1
|
Yan B, Zhou J, Yan F, Gao M, Tang J, Huang L, Luo Y. Unlocking the potential of photobiomodulation therapy for brain neurovascular coupling: The biological effects and medical applications. J Cereb Blood Flow Metab 2025; 45:800-830. [PMID: 39763390 PMCID: PMC11705326 DOI: 10.1177/0271678x241311695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Photobiomodulation (PBM) therapy stands as an innovative neurostimulation modality that has demonstrated both efficacy and safety in improving brain function. This therapy exerts multifaceted influences on neurons, blood vessels, and their intricate interplay known as neurovascular coupling (NVC). Growing evidence indicates that NVC may present a promising target for PBM intervention. However, the detailed mechanisms underlying its therapeutic benefits remain to be fully understood. This review aims to elucidate the potential metabolic pathways and signaling cascades involved in the modulatory effects of PBM, while also exploring the extensive repertoire of PBM applications in neurologic and psychiatric conditions. The prospects of PBM within the realm of NVC investigation are intensively considered, providing deeper insights into the powerful capabilities of PBM therapy and its potential to revolutionize neurostimulation treatments.
Collapse
Affiliation(s)
- Bingzi Yan
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhou
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Fengshuo Yan
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Mingyang Gao
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Jiaji Tang
- Sichuan Becoming Technology Co., LTD, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Rodrigues Salles G, Granato AEC, Viero FT, Pacheco-Soares C, Ferreira ST, Porcionatto M, Ulrich H. Self-assembly and 3D Bioprinting of Neurospheres and Evaluation of Caffeine and Photobiomodulation Effects in an Alzheimer's Disease In Vitro Model. Stem Cell Rev Rep 2025; 21:988-1000. [PMID: 40198478 DOI: 10.1007/s12015-025-10850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 04/10/2025]
Abstract
Several in vitro models of Alzheimer's disease (AD) rely on 2D cell culture, and, more recently, 3D cultures represented by free-floating neurospheres have been used as models for the disease. The advantage of 3D over 2D cell culture is that cell-extracellular matrix and cell-cell interactions can be assessed, better representing the molecular and cellular hallmarks of the disease. In the current study, we developed two complementary 3D neurosphere models using SH-SY5Y human neuroblastoma cells to investigate AD pathology and evaluate potential therapies. First, self-assembled neurospheres were exposed to hydrogen peroxide (H₂O₂) and amyloid-beta oligomers (AβOs), inducing AD-like features such as increased production of reactive oxygen species (ROS), amyloid aggregation, and apoptosis. Treatment with caffeine or photobiomodulation (PBM) using LED irradiation significantly reduced Aβ1-42 accumulation, ROS generation, and decreased apoptosis markers. Second, 3D bioprinting of SH-SY5Y cells resulted in neurospheres with enhanced cellular organization and differentiation. These findings emphasize the advantages of 3D models for studying neurodegeneration and evaluating therapeutic strategies, bridging the gap between traditional 2D cultures and complex in vitro systems.
Collapse
Affiliation(s)
- Geisa Rodrigues Salles
- Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
- Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Alessandro E C Granato
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-900, SP, Brazil
| | - Fernanda Tibolla Viero
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-900, SP, Brazil
| | - Cristina Pacheco-Soares
- Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Sérgio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | - Marimelia Porcionatto
- Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
- National Institute of Science and Technology in Modeling Human Complex Diseases with 3D Platforms (INCT Model3D), São Paulo, SP, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-900, SP, Brazil.
| |
Collapse
|
3
|
Bibb SA, Yu EJ, Molloy MF, LaRocco J, Resnick P, Reeves K, Phan KL, Krishna S, Saygin ZM. Pilot study comparing effects of infrared neuromodulation and transcranial magnetic stimulation using magnetic resonance imaging. Front Hum Neurosci 2025; 19:1514087. [PMID: 40183072 PMCID: PMC11966418 DOI: 10.3389/fnhum.2025.1514087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
No prior work has directly compared the impacts of transcranial photobiomodulation (tPBM) and transcranial magnetic stimulation (TMS) on the human brain. This within-subjects pilot study compares the effects of tPBM and TMS of human somatomotor cortex on brain structural and functional connectivity. Eight healthy participants underwent four lab visits each, each visit consisting of a pre-stimulation MRI, stimulation or sham, and a post-stimulation MRI, respectively. Stimulation and sham sessions were counterbalanced across subjects. Collected measures included structural MRI data, functional MRI data from a finger-tapping task, resting state functional connectivity, and structural connectivity. Analyses indicated increased activation of the left somatomotor region during a right-hand finger-tapping task following both tPBM and TMS. Additionally, trending increases in left-lateralized functional and structural connectivity from M1 to thalamus were observed after tPBM, but not TMS. Thus, tPBM may be superior to TMS at inducing changes in connected nodes in the somatomotor cortex, although further research is warranted to explore the potential therapeutic benefits and clinical utility of tPBM.
Collapse
Affiliation(s)
- Sophia A. Bibb
- Department of Psychology, The Ohio State University, Columbus, OH, United States
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Emily J. Yu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - M. Fiona Molloy
- Department of Psychology, The Ohio State University, Columbus, OH, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - John LaRocco
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Patricia Resnick
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Kevin Reeves
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - K. Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sanjay Krishna
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States
| | - Zeynep M. Saygin
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Hong N, Yoon SR, Ahn JC. Photobiomodulation using an 830-nm laser alleviates hippocampal reactive gliosis and cognitive dysfunction in a mouse model of adolescent chronic alcohol exposure. Pharmacol Biochem Behav 2025; 248:173956. [PMID: 39793712 DOI: 10.1016/j.pbb.2025.173956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/14/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Chronic alcoholism is known to have detrimental effects on the brain, including cognitive impairment, neurotransmitter imbalances, and brain atrophy. The hippocampus, crucial for spatial memory and cognitive functions, is particularly susceptible to alcohol-induced changes. Photobiomodulation (PBM), a non-invasive therapeutic method that utilizes red or near-infrared light, has shown promising applications in the central and peripheral nervous systems. Near-infrared (NIR) light, in particular, has been shown to prevent apoptosis, and neuroinflammation, as well as to improve cognitive functions. In this study, we aimed to investigate whether 830-nm laser irradiation could mitigate cognitive deficits in a chronic alcohol mouse model. Chronic alcoholism was induced in C57BL/6 mice through continuous ethanol gavage for 4 weeks at a dosage of 5 g/kg/day. Gavaging was performed 3 times per week for 4 weeks. Mice were transcranial irradiated by 830-nm laser, following making a chronic alcohol mouse model. Laser irradiation (50 mW/cm2) was performed 5 times per week for 3 weeks. To verify memory and cognitive defeats of a chronic alcohol mouse model, we performed animal behavior tasks such as Morris water maze, Y maze, and novel objective recognition. Our results confirmed the cognitive impairment in the chronic alcohol mouse model compared to the control group in conducted tasks. However, cognitive and spatial memory significantly improved following 830-nm laser irradiation. Additionally, we confirmed whether the behavior tasks result from histological changes. We performed immunofluorescence staining in the hippocampus region (CA3, CA1 and hilus) using astrocyte (GFAP) and microglia (Iba1) markers. As a result, reactive astrocyte was significantly increased in the chronic alcohol mouse model compared to control mice, whereas the number of GFAP-positive cells was significantly reduced by 830-nm laser irradiation. These findings indicate that chronic alcohol exposure induces spatial memory and cognitive impairment, which can be effectively rescued through near-infrared laser irradiation.
Collapse
Affiliation(s)
- Namgue Hong
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung-Ryeong Yoon
- Department of Medical Science, Graduate School of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Chul Ahn
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomedical Science, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
5
|
Ressnerova A, Heger Z, Pumera M. Translational nanorobotics breaking through biological membranes. Chem Soc Rev 2025; 54:1924-1956. [PMID: 39807638 DOI: 10.1039/d4cs00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the dynamic realm of translational nanorobotics, the endeavor to develop nanorobots carrying therapeutics in rational in vivo applications necessitates a profound understanding of the biological landscape of the human body and its complexity. Within this landscape, biological membranes stand as critical barriers to the successful delivery of therapeutic cargo to the target site. Their crossing is not only a challenge for nanorobotics but also a pivotal criterion for the clinical success of therapeutic-carrying nanorobots. Nevertheless, despite their urgency, strategies for membrane crossing in translational nanorobotics remain relatively underrepresented in the scientific literature, signaling an opportunity for further research and innovation. This review focuses on nanorobots with various propulsion mechanisms from chemical and physical to hybrid mechanisms, and it identifies and describes four essential biological membranes that represent the barriers needed to be crossed in the therapeutic journey of nanorobots in in vivo applications. First is the entry point into the blood stream, which is the skin or mucosa or intravenous injection; next is the exit from the bloodstream across the endothelium to the target site; further is the entry to the cell through the plasma membrane and, finally, the escape from the lysosome, which otherwise destroys the cargo. The review also discusses design challenges inherent in translating nanorobot technologies to real-world applications and provides a critical overview of documented membrane crossings. The aim is to underscore the need for further interdisciplinary collaborations between chemists, materials scientists and chemical biologists in this vital domain of translational nanorobotics that has the potential to revolutionize the field of precision medicine.
Collapse
Affiliation(s)
- Alzbeta Ressnerova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Zbynek Heger
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Center of Advanced Innovation Technologies, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava, Czech Republic
| | - Martin Pumera
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
6
|
Frankowski DW, Ferrucci L, Arany PR, Bowers D, Eells JT, Gonzalez-Lima F, Lohr NL, Quirk BJ, Whelan HT, Lakatta EG. Light buckets and laser beams: mechanisms and applications of photobiomodulation (PBM) therapy. GeroScience 2025:10.1007/s11357-025-01505-z. [PMID: 39826026 DOI: 10.1007/s11357-025-01505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/20/2025] Open
Abstract
Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment. Workshop participants largely agreed that PBM holds immense potential as a safe and effective therapeutic approach for a wide range of age-related diseases and cognitive decline. While further research is needed to fully elucidate its mechanisms and optimize treatment protocols, the findings presented at the NIA workshop provide strong evidence for the continued investigation and clinical translation of this promising, inexpensive, safe technology, to aging and age-associated diseases. Here, we review the research presented and discussion held at the meeting. In addition, the text has been updated, where applicable, with recent research findings that have been made since the meeting occurred.
Collapse
Affiliation(s)
| | | | | | | | - Janis T Eells
- University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Nicole L Lohr
- The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
7
|
Rahimi M, Rossi A, Son T, Adejumo T, Dadzie AK, Heiferman MJ, Yao X. High dynamic range widefield fundus photography with transcranial illumination: a contrast agent-free method for non-mydriatic choroidal imaging. BIOMEDICAL OPTICS EXPRESS 2025; 16:84-96. [PMID: 39816159 PMCID: PMC11729276 DOI: 10.1364/boe.543907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/18/2025]
Abstract
The choroid, a critical vascular layer beneath the retina, is essential for maintaining retinal function and monitoring chorioretinal disorders. Existing imaging methods, such as indocyanine green angiography (ICGA) and optical coherence tomography (OCT), face significant limitations, including contrast agent requirements, restricted field of view (FOV), and high costs, limiting accessibility. To address these challenges, we developed a nonmydriatic, contrast agent-free fundus camera utilizing transcranial near-infrared (NIR) illumination. This system achieves a wide snapshot FOV of up to 185° eye-angle (130° visual-angle) without pharmacological pupillary dilation or contrast agents. By montaging two HDR images, the effective FOV can exceed 220° eye-angle (160° visual angle). Employing high dynamic range (HDR) imaging, the device ensures uniform contrast and enhanced choroidal visualization by correcting illumination inhomogeneity. The system demonstrated imaging performance comparable to ICGA when tested on healthy participants and patients with choroidal conditions, offering improved accessibility and affordability. This innovation holds promise for advancing the screening, diagnosis, and management of choroidal disorders, particularly in underserved settings.
