1
|
Xin L, Kanghao N, Jiacheng L, Xiaodong Y, Juhan Y, Xinyang Z, Xiangdong L. Sodium aescinate protects renal ischemia-reperfusion and pyroptosis through AKT/NLRP3 signaling pathway. Ren Fail 2025; 47:2488140. [PMID: 40260531 PMCID: PMC12016278 DOI: 10.1080/0886022x.2025.2488140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/23/2025] Open
Abstract
Renal ischemia-reperfusion injury (RIRI) is a common cause of acute renal injury. Studies have shown that sodium aescinate (SA) may serve as a potential therapeutic agent, although its exact mechanism remains unclear. This study first evaluated the efficacy of SA using a mouse renal ischemia-reperfusion model. Subsequently, its mechanism was elucidated through systematic bioinformatics, and finally validated through in vitro and in vivo experiments. The results demonstrated that SA has a protective effect on renal function in mice with RIRI. Bioinformatic analysis indicated that the pyroptosis pathway is significantly activated during renal ischemia-reperfusion injury, and immunohistochemistry showed that the level of renal pyroptosis is upregulated during ischemia-reperfusion injury. Administration of SA was able to reduce the expression of pyroptosis-related proteins (GSDMD, NLRP3, IL-1β) in RIRI. In vitro and in vivo experiments further confirmed that SA exerts an anti-pyroptotic effect by inhibiting the AKT/NLRP3 signaling pathway. Ultimately, SA mitigates kidney injury in IRI mice by suppressing renal failure through inhibition of the AKT/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Liu Xin
- The First Affiliated Hospital of Hebei North University, Hebei Province, China
| | - Ning Kanghao
- Graduate School of Hebei North University, Hebei Province, China
| | - Li Jiacheng
- The First Affiliated Hospital of Hebei North University, Hebei Province, China
| | - Yan Xiaodong
- The First Affiliated Hospital of Hebei North University, Hebei Province, China
| | - Yan Juhan
- Graduate School of Hebei North University, Hebei Province, China
| | - Zhao Xinyang
- The First Affiliated Hospital of Hebei North University, Hebei Province, China
| | - Li Xiangdong
- The First Affiliated Hospital of Hebei North University, Hebei Province, China
| |
Collapse
|
2
|
Li SS, Lei DL, Yu HR, Xiang S, Wang YH, Wu ZJ, Jiang L, Huang ZT. Diagnostic value and immune infiltration characterization of WTAP as a critical m6A regulator in liver transplantation. Hepatobiliary Pancreat Dis Int 2025; 24:138-146. [PMID: 39730289 DOI: 10.1016/j.hbpd.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND RNA N6-methyladenosine (m6A) regulators are essential for numerous biological processes and are implicated in various diseases. However, the comprehensive role of m6A regulators in the context of liver transplantation (LT) remains poorly understood. This study aimed to illustrate the relationship between m6A regulators and ischemia-reperfusion injury (IRI) following LT. METHODS Datasets were acquired from the Gene Expression Omnibus database. Differential analysis of the merged data identified the differentially expressed m6A regulators. Random forest (RF) models and nomograms were used to forecast the incidence and assess the IRI risk following LT. m6A regulators were classified into distinct subgroups using cluster analysis. The differential gene expression was validated using immunohistochemistry, immunofluorescence, and Western blotting. RESULTS We found significant disparities in the gene expression levels of the three m6A regulators between patients with and without LT. Wilms' tumor 1-associating protein (WTAP) expression was upregulated following LT. The RF models exhibited a high degree of accuracy in predicting IRI risk. Immune infiltration analysis showed that WTAP was an immune-associated m6A regulator that was closely associated with T and B cells. WTAP expression in the rat LT model was upregulated after 24 h of reperfusion, which was consistent with the results of the bioinformatics analysis. CONCLUSIONS WTAP has a high diagnostic value for IRI in LT and influences the immune status of patients. Hence, WTAP, as a significant regulator of m6A, is a potential biomarker for the detection and implementation of immunotherapy for IRI following LT.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Deng-Liang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Hua-Rong Yu
- Department of Basic Medical Sciences, Chongqing Medical University, Chongqing 400000, China
| | - Song Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Yi-Hua Wang
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Zhong-Jun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Li Jiang
- Department of General Surgery, Division of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zuo-Tian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China.
| |
Collapse
|
3
|
Li J, Bao J, Liu Y, Chen M, Chen Y, Tuolihong L, Jiang F, Xie S, Lyu F, Sun Y, Cao Y, Chen H, Chen Z, Zeng Z. Lentinan enhances microbiota-derived isoursodeoxycholic acid levels to alleviate hepatic ischemia-reperfusion injury in mice. Int J Biol Macromol 2025; 304:140717. [PMID: 39920949 DOI: 10.1016/j.ijbiomac.2025.140717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is an essential clinical concern caused by liver transplantation, resection, trauma, and shock that must be addressed immediately. Although the mechanisms underlying HIRI are well-documented, effective prevention and treatment strategies are still lacking. Inflammation is a central mechanism of HIRI, with macrophages playing a crucial role in initiating and amplifying the inflammatory response. Numerous plant polysaccharides exhibit substantial anti-inflammatory and hepatoprotective properties. However, the function of Lentinan (LNT) in HIRI has not been fully explored. Thus, this study aims to investigate the preventive potential of LNT in HIRI. Here, we reveal that oral administration of LNT considerably reduces hepatic inflammation and improves liver pathology in mice with HIRI by modulating gut microbiota. Specifically, LNT considerably increased microbiota-derived isoursodeoxycholic acid (IsoUDCA). Further experiments showed that IsoUDCA alleviates hepatic injury by suppressing macrophage inflammation. Mechanistically, IsoUDCA directly binds to and activates the neuron-derived clone 77 (Nur77) transcription factor, inhibiting the NF-κB signaling pathway in macrophages. Our findings shed light on the significant role of the LNT-microbiota-IsoUDCA-Nur77 axis in attenuating macrophage inflammation during HIRI, offering novel insights into potential therapeutic targets and avenues for preventing HIRI.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingna Bao
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yihong Liu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meiling Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuqi Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lina Tuolihong
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fuhui Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shihao Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengyuan Lyu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ye Sun
- Department of Critical Care Medicine, Yuebei People's Hospital, Shaoguan 512000, Guangdong, China
| | - Yan Cao
- Department of Critical Care Medicine, Yuebei People's Hospital, Shaoguan 512000, Guangdong, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong.
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Xu M, Alwahsh SM, Kim MH, Kollmar O. A Multidrug Donor Preconditioning Improves Steatotic Rat Liver Allograft Function and Recipient Survival After Transplantation. Transpl Int 2024; 37:13557. [PMID: 39726675 PMCID: PMC11671227 DOI: 10.3389/ti.2024.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The scarcity of donors has prompted the growing utilization of steatotic livers, which are susceptible to injuries following orthotopic liver transplantation (OLT). This study aims to assess the efficacy of multidrug donor preconditioning (MDDP) in alleviating injuries of steatotic grafts following rat OLT. Lean rats were subjected to a Western-style diet with high-fat (HF) and high-fructose (HFr) for 30 days to induce steatosis. Both lean and steatotic livers were implanted into lean recipients fed with a chow diet after OLT. The HF + HFr diet effectively elevated blood triglyceride and cholesterol levels and induced fat accumulation in rat livers. Our results demonstrated a significant decrease in alanine aminotransferase levels (p = 0.003), aspartate aminotransferase levels (p = 0.021), and hepatic Suzuki scores (p = 0.045) in the steatotic rat liver allograft group following MDDP treatment on post-operation day (POD) 7. Furthermore, the survival rates of steatotic rat liver allografts with MDDP (19/21, 90.5%) were significantly higher than those in the steatotic control (12/21, 57.1%, *p = 0.019). These findings indicate that MDDP treatment improves steatotic rat liver allograft function and recipient survival following OLT.
