), Universidade do Sul de Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Juliete Palandi
- Department of Physical Therapy, Center for Health and Sports Sciences, Universidade do Estado de Santa Catarina (UDESC), Florianópolis, Santa Catarina, Brazil
| | - Vanderlei Folmer
- Department of Physical Therapy, Universidade Federal do Pampa (Unipampa), Uruguaiana, Rio Grande do Sul, Brazil
| | - Morgana D da Silva
- Department of Physical Therapy, Universidade Federal do Pampa (Unipampa), Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
44
|
Fornaini C, Arany P, Rocca JP, Merigo E. Photobiomodulation in Pediatric Dentistry: A Current State-of-the-Art. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:798-813. [DOI: 10.1089/photob.2019.4722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Carlo Fornaini
- UFR Odontologie, Laboratoire MicOralIS (Microbiologie Orale, Immunothérapie et Santé) EA7354, Université Nice Sophia Antipolis, Nice, France
- Group of Applied ElectroMagnetics, Department of Engineering and Architecture, University of Parma, Parma, Italy
- Dentistry, Special Needs and Maxillo–Facial Surgery Unit, Hospital “Guglielmo da Saliceto”, Piacenza, Italy
| | - Praveen Arany
- Oral Biology and Biomedical Engineering, University of Buffalo, Buffalo, New York
| | - Jean-Paul Rocca
- UFR Odontologie, Laboratoire MicOralIS (Microbiologie Orale, Immunothérapie et Santé) EA7354, Université Nice Sophia Antipolis, Nice, France
| | - Elisabetta Merigo
- UFR Odontologie, Laboratoire MicOralIS (Microbiologie Orale, Immunothérapie et Santé) EA7354, Université Nice Sophia Antipolis, Nice, France
- Dentistry, Special Needs and Maxillo–Facial Surgery Unit, Hospital “Guglielmo da Saliceto”, Piacenza, Italy
| |
Collapse
|
45
|
Yamaguchi M, Fujita S, Yoshida T, Oikawa K, Utsunomiya T, Yamamoto H, Kasai K. Low-energy laser irradiation stimulates the tooth movement velocity via expression of M-CSF andc-fms. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.odw.2007.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Masaru Yamaguchi
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Shouji Fujita
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Takamasa Yoshida
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Katsura Oikawa
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Tadahiko Utsunomiya
- Department of Oral Pathology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Hirotsugu Yamamoto
- Department of Oral Pathology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Kazutaka Kasai
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| |
Collapse
|
46
|
Gholami L, Asefi S, Hooshyarfard A, Sculean A, Romanos GE, Aoki A, Fekrazad R. Photobiomodulation in Periodontology and Implant Dentistry: Part 1. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:739-765. [PMID: 31750783 DOI: 10.1089/photob.2019.4710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
(Part 2 of this article can be located at www.liebertpub.com/doi/10.1089/photob.2019.4731.) Objective: Finding evidence-based treatment strategies for low-level light therapy (LLLT) and the correct incorporation of these treatment methods in the clinical practice of periodontics. Background: Photobiomodulation has been shown to have biostimulatory, anti-inflammatory and analgesic effects that can be beneficial in periodontal and dental implant treatment procedures. Methods: In this review we have addressed some clinical questions regarding the potential clinical application of low-level light irradiation and its photobiomodulatory effects in periodontology and implantology. The literature was searched for in vivo (animal or clinical) articles written in English in four electronic databases of PubMed, Scopus, Google Scholar, and Cochrane Library until April 2019. Only studies with low irradiation doses without any thermal effects used only for their photobiomodulatory purposes were included. Results: We were able to find relevant studies for all of our questions, and positive effects for the application of light therapy were reported in most of the studies. However, there is still great deal of heterogeneity in terms of study designs and most importantly in light irradiation devices and the parameters used. Owing to this issue it was not possible to reach specific evidence-based irradiation protocols for the questions addressed in this review. Conclusions: Based on our search results, an obvious positive effect of LLLT on stimulation of healing of periodontal soft and hard tissues and reduction of inflammation can be seen. Future well-designed randomized control studies with the same irradiation settings and systematic reviews evaluating the studies found on the questions mentioned are necessary to reach evidence-based recommendations.