Collapse
Affiliation(s)
- Mojtaba Rahimi
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Alfa Rossi
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Tobiloba Adejumo
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Albert K. Dadzie
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Michael J. Heiferman
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Li S, Wong TWL, Ng SSM. Potential and Challenges of Transcranial Photobiomodulation for the Treatment of Stroke. CNS Neurosci Ther 2024; 30:e70142. [PMID: 39692710 DOI: 10.1111/cns.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024] Open
Abstract
Photobiomodulation (PBM), also known as low-level laser therapy, employs red or near-infrared light emitted from a laser or light-emitting diode for the treatment of various conditions. Transcranial PBM (tPBM) is a form of PBM that is delivered to the head to improve brain health, as tPBM enhances mitochondrial function, improves antioxidant responses, reduces inflammation, offers protection from apoptosis, improves blood flow, increases cellular energy production, and promotes neurogenesis and neuroplasticity. As such, tPBM holds promise as a treatment for stroke. This review summarizes recent findings on tPBM as a treatment for stroke, presenting evidence from both animal studies and clinical trials that demonstrate its efficacy. Additionally, it discusses the potential and challenges encountered in the translation process. Furthermore, it proposes new technologies and directions for the development of light-delivery methods and emphasizes the need for extensive studies to validate and widen the application of tPBM in future treatments for stroke.
Collapse
Affiliation(s)
- Siyue Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| |
Collapse
|
9
|
Kast RE, Kast AP, Arnhold J, Capanni F, Sanabria LNM, Bader N, Vieira BM, Alfieri A, Karpel-Massler G, da Silva EB. Noninvasive Ultra Low Intensity Light Photodynamic Treatment of Glioblastoma with Drug Augmentation: LoGlo PDT Regimen. Brain Sci 2024; 14:1164. [PMID: 39766363 PMCID: PMC11674893 DOI: 10.3390/brainsci14121164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
This paper presents the basis for LoGlo PDT, a new treatment for glioblastoma. Glioblastoma is currently treated with maximal safe resection, temozolomide, and ionizing irradiation. Mortality in 2024 remains over 80% within several years from diagnosis. Oral 5-aminolevulinic acid (5-ALA) is an FDA/EMA approved drug that is selectively taken up by malignant cells, including by glioblastoma. In photodynamic treatment of glioblastoma, intense intraoperative light causes glioblastoma tissue that has taken up 5-ALA to generate cytotoxic reactive oxygen species. The requirement for intense light flux has restricted photodynamic treatment to a single one-hour intraoperative session. We analyze here published data showing that external light, illuminating the entire intact scalp, can attain low μW/cm2 flux several cm into intact brain that would be sufficient to mediate 5-ALA photodynamic treatment of glioblastoma if the light and 5-ALA are delivered continuously over 24 h. At the core of LoGlo PDT regimen is the dataset showing that, for a given fluence, as the duration of PDT light delivery goes down, light intensity (flux) delivered must go up to achieve the same glioblastoma cell cytotoxicity as would a weaker light (lower flux) delivered over a longer time. Thus, a repetitive, noninvasive PDT of glioblastoma using an external light source may be possible. We analyze 5-ALA cellular physiology to show that three non-oncology drugs, ciprofloxacin, deferiprone, and telmisartan, can be repurposed to increase light energy capture after 5-ALA, thereby increasing photodynamic treatment's glioblastoma cell cytotoxicity. The LoGlo PDT approach uses both drug augmentation and prolonged ultra-low noninvasive transcranial light delivery for a repetitive, noninvasive 5-ALA photodynamic treatment of glioblastoma.
Collapse
Affiliation(s)
- Richard E. Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, VT 05408, USA;
| | - Anton P. Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, VT 05408, USA;
| | - Jürgen Arnhold
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany;
| | - Felix Capanni
- Biomechatronics Research Group, Ulm University of Applied Sciences, Albert Einstein Allee 55, 89081 Ulm, Germany; (F.C.); (N.B.)
| | | | - Nicolas Bader
- Biomechatronics Research Group, Ulm University of Applied Sciences, Albert Einstein Allee 55, 89081 Ulm, Germany; (F.C.); (N.B.)
| | - Bruno Marques Vieira
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro, Rio de Janeiro 20230-024, Brazil;
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland;
| | | | - Erasmo Barros da Silva
- Neurosurgery Department—Neuro-Oncology, Instituto de Neurologia de Curitiba, Rua Jeremias Maciel Perretto, 300-Campo Comprido, Curitiba 81210-310, Brazil;
| |
Collapse
|
10
|
Cho SH, Won CH, Kim CH, Lee JH. The Optical Parameter Optimization for Brain Implant Alzheimer Sensor Using Phototherapy Angle and Wavelength Simulation (PAWS) Methodology. SENSORS (BASEL, SWITZERLAND) 2024; 24:7282. [PMID: 39599058 PMCID: PMC11597924 DOI: 10.3390/s24227282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Photonic therapy is emerging as a promising method in neuroscience for addressing Alzheimer's disease (AD). This study uses computational simulations to investigate the impact of specific wavelengths emitted by photodiodes on the light absorption rates in brain tissue for brain implant sensors. Additionally, it presents a novel methodology that enhances light absorption via multi-parameter optimization. By adjusting the angle and wavelength of the incident light, the absorption rate was significantly enhanced using four photodiodes, each emitting at 660 nm with a power input of 3 mW. Notably, an incident angle of 20 degrees optimized light absorption and minimized thermal effects on brain tissue. The findings indicate that photodiodes within the near-infrared spectrum are suitable for low-temperature therapeutic applications in brain tissues, affirming the viability of non-invasive and safe photonic therapy. This research contributes foundational data for advancing brain implant photonic sensor design and therapeutic strategies. Furthermore, it establishes conditions for achieving high light absorption rates with minimal heat generation, identifying optimal parameters for efficient energy transfer.
Collapse
Affiliation(s)
- So-Hyun Cho
- Department of Biomedical Engineering, School of Engineering, Keimyung University, Daegu 42601, Republic of Korea;
| | - Chang-Hee Won
- Department of Electrical Engineering, School of Engineering, Temple University, Philadelphia, PA 19122, USA;
| | - Chang-Hyun Kim
- Department of Neurosurgery, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea
| | - Jong-Ha Lee
- Department of Biomedical Engineering, School of Engineering, Keimyung University, Daegu 42601, Republic of Korea;
| |
Collapse
|
11
|
Weerasekera A, Coelho DRA, Ratai EM, Collins KA, Puerto AMH, De Taboada L, Gersten MB, Clancy JA, Hoptman MJ, Irvin MK, Sparpana AM, Sullivan EF, Song X, Adib A, Cassano P, Iosifescu DV. Dose-dependent effects of transcranial photobiomodulation on brain temperature in patients with major depressive disorder: a spectroscopy study. Lasers Med Sci 2024; 39:249. [PMID: 39370461 DOI: 10.1007/s10103-024-04198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
This study aimed to evaluate the dose-dependent brain temperature effects of transcranial photobiomodulation (t-PBM). Thirty adult subjects with major depressive disorder were randomized to three t-PBM sessions with different doses (low: 50 mW/cm2, medium: 300 mW/cm2, high: 850 mW/cm2) and a sham treatment. The low and medium doses were administered in continuous wave mode, while the high dose was administered in pulsed wave mode. A 3T MRI scanner was used to perform proton magnetic resonance spectroscopy (1H-MRS). A voxel with a volume of 30 × 30 × 15 mm3 was placed on the left prefrontal region. Brain temperature (°C) was derived by analyzing 1H-MRS spectrum chemical shift differences between the water (~ 4.7 ppm) and N-acetyl aspartate (NAA) (~ 2.01 ppm) peaks. After quality control of the data, the following group numbers were available for both pre- and post-temperature estimations: sham (n = 10), low (n = 11), medium (n = 10), and high (n = 8). We did not detect significant temperature differences for any t-PBM-active or sham groups post-irradiation (p-value range = 0.105 and 0.781). We also tested for potential differences in the pre-post variability of brain temperature in each group. As for t-PBM active groups, the lowest fluctuation (variance) was observed for the medium dose (σ2 = 0.29), followed by the low dose (σ2 = 0.47), and the highest fluctuation was for the high dose (σ2 = 0.67). t-PBM sham condition showed the overall lowest fluctuation (σ2 = 0.11). Our 1H-MRS thermometry results showed no significant brain temperature elevations during t-PBM administration.
Collapse
Affiliation(s)
- Akila Weerasekera
- Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, Boston, MA, 2612, USA.
- Department of Radiology, Massachusetts General Hospital (MGH), Boston, MA, USA.
| | - David Richer Araujo Coelho
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, Boston, MA, 2612, USA
- Department of Radiology, Massachusetts General Hospital (MGH), Boston, MA, USA
| | | | - Aura Maria Hurtado Puerto
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA
| | | | - Maia Beth Gersten
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Julie A Clancy
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Matthew J Hoptman
- Nathan Kline Institute (NKI), Orangeburg, NY, USA
- New York University (NYU) School of Medicine, New York City, NY, USA
| | | | | | | | - Xiaotong Song
- New York University (NYU) School of Medicine, New York City, NY, USA
| | - Arwa Adib
- New York University (NYU) School of Medicine, New York City, NY, USA
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA
| | | |
Collapse
|
12
|
Henderson TA. Can infrared light really be doing what we claim it is doing? Infrared light penetration principles, practices, and limitations. Front Neurol 2024; 15:1398894. [PMID: 39263274 PMCID: PMC11388112 DOI: 10.3389/fneur.2024.1398894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/10/2024] [Indexed: 09/13/2024] Open
Abstract
Near infrared (NIR) light has been shown to provide beneficial treatment of traumatic brain injury (TBI) and other neurological problems. This concept has spawned a plethora of commercial entities and practitioners utilizing panels of light emitting diodes (LEDs) and promising to treat patients with TBI and other disorders, who are desperate for some treatment for their untreatable conditions. Unfortunately, an LED intended to deliver photonic energy to the human brain does not necessarily do what an LED pointed at a mouse brain does. There is a problem of scale. Extensive prior research has shown that infrared light from a 0.5-watt LED will not penetrate the scalp and skull of a human. Both the properties of NIR light and the manner in which it interacts with tissue are examined. Based on these principles, the shortcomings of current approaches to treating neurological disorders with NIR light are explored. Claims of clinical benefit from low-level LED-based devices are explored and the proof of concept challenged. To date, that proof is thin with marginal benefits which are largely transient. Extensive research has shown fluence at the level of the target tissue which falls within the range of 0.9 J/cm2 to 15 J/cm2 is most effective in activating the biological processes at the cellular level which underlie direct photobiomodulation. If low-level infrared light from LED devices is not penetrating the scalp and skull, then these devices certainly are not delivering that level of fluence to the neurons of the subjacent brain. Alternative mechanisms, such as remote photobiomodulation, which may underlie the small and transient benefits for TBI symptoms reported for low-power LED-based NIR studies are presented. Actionable recommendations for the field are offered.
Collapse
Affiliation(s)
- Theodore A Henderson
- Neuro-Luminance, Inc., Denver, CO, United States
- Neuro-Laser Foundation, Denver, CO, United States
- Dr. Theodore Henderson, Inc., Denver, CO, United States
- The Synaptic Space, Inc., Denver, CO, United States
- The International Society of Applied Neuroimaging (ISAN), Toronto, ON, Canada
| |
Collapse
|
13
|
Thammasart S, Namchaiw P, Pasuwat K, Tonsomboon K, Khantachawana A. Neuroprotective Potential of Photobiomodulation Therapy: Mitigating Amyloid-Beta Accumulation and Modulating Acetylcholine Levels in an In Vitro Model of Alzheimer's Disease. Photobiomodul Photomed Laser Surg 2024; 42:524-533. [PMID: 39058735 DOI: 10.1089/pho.2024.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Objective: To investigate the effects of photobiomodulation therapy (PBMT) at 660 and 810 nm on amyloid-beta (Aβ)42-induced toxicity in differentiated SH-SY5Y cells and to assess its impact on Aβ42 accumulation and cholinergic neurotransmission. Background: Alzheimer's disease (AD) is characterized by the accumulation of Aβ peptides, leading to neurodegeneration, cholinergic deficit, and cognitive decline. PBMT has emerged as a potential therapeutic approach to mitigate Aβ-induced toxicity and enhance cholinergic function. Methods: Differentiated neurons were treated with 1 μM Aβ42 for 1 day, followed by daily PBMT at wavelengths of 660 and 810 nm for 7 days. Treatments used LEDs emitting continuous wave light at a power density of 5 mW/cm2 for 10 min daily to achieve an energy density of 3 J/cm2. Results: Differentiated SH-SY5Y cells exhibited increased Aβ42 aggregation, neurite retraction, and reduced cell viability. PBMT at 810 nm significantly mitigated the Aβ42-induced toxicity in these cells, as evidenced by reduced Aβ42 aggregation, neurite retraction, and improved cell viability and neuronal morphology. Notably, this treatment also restored acetylcholine levels in the neurons exposed to Aβ42. Conclusions: PBMT at 810 nm effectively reduces Aβ42-induced toxicity and supports neuronal survival, highlighting its neuroprotective effects on cholinergic neurons. By shedding light on the impact of low-level light therapy on Aβ42 accumulation and cellular processes. These findings advocate for further research to elucidate the mechanisms of PBMT and validate its clinical relevance in AD management.