Collapse
Affiliation(s)
- Min Xu
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Salamah M. Alwahsh
- Department of Gastroenterology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
- Program of Medicine, College of Medicine and Health Sciences, Palestine Polytechnic University, Hebron, Palestine
| | - Myung-Ho Kim
- Department of Internal Korean Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Otto Kollmar
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
5
|
Li Z, Yin B, Xu Y, Wang C, Li X, Lu S, Ke S, Qian B, Yu H, Bai M, Li Z, Zhou Y, Jiang H, Ma Y. Von Hippel-Lindau deficiency protects the liver against ischemia/reperfusion injury through the regulation of hypoxia-inducible factor 1α and 2α. Hepatol Commun 2024; 8:e0567. [PMID: 39585306 PMCID: PMC11596652 DOI: 10.1097/hc9.0000000000000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Ischemia and reperfusion (I/R)-induced liver injury contributes to morbidity and mortality during hepatic surgery or liver transplantation. As a pivotal regulator of cancer and inflammation, the role of Von Hippel-Lindau (VHL) in hepatic I/R injury remains undetermined. METHODS We investigated the role of VHL in hepatic I/R injury by generating VHL conditional knockout (VHL-KO) mice. The downstream mechanisms of VHL were confirmed, and the role of HIF-2α in hepatic I/R injury was further investigated. RESULTS In this study, we discovered that VHL upregulation was associated with hepatic I/R injury in a mouse model. VHL gene knockout (VHL-KO) and overexpression (Ad-VHL) mice demonstrated that VHL aggravated liver injury, increased inflammation, and accelerated cell death in hepatic I/R injury. The VHL protein (pVHL) regulates a crucial control mechanism by targeting HIFα subunits for ubiquitin-mediated degradation. In vitro and in vivo studies demonstrated that VHL interacted with and repressed hypoxia-inducible factor 1α (HIF-1α) and hypoxia-inducible factor 2α (HIF-2α) expression during hepatic I/R injury. Notably, the inhibition of HIF-1α or 2α, as well as the concurrent inhibition of HIF-1α and 2α, abrogated the protective effect of VHL-KO. The severe stabilization of HIF-1α or 2α, as well as the simultaneous overexpression of HIF-1α and 2α, compensated for the detrimental effect of VHL. CONCLUSIONS Thus, we identified the VHL-HIF-1α/HIF-2α axis as an indispensable pathway that may be a novel target for mediating hepatic I/R injury.
Collapse
Affiliation(s)
- Zihao Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoqun Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanjia Ke
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjun Yu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Miaoyu Bai
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongyu Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Cortes-Mejia NA, Bejarano-Ramirez DF, Guerra-Londono JJ, Trivino-Alvarez DR, Tabares-Mesa R, Vera-Torres A. Portal vein arterialization in 25 liver transplant recipients: A Latin American single-center experience. World J Transplant 2024; 14:92528. [PMID: 38947972 PMCID: PMC11212596 DOI: 10.5500/wjt.v14.i2.92528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/19/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Portal vein arterialization (PVA) has been used in liver transplantation (LT) to maximize oxygen delivery when arterial circulation is compromised or has been used as an alternative reperfusion technique for complex portal vein thrombosis (PVT). The effect of PVA on portal perfusion and primary graft dysfunction (PGD) has not been assessed. AIM To examine the outcomes of patients who required PVA in correlation with their LT procedure. METHODS All patients receiving PVA and LT at the Fundacion Santa Fe de Bogota between 2011 and 2022 were analyzed. To account for the time-sensitive effects of graft perfusion, patients were classified into two groups: prereperfusion (pre-PVA), if the arterioportal anastomosis was performed before graft revascularization, and postreperfusion (post-PVA), if PVA was performed afterward. The pre-PVA rationale contemplated poor portal hemodynamics, severe vascular steal, or PVT. Post-PVA was considered if graft hypoperfusion became evident. Conservative interventions were attempted before PVA. RESULTS A total of 25 cases were identified: 15 before and 10 after graft reperfusion. Pre-PVA patients were more affected by diabetes, decompensated cirrhosis, impaired portal vein (PV) hemodynamics, and PVT. PGD was less common after pre-PVA (20.0% vs 60.0%) (P = 0.041). Those who developed PGD had a smaller increase in PV velocity (25.00 cm/s vs 73.42 cm/s) (P = 0.036) and flow (1.31 L/min vs 3.34 L/min) (P = 0.136) after arterialization. Nine patients required PVA closure (median time: 62 d). Pre-PVA and non-PGD cases had better survival rates than their counterparts (56.09 months vs 22.77 months and 54.15 months vs 31.91 months, respectively). CONCLUSION This is the largest report presenting PVA in LT. Results suggest that pre-PVA provides better graft perfusion than post-PVA. Graft hyperperfusion could play a protective role against PGD.
Collapse
Affiliation(s)
- Nicolas Andres Cortes-Mejia
- Division of Anesthesiology, Critical Care Medicine, and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
- Transplant and Hepatobiliary Surgery Department, Fundacion Santa Fe de Bogota, Bogota 110111, Colombia
| | | | - Juan Jose Guerra-Londono
- Division of Anesthesiology, Critical Care Medicine, and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | - Raquel Tabares-Mesa
- General Surgery Department, Fundacion Santa Fe de Bogota, Bogota 110111, Colombia
| | - Alonso Vera-Torres
- Transplant and Hepatobiliary Surgery Department, Fundacion Santa Fe de Bogota, Bogota 110111, Colombia
| |
Collapse
|
7
|
Zhang N, Liao H, Lin Z, Tang Q. Insights into the Role of Glutathione Peroxidase 3 in Non-Neoplastic Diseases. Biomolecules 2024; 14:689. [PMID: 38927092 PMCID: PMC11202029 DOI: 10.3390/biom14060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROSs) are byproducts of normal cellular metabolism and play pivotal roles in various physiological processes. Disruptions in the balance between ROS levels and the body's antioxidant defenses can lead to the development of numerous diseases. Glutathione peroxidase 3 (GPX3), a key component of the body's antioxidant system, is an oxidoreductase enzyme. GPX3 mitigates oxidative damage by catalyzing the conversion of hydrogen peroxide into water. Beyond its antioxidant function, GPX3 is vital in regulating metabolism, modulating cell growth, inducing apoptosis and facilitating signal transduction. It also serves as a significant tumor suppressor in various cancers. Recent studies have revealed aberrant expression of GPX3 in several non-neoplastic diseases, associating it with multiple pathological processes. This review synthesizes the current understanding of GPX3 expression and regulation, highlighting its extensive roles in noncancerous diseases. Additionally, this paper evaluates the potential of GPX3 as a diagnostic biomarker and explores emerging therapeutic strategies targeting this enzyme, offering potential avenues for future clinical treatment of non-neoplastic conditions.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Haihan Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
8
|
Meng Z, Li X, Lu S, Hua Y, Yin B, Qian B, Li Z, Zhou Y, Sergeeva I, Fu Y, Ma Y. A comprehensive analysis of m6A/m7G/m5C/m1A-related gene expression and immune infiltration in liver ischemia-reperfusion injury by integrating bioinformatics and machine learning algorithms. Eur J Med Res 2024; 29:326. [PMID: 38867322 PMCID: PMC11170855 DOI: 10.1186/s40001-024-01928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Liver ischemia-reperfusion injury (LIRI) is closely associated with immune infiltration, which commonly occurs after liver surgery, especially liver transplantation. Therefore, it is crucial to identify the genes responsible for LIRI and develop effective therapeutic strategies that target immune response. Methylation modifications in mRNA play various crucial roles in different diseases. This study aimed to identify potential methylation-related markers in patients with LIRI and evaluate the corresponding immune infiltration. METHODS Two Gene Expression Omnibus datasets containing human liver transplantation data (GSE12720 and GSE151648) were downloaded for integrated analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted to investigate the functional enrichment of differentially expressed genes (DEGs). Differentially expressed methylation-related genes (DEMRGs) were identified by overlapping DEG sets and 65 genes related to N6-methyladenosine (m6A), 7-methylguanine (m7G), 5-methylcytosine (m5C), and N1-methyladenosine (m1A). To evaluate the relationship between DEMRGs, a protein-protein interaction (PPI) network was utilized. The core DEMRGs were screened using three machine learning algorithms: least absolute shrinkage and selection operator, random forest, and support vector machine-recursive feature elimination. After verifying the diagnostic efficacy using the receiver operating characteristic curve, we validated the expression of the core DEMRGs in clinical samples and performed relative cell biology experiments. Additionally, the immune status of LIRI was comprehensively assessed using the single sample gene set enrichment analysis algorithm. The upstream microRNA and transcription factors of the core DEMRGs were also predicted. RESULTS In total, 2165 upregulated and 3191 downregulated DEGs were identified, mainly enriched in LIRI-related pathways. The intersection of DEGs and methylation-related genes yielded 28 DEMRGs, showing high interaction in the PPI network. Additionally, the core DEMRGs YTHDC1, METTL3, WTAP, and NUDT3 demonstrated satisfactory diagnostic efficacy and significant differential expression and corresponding function based on cell biology experiments. Furthermore, immune infiltration analyses indicated that several immune cells correlated with all core DEMRGs in the LIRI process to varying extents. CONCLUSIONS We identified core DEMRGs (YTHDC1, METTL3, WTAP, and NUDT3) associated with immune infiltration in LIRI through bioinformatics and validated them experimentally. This study may provide potential methylation-related gene targets for LIRI immunotherapy.