Collapse
Affiliation(s)
- Leila Gholami
- Dental Implants Research Center, Department of Periodontology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sohrab Asefi
- Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirarsalan Hooshyarfard
- Dental Implants Research Center, Department of Periodontology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Anton Sculean
- Department of Periodontology, School of Dentistry, University of Bern, Bern, Switzerland
| | - Georgios E Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, New York
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
47
|
Merigo E, Rocca JP, Pinheiro ALB, Fornaini C. Photobiomodulation Therapy in Oral Medicine: A Guide for the Practitioner with Focus on New Possible Protocols. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:669-680. [PMID: 31589560 DOI: 10.1089/photob.2019.4624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Photobiomodulation (PBM) is the term to define the wide range of laser applications using low-energy densities and based on photochemical mechanisms where the energy is transferred to the intracellular mitochondrial chromophores and respiratory chain components. In literature, a great number of works are reported showing the advantages of PBM use in many oral diseases such as recurrent aphthous stomatitis, herpes infections, mucositis, and burning mouth syndrome. Different factors may explain the increasing reported use of PBM in oral medicine: the absence of side effects, the possibility of safely treating compromised patients such as oncologic patients, the possibility of a noninvasive approach not associated with pain or discomfort, and the possibility of performing short sessions. The review's aim is to describe the possible applications of PBM in oral medicine, giving practitioners simple guide for practice together with the information of a new treatment possibility "at home" performed by the patient himself under supervision.
Collapse
Affiliation(s)
- Elisabetta Merigo
- Micoralis Research Laboratory EA 7354, Faculty of Dentistry, University of Côte d'Azur, Nice, France.,Dentistry, Special Needs and Maxillo-Facial Surgery Unit, Hospital Guglielmo da Saliceto, Piacenza, Italy
| | - Jean-Paul Rocca
- Micoralis Research Laboratory EA 7354, Faculty of Dentistry, University of Côte d'Azur, Nice, France
| | | | - Carlo Fornaini
- Micoralis Research Laboratory EA 7354, Faculty of Dentistry, University of Côte d'Azur, Nice, France.,Dentistry, Special Needs and Maxillo-Facial Surgery Unit, Hospital Guglielmo da Saliceto, Piacenza, Italy.,GAEM, Group of Applied ElectroMagnetics, Department of Engineering and Architecture, University of Parma, Parma, Italy
| |
Collapse
|
48
|
Mitra S, Nguyen LN, Akter M, Park G, Choi EH, Kaushik NK. Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation. Cancers (Basel) 2019; 11:E1030. [PMID: 31336648 PMCID: PMC6678366 DOI: 10.3390/cancers11071030] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
For the last few decades, while significant improvements have been achieved in cancer therapy, this family of diseases is still considered one of the deadliest threats to human health. Thus, there is an urgent need to find novel strategies in order to tackle this vital medical issue. One of the most pivotal causes of cancer initiation is the presence of reactive oxygen species (ROS) inside the body. Interestingly, on the other hand, high doses of ROS possess the capability to damage malignant cells. Moreover, several important intracellular mechanisms occur during the production of ROS. For these reasons, inducing ROS inside the biological system by utilizing external physical or chemical methods is a promising approach to inhibit the growth of cancer cells. Beside conventional technologies, cold atmospheric plasmas are now receiving much attention as an emerging therapeutic tool for cancer treatment due to their unique biophysical behavior, including the ability to generate considerable amounts of ROS. This review summarizes the important mechanisms of ROS generated by chemical, physical, and plasma approaches. We also emphasize the biological effects and cancer inhibition capabilities of ROS.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Mahmuda Akter
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| |
Collapse
|
49
|
Ghaemi M, Sharifi D, Mokmeli S, Kowsari G, Mortazavi P, Golmai P. Comparison and Evaluation of the Low-Level Laser and the Red and Blue LED Effects on Wound Healing in Rabbit. J Lasers Med Sci 2019; 10:189-193. [PMID: 31749944 DOI: 10.15171/jlms.2019.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: Wound healing is a dynamic, interactive process to achieve the restoration of skin integrity and proper function after damage. Applying a low-level laser (LLL) and light emitting diodes (henceforth LEDs) is introduced in previous studies to accelerate the process of wound healing. The aim of this study is to compare the effect of the LLL and LEDs on wound healing in rabbits. Methods: Full thickness same size square excision wounds were created on the dorsum of the rabbits. Twenty rabbits were randomly divided into four groups, according to the treatment received. Group 1: the AlGalInP (aluminium gallium indium phosphide) laser (4 J/cm²); group 2: the red LED (30 J/cm²); group 3: the blue LED (60 J/cm²) and group 4, as the control group, was not irradiated. After 30 days, the wounds were evaluated both morphologically and histopathologically. Statistical significance was defined as a P value of less than 0.05. Results: All interfering methods including the LLL and LEDs had better outcome compared with the control group of both sizes and histopathologic features. The red laser group showed better results compared to the control group and either the LED groups. Comparing LEDs, the red LED performed better than the blue LED. Conclusion: This study confirmed the significant effects of the LLL and LEDs on wound healing. Comparing the LLL and LED, the LED may be a better choice, especially for bedridden or debilitated patients. The LED may also more cost effective in wound healing in comparison with the LLL.