Collapse
Affiliation(s)
- Siriluk Thammasart
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Poommaree Namchaiw
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Kwanchanok Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Khaow Tonsomboon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anak Khantachawana
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| |
Collapse
|
14
|
Yuan X, Zhu W, Yang Z, He N, Chen F, Han X, Zhou K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403641. [PMID: 38861754 DOI: 10.1002/adma.202403641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.
Collapse
Affiliation(s)
- Xun Yuan
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Wei Zhu
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Yang
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ning He
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Feng Chen
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Han
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
15
|
Sun C, Fan Q, Xie R, Luo C, Hu B, Wang Q. Tetherless Optical Neuromodulation: Wavelength from Orange-red to Mid-infrared. Neurosci Bull 2024; 40:1173-1188. [PMID: 38372931 PMCID: PMC11306867 DOI: 10.1007/s12264-024-01179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024] Open
Abstract
Optogenetics, a technique that employs light for neuromodulation, has revolutionized the study of neural mechanisms and the treatment of neurological disorders due to its high spatiotemporal resolution and cell-type specificity. However, visible light, particularly blue and green light, commonly used in conventional optogenetics, has limited penetration in biological tissue. This limitation necessitates the implantation of optical fibers for light delivery, especially in deep brain regions, leading to tissue damage and experimental constraints. To overcome these challenges, the use of orange-red and infrared light with greater tissue penetration has emerged as a promising approach for tetherless optical neuromodulation. In this review, we provide an overview of the development and applications of tetherless optical neuromodulation methods with long wavelengths. We first discuss the exploration of orange-red wavelength-responsive rhodopsins and their performance in tetherless optical neuromodulation. Then, we summarize two novel tetherless neuromodulation methods using near-infrared light: upconversion nanoparticle-mediated optogenetics and photothermal neuromodulation. In addition, we discuss recent advances in mid-infrared optical neuromodulation.
Collapse
Affiliation(s)
- Chao Sun
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Qi Fan
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Rougang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Bingliang Hu
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China.
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China.
| |
Collapse
|
16
|
Umeda H, Suda K, Yokogawa D, Azumaya Y, Kitada N, Maki SA, Kawashima SA, Mitsunuma H, Yamanashi Y, Kanai M. Unimolecular Chemiexcited Oxygenation of Pathogenic Amyloids. Angew Chem Int Ed Engl 2024; 63:e202405605. [PMID: 38757875 DOI: 10.1002/anie.202405605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Pathogenic protein aggregates, called amyloids, are etiologically relevant to various diseases, including neurodegenerative Alzheimer disease. Catalytic photooxygenation of amyloids, such as amyloid-β (Aβ), reduces their toxicity; however, the requirement for light irradiation may limit its utility in large animals, including humans, due to the low tissue permeability of light. Here, we report that Cypridina luciferin analogs, dmCLA-Cl and dmCLA-Br, promoted selective oxygenation of amyloids through chemiexcitation without external light irradiation. Further structural optimization of dmCLA-Cl led to the identification of a derivative with a polar carboxylate functional group and low cellular toxicity: dmCLA-Cl-acid. dmCLA-Cl-acid promoted oxygenation of Aβ amyloid and reduced its cellular toxicity without photoirradiation. The chemiexcited oxygenation developed in this study may be an effective approach to neutralizing the toxicity of amyloids, which can accumulate deep inside the body, and treating amyloidosis.
Collapse
Affiliation(s)
- Hiroki Umeda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kayo Suda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Yuto Azumaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nobuo Kitada
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
| | - Shojiro A Maki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuki Yamanashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
17
|
Nairuz T, Sangwoo-Cho, Lee JH. Photobiomodulation Therapy on Brain: Pioneering an Innovative Approach to Revolutionize Cognitive Dynamics. Cells 2024; 13:966. [PMID: 38891098 PMCID: PMC11171912 DOI: 10.3390/cells13110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Photobiomodulation (PBM) therapy on the brain employs red to near-infrared (NIR) light to treat various neurological and psychological disorders. The mechanism involves the activation of cytochrome c oxidase in the mitochondrial respiratory chain, thereby enhancing ATP synthesis. Additionally, light absorption by ion channels triggers the release of calcium ions, instigating the activation of transcription factors and subsequent gene expression. This cascade of events not only augments neuronal metabolic capacity but also orchestrates anti-oxidant, anti-inflammatory, and anti-apoptotic responses, fostering neurogenesis and synaptogenesis. It shows promise for treating conditions like dementia, stroke, brain trauma, Parkinson's disease, and depression, even enhancing cognitive functions in healthy individuals and eliciting growing interest within the medical community. However, delivering sufficient light to the brain through transcranial approaches poses a significant challenge due to its limited penetration into tissue, prompting an exploration of alternative delivery methods such as intracranial and intranasal approaches. This comprehensive review aims to explore the mechanisms through which PBM exerts its effects on the brain and provide a summary of notable preclinical investigations and clinical trials conducted on various brain disorders, highlighting PBM's potential as a therapeutic modality capable of effectively impeding disease progression within the organism-a task often elusive with conventional pharmacological interventions.
Collapse
Affiliation(s)
| | | | - Jong-Ha Lee
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea; (T.N.); (S.-C.)
| |
Collapse
|
18
|
Jiang S, Huang J, Yang H, Czuma R, Farley L, Cohen‐Oram A, Hartney K, Chechotka K, Kozel FA, Jiang H. Diffuse optical tomography for mapping cerebral hemodynamics and functional connectivity in delirium. Alzheimers Dement 2024; 20:4032-4042. [PMID: 38700095 PMCID: PMC11180861 DOI: 10.1002/alz.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Delirium is associated with mortality and new onset dementia, yet the underlying pathophysiology remains poorly understood. Development of imaging biomarkers has been difficult given the challenging nature of imaging delirious patients. Diffuse optical tomography (DOT) offers a promising approach for investigating delirium given its portability and three-dimensional capabilities. METHODS Twenty-five delirious and matched non-delirious patients (n = 50) were examined using DOT, comparing cerebral oxygenation and functional connectivity in the prefrontal cortex during and after an episode of delirium. RESULTS Total hemoglobin values were significantly decreased in the delirium group, even after delirium resolution. Functional connectivity between the dorsolateral prefrontal cortex and dorsomedial prefrontal cortex was strengthened post-resolution compared to during an episode; however, this relationship was still significantly weaker compared to controls. DISCUSSION These findings highlight DOT's potential as an imaging biomarker to measure impaired cerebral oxygenation and functional dysconnectivity during and after delirium. Future studies should focus on the role of cerebral oxygenation in delirium pathogenesis and exploring the etiological link between delirium and dementias. HIGHLIGHTS We developed a portable diffuse optical tomography (DOT) system for bedside three-dimensional functional neuroimaging to study delirium in the hospital. We implemented a novel DOT task-focused seed-based correlation analysis. DOT revealed decreased cerebral oxygenation and functional connectivity strength in the delirium group, even after resolution of delirium.
Collapse
Affiliation(s)
- Shixie Jiang
- Department of Psychiatry and Behavioral NeurosciencesUniversity of South FloridaTampaFloridaUSA
- Department of PsychiatryUniversity of FloridaGainesvilleFloridaUSA
| | - Jingyu Huang
- Department of Medical EngineeringUniversity of South FloridaTampaFloridaUSA
| | - Hao Yang
- Department of Medical EngineeringUniversity of South FloridaTampaFloridaUSA
| | - Richard Czuma
- Department of Psychiatry and Behavioral NeurosciencesUniversity of South FloridaTampaFloridaUSA
| | - Lauren Farley
- Department of Surgery and Division of Vascular SurgeryUniversity of South FloridaTampaFloridaUSA
| | - Alexis Cohen‐Oram
- Department of Psychiatry and Behavioral NeurosciencesUniversity of South FloridaTampaFloridaUSA
| | - Kimberly Hartney
- Department of Psychiatry and Behavioral NeurosciencesUniversity of South FloridaTampaFloridaUSA
| | - Kristina Chechotka
- Department of Psychiatry and Behavioral NeurosciencesUniversity of South FloridaTampaFloridaUSA
| | - F. Andrew Kozel
- Department of Behavioral Sciences and Social MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Huabei Jiang
- Department of Medical EngineeringUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
19
|
Huang Z, Hamblin MR, Zhang Q. Photobiomodulation in experimental models of Alzheimer's disease: state-of-the-art and translational perspectives. Alzheimers Res Ther 2024; 16:114. [PMID: 38773642 PMCID: PMC11106984 DOI: 10.1186/s13195-024-01484-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
Alzheimer's disease (AD) poses a significant public health problem, affecting millions of people across the world. Despite decades of research into therapeutic strategies for AD, effective prevention or treatment for this devastating disorder remains elusive. In this review, we discuss the potential of photobiomodulation (PBM) for preventing and alleviating AD-associated pathologies, with a focus on the biological mechanisms underlying this therapy. Future research directions and guidance for clinical practice for this non-invasive and non-pharmacological therapy are also highlighted. The available evidence indicates that different treatment paradigms, including transcranial and systemic PBM, along with the recently proposed remote PBM, all could be promising for AD. PBM exerts diverse biological effects, such as enhancing mitochondrial function, mitigating the neuroinflammation caused by activated glial cells, increasing cerebral perfusion, improving glymphatic drainage, regulating the gut microbiome, boosting myokine production, and modulating the immune system. We suggest that PBM may serve as a powerful therapeutic intervention for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
20
|
Fernandes F, Oliveira S, Monteiro F, Gasik M, Silva FS, Sousa N, Carvalho Ó, Catarino SO. Devices used for photobiomodulation of the brain-a comprehensive and systematic review. J Neuroeng Rehabil 2024; 21:53. [PMID: 38600582 PMCID: PMC11007916 DOI: 10.1186/s12984-024-01351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
A systematic review was conducted to determine the trends in devices and parameters used for brain photobiomodulation (PBM). The revised studies included clinical and cadaveric approaches, in which light stimuli were applied to the head and/or neck. PubMed, Scopus, Web of Science and Google Scholar databases were used for the systematic search. A total of 2133 records were screened, from which 97 were included in this review. The parameters that were extracted and analysed in each article were the device design, actuation area, actuation site, wavelength, mode of operation, power density, energy density, power output, energy per session and treatment time. To organize device information, 11 categories of devices were defined, according to their characteristics. The most used category of devices was laser handpieces, which relate to 21% of all devices, while 28% of the devices were not described. Studies for cognitive function and physiological characterisation are the most well defined ones and with more tangible results. There is a lack of consistency when reporting PBM studies, with several articles under defining the stimulation protocol, and a wide variety of parameters used for the same health conditions (e.g., Alzheimer's or Parkinson's disease) resulting in positive outcomes. Standardization for the report of these studies is warranted, as well as sham-controlled comparative studies to determine which parameters have the greatest effect on PBM treatments for different neurological conditions.
Collapse
Affiliation(s)
- Filipa Fernandes
- Center for Micro-ElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal.
| | - Sofia Oliveira
- Center for Micro-ElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| | - Francisca Monteiro
- Center for Micro-ElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| | - Michael Gasik
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University Foundation, Espoo, Finland
| | - Filipe S Silva
- Center for Micro-ElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057, Braga, Portugal
- ICVS/3BS, PT Government Associate Laboratory, 4710-057, Braga, Portugal
- 2CA-Braga, CVS/3BS, PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Óscar Carvalho
- Center for Micro-ElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Susana O Catarino
- Center for Micro-ElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal.