Collapse
Affiliation(s)
- Zhanzhi Meng
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongyu Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Irina Sergeeva
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Watson CJ, Gaurav R, Butler AJ. Current Techniques and Indications for Machine Perfusion and Regional Perfusion in Deceased Donor Liver Transplantation. J Clin Exp Hepatol 2024; 14:101309. [PMID: 38274508 PMCID: PMC10806097 DOI: 10.1016/j.jceh.2023.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 01/27/2024] Open
Abstract
Since the advent of University of Wisconsin preservation solution in the 1980s, clinicians have learned to work within its confines. While affording improved outcomes, considerable limitations still exist and contribute to the large number of livers that go unused each year, often for fear they may never work. The last 10 years have seen the widespread availability of new perfusion modalities which provide an opportunity for assessing organ viability and prolonged organ storage. This review will discuss the role of in situ normothermic regional perfusion for livers donated after circulatory death. It will also describe the different modalities of ex situ perfusion, both normothermic and hypothermic, and discuss how they are thought to work and the opportunities afforded by them.
Collapse
Affiliation(s)
- Christopher J.E. Watson
- University of Cambridge Department of Surgery, Box 210, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
- The Roy Calne Transplant Unit, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Rohit Gaurav
- The Roy Calne Transplant Unit, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Andrew J. Butler
- University of Cambridge Department of Surgery, Box 210, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
- The Roy Calne Transplant Unit, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| |
Collapse
|
10
|
Wang Y, Piao C, Liu T, Lu X, Ma Y, Zhang J, Liu G, Wang H. Effects of the exosomes of adipose-derived mesenchymal stem cells on apoptosis and pyroptosis of injured liver in miniature pigs. Biomed Pharmacother 2023; 169:115873. [PMID: 37979374 DOI: 10.1016/j.biopha.2023.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a complication of hepatectomy that affects the functional recovery of the remnant liver, which has been demonstrated to be associated with pyroptosis and apoptosis. Mesenchymal stem cells (MSCs) can protect against HIRI in rodents. Paracrine mechanisms of MSCs indicated that MSCs-derived exosomes (MSCs-exo) are one of the important components within the paracrine substances of MSCs. Moreover, miniature pigs are ideal experimental animals in comparative medicine compared to rodents. Accordingly, this study aimed to investigate whether hepatectomy combined with HIRI in miniature pigs would induce pyroptosis and whether adipose-derived MSCs (ADSCs) and their exosomes (ADSCs-exo) could positively mitigate apoptosis and pyroptosis. The study also compared the differences in the effects and the role of ADSCs and ADSCs-exo in pyroptosis and apoptosis. Results showed that severe ultrastructure damage occurred in liver tissues and systemic inflammatory response was induced after surgery, with TLR4/MyD88/NFκB/HMGB1 activation, NLRP3-ASC-Caspase1 complex generation, GSDMD revitalization, and IL-1β, IL-18, and LDH elevation in the serum. Furthermore, expression of Fas-Fasl-Caspase8 and CytC-APAF1-Caspase9 was increased in the liver. The ADSCs or ADSCs-exo intervention could inhibit the expression of these indicators and improve the ultrastructural pathological changes and systemic inflammatory response. There was no significant difference between the two intervention groups. In summary, ADSCs-exo could effectively inhibit pyroptosis and apoptosis similar to ADSCs and may be considered a safe and effective cell-free therapy to protect against liver injury.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guodong Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
12
|
Ko SF, Li YC, Shao PL, Chiang JY, Sung PH, Chen YL, Yip HK. Interplay Between Inflammatory-immune and Interleukin-17 Signalings Plays a Cardinal Role on Liver Ischemia-reperfusion Injury-Synergic Effect of IL-17Ab, Tacrolimus and ADMSCs on Rescuing the Liver Damage. Stem Cell Rev Rep 2023; 19:2852-2868. [PMID: 37632641 DOI: 10.1007/s12015-023-10611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND This study tested the hypothesis that inflammatory and interleukin (IL)-17 signalings were essential for acute liver ischemia (1 h)-reperfusion (72 h) injury (IRI) that was effectively ameliorated by adipose-derived mesenchymal stem cells (ADMSCs) and tacrolimus. METHODS Adult-male SD rats (n = 50) were equally categorized into groups 1 (sham-operated-control), 2 (IRI), 3 [IRI + IL-17-monoclonic antibody (Ab)], 4 (IRI + tacrolimus), 5 (IRI + ADMSCs) and 6 (IRI + tacrolimus-ADMSCs) and liver was harvested at 72 h. RESULTS The main findings included: (1) circulatory levels: inflammatory cells, immune cells, and proinflammatory cytokines as well as liver-damage enzyme at the time point of 72 h were highest in group 2, lowest in group 1 and significantly lower in group 6 than in groups 3 to 5 (all p < 0.0001), but they did not differ among these three latter groups; (2) histopathology: the liver injury score, fibrosis, inflammatory and immune cell infiltration in liver immunity displayed an identical pattern of inflammatory cells among the groups (all p < 0.0001); and (3) protein levels: upstream and downstream inflammatory signalings, oxidative-stress, apoptotic and mitochondrial-damaged biomarkers exhibited an identical pattern of inflammatory cells among the groups (all p < 0.0001). CONCLUSION Our results obtained from circulatory, pathology and molecular-cellular levels delineated that acute IRI was an intricate syndrome that elicited complex upstream and downstream inflammatory and immune signalings to damage liver parenchyma that greatly suppressed by combined tacrolimus and ADMSCs therapy.
Collapse
Affiliation(s)
- Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- , Taoyuan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
13
|
Heo MJ, Suh JH, Poulsen KL, Ju C, Kim KH. Updates on the Immune Cell Basis of Hepatic Ischemia-Reperfusion Injury. Mol Cells 2023; 46:527-534. [PMID: 37691258 PMCID: PMC10495686 DOI: 10.14348/molcells.2023.0099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is the main cause of organ dysfunction and failure after liver surgeries including organ transplantation. The mechanism of liver IRI is complex and numerous signals are involved but cellular metabolic disturbances, oxidative stress, and inflammation are considered the major contributors to liver IRI. In addition, the activation of inflammatory signals exacerbates liver IRI by recruiting macrophages, dendritic cells, and neutrophils, and activating NK cells, NKT cells, and cytotoxic T cells. Technological advances enable us to understand the role of specific immune cells during liver IRI. Accordingly, therapeutic strategies to prevent or treat liver IRI have been proposed but no definitive and effective therapies exist yet. This review summarizes the current update on the immune cell functions and discusses therapeutic potentials in liver IRI. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.
Collapse
Affiliation(s)
- Mi Jeong Heo
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ji Ho Suh
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kyle L. Poulsen
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
14
|
Moritz R, Mangum L, Voelker C, Garcia G, Wenke J. Effect of valproic acid upon skeletal muscle subjected to prolonged tourniquet application. Trauma Surg Acute Care Open 2023; 8:e001074. [PMID: 37484837 PMCID: PMC10357685 DOI: 10.1136/tsaco-2022-001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Background Valproic acid (VPA), a histone deacetylase inhibitor, has shown improved outcomes when used as a pharmaceutical intervention in animal studies of hemorrhage, septic shock, and combined injuries. This study was designed to investigate the ability of VPA to mitigate ischemia-reperfusion injury produced by prolonged tourniquet application to an extremity. Methods The ischemia-reperfusion model in anesthetized rats was established using hemorrhage and a 3-hour tourniquet application. VPA was administered intravenously prior to tourniquet wear and removal. Ischemia-reperfusion injury was evaluated by investigating pathway signaling, immune modulation of cytokine release, remote organ injury, and skeletal muscle function during convalescence. Results We found that VPA sustained Protein kinase B (Akt) phosphorylation and Insulin-like growth factor signaling and modulated the systemic release of interleukin (IL)-1β, tumor necrosis factor alpha, and IL-6 after 2 hours of limb reperfusion. Additionally, VPA attenuated a loss in glomerular filtration rate at 3 days after injury. Histological and functional evaluation of extremity skeletal muscle at 3, 7, and 21 days after injury, however, demonstrated no significant differences in myocytic degeneration, necrotic formation, and maximal isometric tetanic torque. Conclusions Our results demonstrate that VPA sustains early prosurvival cell signaling, reduces the inflammatory response, and improves renal function in a hemorrhage with prolonged ischemia and reperfusion model. However, these do not translate into meaningful preservation in limb function when applied as a pharmaceutical augmentation to tourniquet wear. Level of evidence IV.