Collapse
Affiliation(s)
- Marjan Ghaemi
- Yas Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Davood Sharifi
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, the University of Tehran, Tehran, Iran
| | | | - Golshad Kowsari
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pejman Mortazavi
- Department of Veterinary Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouneh Golmai
- Department of Internal Medicine, Lenox Hill Hospital, New York, USA
| |
Collapse
|
50
|
Effect of single and multiple doses of low-level laser therapy on viability and proliferation of stem cells from human exfoliated deciduous teeth (SHED). Lasers Med Sci 2019; 34:1917-1924. [PMID: 31267320 DOI: 10.1007/s10103-019-02836-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/25/2019] [Indexed: 01/09/2023]
Abstract
The present study aimed to evaluate in vitro whether the low-level laser (LLL) delivering fractionated total energy (multiple irradiation) or single irradiation stimulates regeneration-associated events (viability and proliferation) in stem cells from human exfoliated deciduous teeth (SHED). Cells received LLL irradiation (InGaAlP-660 nm), according to the following experimental groups: G1 (single irradiation 2.5 J/cm2, 10 mW, 10 s, 0.10 J), G2 (single irradiation 5.0 J/cm2, 10 mW, 20 s, 0.20 J), G3 (single irradiation 7.5 J/cm2, 10 mW, 30 s, 0.30 J), G4 (two irradiations 2.5 J/cm2, 10 mW, 10 s; total energy 0.20 J), G5 (three irradiations 2.5 J/cm2, 10 mW, 10 s; total energy 0.30 J), and G6 (non-irradiated). Cell viability was assessed by MTT and trypan blue exclusion (TBE) methods, while cell proliferation was evaluated by crystal violet (CV) and sulforhodamine B (SRB) assays after 24, 48, and 72 h after the first irradiation. By MTT, there was no difference between groups at 24 and 72 h. At 48 h, the groups subjected to multiple irradiation (G4 and G5) presented higher cell viability rates. The average percentages of viable cells for all groups by TBE method were 91.04%, 96.63%, and 97.48% at 24, 48, and 72 h, respectively. By CV, there was no significant difference between groups at 24 and 48 h; at 72 h, G2, G3, and G4 presented higher cell proliferation. By SRB, G1 and G4 presented lower proliferation rates in all the periods. When the groups presenting the same total energy were compared, G2 (0.20 J) presented lower cell viability rates and higher cell proliferation rates in comparison with G4; G3 (0.30 J) presented similar results to those of G5, with higher cell viability and proliferation. The application of laser delivering fractionated total energy (two or three applications of 2.5 J/cm2) induced higher cell viability at 48 h, while the single irradiation with 2.5 J/cm2 did not stimulate metabolic activity in such period and the proliferation over time. The 5.0 and 7.5 J/cm2 single doses and the three applications of 2.5 J/cm2 maintained cell viability and stimulated proliferation of SHED at 72 h.
Collapse
|