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
21
|
Coelho DRA, Salvi JD, Vieira WF, Cassano P. Inflammation in obsessive-compulsive disorder: A literature review and hypothesis-based potential of transcranial photobiomodulation. J Neurosci Res 2024; 102:e25317. [PMID: 38459770 DOI: 10.1002/jnr.25317] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a disabling neuropsychiatric disorder that affects about 2%-3% of the global population. Despite the availability of several treatments, many patients with OCD do not respond adequately, highlighting the need for new therapeutic approaches. Recent studies have associated various inflammatory processes with the pathogenesis of OCD, including alterations in peripheral immune cells, alterations in cytokine levels, and neuroinflammation. These findings suggest that inflammation could be a promising target for intervention. Transcranial photobiomodulation (t-PBM) with near-infrared light is a noninvasive neuromodulation technique that has shown potential for several neuropsychiatric disorders. However, its efficacy in OCD remains to be fully explored. This study aimed to review the literature on inflammation in OCD, detailing associations with T-cell populations, monocytes, NLRP3 inflammasome components, microglial activation, and elevated proinflammatory cytokines such as TNF-α, CRP, IL-1β, and IL-6. We also examined the hypothesis-based potential of t-PBM in targeting these inflammatory pathways of OCD, focusing on mechanisms such as modulation of oxidative stress, regulation of immune cell function, reduction of proinflammatory cytokine levels, deactivation of neurotoxic microglia, and upregulation of BDNF gene expression. Our review suggests that t-PBM could be a promising, noninvasive intervention for OCD, with the potential to modulate underlying inflammatory processes. Future research should focus on randomized clinical trials to assess t-PBM's efficacy and optimal treatment parameters in OCD. Biomarker analyses and neuroimaging studies will be important in understanding the relationship between inflammatory modulation and OCD symptom improvement following t-PBM sessions.
Collapse
Affiliation(s)
- David Richer Araujo Coelho
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joshua D Salvi
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Center for OCD and Related Disorders, Massachusetts General Hospital, Boston, Massachusetts, USA
- McLean Hospital, Belmont, Massachusetts, USA
| | - Willians Fernando Vieira
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Ding L, Gu Z, Chen H, Wang P, Song Y, Zhang X, Li M, Chen J, Han H, Cheng J, Tong Z. Phototherapy for age-related brain diseases: Challenges, successes and future. Ageing Res Rev 2024; 94:102183. [PMID: 38218465 DOI: 10.1016/j.arr.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Brain diseases present a significant obstacle to both global health and economic progress, owing to their elusive pathogenesis and the limited effectiveness of pharmaceutical interventions. Phototherapy has emerged as a promising non-invasive therapeutic modality for addressing age-related brain disorders, including stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), among others. This review examines the recent progressions in phototherapeutic interventions. Firstly, the article elucidates the various wavelengths of visible light that possess the capability to penetrate the skin and skull, as well as the pathways of light stimulation, encompassing the eyes, skin, veins, and skull. Secondly, it deliberates on the molecular mechanisms of visible light on photosensitive proteins, within the context of brain disorders and other molecular pathways of light modulation. Lastly, the practical application of phototherapy in diverse clinical neurological disorders is indicated. Additionally, this review presents novel approaches that combine phototherapy and pharmacological interventions. Moreover, it outlines the limitations of phototherapeutics and proposes innovative strategies to improve the treatment of cerebral disorders.
Collapse
Affiliation(s)
- Ling Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Ziqi Gu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Haishu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Panpan Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yilan Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xincheng Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Mengyu Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jinhan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| | - Jianhua Cheng
- Department of neurology, the first affiliated hospital of Wenzhou medical University, Wenzhou 325035, China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
23
|
Du P, Wei Y, Liang Y, An R, Liu S, Lei P, Zhang H. Near-Infrared-Responsive Rare Earth Nanoparticles for Optical Imaging and Wireless Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305308. [PMID: 37946706 PMCID: PMC10885668 DOI: 10.1002/advs.202305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/03/2023] [Indexed: 11/12/2023]
Abstract
Near-infrared (NIR) light is well-suited for the optical imaging and wireless phototherapy of malignant diseases because of its deep tissue penetration, low autofluorescence, weak tissue scattering, and non-invasiveness. Rare earth nanoparticles (RENPs) are promising NIR-responsive materials, owing to their excellent physical and chemical properties. The 4f electron subshell of lanthanides, the main group of rare earth elements, has rich energy-level structures. This facilitates broad-spectrum light-to-light conversion and the conversion of light to other forms of energy, such as thermal and chemical energies. In addition, the abundant loadable and modifiable sites on the surface offer favorable conditions for the functional expansion of RENPs. In this review, the authors systematically discuss the main processes and mechanisms underlying the response of RENPs to NIR light and summarize recent advances in their applications in optical imaging, photothermal therapy, photodynamic therapy, photoimmunotherapy, optogenetics, and light-responsive drug release. Finally, the challenges and opportunities for the application of RENPs in optical imaging and wireless phototherapy under NIR activation are considered.
Collapse
Affiliation(s)
- Pengye Du
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Ganjiang Innovation AcademyChinese Academy of SciencesGanzhouJiangxi341000China
| | - Ran An
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
- Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
24
|
Falahatdoost S, Prawer YDJ, Peng D, Chambers A, Zhan H, Pope L, Stacey A, Ahnood A, Al Hashem HN, De León SE, Garrett DJ, Fox K, Clark MB, Ibbotson MR, Prawer S, Tong W. Control of Neuronal Survival and Development Using Conductive Diamond. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4361-4374. [PMID: 38232177 DOI: 10.1021/acsami.3c14680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This study demonstrates the control of neuronal survival and development using nitrogen-doped ultrananocrystalline diamond (N-UNCD). We highlight the role of N-UNCD in regulating neuronal activity via near-infrared illumination, demonstrating the generation of stable photocurrents that enhance neuronal survival and neurite outgrowth and foster a more active, synchronized neuronal network. Whole transcriptome RNA sequencing reveals that diamond substrates improve cellular-substrate interaction by upregulating extracellular matrix and gap junction-related genes. Our findings underscore the potential of conductive diamond as a robust and biocompatible platform for noninvasive and effective neural tissue engineering.
Collapse
Affiliation(s)
- Samira Falahatdoost
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yair D J Prawer
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Danli Peng
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andre Chambers
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hualin Zhan
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
- School of Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Leon Pope
- School of Engineering, STEM College, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Alastair Stacey
- School of Science, STEM College, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Arman Ahnood
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Hassan N Al Hashem
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Sorel E De León
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - David J Garrett
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Kate Fox
- School of Engineering, The RMIT University, Melbourne, Victoria 3000, Australia
| | - Michael B Clark
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael R Ibbotson
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wei Tong
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
25
|
Ji Q, Yan S, Ding J, Zeng X, Liu Z, Zhou T, Wu Z, Wei W, Li H, Liu S, Ai S. Photobiomodulation improves depression symptoms: a systematic review and meta-analysis of randomized controlled trials. Front Psychiatry 2024; 14:1267415. [PMID: 38356614 PMCID: PMC10866010 DOI: 10.3389/fpsyt.2023.1267415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/26/2023] [Indexed: 02/16/2024] Open
Abstract
Background Depression is a common mental illness that is widely recognized by its lack of pleasure, fatigue, low mood, and, in severe cases, even suicidal tendencies. Photobiomodulation (PBM) is a non-invasive neuromodulation technique that could treat patients with mood disorders such as depression. Methods A systematic search of ten databases, including randomized controlled trials (RCTs) for depression, was conducted from the time of library construction to September 25, 2023. The primary outcome was depression. The secondary outcome was sleep. Meta-analysis was performed using RevMan (version 5.4) and Stata (version 14.0). Subgroup analyses were performed to identify sources of heterogeneity. The certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Results Three thousand two hundred and sixty-five studies were retrieved from the database and screened for inclusion in eleven trials. The forest plot results demonstrated that PBM alleviated depression (SMD = -0.55, 95% CI [-0.75, -0.35], I2 = 46%). But it is not statistically significant for patients' sleep outcomes (SMD = -0.82, 95% CI [-2.41, 0.77], I2 = 0%, p > 0.05). Subgroup analysis showed that s-PBM was superior to t-PBM in relieving symptoms of depression. The best improvement for t-PBM was achieved using a wavelength of 823 nm, fluence of 10-100 J/cm2, irradiance of 50-100 mW/cm2, irradiance time of 30 min, treatment frequency < 3/week, and number of treatments >15 times. The best improvement for s-PBM was achieved using a wavelength of 808 nm, fluence ≤1 J/cm2, irradiance of 50-100 mW/cm2, irradiance time ≤ 5 min, treatment frequency ≥ 3/week, number of treatments >15 times. All results had evidence quality that was either moderate or very low, and there was no bias in publication. Conclusion We conclude that PBM is effective in reducing depression symptoms in patients. However, the current number of studies is small, and further studies are needed to extend the current analysis results. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, CRD42023444677.
Collapse
Affiliation(s)
- Qipei Ji
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shichang Yan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jilin Ding
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Xin Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhixiang Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianqi Zhou
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuorao Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wei
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyue Liu
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Shuangchun Ai
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
26
|
Shen Q, Guo H, Yan Y. Photobiomodulation for Neurodegenerative Diseases: A Scoping Review. Int J Mol Sci 2024; 25:1625. [PMID: 38338901 PMCID: PMC10855709 DOI: 10.3390/ijms25031625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases involve the progressive dysfunction and loss of neurons in the central nervous system and thus present a significant challenge due to the absence of effective therapies for halting or reversing their progression. Based on the characteristics of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), which have prolonged incubation periods and protracted courses, exploring non-invasive physical therapy methods is essential for alleviating such diseases and ensuring that patients have an improved quality of life. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits and functions by stimulating, healing, regenerating, and protecting organizations at risk of injury, degradation, or death. Over the last two decades, PBM has gained widespread recognition as a non-invasive physical therapy method, showing efficacy in pain relief, anti-inflammatory responses, and tissue regeneration. Its application has expanded into the fields of neurology and psychiatry, where extensive research has been conducted. This paper presents a review and evaluation of studies investigating PBM in neurodegenerative diseases, with a specific emphasis on recent applications in AD and PD treatment for both animal and human subjects. Molecular mechanisms related to neuron damage and cognitive impairment are scrutinized, offering valuable insights into PBM's potential as a non-invasive therapeutic strategy.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haoyun Guo
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yihua Yan
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
27
|
Chen Y, Wang K, Huang J, Li X, Rui Y. An extensive evaluation of laser tissue welding and soldering biotechnologies: Recent advancements, progress, and applications. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 8:100234. [DOI: 10.1016/j.crbiot.2024.100234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
|
28
|
Wider JM, Gruley E, Morse PT, Wan J, Lee I, Anzell AR, Fogo GM, Mathieu J, Hish G, O'Neil B, Neumar RW, Przyklenk K, Hüttemann M, Sanderson TH. Modulation of mitochondrial function with near-infrared light reduces brain injury in a translational model of cardiac arrest. Crit Care 2023; 27:491. [PMID: 38098060 PMCID: PMC10720207 DOI: 10.1186/s13054-023-04745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Brain injury is a leading cause of morbidity and mortality in patients resuscitated from cardiac arrest. Mitochondrial dysfunction contributes to brain injury following cardiac arrest; therefore, therapies that limit mitochondrial dysfunction have the potential to improve neurological outcomes. Generation of reactive oxygen species (ROS) during ischemia-reperfusion injury in the brain is a critical component of mitochondrial injury and is dependent on hyperactivation of mitochondria following resuscitation. Our previous studies have provided evidence that modulating mitochondrial function with specific near-infrared light (NIR) wavelengths can reduce post-ischemic mitochondrial hyperactivity, thereby reducing brain injury during reperfusion in multiple small animal models. METHODS Isolated porcine brain cytochrome c oxidase (COX) was used to investigate the mechanism of NIR-induced mitochondrial modulation. Cultured primary neurons from mice expressing mitoQC were utilized to explore the mitochondrial mechanisms related to protection with NIR following ischemia-reperfusion. Anesthetized pigs were used to optimize the delivery of NIR to the brain by measuring the penetration depth of NIR to deep brain structures and tissue heating. Finally, a model of out-of-hospital cardiac arrest with CPR in adult pigs was used to evaluate the translational potential of NIR as a noninvasive therapeutic approach to protect the brain after resuscitation. RESULTS Molecular evaluation of enzyme activity during NIR irradiation demonstrated COX function was reduced in an intensity-dependent manner with a threshold of enzyme inhibition leading to a moderate reduction in activity without complete inhibition. Mechanistic interrogation in neurons demonstrated that mitochondrial swelling and upregulation of mitophagy were reduced with NIR treatment. NIR therapy in large animals is feasible, as NIR penetrates deep into the brain without substantial tissue heating. In a translational porcine model of CA/CPR, transcranial NIR treatment for two hours at the onset of return of spontaneous circulation (ROSC) demonstrated significantly improved neurological deficit scores and reduced histologic evidence of brain injury after resuscitation from cardiac arrest. CONCLUSIONS NIR modulates mitochondrial function which improves mitochondrial dynamics and quality control following ischemia/reperfusion. Noninvasive modulation of mitochondria, achieved by transcranial treatment of the brain with NIR, mitigates post-cardiac arrest brain injury and improves neurologic functional outcomes.