Collapse
Affiliation(s)
- Robert Moritz
- Combat Wound Care Group (CRT4), US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Lee Mangum
- Combat Wound Care Group (CRT4), US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Chet Voelker
- Combat Wound Care Group (CRT4), US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Gerardo Garcia
- Combat Wound Care Group (CRT4), US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Joseph Wenke
- Orthopaedic Surgery and Rehabilitation, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
15
|
Liu Y, Sheng M, Jia L, Zhu M, Yu W. Protective effects of cordycepin pretreatment against liver ischemia/reperfusion injury in mice. Immun Inflamm Dis 2023; 11:e792. [PMID: 36988254 PMCID: PMC10013135 DOI: 10.1002/iid3.792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION Cordycepin has been reported to exhibit hepatic protective and anti-inflammatory properties. Here, we investigated the role of cordycepin in ischemia/reperfusion (IR)-induced liver injury in a mouse model. METHODS Mice were pretreated with cordycepin by gavage for 3 weeks, followed by the establishment of the IR modeling. Liver injury, Suzuki's histological grading, hepatic apoptosis, and inflammatory responses were evaluated by biochemical and pathological analysis. RESULTS It was found that Cordycepin pretreatment at 50 mg/kg for 3 weeks attenuated IR-induced liver injury, as reflected by the significant decrease of the levels of aspartate aminotransferase, alanine transaminase, lactate dehydrogenase, and low-density lipoprotein. Cordycepin pretreatment also reduced histopathological changes, attenuated hepatocyte apoptosis, inflammatory responses in the livers of IR mice. Mechanically, toll-like receptor 4/nuclear factor kappa-B signaling in liver tissues was inhibited by Cordycepin pretreatment. CONCLUSIONS In conclusion, Cordycepin pretreatment protects IR-induced liver injury, which demonstrates its potential for the treatment of IR in the liver.
Collapse
Affiliation(s)
- Yunxia Liu
- Department of AnesthesiologyTianjin First Central HospitalTianjinChina
| | - Mingwei Sheng
- Department of AnesthesiologyTianjin First Central HospitalTianjinChina
| | - Lili Jia
- Department of AnesthesiologyTianjin First Central HospitalTianjinChina
| | - Min Zhu
- Department of AnesthesiologyTianjin First Central HospitalTianjinChina
| | - Wenli Yu
- Department of AnesthesiologyTianjin First Central HospitalTianjinChina
| |
Collapse
|
16
|
Inhibition of γδ-TcR or IL17a Reduces T-Cell and Neutrophil Infiltration after Ischemia/Reperfusion Injury in Mouse Liver. J Clin Med 2023; 12:jcm12051751. [PMID: 36902538 PMCID: PMC10002490 DOI: 10.3390/jcm12051751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/24/2023] Open
Abstract
Neutrophil and T-cell recruitment contribute to hepatic ischemia/reperfusion injury. The initial inflammatory response is orchestrated by Kupffer cells and liver sinusoid endothelial cells. However, other cell types, including γδ-Τ cells, seem to be key mediators in further inflammatory cell recruitment and proinflammatory cytokine release, including IL17a. In this study, we used an in vivo model of partial hepatic ischemia/reperfusion injury (IRI) to investigate the role of the γδ-Τ-cell receptor (γδTcR) and the role of IL17a in the pathogenesis of liver injury. Forty C57BL6 mice were subjected to 60 min of ischemia followed by 6 h of reperfusion (RN 6339/2/2016). Pretreatment with either anti-γδΤcR antibodies or anti-IL17a antibodies resulted in a reduction in histological and biochemical markers of liver injury as well as neutrophil and T-cell infiltration, inflammatory cytokine production and the downregulation of c-Jun and NF-κΒ. Overall, neutralizing either γδTcR or IL17a seems to have a protective role in liver IRI.
Collapse
|
17
|
Shan Y, Qi D, Zhang L, Wu L, Li W, Liu H, Li T, Fu Z, Bao H, Song S. Single-cell RNA-seq revealing the immune features of donor liver during liver transplantation. Front Immunol 2023; 14:1096733. [PMID: 36845096 PMCID: PMC9945228 DOI: 10.3389/fimmu.2023.1096733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Immune cells, including T and B cells, are key factors in the success of liver transplantation. And the repertoire of T cells and B cells plays an essential function in mechanism of the immune response associated with organ transplantation. An exploration of their expression and distribution in donor organs could contribute to a better understanding of the altered immune microenvironment in grafts. In this study, using single-cell 5' RNA sequence and single-cell T cell receptor (TCR)/B cell receptor (BCR) repertoire sequence, we profiled immune cells and TCR/BCR repertoire in three pairs of donor livers pre- and post-transplantation. By annotating different immune cell types, we investigated the functional properties of monocytes/Kupffer cells, T cells and B cells in grafts. Bioinformatic characterization of differentially expressed genes (DEGs) between the transcriptomes of these cell subclusters were performed to explore the role of immune cells in inflammatory response or rejection. In addition, we also observed shifts in TCR/BCR repertoire after transplantation. In conclusion, we profiled the immune cell transcriptomics and TCR/BCR immune repertoire of liver grafts during transplantation, which may offer novel strategies for monitoring recipient immune function and treatment of rejection after liver transplantation.
Collapse
Affiliation(s)
- Yi Shan
- Department of Emergency and Intensive Care Unit, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Debin Qi
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lei Zhang
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lixue Wu
- Department of Emergency and Intensive Care Unit, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Wenfang Li
- Department of Emergency and Intensive Care Unit, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tao Li
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiren Fu
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haili Bao
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China,*Correspondence: Shaohua Song, ; Haili Bao,
| | - Shaohua Song
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China,*Correspondence: Shaohua Song, ; Haili Bao,
| |
Collapse
|
18
|
Mugaanyi J, Tong J, Lu C, Mao S, Huang J, Lu C. Risk factors for acute rejection in liver transplantation and its impact on the outcomes of recipients. Transpl Immunol 2023; 76:101767. [PMID: 36470573 DOI: 10.1016/j.trim.2022.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To determine the risk factors for acute rejection in liver transplantation and its impact on the outcomes of the recipients. METHODS Clinicopathological data of 290 patients who underwent liver transplantation from January 2012 to December 2021 at our center were retrospectively evaluated. Patients were grouped into an acute rejection (AR) group and a normal (NM) group based on the confirmed histopathological diagnosis of acute rejection. Univariate and multivariate logistic regression were used to determine the risk factors for acute rejection. RESULTS 244 patients were included in the study. Acute rejection occurred in 27 (11.1%) of the patients. Warm ischemia time (P = 0.137), cold ischemia time (P = 0.064) and chronic liver failure (P = 0.001) were potential risk factors for acute rejection. Chronic liver failure (P < 0.001, OR = 8.22, 95% CI = 2.47-27.32) was the independent risk factor. There was no significant difference in overall survival between recipients with acute rejection and those without it (P = 0.985). The 1-, 3- and 5-year overall survival in the NM group was 98.1%, 85.7% and 78.6% respectively vs 88.9%, 82.5% and 82.5% respectively in the AR group. CONCLUSION Acute rejection does not appear to affect the long-term survival of the recipients. Only chronic liver failure was an independent risk factor for acute rejection. Our findings further illustrate that contradictions still exist on which factors influence acute rejection in liver transplant recipients. SUMMARY Clinicopathological data of 290 liver transplant recipients at our center between January 2012 and December 2021 were retrospectively evaluated to determine the risk factors for acute rejection and its impact on the outcomes of the recipients. 244 patients were included in the analysis. 27 of the 244 experienced acute rejection. Propensity score matching was performed to reduce the confounding effect. Patients were assigned to an acute rejection group (n = 27) and a normal group (n = 54). Chronic liver failure (P < 0.001, OR = 8.22, 95% CI = 2.47-27.32) was the determined to be independent risk factor for acute rejection. Acute rejection did not appear to affect the long-term survival of the recipients and there was no significant difference in overall survival between the patients with acute rejection and those without it.