Collapse
Affiliation(s)
- Joseph M Wider
- Department of Emergency Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5014, USA
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, B10-103A, NCRC 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, 7744 MS II, 1137 E. Catherine St., Ann Arbor, MI, 48109-5622, USA
| | - Erin Gruley
- Department of Emergency Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5014, USA
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, B10-103A, NCRC 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, 3214 Scott Hall, 540 E. Canfield Ave., Detroit, MI, 48201, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, 3214 Scott Hall, 540 E. Canfield Ave., Detroit, MI, 48201, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-Si, Chungcheongnam-Do, 31116, Republic of Korea
| | - Anthony R Anzell
- Department of Human Genetics, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Garrett M Fogo
- Department of Emergency Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5014, USA
- Neuroscience Graduate Program, University of Michigan, 204 Washtenaw Ave, Ann Arbor, MI, 48109, USA
| | - Jennifer Mathieu
- Department of Emergency Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5014, USA
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, B10-103A, NCRC 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, 7744 MS II, 1137 E. Catherine St., Ann Arbor, MI, 48109-5622, USA
| | - Gerald Hish
- Unit for Laboratory Animal Medicine, University of Michigan, North Campus Research Complex, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Brian O'Neil
- Department of Emergency Medicine, Wayne State University, 4201 St. Antoine St., University Health Center - 6G, Detroit, MI, 48201, USA
| | - Robert W Neumar
- Department of Emergency Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5014, USA
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, B10-103A, NCRC 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Karin Przyklenk
- Clinical Research Institute, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI, USA
- Department of Pediatrics, Central Michigan University, 1280 S. East Campus Drive, Mount Pleasant, MI, 48859, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, 3214 Scott Hall, 540 E. Canfield Ave., Detroit, MI, 48201, USA
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5014, USA.
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, B10-103A, NCRC 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, 7744 MS II, 1137 E. Catherine St., Ann Arbor, MI, 48109-5622, USA.
- Neuroscience Graduate Program, University of Michigan, 204 Washtenaw Ave, Ann Arbor, MI, 48109, USA.
- Department of Emergency Medicine, Wayne State University, 4201 St. Antoine St., University Health Center - 6G, Detroit, MI, 48201, USA.
| |
Collapse
|
29
|
Li D, Liu S, Yu T, Liu Z, Sun S, Bragin D, Shirokov A, Navolokin N, Bragina O, Hu Z, Kurths J, Fedosov I, Blokhina I, Dubrovski A, Khorovodov A, Terskov A, Tzoy M, Semyachkina-Glushkovskaya O, Zhu D. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat Commun 2023; 14:6104. [PMID: 37775549 PMCID: PMC10541888 DOI: 10.1038/s41467-023-41710-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Intraventricular hemorrhage is one of the most fatal forms of brain injury that is a common complication of premature infants. However, the therapy of this type of hemorrhage is limited, and new strategies are needed to reduce hematoma expansion. Here we show that the meningeal lymphatics is a pathway to remove red blood cells from the brain's ventricular system of male human, adult and newborn rodents and is a target for non-invasive transcranial near infrared photobiomodulation. Our results uncover the clinical significance of phototherapy of intraventricular hemorrhage in 4-day old male rat pups that have the brain similar to a preterm human brain. The course of phototherapy in newborn rats provides fast recovery after intraventricular hemorrhage due to photo-improvements of lymphatic drainage and clearing functions. These findings shed light on the mechanisms of phototherapy of intraventricular hemorrhage that can be a clinically relevant technology for treatment of neonatal intracerebral bleedings.
Collapse
Affiliation(s)
- Dongyu Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- School of Optical Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Shaojun Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Silin Sun
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA
- Department of Neurology University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Nikita Navolokin
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
- Saratov State Medical University, B. Kazachya str., 112, Saratov, 410012, Russia
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA
| | - Zhengwu Hu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- School of Optical Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Jürgen Kurths
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
- Physics Department, Humboldt University, Newtonstrasse 15, 12489, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473, Potsdam, Germany
- Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, building 4, 119435, Moscow, Russia
| | - Ivan Fedosov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Inna Blokhina
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | | | | | - Andrey Terskov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Maria Tzoy
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia.
- Physics Department, Humboldt University, Newtonstrasse 15, 12489, Berlin, Germany.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Cho Y, Tural U, Iosifescu DV. Efficacy of Transcranial Photobiomodulation on Depressive Symptoms: A Meta-Analysis. Photobiomodul Photomed Laser Surg 2023; 41:460-466. [PMID: 37651208 PMCID: PMC10518694 DOI: 10.1089/photob.2023.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/28/2023] [Indexed: 09/02/2023] Open
Abstract
Background: Transcranial photobiomodulation (tPBM) is a novel, noninvasive, device-based intervention, which has been tested as a possible treatment for various neurological and psychiatric conditions. Recently, it has been investigated as an innovative treatment for major depressive disorder (MDD). There have been several animal and clinical studies that evaluated the underlying mechanism and the efficacy of its antidepressant effects, but results have been conflicting. Objective: Thus, we conducted the first meta-analysis on effects of tPBM on depressive symptoms. Materials and methods: Thirty original articles on tPBM were retrieved, eight of them met criteria for inclusion to a random effects meta-analysis. Results: tPBM appeared effective in decreasing depressive symptom severity regardless of diagnosis (Hedges' g = 1.415, p < 0.001, k = 8), but a significant heterogeneity has been found. The meta-analysis of single-arm studies (baseline to endpoint changes) limited to participants with MDD has supported the significant effect of tPBM in reducing the depression severity, without a significant heterogeneity (Hedges' g = 1.142, 95% confidence interval = 0.780-1.504, z = 6.19, p < 0.001, k = 5). However, the meta-analysis of the few double-blind, sham-controlled studies in MDD has not supported the statistically significant superiority of tPBM over sham (Hedges' g = 0.499, p = 0.211, k = 3), although a sample size bias is likely present. Conclusions: Overall, this meta-analysis provides weak support for the promising role of tPBM in the treatment of depressive symptoms. Dose finding studies to determine optimal tPBM parameters followed by larger, randomized, sham-controlled studies will be needed to fully demonstrate the antidepressant efficacy of tPBM.
Collapse
Affiliation(s)
- Yoonju Cho
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Umit Tural
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Dan V. Iosifescu
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
31
|
Zhang P, Zhang X, Zhu H. Photobiomodulation at 660 nm promotes collagen synthesis via downregulation of HIF-1α expression without photodamage in human scleral fibroblasts in vitro in a hypoxic environment. Graefes Arch Clin Exp Ophthalmol 2023; 261:2535-2545. [PMID: 37074407 DOI: 10.1007/s00417-023-06066-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/20/2023] Open
Abstract
PURPOSE The increasing prevalence of myopia is a global public health issue. Because of the complexity of myopia pathogenesis, current control methods for myopia have great limitations. The aim of this study was to explore the effect of photobiomodulation (PBM) on human sclera fibroblasts (HSFs) under hypoxia, in the hope of providing new ideas for myopia prevention and control. METHODS Hypoxic cell model was established at 0, 6, 12, and 24 h time points to simulate myopia microenvironment and explore the optimal time point. Control, hypoxia, hypoxia plus light, and normal plus light cell models were set up for the experiments, and cells were incubated for 24 or 48 h after PBM (660 nm, 5 J/cm2), followed by evaluation of hypoxia-inducible factor 1α (HIF-1α) and collagen I a1 (COL1A1) proteins using Western blotting and immunofluorescence, and photo damage was detected by CCK-8, scratch test, and flow cytometry assays. We also used transfection technology to further elucidate the regulatory mechanism. RESULTS The change of target proteins is most obvious when hypoxia lasts for 24 h (p < 0.01). PBM at 660 nm increased extracellular collagen content (p < 0.001) and downregulated expression of HIF-1α (p < 0.05). This treatment did not affect the migration and proliferation of cells (p > 0.05), and effectively inhibited apoptosis under hypoxia (p < 0.0001). After overexpression of HIF-1α, the effect of PBM was attenuated (p > 0.05). CONCLUSIONS Photobiomodulation at 660 nm promotes collagen synthesis via downregulation of HIF-1α expression without photodamage.
Collapse
Affiliation(s)
- Pengbo Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xibo Zhang
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
32
|
Srinivasan ES, Liu Y, Odion RA, Chongsathidkiet P, Wachsmuth LP, Haskell-Mendoza AP, Edwards RM, Canning AJ, Willoughby G, Hinton J, Norton SJ, Lascola CD, Maccarini PF, Mariani CL, Vo-Dinh T, Fecci PE. Gold Nanostars Obviate Limitations to Laser Interstitial Thermal Therapy (LITT) for the Treatment of Intracranial Tumors. Clin Cancer Res 2023; 29:3214-3224. [PMID: 37327318 PMCID: PMC10425731 DOI: 10.1158/1078-0432.ccr-22-1871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 03/27/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE Laser interstitial thermal therapy (LITT) is an effective minimally invasive treatment option for intracranial tumors. Our group produced plasmonics-active gold nanostars (GNS) designed to preferentially accumulate within intracranial tumors and amplify the ablative capacity of LITT. EXPERIMENTAL DESIGN The impact of GNS on LITT coverage capacity was tested in ex vivo models using clinical LITT equipment and agarose gel-based phantoms of control and GNS-infused central "tumors." In vivo accumulation of GNS and amplification of ablation were tested in murine intracranial and extracranial tumor models followed by intravenous GNS injection, PET/CT, two-photon photoluminescence, inductively coupled plasma mass spectrometry (ICP-MS), histopathology, and laser ablation. RESULTS Monte Carlo simulations demonstrated the potential of GNS to accelerate and specify thermal distributions. In ex vivo cuboid tumor phantoms, the GNS-infused phantom heated 5.5× faster than the control. In a split-cylinder tumor phantom, the GNS-infused border heated 2× faster and the surrounding area was exposed to 30% lower temperatures, with margin conformation observed in a model of irregular GNS distribution. In vivo, GNS preferentially accumulated within intracranial tumors on PET/CT, two-photon photoluminescence, and ICP-MS at 24 and 72 hours and significantly expedited and increased the maximal temperature achieved in laser ablation compared with control. CONCLUSIONS Our results provide evidence for use of GNS to improve the efficiency and potentially safety of LITT. The in vivo data support selective accumulation within intracranial tumors and amplification of laser ablation, and the GNS-infused phantom experiments demonstrate increased rates of heating, heat contouring to tumor borders, and decreased heating of surrounding regions representing normal structures.
Collapse
Affiliation(s)
- Ethan S. Srinivasan
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Yang Liu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Chemistry, Duke University, Durham, North Carolina
- Fitzpatrick Institute of Photonics, Duke University, Durham, North Carolina
| | - Ren A. Odion
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Fitzpatrick Institute of Photonics, Duke University, Durham, North Carolina
| | - Pakawat Chongsathidkiet
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Lucas P. Wachsmuth
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | | | - Ryan M. Edwards
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Aidan J. Canning
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Fitzpatrick Institute of Photonics, Duke University, Durham, North Carolina
| | - Gavin Willoughby
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Joseph Hinton
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Stephen J. Norton
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Fitzpatrick Institute of Photonics, Duke University, Durham, North Carolina
| | - Christopher D. Lascola
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Paolo F. Maccarini
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Fitzpatrick Institute of Photonics, Duke University, Durham, North Carolina
| | - Christopher L. Mariani
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, North Carolina
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Chemistry, Duke University, Durham, North Carolina
- Fitzpatrick Institute of Photonics, Duke University, Durham, North Carolina
| | - Peter E. Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
33
|
Zhao H, Li Y, Luo T, Chou W, Sun T, Liu H, Qiu H, Zhu D, Chen D, Gu Y. Preventing Post-Traumatic Stress Disorder (PTSD) in rats with pulsed 810 nm laser transcranial phototherapy. Transl Psychiatry 2023; 13:281. [PMID: 37580354 PMCID: PMC10425462 DOI: 10.1038/s41398-023-02583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating condition that occurs following exposure to traumatic events. Current treatments, such as psychological debriefing and pharmacotherapy, often have limited efficacy and may result in unwanted side effects, making early intervention is a more desirable strategy. In this study, we investigated the efficacy of a single dose of pulsed (10 Hz) 810 nm laser-phototherapy (P-PT) as an early intervention for preventing PTSD-like comorbidities in rats induced by single inescapable electric foot shock following the single prolonged stress (SPS&S). As indicated by the results of the open filed test, elevated plus maze test, and contextual fear conditioning test, P-PT prevented the development of anxiety and freezing behaviors in rats exposed to the SPS&S. We also compared the effects of P-PT and continuous wave 810 nm laser-phototherapy (CW-PT) in preventing PTSD-like comorbidities in rats. The results revealed that P-PT was effective in preventing both freezing and anxiety behavior in stressed rats. In contrast, CW-PT only had a preventive effect on freezing behavior but not anxiety. Additionally, P-PT significantly reduced the c-fos expression in cingulate cortex area 1(Cg1) and infralimbic cortex (IL) of stressed rats, while CW-PT had no significant effects on c-fos expression. Taken together, our results demonstrate that P-PT is a highly effective strategy for preventing the occurrence of PTSD-like comorbidities in rats.
Collapse
Affiliation(s)
- Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Yi Li
- Department of Laser Medicine, the First Medical Center of the PLA General Hospital, Beijing, China
| | - Ting Luo
- Moores Cancer Center, University of California San Diego, San Diego, USA
| | - Wenxin Chou
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Tianzhen Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haolin Liu
- No.965 Hospital, Joint Logistics Support Force of Chinese PLA, Jilin, China
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Center of the PLA General Hospital, Beijing, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Defu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Ying Gu
- Department of Laser Medicine, the First Medical Center of the PLA General Hospital, Beijing, China.
| |
Collapse
|
34
|
Bowen R, Arany PR. Use of either transcranial or whole-body photobiomodulation treatments improves COVID-19 brain fog. JOURNAL OF BIOPHOTONICS 2023; 16:e202200391. [PMID: 37018063 DOI: 10.1002/jbio.202200391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
There is increasing recognition of post-COVID-19 sequelae involving chronic fatigue and brain fog, for which photobiomodulation (PBM) therapy has been utilized. This open-label, pilot, human clinical study examined the efficacy of two PBM devices, for example, a helmet (1070 nm) for transcranial (tPBM) and a light bed (660 and 850 nm) for whole body (wbPBM), over a 4-week period, with 12 treatments for two separate groups (n = 7 per group). Subjects were evaluated with a neuropsychological test battery, including the Montreal Cognitive Assessment (MoCA), the digit symbol substitution test (DSST), the trail-making tests A and B, the physical reaction time (PRT), and a quantitative electroencephalography system (WAVi), both pre- and post- the treatment series. Each device for PBM delivery was associated with significant improvements in cognitive tests (p < 0.05 and beyond). Changes in WAVi supported the findings. This study outlines the benefits of utilizing PBM therapy (transcranial or whole-body) to help treat long-COVID brain fog.
Collapse
Affiliation(s)
- Robert Bowen
- Shepherd University, Shepherdstown, West Virginia, USA
- West Virginia University, Martinsburg, West Virginia, USA
| | - Praveen R Arany
- Shepherd University, Shepherdstown, West Virginia, USA
- University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
35
|
Iosifescu DV, Song X, Gersten MB, Adib A, Cho Y, Collins KM, Yates KF, Hurtado-Puerto AM, McEachern KM, Osorio RS, Cassano P. Protocol Report on the Transcranial Photobiomodulation for Alzheimer's Disease (TRAP-AD) Study. Healthcare (Basel) 2023; 11:2017. [PMID: 37510458 PMCID: PMC10378818 DOI: 10.3390/healthcare11142017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Alzheimer's disease's (AD) prevalence is projected to increase as the population ages and current treatments are minimally effective. Transcranial photobiomodulation (t-PBM) with near-infrared (NIR) light penetrates into the cerebral cortex, stimulates the mitochondrial respiratory chain, and increases cerebral blood flow. Preliminary data suggests t-PBM may be efficacious in improving cognition in people with early AD and amnestic mild cognitive impairment (aMCI). METHODS In this randomized, double-blind, placebo-controlled study with aMCI and early AD participants, we will test the efficacy, safety, and impact on cognition of 24 sessions of t-PBM delivered over 8 weeks. Brain mechanisms of t-PBM in this population will be explored by testing whether the baseline tau burden (measured with 18F-MK6240), or changes in mitochondrial function over 8 weeks (assessed with 31P-MRSI), moderates the changes observed in cognitive functions after t-PBM therapy. We will also use changes in the fMRI Blood-Oxygenation-Level-Dependent (BOLD) signal after a single treatment to demonstrate t-PBM-dependent increases in prefrontal cortex blood flow. CONCLUSION This study will test whether t-PBM, a low-cost, accessible, and user-friendly intervention, has the potential to improve cognition and function in an aMCI and early AD population.
Collapse
Affiliation(s)
- Dan V. Iosifescu
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (K.M.C.); (K.F.Y.); (R.S.O.)
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; (X.S.); (A.A.)
| | - Xiaotong Song
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; (X.S.); (A.A.)
| | - Maia B. Gersten
- Department of Psychiatry, Division of Neuropsychiatry, Massachusetts General Hospital, Boston, MA 02129, USA; (M.B.G.); (Y.C.); (A.M.H.-P.); (K.M.M.); (P.C.)
| | - Arwa Adib
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; (X.S.); (A.A.)
| | - Yoonju Cho
- Department of Psychiatry, Division of Neuropsychiatry, Massachusetts General Hospital, Boston, MA 02129, USA; (M.B.G.); (Y.C.); (A.M.H.-P.); (K.M.M.); (P.C.)
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine M. Collins
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (K.M.C.); (K.F.Y.); (R.S.O.)
| | - Kathy F. Yates
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (K.M.C.); (K.F.Y.); (R.S.O.)
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; (X.S.); (A.A.)
| | - Aura M. Hurtado-Puerto
- Department of Psychiatry, Division of Neuropsychiatry, Massachusetts General Hospital, Boston, MA 02129, USA; (M.B.G.); (Y.C.); (A.M.H.-P.); (K.M.M.); (P.C.)
| | - Kayla M. McEachern
- Department of Psychiatry, Division of Neuropsychiatry, Massachusetts General Hospital, Boston, MA 02129, USA; (M.B.G.); (Y.C.); (A.M.H.-P.); (K.M.M.); (P.C.)
| | - Ricardo S. Osorio
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (K.M.C.); (K.F.Y.); (R.S.O.)
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; (X.S.); (A.A.)
| | - Paolo Cassano
- Department of Psychiatry, Division of Neuropsychiatry, Massachusetts General Hospital, Boston, MA 02129, USA; (M.B.G.); (Y.C.); (A.M.H.-P.); (K.M.M.); (P.C.)
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
36
|
Semyachkina-Glushkovskaya O, Penzel T, Poluektov M, Fedosov I, Tzoy M, Terskov A, Blokhina I, Sidorov V, Kurths J. Phototherapy of Alzheimer's Disease: Photostimulation of Brain Lymphatics during Sleep: A Systematic Review. Int J Mol Sci 2023; 24:10946. [PMID: 37446135 DOI: 10.3390/ijms241310946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The global number of people with Alzheimer's disease (AD) doubles every 5 years. It has been established that unless an effective treatment for AD is found, the incidence of AD will triple by 2060. However, pharmacological therapies for AD have failed to show effectiveness and safety. Therefore, the search for alternative methods for treating AD is an urgent problem in medicine. The lymphatic drainage and removal system of the brain (LDRSB) plays an important role in resistance to the progression of AD. The development of methods for augmentation of the LDRSB functions may contribute to progress in AD therapy. Photobiomodulation (PBM) is considered to be a non-pharmacological and safe approach for AD therapy. Here, we highlight the most recent and relevant studies of PBM for AD. We focus on emerging evidence that indicates the potential benefits of PBM during sleep for modulation of natural activation of the LDRSB at nighttime, providing effective removal of metabolites, including amyloid-β, from the brain, leading to reduced progression of AD. Our review creates a new niche in the therapy of brain diseases during sleep and sheds light on the development of smart sleep technologies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Thomas Penzel
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Interdisziplinäres Schlafmedizinisches Zentrum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mikhail Poluektov
- Department of Nervous Diseases, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, Building 4, 119435 Moscow, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Tzoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Viktor Sidorov
- Company "Lazma" for Research and Production Enterprise of Laser Medical Equipment, Kuusinena Str. 11, 123308 Moscow, Russia
| | - Jürgen Kurths
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Department of Complexity Science, Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
37
|
Vieira WF, Iosifescu DV, McEachern KM, Gersten M, Cassano P. Photobiomodulation: An Emerging Treatment Modality for Depression. Psychiatr Clin North Am 2023; 46:331-348. [PMID: 37149348 DOI: 10.1016/j.psc.2023.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Major depressive disorder (MDD) is considered a global crisis. Conventional treatments for MDD consist of pharmacotherapy and psychotherapy, although a significant number of patients with depression respond poorly to conventional treatments and are diagnosed with treatment-resistant depression (TRD). Transcranial photobiomodulation (t-PBM) therapy uses near-infrared light, delivered transcranially, to modulate the brain cortex. The aim of this review was to revisit the antidepressant effects of t-PBM, with a special emphasis on individuals with TRD. A search on PubMed and ClinicalTrials.gov tracked clinical studies using t-PBM for the treatment of patients diagnosed with MDD and TRD.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), 149 13th Street (2612), Boston, MA 02129, USA; Department of Psychiatry, Harvard Medical School (HMS), 25 Shattuck Street, Boston, MA 02115, USA; Department of Anatomy, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), 2415 Prof. Lineu Prestes Avenue, Sao Paulo, SP 05508-000, Brazil
| | - Dan V Iosifescu
- Clinical Research Division, Nathan Kline Institute (NKI) for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University (NYU) School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Kayla Marie McEachern
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), 149 13th Street (2612), Boston, MA 02129, USA
| | - Maia Gersten
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), 149 13th Street (2612), Boston, MA 02129, USA
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), 149 13th Street (2612), Boston, MA 02129, USA; Department of Psychiatry, Harvard Medical School (HMS), 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Estrada-Rojas K, Cedeño Ortiz NP. Increased Improvement in Speech-Language Skills After Transcranial Photobiomodulation Plus Speech-Language Therapy, Compared to Speech-Language Therapy Alone: Case Report with Aphasia. Photobiomodul Photomed Laser Surg 2023; 41:234-240. [PMID: 36999917 PMCID: PMC10171962 DOI: 10.1089/photob.2022.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/27/2023] [Indexed: 04/01/2023] Open
Abstract
Objective: This is a case report showing that transcranial photobiomodulation (tPBM) combined with traditional, speech-language therapy improved and accelerated the results from speech-language therapy, in a stroke person with aphasia (PWA). Background: tPBM is a safe, noninvasive technique using red and near-infrared light to improve the metabolism of cells. tPBM helps by promoting neuromodulation, while decreasing neuroinflammation and promoting vasodilation. Several studies have shown that tPBM can help individuals with stroke or traumatic brain injury achieve significant cognitive improvements. Methods: A 38-year-old female, who sustained an ischemic stroke on the left side of the brain, received two, 5-month series of treatments. The first series of treatments included traditional speech-language therapy, for the first 5 months poststroke. The second series of treatments included tPBM in combination with speech-language therapy, for the next 5 months. The tPBM treatments included application of red (630 and 660 nm) and near-infrared (850 nm) wavelengths of photons applied to left hemisphere scalp areas. The major cortical language areas were subjacent to the scalp placements along the line of the Sylvian fissure. At each session, first a light-emitting diode (LED) cluster head with red (630 and 660 nm) and near-infrared (850 nm) wavelengths, with an irradiance (power density) of 200 mW/cm2, a beam size of 4.9 cm2, and a fluence (energy density) of 12 J/cm2 per minute, was applied to the left side of the scalp/brain, along the Sylvian fissure for 60 sec at each at the following eight, language network target areas: frontal pole, prefrontal cortex, and inferior frontal gyrus (Broca's area); supramarginal gyrus and angular gyrus in the parietal lobe; inferior motor/sensory cortex (mouth area); and posterior superior temporal gyrus (Wernicke's area) and superior temporal sulcus in the temporal lobe, for a total of 8 min. Second, for the next 20 min (1200 sec), simultaneous with speech-language therapy, an LED PBM helmet was applied to the scalp/head. This helmet contained 256 separate LED lights, near-infrared (810 nm) wavelength, 60 mW power per LED light, total power, 15 W; energy, 72 Joules; fluence, 28.8 J/cm2; and irradiance, 24 mW/cm2. Results and conclusions: During the initial, 5-month treatment series with traditional speech-language therapy only, there was little to no improvement in dysarthria and expressive language. During the second, 5-month treatment series, however, with tPBM applied first, to the left hemisphere only, and second, to both hemispheres during each session plus simultaneous speech-language therapy, there was marked improvement in the dysarthria and expressive language. After the first 5-month series, this PWA had utilized a slow rate of speech with a production of ∼25 to 30 words-per-minute during conversations and spontaneous speech. Utterance length was only 4-6 words with simple, grammatical structure. After the second, 5-month series of treatment combining tPBM plus speech-language therapy, the rate of speech increased to 80+ words-per-minute and utterance length was increased to 9-10 words, with more complex grammatical structure.