Collapse
Affiliation(s)
- Joseph Mugaanyi
- Medical School of Ningbo University, Ningbo, Zhejiang, China; Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Jinshu Tong
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Changjiang Lu
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuqi Mao
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jing Huang
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Caide Lu
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
19
|
Chen RX, Jiang WJ, Liu SC, Wang ZY, Wang ZB, Zhou T, Chen YAL, Wang JF, Chang J, Wang YR, Zhang YD, Wang XH, Li XC, Li CX. Apolipoprotein A-1 protected hepatic ischaemia-reperfusion injury through suppressing macrophage pyroptosis via TLR4-NF-κB pathway. Liver Int 2023; 43:234-248. [PMID: 36203339 DOI: 10.1111/liv.15448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Apolipoprotein A-1 (ApoA-1), the major apolipoprotein of high-density lipoprotein, plays anti-atherogenic role in cardiovascular diseases and exerts anti-inflammation effect in various inflammatory and infectious diseases. However, the role and mechanism of ApoA-1 in hepatic ischaemia-reperfusion (I/R) injury is unknown. METHODS In this study, we measured ApoA-1 expression in human liver grafts after transplantation. Mice partial hepatic I/R injury model was made in ApoA-1 knockout mice, ApoA-1 mimetic peptide D-4F treatment mice and corresponding control mice to examine the effect of ApoA-1 on liver damage, inflammation response and cell death. Primary hepatocytes and macrophages were isolated for in vitro study. RESULTS The results showed that ApoA-1 expression was down-regulated in human liver grafts after transplantation and mice livers subjected to hepatic I/R injury. ApoA-1 deficiency aggravated liver damage and inflammation response induced by hepatic I/R injury. Interestingly, we found that ApoA-1 deficiency increased pyroptosis instead of apoptosis during acute phase of hepatic I/R injury, which mainly occurred in macrophages rather than hepatocytes. The inhibition of pyroptosis compensated for the adverse impact of ApoA-1 deficiency. Furthermore, the up-regulated pyroptosis process was testified to be mediated by ApoA-1 through TLR4-NF-κB pathway and TLR4 inhibition significantly improved hepatic I/R injury. In addition, we confirmed that D-4F ameliorated hepatic I/R injury. CONCLUSIONS Our study has identified the protective role of ApoA-1 in hepatic I/R injury through inhibiting pyroptosis in macrophages via TLR4-NF-κB pathway. The effect of ApoA-1 may provide a novel therapeutic approach for hepatic I/R injury.
Collapse
Affiliation(s)
- Rui-Xiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wang-Jie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Shuo-Chen Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zi-Yi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhi-Bo Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yan-An-Lan Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ji-Fei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jiang Chang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yi-Rui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yao-Dong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xue-Hao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiang-Cheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chang-Xian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
20
|
Wang L, Shao J, Su C, Yang J. The application of optical technology in the diagnosis and therapy of oxidative stress-mediated hepatic ischemia-reperfusion injury. Front Bioeng Biotechnol 2023; 11:1133039. [PMID: 36890921 PMCID: PMC9986550 DOI: 10.3389/fbioe.2023.1133039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is defined as liver tissue damage and cell death caused by reperfusion during liver transplantation or hepatectomy. Oxidative stress is one of the important mechanisms of HIRI. Studies have shown that the incidence of HIRI is very high, however, the number of patients who can get timely and efficient treatment is small. The reason is not hard to explain that invasive ways of detection and lack of timely of diagnostic methods. Hence, a new detection method is urgently needed in clinic application. Reactive oxygen species (ROS), which are markers of oxidative stress in the liver, could be detected by optical imaging and offer timely and effective non-invasive diagnosis and monitoring. Optical imaging could become the most potential tool of diagnosis of HIRI in the future. In addition, optical technology can also be used in disease treatment. It found that optical therapy has the function of anti-oxidative stress. Consequently, it has possibility to treat HIRI caused by oxidative stress. In this review, we mainly summarized the application and prospect of optical techniques in oxidative stress-induced by HIRI.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang, China.,Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen Su
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Peng JF, Salami OM, Habimana O, Xie YX, Yao H, Yi GH. Targeted Mitochondrial Drugs for Treatment of Ischemia-Reperfusion Injury. Curr Drug Targets 2022; 23:1526-1536. [PMID: 36100990 DOI: 10.2174/1389450123666220913121422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury is a complex hemodynamic pathology that is a leading cause of death worldwide and occurs in many body organs. Numerous studies have shown that mitochondria play an important role in the occurrence mechanism of ischemia-reperfusion injury and that mitochondrial structural abnormalities and dysfunction lead to the disruption of the homeostasis of the whole mitochondria. At this time, mitochondria are not just sub-organelles to produce ATP but also important targets for regulating ischemia-reperfusion injury; therefore, drugs targeting mitochondria can serve as a new strategy to treat ischemia-reperfusion injury. Based on this view, in this review, we discuss potential therapeutic agents for both mitochondrial structural abnormalities and mitochondrial dysfunction, highlighting the application and prospects of targeted mitochondrial drugs in the treatment of ischemia-reperfusion injury, and try to provide new ideas for the clinical treatment of the ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jin-Fu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | | | - Olive Habimana
- International College, University of South China, 28 W Chang-sheng Road, Hengyang, Hunan, 421001, China
| | - Yu-Xin Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Hui Yao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
22
|
Wang C, Yu H, Lu S, Ke S, Xu Y, Feng Z, Qian B, Bai M, Yin B, Li X, Hua Y, Dong L, Li Y, Zhang B, Li Z, Chen D, Chen B, Zhou Y, Pan S, Fu Y, Jiang H, Wang D, Ma Y. LncRNA Hnf4αos exacerbates liver ischemia/reperfusion injury in mice via Hnf4αos/Hnf4α duplex-mediated PGC1α suppression. Redox Biol 2022; 57:102498. [PMID: 36242914 PMCID: PMC9576992 DOI: 10.1016/j.redox.2022.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022] Open
Abstract
LncRNAs are involved in the pathophysiologic processes of multiple diseases, but little is known about their functions in hepatic ischemia/reperfusion injury (HIRI). As a novel lncRNA, the pathogenetic significance of hepatic nuclear factor 4 alpha, opposite strand (Hnf4αos) in hepatic I/R injury remains unclear. Here, differentially expressed Hnf4αos and Hnf4α antisense RNA 1 (Hnf4α-as1) were identified in liver tissues from mouse ischemia/reperfusion models and patients who underwent liver resection surgery. Hnf4αos deficiency in Hnf4αos-KO mice led to improved liver function, alleviated the inflammatory response and reduced cell death. Mechanistically, we found a regulatory role of Hnf4αos-KO in ROS metabolism through PGC1α upregulation. Hnf4αos also promoted the stability of Hnf4α mRNA through an RNA/RNA duplex, leading to the transcriptional activation of miR-23a and miR-23a depletion was required for PGC1α function in hepatoprotective effects on HIRI. Together, our findings reveal that Hnf4αos elevation in HIRI leads to severe liver damage via Hnf4αos/Hnf4α/miR-23a axis-mediated PGC1α inhibition.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Hongjun Yu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Shanjia Ke
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhigang Feng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; The First Department of General Surgery, The Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Baolin Qian
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Miaoyu Bai
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Bing Yin
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Xinglong Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqian Dong
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yao Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bao Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Zhongyu Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Chen
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bangliang Chen
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dawei Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Anorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China.
| |
Collapse
|
23
|
Gülmez A, Kuru Bektaşoğlu P, Tönge Ç, Yaprak A, Türkoğlu ME, Önder E, Ergüder Bİ, Sargon MF, Gürer B, Kertmen H. Neuroprotective Effects of Dexpanthenol on Rabbit Spinal Cord Ischemia/Reperfusion Injury Model. World Neurosurg 2022; 167:e172-e183. [PMID: 35948219 DOI: 10.1016/j.wneu.2022.07.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Dexpanthenol (DXP) reportedly protects tissues against oxidative damage in various inflammation models. This study aimed to evaluate its effects on oxidative stress, inflammation, apoptosis, and neurological recovery in an experimental rabbit spinal cord ischemia/reperfusion injury (SCIRI) model. METHODS Rabbits were randomized into 5 groups of 8 animals each: group 1 (control), group 2 (ischemia), group 3 (vehicle), group 4 (methylprednisolone, 30 mg/kg), and group 5 (DXP, 500 mg/kg). The control group underwent laparotomy only, whereas other groups were subjected to spinal cord ischemia by aortic occlusion (just caudal to the 2 renal arteries) for 20 min. After 24 h, a modified Tarlov scale was employed to record neurological examination results. Malondialdehyde and caspase-3 levels and catalase and myeloperoxidase activities were analyzed in tissue and serum samples. Xanthine oxidase activity was measured in the serum. Histopathological and ultrastructural evaluations were also performed in the spinal cord. RESULTS After SCIRI, serum and tissue malondialdehyde and caspase-3 levels and myeloperoxidase and serum xanthine oxidase activities were increased (P < 0.05-0.001). However, serum and tissue catalase activity decreased significantly (P < 0.001). DXP treatment was associated with lower malondialdehyde and caspase-3 levels and reduced myeloperoxidase and xanthine oxidase activities but increased catalase activity (P < 0.05-0.001). Furthermore, DXP was associated with better histopathological, ultrastructural, and neurological outcome scores. CONCLUSIONS This study was the first to evaluate antioxidant, anti-inflammatory, antiapoptotic, and neuroprotective effects of DXP on SCIRI. Further experimental and clinical investigations are warranted to confirm that DXP can be administered to treat SCIRI.
Collapse
Affiliation(s)
- Ahmet Gülmez
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | | | - Çağhan Tönge
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Ahmet Yaprak
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - M Erhan Türkoğlu
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Evrim Önder
- Department of Pathology, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Berrin İmge Ergüder
- Department of Biochemistry, Ankara University School of Medicine, Ankara, Turkey
| | | | - Bora Gürer
- Department of Neurosurgery, Istinye University Faculty of Medicine, Istanbul, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
24
|
Resveratrol therapy improves liver function via estrogen-receptors after hemorrhagic shock in rats. PLoS One 2022; 17:e0275632. [PMID: 36227865 PMCID: PMC9560221 DOI: 10.1371/journal.pone.0275632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Background Resveratrol may improve organ dysfunction after experimental hemorrhagic or septic shock, and some of these effects appear to be mediated by estrogen receptors. However, the influence of resveratrol on liver function and hepatic microcirculation after hemorrhagic shock is unknown, and a presumed mediation via estrogen receptors has not been investigated in this context. Methods Male Sprague-Dawley rats (200-300g, n = 14/group) underwent hemorrhagic shock for 90 min (MAP 35±5 mmHg) and were resuscitated with shed blood and Ringer’s solution. Animals were treated intravenously with vehicle (1% EtOH), resveratrol (0.2 mg/kg), the unselective estrogen receptor antagonist ICI 182,780 (0.05 mg/kg) or resveratrol + ICI 182,780 prior to retransfusion. Sham-operated animals did not undergo hemorrhage but were treated likewise. After 2 hours of reperfusion, liver function was assessed either by plasma disappearance rate of indocyanine green (PDRICG) or evaluation of hepatic perfusion and hepatic integrity by intravital microscopy, serum enzyme as well as cytokine levels. Results Compared to vehicle controls, administration of resveratrol significantly improved PDRICG, hepatic perfusion index and hepatic integrity after hemorrhagic shock. The co-administration of ICI 182,780 completely abolished the protective effect only with regard to liver function. Conclusions This study shows that resveratrol may improve liver function and hepatocellular integrity after hemorrhagic shock in rats; estrogen receptors mediate these effects at least partially.
Collapse
|
25
|
Chen S, Yu Q, Song Y, Cui Z, Li M, Mei C, Cui H, Cao S, Zhu C. Inhibition of macrophage migration inhibitory factor (MIF) suppresses apoptosis signal-regulating kinase 1 to protect against liver ischemia/reperfusion injury. Front Pharmacol 2022; 13:951906. [PMID: 36160453 PMCID: PMC9493190 DOI: 10.3389/fphar.2022.951906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hepatic ischemia–reperfusion (I/R) injury is a major complication leading to surgical failures in liver resection, transplantation, and hemorrhagic shock. The role of cytokine macrophage migration inhibitory factor (MIF) in hepatic I/R injury is unclear. Methods: We examined changes of MIF expression in mice after hepatic I/R surgery and hepatocytes challenged with hypoxia–reoxygenation (H/R) insult. Subsequently, MIF global knock-out mice and mice with adeno-associated-virus (AAV)-delivered MIF overexpression were subjected to hepatic I/R injury. Hepatic histology, the inflammatory response, apoptosis and oxidative stress were monitored to assess liver damage. The molecular mechanisms of MIF function were explored in vivo and in vitro. Results: MIF was significantly upregulated in the serum whereas decreased in liver tissues of mice after hepatic I/R injury. MIF knock-out effectively attenuated I/R -induced liver inflammation, apoptosis and oxidative stress in vivo and in vitro, whereas MIF overexpression significantly aggravated liver injury. Via RNA-seq analysis, we found a significant decreased trend of MAPK pathway in MIF knock-out mice subjected hepatic I/R surgery. Using the apoptosis signal-regulating kinase 1 (ASK1) inhibitor NQDI-1 we determined that, mechanistically, the protective effect of MIF deficiency on hepatic I/R injury was dependent on the suppressing of the ASK1-JNK/P38 signaling pathway. Moreover, we found MIF inhibitor ISO-1 alleviate hepatic I/R injury in mice. Conclusion: Our results confirm that MIF deficiency suppresses the ASK1-JNK/P38 pathway and protects the liver from I/R -induced injury. Our findings suggest MIF as a novel biomarker and therapeutic target for the diagnosis and treatment of hepatic I/R injury.
Collapse
Affiliation(s)
- Sanyang Chen
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Qiwen Yu
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaodong Song
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
| | - Zongchao Cui
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
| | - Mengke Li
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
| | - Chaopeng Mei
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
| | - Huning Cui
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
| | - Shengli Cao
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Shengli Cao, ; Changju Zhu,
| | - Changju Zhu
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
- *Correspondence: Shengli Cao, ; Changju Zhu,
| |
Collapse
|
26
|
Parente A, Flores Carvalho M, Eden J, Dutkowski P, Schlegel A. Mitochondria and Cancer Recurrence after Liver Transplantation-What Is the Benefit of Machine Perfusion? Int J Mol Sci 2022; 23:9747. [PMID: 36077144 PMCID: PMC9456431 DOI: 10.3390/ijms23179747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor recurrence after liver transplantation has been linked to multiple factors, including the recipient's tumor burden, donor factors, and ischemia-reperfusion injury (IRI). The increasing number of livers accepted from extended criteria donors has forced the transplant community to push the development of dynamic perfusion strategies. The reason behind this progress is the urgent need to reduce the clinical consequences of IRI. Two concepts appear most beneficial and include either the avoidance of ischemia, e.g., the replacement of cold storage by machine perfusion, or secondly, an endischemic organ improvement through perfusion in the recipient center prior to implantation. While several concepts, including normothermic perfusion, were found to reduce recipient transaminase levels and early allograft dysfunction, hypothermic oxygenated perfusion also reduced IRI-associated post-transplant complications and costs. With the impact on mitochondrial injury and subsequent less IRI-inflammation, this endischemic perfusion was also found to reduce the recurrence of hepatocellular carcinoma after liver transplantation. Firstly, this article highlights the contributing factors to tumor recurrence, including the surgical and medical tissue trauma and underlying mechanisms of IRI-associated inflammation. Secondly, it focuses on the role of mitochondria and associated interventions to reduce cancer recurrence. Finally, the role of machine perfusion technology as a delivery tool and as an individual treatment is discussed together with the currently available clinical studies.
Collapse
Affiliation(s)
- Alessandro Parente
- The Liver Unit, Queen Elizabeth University Hospital Birmingham, Birmingham B15 2GW, UK
| | - Mauricio Flores Carvalho
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
| | - Janina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Andrea Schlegel
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
27
|
SIRT5 alleviates hepatic ischemia and reperfusion injury by diminishing oxidative stress and inflammation via elevating SOD1 and IDH2 expression. Exp Cell Res 2022; 419:113319. [PMID: 35995176 DOI: 10.1016/j.yexcr.2022.113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
Hepatic ischemia/reperfusion (I/R) injury, a common and unavoidable pathophysiological process during liver transplantation or resection operation, may impede postoperative liver function recovery, and its mechanism and targeted therapy remain largely unknown. SIRT5 is a well-known deacetylase and participates in the regulation of many physiological and pathological processes, including I/R. The role of SIRT5 in I/R is controversial or tissue-specific, restricting I/R progression in the heart while deteriorating injury in the kidney and brain, while its effect on hepatic I/R remains unclear. In this study, we investigated the function of SIRT5 in hepatic I/R using AAV8 and lentivirus to overexpress SIRT5 in vivo and in vitro. The data showed that SIRT5 overexpression alleviated liver I/R injury in mice and hypoxia/reoxygenation treated AML-12 cells. Moreover, gain- and loss-of-function of SIRT5, SOD1 and IDH2 experiments in AML-12 were performed. Our results demonstrated that SOD1 and IDH2 knockdown abolished the effect of SIRT5 on restraining oxidative stress and inflammation. Therefore, our work revealed that SIRT5 may alleviates hepatic I/R injury by diminishing oxidative stress and inflammation via up-regulating the SOD1 and IDH2 expression, which enriches the theory and therapeutic strategies of hepatic I/R injury.
Collapse
|
28
|
Luteolin Pretreatment Attenuates Hepatic Ischemia-Reperfusion Injury in Mice by Inhibiting Inflammation, Autophagy, and Apoptosis via the ERK/PPARα Pathway. PPAR Res 2022; 2022:8161946. [PMID: 35966821 PMCID: PMC9366205 DOI: 10.1155/2022/8161946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatic ischemia-reperfusion (IR) injury is a clinically significant process that frequently occurs in liver transplantation, partial hepatectomy, and hemorrhagic shock. The aim of this study was to explore the effectiveness of luteolin in hepatic IR injury and the underlying mechanism. BALB/c mice were randomly divided into six groups, including normal controls (NC), luteolin (50 mg/kg), sham procedure, IR+25 mg/kg luteolin, and IR+50 mg/kg luteolin group. Serum and tissue samples were collected at 6 and 24 h after reperfusion to assay liver enzymes, inflammatory factors, expression of proteins associated with apoptosis and autophagy, and factors associated with the extracellular signal-regulated kinase/peroxisome proliferator-activated receptor alpha (ERK/PPARα) pathway. Luteolin preconditioning decreased hepatocyte injury caused by ischemia-reperfusion, downregulated inflammatory factors, and inhibited apoptosis and autophagy. Luteolin also inhibited ERK phosphorylation and activated PPARα.