Collapse
Affiliation(s)
- Karla Estrada-Rojas
- The American Speech-Language Hearing Association (ASHA), Speech-Language Pathology and Audiology, Rockville, Maryland, USA; member of Sociedad Internacional del Uso de Equipos en Fonoaudiología (SIEFO), Speech-Therapy, Pereira, Risaralda, Colombia
| | | |
Collapse
|
39
|
Paolillo FR, Luccas GAA, Parizotto NA, Paolillo AR, de Castro Neto JC, Bagnato VS. The effects of transcranial laser photobiomodulation and neuromuscular electrical stimulation in the treatment of post-stroke dysfunctions. JOURNAL OF BIOPHOTONICS 2023; 16:e202200260. [PMID: 36520347 DOI: 10.1002/jbio.202200260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Post-stroke sequelae includes loss functions, such as cognitive and sensory-motor which lead to emotional and social problems, reducing quality of life and well-being. The main aim of our study was to investigate the effects of transcranial laser photobiomodulation together with neuromuscular electrical stimulation (NMES) in post-stroke patients. We performed a clinical trial and an ex vivo study. For the clinical trial, hemiplegic patients were separated into two groups: Treated Group (TG): Hemiplegics treated with transcranial laser (on) associated with NMES (on) and; Placebo Group (PG): Hemiplegics treated with placebo transcranial laser (off) associated with NMES (on). The cluster prototype includes 12 diode laser beams (4 × 660 nm, 4 × 808 nm and 4 × 980 nm) with average power of 720 mW per cluster applied during one minute, leading to 43.2 J energy per cluster. Fifteen regions for all head were irradiated by cluster, leading to 648 J energy per session. The parameters of NMES of the paretic limbs to generate extension wrist and ankle dorsiflexion were symmetrical biphasic rectangular waveforms, 50 Hz frequency, 250 μs pulse duration, and adjustable intensity to maintain the maximum range of motion (amplitude between 0 and 150 mA). Our clinical trial showed improvement of cognitive function, pain relief, greater manual dexterity, enhancement of physical and social-emotional health which lead to better quality of life and well-being. There was also increased temperature in the treated regions with laser and NMES. For the ex vivo study, the distribution of infrared and red radiation after penetration through the cranium and hemihead of cadavers were showed. Therefore, transcranial laser photobiomodulation associated with NMES can be an important therapeutic resource for rehabilitation after stroke.
Collapse
Affiliation(s)
- Fernanda Rossi Paolillo
- Group of Technology Applied to Health and Motricity Sciences, State University of Minas Gerais (UEMG), Passos, Brazil
| | | | - Nivaldo Antonio Parizotto
- Biomedical Engineering Program, Research and Development Institute, University Brasil, São Paulo, Brazil
| | | | | | | |
Collapse
|
40
|
Plasmonic stimulation of gold nanorods for the photothermal control of engineered living materials. BIOMATERIALS ADVANCES 2023; 147:213332. [PMID: 36801796 DOI: 10.1016/j.bioadv.2023.213332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
Engineered living materials (ELMs) encapsulate microorganisms within polymeric matrices for biosensing, drug delivery, capturing viruses, and bioremediation. It is often desirable to control their function remotely and in real time and so the microorganisms are often genetically engineered to respond to external stimuli. Here, we combine thermogenetically engineered microorganisms with inorganic nanostructures to sensitize an ELM to near infrared light. For this, we use plasmonic gold nanorods (AuNR) that have a strong absorption maximum at 808 nm, a wavelength where human tissue is relatively transparent. These are combined with Pluronic-based hydrogel to generate a nanocomposite gel that can convert incident near infrared light into heat locally. We perform transient temperature measurements and find a photothermal conversion efficiency of 47 %. Steady-state temperature profiles from local photothermal heating are quantified using infrared photothermal imaging and correlated with measurements inside the gel to reconstruct spatial temperature profiles. Bilayer geometries are used to combine AuNR and bacteria-containing gel layers to mimic core-shell ELMs. The thermoplasmonic heating of an AuNR-containing hydrogel layer that is exposed to infrared light diffuses to the separate but connected hydrogel layer with bacteria and stimulates them to produce a fluorescent protein. By tuning the intensity of the incident light, it is possible to activate either the entire bacterial population or only a localized region.
Collapse
|
41
|
Rodrigues AF, Rebelo C, Reis T, Simões S, Bernardino L, Peça J, Ferreira L. Engineering optical tools for remotely controlled brain stimulation and regeneration. Biomater Sci 2023; 11:3034-3050. [PMID: 36947145 DOI: 10.1039/d2bm02059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Neurological disorders are one of the world's leading medical and societal challenges due to the lack of efficacy of the first line treatment. Although pharmacological and non-pharmacological interventions have been employed with the aim of regulating neuronal activity and survival, they have failed to avoid symptom relapse and disease progression in the vast majority of patients. In the last 5 years, advanced drug delivery systems delivering bioactive molecules and neuromodulation strategies have been developed to promote tissue regeneration and remodel neuronal circuitry. However, both approaches still have limited spatial and temporal precision over the desired target regions. While external stimuli such as electromagnetic fields and ultrasound have been employed in the clinic for non-invasive neuromodulation, they do not have the capability of offering single-cell spatial resolution as light stimulation. Herein, we review the latest progress in this area of study and discuss the prospects of using light-responsive nanomaterials to achieve on-demand delivery of drugs and neuromodulation, with the aim of achieving brain stimulation and regeneration.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina Rebelo
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Tiago Reis
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Susana Simões
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Liliana Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - João Peça
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Lino Ferreira
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
42
|
Dole M, Auboiroux V, Langar L, Mitrofanis J. A systematic review of the effects of transcranial photobiomodulation on brain activity in humans. Rev Neurosci 2023:revneuro-2023-0003. [PMID: 36927734 DOI: 10.1515/revneuro-2023-0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
In recent years, transcranial photobiomodulation (tPBM) has been developing as a promising method to protect and repair brain tissues against damages. The aim of our systematic review is to examine the results available in the literature concerning the efficacy of tPBM in changing brain activity in humans, either in healthy individuals, or in patients with neurological diseases. Four databases were screened for references containing terms encompassing photobiomodulation, brain activity, brain imaging, and human. We also analysed the quality of the included studies using validated tools. Results in healthy subjects showed that even after a single session, tPBM can be effective in influencing brain activity. In particular, the different transcranial approaches - using a focal stimulation or helmet for global brain stimulation - seemed to act at both the vascular level by increasing regional cerebral blood flow (rCBF) and at the neural level by changing the activity of the neurons. In addition, studies also showed that even a focal stimulation was sufficient to induce a global change in functional connectivity across brain networks. Results in patients with neurological disease were sparser; nevertheless, they indicated that tPBM could improve rCBF and functional connectivity in several regions. Our systematic review also highlighted the heterogeneity in the methods and results generated, together with the need for more randomised controlled trials in patients with neurological diseases. In summary, tPBM could be a promising method to act on brain function, but more consistency is needed in order appreciate fully the underlying mechanisms and the precise outcomes.
Collapse
Affiliation(s)
- Marjorie Dole
- Univ. Grenoble Alpes, FDD Clinatec, 38000 Grenoble, France
| | | | - Lilia Langar
- Univ. Grenoble Alpes, CHU Grenoble Alpes, Clinatec, 38000 Grenoble, France
| | - John Mitrofanis
- Univ. Grenoble Alpes, FDD Clinatec, 38000 Grenoble, France.,Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
43
|
Naeser MA, Martin PI, Ho MD, Krengel MH, Bogdanova Y, Knight JA, Hamblin MR, Fedoruk AE, Poole LG, Cheng C, Koo B. Transcranial Photobiomodulation Treatment: Significant Improvements in Four Ex-Football Players with Possible Chronic Traumatic Encephalopathy. J Alzheimers Dis Rep 2023; 7:77-105. [PMID: 36777329 PMCID: PMC9912826 DOI: 10.3233/adr-220022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/19/2022] [Indexed: 12/28/2022] Open
Abstract
Background Chronic traumatic encephalopathy, diagnosed postmortem (hyperphosphorylated tau), is preceded by traumatic encephalopathy syndrome with worsening cognition and behavior/mood disturbances, over years. Transcranial photobiomodulation (tPBM) may promote improvements by increasing ATP in compromised/stressed cells and increasing local blood, lymphatic vessel vasodilation. Objective Aim 1: Examine cognition, behavior/mood changes Post-tPBM. Aim 2: MRI changes - resting-state functional-connectivity MRI: salience, central executive, default mode networks (SN, CEN, DMN); magnetic resonance spectroscopy, cingulate cortex. Methods Four ex-players with traumatic encephalopathy syndrome/possible chronic traumatic encephalopathy, playing 11- 16 years, received In-office, red/near-infrared tPBM to scalp, 3x/week for 6 weeks. Two had cavum septum pellucidum. Results The three younger cases (ages 55, 57, 65) improved 2 SD (p < 0.05) on three to six neuropsychological tests/subtests at 1 week or 1 month Post-tPBM, compared to Pre-Treatment, while the older case (age 74) improved by 1.5 SD on three tests. There was significant improvement at 1 month on post-traumatic stress disorder (PTSD), depression, pain, and sleep. One case discontinued narcotic pain medications and had reduced tinnitus. The possible placebo effect is unknown. At 2 months Post-tPBM, two cases regressed. Then, home tPBM was applied to only cortical nodes, DMN (12 weeks); again, significant improvements were seen. Significant correlations for increased SN functional connectivity (FC) over time, with executive function, attention, PTSD, pain, and sleep; and CEN FC, with verbal learning/memory, depression. Increased n-acetyl-aspartate (NAA) (oxygen consumption, mitochondria) was present in anterior cingulate cortex (ACC), parallel to less pain and PTSD. Conclusion After tPBM, these ex-football players improved. Significant correlations of increased SN FC and CEN FC with specific cognitive tests and behavior/mood ratings, plus increased NAA in ACC support beneficial effects from tPBM.