Collapse
|
29
|
Peng Y, Yin Q, Yuan M, Chen L, Shen X, Xie W, Liu J. Role of hepatic stellate cells in liver ischemia-reperfusion injury. Front Immunol 2022; 13:891868. [PMID: 35967364 PMCID: PMC9366147 DOI: 10.3389/fimmu.2022.891868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is a major complication of liver trauma, resection, and transplantation. IRI may lead to liver dysfunction and failure, but effective approach to address it is still lacking. To better understand the cellular and molecular mechanisms of liver IRI, functional roles of numerous cell types, including hepatocytes, Kupffer cells, neutrophils, and sinusoidal endothelial cells, have been intensively studied. In contrast, hepatic stellate cells (HSCs), which are well recognized by their essential functions in facilitating liver protection and repair, have gained less attention in their role in IRI. This review provides a comprehensive summary of the effects of HSCs on the injury stage of liver IRI and their associated molecular mechanisms. In addition, we discuss the regulation of liver repair and regeneration after IRI by HSCs. Finally, we highlight unanswered questions and future avenues of research regarding contributions of HSCs to IRI in the liver.
Collapse
Affiliation(s)
- Yuming Peng
- First Department of General Surgery, Hunan Children’s Hospital, Changsha, China
- Zhaolong Chen Academician Workstation, Changsha, China
- *Correspondence: Yuming Peng, ; Qiang Yin,
| | - Qiang Yin
- First Department of General Surgery, Hunan Children’s Hospital, Changsha, China
- Zhaolong Chen Academician Workstation, Changsha, China
- *Correspondence: Yuming Peng, ; Qiang Yin,
| | - Miaoxian Yuan
- First Department of General Surgery, Hunan Children’s Hospital, Changsha, China
- Zhaolong Chen Academician Workstation, Changsha, China
| | - Lijian Chen
- First Department of General Surgery, Hunan Children’s Hospital, Changsha, China
- Zhaolong Chen Academician Workstation, Changsha, China
| | - Xinyi Shen
- First Department of General Surgery, Hunan Children’s Hospital, Changsha, China
- Zhaolong Chen Academician Workstation, Changsha, China
| | - Weixin Xie
- First Department of General Surgery, Hunan Children’s Hospital, Changsha, China
- Zhaolong Chen Academician Workstation, Changsha, China
| | - Jinqiao Liu
- Department of Ultrasound, Hunan Children’s Hospital, Changsha, China
| |
Collapse
|
30
|
Study on the Mechanism of Mesaconitine-Induced Hepatotoxicity in Rats Based on Metabonomics and Toxicology Network. Toxins (Basel) 2022; 14:toxins14070486. [PMID: 35878224 PMCID: PMC9322933 DOI: 10.3390/toxins14070486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Mesaconitine (MA), one of the main diterpenoid alkaloids in Aconitum, has a variety of pharmacological effects, such as analgesia, anti-inflammation and relaxation of rat aorta. However, MA is a highly toxic ingredient. At present, studies on its toxicity are mainly focused on the heart and central nervous system, and there are few reports on the hepatotoxic mechanism of MA. Therefore, we evaluated the effects of MA administration on liver. SD rats were randomly divided into a normal saline (NS) group, a low-dose MA group (0.8 mg/kg/day) and a high-dose MA group (1.2 mg/kg/day). After 6 days of administration, the toxicity of MA on the liver was observed. Metabolomic and network toxicology methods were combined to explore the effect of MA on the liver of SD rats and the mechanism of hepatotoxicity in this study. Through metabonomics study, the differential metabolites of MA, such as L-phenylalanine, retinyl ester, L-proline and 5-hydroxyindole acetaldehyde, were obtained, which involved amino acid metabolism, vitamin metabolism, glucose metabolism and lipid metabolism. Based on network toxicological analysis, MA can affect HIF-1 signal pathway, MAPK signal pathway, PI3K-Akt signal pathway and FoxO signal pathway by regulating ALB, AKT1, CASP3, IL2 and other targets. Western blot results showed that protein expression of HMOX1, IL2 and caspase-3 in liver significantly increased after MA administration (p < 0.05). Combined with the results of metabonomics and network toxicology, it is suggested that MA may induce hepatotoxicity by activating oxidative stress, initiating inflammatory reaction and inducing apoptosis.
Collapse
|
31
|
Li Y, Palmer A, Lupu L, Huber-Lang M. Inflammatory response to the ischaemia-reperfusion insult in the liver after major tissue trauma. Eur J Trauma Emerg Surg 2022; 48:4431-4444. [PMID: 35831749 DOI: 10.1007/s00068-022-02026-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Polytrauma is often accompanied by ischaemia-reperfusion injury to tissues and organs, and the resulting series of immune inflammatory reactions are a major cause of death in patients. The liver is one of the largest organs in the body, a characteristic that makes it the most vulnerable organ after multiple injuries. In addition, the liver is an important digestive organ that secretes a variety of inflammatory mediators involved in local as well as systemic immune inflammatory responses. Therefore, this review considers the main features of post-traumatic liver injury, focusing on the immuno-pathophysiological changes, the interactions between liver organs, and the principles of treatment deduced. METHODS We focus on the local as well as systemic immune response involving the liver after multiple injuries, with emphasis on the pathophysiological mechanisms. RESULTS An overview of the mechanisms underlying the pathophysiology of local as well as systemic immune responses involving the liver after multiple injuries, the latest research findings, and the current mainstream therapeutic approaches. CONCLUSION Cross-reactivity between various organs and cascade amplification effects are among the main causes of systemic immune inflammatory responses after multiple injuries. For the time being, the pathophysiological mechanisms underlying this interaction remain unclear. Future work will continue to focus on identifying potential signalling pathways as well as target genes and intervening at the right time points to prevent more severe immune inflammatory responses and promote better and faster recovery of the patient.
Collapse
Affiliation(s)
- Yang Li
- Institute for Clinical and Experimental Trauma Immunology (ITI), University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Annette Palmer
- Institute for Clinical and Experimental Trauma Immunology (ITI), University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Ludmila Lupu
- Institute for Clinical and Experimental Trauma Immunology (ITI), University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology (ITI), University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| |
Collapse
|
32
|
Gao F, Qiu X, Wang K, Shao C, Jin W, Zhang Z, Xu X. Targeting the Hepatic Microenvironment to Improve Ischemia/Reperfusion Injury: New Insights into the Immune and Metabolic Compartments. Aging Dis 2022; 13:1196-1214. [PMID: 35855339 PMCID: PMC9286916 DOI: 10.14336/ad.2022.0109] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/09/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) is mainly characterized by high activation of immune inflammatory responses and metabolic responses. Understanding the molecular and metabolic mechanisms underlying development of hepatic IRI is critical for developing effective therapies for hepatic IRI. Recent advances in research have improved our understanding of the pathogenesis of IRI. During IRI, hepatocyte injury and inflammatory responses are mediated by crosstalk between the immune cells and metabolic components. This crosstalk can be targeted to treat or reverse hepatic IRI. Thus, a deep understanding of hepatic microenvironment, especially the immune and metabolic responses, can reveal new therapeutic opportunities for hepatic IRI. In this review, we describe important cells in the liver microenvironment (especially non-parenchymal cells) that regulate immune inflammatory responses. The role of metabolic components in the diagnosis and prevention of hepatic IRI are discussed. Furthermore, recent updated therapeutic strategies based on the hepatic microenvironment, including immune cells and metabolic components, are highlighted.
Collapse
Affiliation(s)
- Fengqiang Gao
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,6Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Qiu
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,6Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuxiao Shao
- 7Department of Hepatobiliary and Pancreatic Surgery, Affiliated Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Wenjian Jin
- 8Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Zhang
- 6Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,2Zhejiang University Cancer Center, Hangzhou, China.,3Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,4NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,5Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Liu J, Zhang W, Zhou C, Li M, Wang X, Zhang W, Liu Z, Wu L, James TD, Li P, Tang B. Precision Navigation of Hepatic Ischemia-Reperfusion Injury Guided by Lysosomal Viscosity-Activatable NIR-II Fluorescence. J Am Chem Soc 2022; 144:13586-13599. [PMID: 35793548 PMCID: PMC9354259 DOI: 10.1021/jacs.2c03832] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is responsible for postoperative liver dysfunction and liver failure. Precise and rapid navigation of HIRI lesions is critical for early warning and timely development of pretreatment plans. Available methods for assaying liver injury fail to provide the exact location of lesions in real time intraoperatively. HIRI is intimately associated with oxidative stress which impairs lysosomal degradative function, leading to significant changes in lysosomal viscosity. Therefore, lysosomal viscosity is a potential biomarker for the precise targeting of HIRI. Hence, we developed a viscosity-activatable second near-infrared window fluorescent probe (NP-V) for the detection of lysosomal viscosity in hepatocytes and mice during HIRI. A reactive oxygen species-malondialdehyde-cathepsin B signaling pathway during HIRI was established. We further conducted high signal-to-background ratio NIR-II fluorescence imaging of HIRI mice. The contour and boundary of liver lesions were delineated, and as such the precise intraoperative resection of the lesion area was implemented. This research demonstrates the potential of NP-V as a dual-functional probe for the elucidation of HIRI pathogenesis and the direct navigation of HIRI lesions in clinical applications.