Collapse
Affiliation(s)
- Margaret A. Naeser
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Neurology, Boston University School of Medicine, Boston, MA, USA,Correspondence to: Margaret A. Naeser, PhD, VA Boston Healthcare System (12A), Jamaica Plain Campus, 150 So. Huntington Ave., Boston, MA 02130 USA. E-mail:
| | - Paula I. Martin
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael D. Ho
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA
| | - Maxine H. Krengel
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yelena Bogdanova
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Jeffrey A. Knight
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA,National Center for PTSD - Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, USA
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Luke G. Poole
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA
| | - ChiaHsin Cheng
- Department of Anatomy & Neurobiology, Bio-imaging Informatics Lab, Boston University School of Medicine, Boston, MA, USA
| | - BangBon Koo
- Department of Anatomy & Neurobiology, Bio-imaging Informatics Lab, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
44
|
Brain Waste Removal System and Sleep: Photobiomodulation as an Innovative Strategy for Night Therapy of Brain Diseases. Int J Mol Sci 2023; 24:ijms24043221. [PMID: 36834631 PMCID: PMC9965491 DOI: 10.3390/ijms24043221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Emerging evidence suggests that an important function of the sleeping brain is the removal of wastes and toxins from the central nervous system (CNS) due to the activation of the brain waste removal system (BWRS). The meningeal lymphatic vessels (MLVs) are an important part of the BWRS. A decrease in MLV function is associated with Alzheimer's and Parkinson's diseases, intracranial hemorrhages, brain tumors and trauma. Since the BWRS is activated during sleep, a new idea is now being actively discussed in the scientific community: night stimulation of the BWRS might be an innovative and promising strategy for neurorehabilitation medicine. This review highlights new trends in photobiomodulation of the BWRS/MLVs during deep sleep as a breakthrough technology for the effective removal of wastes and unnecessary compounds from the brain in order to increase the neuroprotection of the CNS as well as to prevent or delay various brain diseases.
Collapse
|
45
|
Tan DX, Reiter RJ, Zimmerman S, Hardeland R. Melatonin: Both a Messenger of Darkness and a Participant in the Cellular Actions of Non-Visible Solar Radiation of Near Infrared Light. BIOLOGY 2023; 12:89. [PMID: 36671781 PMCID: PMC9855654 DOI: 10.3390/biology12010089] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Throughout the history of melatonin research, almost exclusive focus has been on nocturnally-generated pineal melatonin production, which accounts for its circadian rhythm in the blood and cerebrospinal fluid; these light/dark melatonin cycles drive the daily and seasonal photoperiodic alterations in organismal physiology. Because pineal melatonin is produced and secreted primarily at night, it is referred to as the chemical expression of darkness. The importance of the other sources of melatonin has almost been ignored. Based on current evidence, there are at least four sources of melatonin in vertebrates that contribute to the whole-body melatonin pool. These include melatonin produced by (1) the pineal gland; (2) extrapineal cells, tissues, and organs; (3) the microbiota of the skin, mouth, nose, digestive tract, and vagina as well as (4) melatonin present in the diet. These multiple sources of melatonin exhibit differentially regulated mechanisms for its synthesis. Visible light striking the retina or an intense physical stimulus can suppress nocturnal pineal melatonin levels; in contrast, there are examples where extrapineal melatonin levels are increased during heavy exercise in daylight, which contains the whole range of NIR radiation. The cumulative impact of all cells producing augmented extrapineal melatonin is sufficient to elevate sweat concentrations, and potentially, if the exposure is sustained, to also increasing the circulating values. The transient increases in sweat and plasma melatonin support the premise that extrapineal melatonin has a production capacity that exceeds by far what can be produced by the pineal gland, and is used to maintain intercellular homeostasis and responds to rapid changes in ROS density. The potential regulatory mechanisms of near infrared light (NIR) on melatonin synthesis are discussed in detail herein. Combined with the discovery of high levels of melanopsin in most fat cells and their response to light further calls into question pineal centric theories. While the regulatory processes related to microbiota-derived melatonin are currently unknown, there does seem to be crosstalk between melatonin derived from the host and that originating from microbiota.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | | | - Ruediger Hardeland
- Johann Friedric Blumenbach Institute of Zoology and Anthropology, University of Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
46
|
Kashiwagi S, Morita A, Yokomizo S, Ogawa E, Komai E, Huang PL, Bragin DE, Atochin DN. Photobiomodulation and nitric oxide signaling. Nitric Oxide 2023; 130:58-68. [PMID: 36462596 PMCID: PMC9808891 DOI: 10.1016/j.niox.2022.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Nitric oxide (NO) is a well-known gaseous mediator that maintains vascular homeostasis. Extensive evidence supports that a hallmark of endothelial dysfunction, which leads to cardiovascular diseases, is endothelial NO deficiency. Thus, restoring endothelial NO represents a promising approach to treating cardiovascular complications. Despite many therapeutic agents having been shown to augment NO bioavailability under various pathological conditions, success in resulting clinical trials has remained elusive. There is solid evidence of diverse beneficial effects of the treatment with low-power near-infrared (NIR) light, defined as photobiomodulation (PBM). Although the precise mechanisms of action of PBM are still elusive, recent studies consistently report that PBM improves endothelial dysfunction via increasing bioavailable NO in a dose-dependent manner and open a feasible path to the use of PBM for treating cardiovascular diseases via augmenting NO bioavailability. In particular, the use of NIR light in the NIR-II window (1000-1700 nm) for PBM, which has reduced scattering and minimal tissue absorption with the largest penetration depth, is emerging as a promising therapy. In this review, we update recent findings on PBM and NO.
Collapse
Affiliation(s)
- Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA.
| | - Atsuyo Morita
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA; Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Emiyu Ogawa
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, Japan
| | - Eri Komai
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Paul L Huang
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM, 87108, USA; Department of Neurology, The University of New Mexico School of Medicine, MSC08 4720, 1 UNM, Albuquerque, NM, 87131, USA.
| | - Dmitriy N Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
47
|
Semyachkina-Glushkovskaya O, Shirokov A, Blokhina I, Telnova V, Vodovozova E, Alekseeva A, Boldyrev I, Fedosov I, Dubrovsky A, Khorovodov A, Terskov A, Evsukova A, Elovenko D, Adushkina V, Tzoy M, Agranovich I, Kurths J, Rafailov E. Intranasal Delivery of Liposomes to Glioblastoma by Photostimulation of the Lymphatic System. Pharmaceutics 2022; 15:pharmaceutics15010036. [PMID: 36678667 PMCID: PMC9867158 DOI: 10.3390/pharmaceutics15010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) limits the delivery of majority of cancer drugs and thereby complicates brain tumor treatment. The nasal-brain-lymphatic system is discussed as a pathway for brain drug delivery overcoming the BBB. However, in most cases, this method is not sufficient to achieve a therapeutic effect due to brain drug delivery in a short distance. Therefore, it is necessary to develop technologies to overcome the obstacles facing nose-to-brain delivery of promising pharmaceuticals. In this study, we clearly demonstrate intranasal delivery of liposomes to the mouse brain reaching glioblastoma (GBM). In the experiments with ablation of the meningeal lymphatic network, we report an important role of meningeal pathway for intranasal delivery of liposomes to the brain. Our data revealed that GBM is characterized by a dramatic reduction of intranasal delivery of liposomes to the brain that was significantly improved by near-infrared (1267 nm) photostimulation of the lymphatic vessels in the area of the cribriform plate and the meninges. These results open new perspectives for non-invasive improvement of efficiency of intranasal delivery of cancer drugs to the brain tissues using nanocarriers and near-infrared laser-based therapeutic devices, which are commercially available and widely used in clinical practice.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ivan Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexander Dubrovsky
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexandr Khorovodov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Daria Elovenko
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Tzoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Ilana Agranovich
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Jürgen Kurths
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Department of Complexity Science, Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| | - Edik Rafailov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
48
|
Gao Y, Cheng Y, Chen J, Lin D, Liu C, Zhang LK, Yin L, Yang R, Guan YQ. NIR-Assisted MgO-Based Polydopamine Nanoparticles for Targeted Treatment of Parkinson's Disease through the Blood-Brain Barrier. Adv Healthc Mater 2022; 11:e2201655. [PMID: 36153843 DOI: 10.1002/adhm.202201655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/20/2022] [Indexed: 01/28/2023]
Abstract
The blood-brain barrier (BBB) is a major limiting factor that prevents the treatment of Parkinson's disease (PD). In the present study, MgOp@PPLP nanoparticles are explored by using MgO nanoparticles as a substrate, polydopamine as a shell, wrapping anti-SNCA plasmid inside, and modifying polyethylene glycol, lactoferrin, and puerarin on the surface to improve the hydrophilicity, brain targeting and antioxidant properties of the particles, respectively. MgOp@PPLP exhibits superior near-infrared radiation (NIR) response. Under the guidance of photothermal effect, these MgOp@PPLP particles are capable of penetrating the BBB and be taken up by neuronal cells to exert gene therapy and antioxidant therapy. In both in vivo and in vitro models of PD, MgOp@PPLP exhibits good neuroprotective effects. Therefore, combined with noninvasive NIR radiation, MgOp@PPLP nanoplatform with good biocompatibility becomes an ideal material to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yifei Gao
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuxue Cheng
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jiapeng Chen
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Danmin Lin
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Chao Liu
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Liang Yin
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Runcai Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
| |
Collapse
|
49
|
Monteiro F, Carvalho Ó, Sousa N, Silva FS, Sotiropoulos I. Photobiomodulation and visual stimulation against cognitive decline and Alzheimer's disease pathology: A systematic review. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12249. [PMID: 36447479 PMCID: PMC9695760 DOI: 10.1002/trc2.12249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022]
Abstract
Introduction Given the ineffectiveness of the available drug treatment against Alzheimer disease (AD), light-based therapeutic modalities have been increasingly receiving attention with photobiomodulation (PBM) and, more recently, visual stimulation (VS) being among the most promising approaches. However, the PBM and VS light parameters tested so far, as well as their outcomes, vary a lot with conflicting results being reported. Methods Based on Scopus, PubMed, and Web of Science databases search, this systematic review summarizes, compares, and discusses 43 cell, animal, and human studies of PBM and VS related to cognitive decline and AD pathology. Results Preclinical work suggests that PBM with 640±30-nm light and VS at 40 Hz attenuates Aβ and Tau pathology and improves neuronal and synaptic plasticity with most studies pointing towards enhancement of degradation/clearance mechanisms in the brain of AD animal models. Despite the gap of the translational evidence for both modalities, the few human studies performed so far support the use of PBM at 810-870 nm light pulsing at 40 Hz for improving brain network connectivity and memory in older subjects and AD patients, while 40 Hz VS in humans seems to improve cognition; further clinical investigation is urgently required to clarify the beneficial impact of PBM and VS in AD patients. Discussion This review highlights PBM and VS as promising light-based therapeutic approaches against AD brain neuropathology and related cognitive decline, clarifying the most effective light parameters for further preclinical and clinical testing and use. Highlights Light-based brain stimulation produces neural entrainment and reverts neuronal damageBrain PBM and VS attenuate AD neuropathologyPMB and VS are suggested to improve cognitive performance in AD patients and animal modelsLight stimulation represents a promising therapeutic strategy against neurodegeneration.
Collapse
Affiliation(s)
- Francisca Monteiro
- Center for Microelectromechanical Systems (CMEMS)Campus AzurémUniversity of MinhoGuimarãesPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- LABBELS—Associate LaboratoryUniversity of MinhoGuimarãesPortugal
| | - Óscar Carvalho
- Center for Microelectromechanical Systems (CMEMS)Campus AzurémUniversity of MinhoGuimarãesPortugal
- LABBELS—Associate LaboratoryUniversity of MinhoGuimarãesPortugal
| | - Nuno Sousa
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoCampus de GualtarBragaPortugal
| | - Filipe S. Silva
- Center for Microelectromechanical Systems (CMEMS)Campus AzurémUniversity of MinhoGuimarãesPortugal
- LABBELS—Associate LaboratoryUniversity of MinhoGuimarãesPortugal
| | - Ioannis Sotiropoulos
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoCampus de GualtarBragaPortugal
- Institute of Biosciences and ApplicationsNCSR DemokritosAthensGreece
| |
Collapse
|
50
|
Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|