Collapse
Affiliation(s)
- Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Chunmiao Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Mengmei Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhenzhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Luling Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Tony D James
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
34
|
Ding M, Fang H, Zhang J, Shi J, Yu X, Wen P, Wang Z, Cao S, Zhang Y, Shi X, Zhang H, He Y, Yan B, Tang H, Guo D, Gao J, Liu Z, Zhang L, Zhang S, Zhang X, Guo W. E3 ubiquitin ligase ring finger protein 5 protects against hepatic ischemia reperfusion injury by mediating phosphoglycerate mutase family member 5 ubiquitination. Hepatology 2022; 76:94-111. [PMID: 34735734 PMCID: PMC9303746 DOI: 10.1002/hep.32226] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (HIR) injury, a common clinical complication of liver transplantation and resection, affects patient prognosis. Ring finger protein 5 (RNF5) is an E3 ubiquitin ligase that plays important roles in endoplasmic reticulum stress, unfolded protein reactions, and inflammatory responses; however, its role in HIR is unclear. APPROACH AND RESULTS RNF5 expression was significantly down-regulated during HIR in mice and hepatocytes. Subsequently, RNF5 knockdown and overexpression of cell lines were subjected to hypoxia-reoxygenation challenge. Results showed that RNF5 knockdown significantly increased hepatocyte inflammation and apoptosis, whereas RNF5 overexpression had the opposite effect. Furthermore, hepatocyte-specific RNF5 knockout and transgenic mice were established and subjected to HIR, and RNF5 deficiency markedly aggravated liver damage and cell apoptosis and activated hepatic inflammatory responses, whereas hepatic RNF5 transgenic mice had the opposite effect compared with RNF5 knockout mice. Mechanistically, RNF5 interacted with phosphoglycerate mutase family member 5 (PGAM5) and mediated the degradation of PGAM5 through K48-linked ubiquitination, thereby inhibiting the activation of apoptosis-regulating kinase 1 (ASK1) and its downstream c-Jun N-terminal kinase (JNK)/p38. This eventually suppresses the inflammatory response and cell apoptosis in HIR. CONCLUSIONS We revealed that RNF5 protected against HIR through its interaction with PGAM5 to inhibit the activation of ASK1 and the downstream JNK/p38 signaling cascade. Our findings indicate that the RNF5-PGAM5 axis may be a promising therapeutic target for HIR.
Collapse
Affiliation(s)
- Ming‐Jie Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Hao‐Ran Fang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Jia‐Kai Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Ji‐Hua Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Pei‐Hao Wen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Zhi‐Hui Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Sheng‐Li Cao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Yi Zhang
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiao‐Yi Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Hua‐Peng Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Yu‐Ting He
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Bing Yan
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Hong‐Wei Tang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Dan‐Feng Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Zhen Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shui‐Jun Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | | | - Wen‐Zhi Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| |
Collapse
|
35
|
Wen H, He R, Wang H, Zhao S, Zheng J, Wu J, Xie M. Effects of small molecule inhibitor SW033291 on hepatic ischemia-reperfusion injury in mice. Biochem Biophys Res Commun 2022; 615:70-74. [PMID: 35605408 DOI: 10.1016/j.bbrc.2022.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022]
|
36
|
Prevalence of fatty liver disease after liver transplantation and risk factors for recipients and donors. Ann Hepatol 2022; 27:100670. [PMID: 35051631 DOI: 10.1016/j.aohep.2022.100670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVES Fatty liver disease (FLD) may develop in liver transplant recipients. We investigated the recipient and donor risk factors for FLD development after liver transplantation (LT). METHODS A total of 108 liver transplant recipients (54 men [50.0%]; median age, 52 [20-68] years) treated from 2011-2020 was enrolled. Three recipients died at < 3 months as a result of infection or blood flow impairment, and were excluded from the long-term FLD study. On evaluation of 88 prospective living donors, fatty liver was observed in 21. The prevalence and risk factors for FLD and survival were evaluated. RESULTS After LT, 28 of 105 recipients (26.7%) developed FLD. FLD was more common in patients with a high body mass index (BMI) and dyslipidemia (both p < 0.01), primary nonalcoholic steatohepatitis (p = 0.02), after living-donor LT (p = 0.03) and everolimus (EVL) use (p = 0.08). Factors predictive of FLD included EVL use and a high BMI (hazard ratios = 3.00 and 1.34; p = 0.05 and p < 0.01, respectively). Sixteen donors lost 6.5 kg (range: 2.0-16.0 kg) of body weight prior to LT. However, there were no cases of primary non-function, which did not affect the FLD prevalence. Development of FLD did not have a negative impact on LT outcome; the 5-year survival rate was 92.6%. CONCLUSIONS Recipient factors were more important than donor factors for FLD onset after LT.
Collapse
|
37
|
Miyachi Y, Kaido T, Hirata M, Sharshar M, Macshut M, Yao S, Kamo N, Kai S, Yagi S, Uemoto S. Intraoperative High Fraction of Inspiratory Oxygen is Independently Associated with Worse Outcome After Living-Donor Liver Transplantation: A Retrospective Study. World J Surg 2022; 46:1776-1787. [PMID: 35419624 PMCID: PMC9007621 DOI: 10.1007/s00268-022-06544-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2022] [Indexed: 11/26/2022]
Abstract
Background Ischemia and reperfusion injury is an important factor that determines graft function after liver transplantation, and oxygen plays a crucial role in this process. However, the relationship between the intraoperative high fraction of inspiratory oxygen (FiO2) and living-donor-liver-transplantation (LDLT) outcome remains unclear. Patients and Methods A total of 199 primary adult-to-adult LDLT cases in Kyoto University Hospital between January 2010 and December 2017 were enrolled in this study. The intraoperative FiO2 was averaged using the total amount of intraoperative oxygen and air and defined as the calculated FiO2 (cFiO2). The cutoff value of cFiO2 was set at 0.5. Results Between the cFiO2 <0.5 (n = 156) and ≥0.5 group (n = 43), preoperative recipients’ background, donor factors, and intraoperative parameters were almost comparable. Postoperatively, the cFiO2 ≥0.5 group showed a higher early allograft dysfunction (EAD) rate (P = 0.049) and worse overall graft survival (P = 0.036) than the cFiO2 <0.5 group. Although the cFiO2 ≥0.5 was not an independent risk factor for EAD in multivariable analysis (OR 2.038, 95%CI 0.992–4.186, P = 0.053), it was an independent risk factor for overall graft survival after LDLT (HR 1.897, 95%CI 1.007–3.432, P = 0.048). Conclusion The results of this study suggest that intraoperative high FiO2 may be associated with worse graft survival after LDLT. Avoiding higher intraoperative FiO2 may be beneficial for LDLT recipients. Supplementary Information The online version contains supplementary material available at 10.1007/s00268-022-06544-7.
Collapse
Affiliation(s)
- Yosuke Miyachi
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshimi Kaido
- Department of Gastroenterological and General Surgery, St. Luke’s International University Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560 Japan
| | - Masaaki Hirata
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mohamed Sharshar
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mahmoud Macshut
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Siyuan Yao
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoko Kamo
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Kai
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Shintaro Yagi
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Chen Y, Li T, Tan P, Shi H, Cheng Y, Cai T, Bai J, Du Y, Fu W. Kaempferol From Penthorum chinense Pursh Attenuates Hepatic Ischemia/Reperfusion Injury by Suppressing Oxidative Stress and Inflammation Through Activation of the Nrf2/HO-1 Signaling Pathway. Front Pharmacol 2022; 13:857015. [PMID: 35431932 PMCID: PMC9011142 DOI: 10.3389/fphar.2022.857015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study is to investigate the protective effect of kaempferol (KAE), the main active monomer from Penthorum chinense Pursh, on hepatic ischemia/reperfusion injury (HI/RI) and its specific mechanism. HI/RI is a common complication closely related to the prognosis of liver surgery, and effective prevention and treatment methods are still unavailable. Ischemia/reperfusion (I/R) injury is caused by tissue damage during ischemia and sustained oxidative stress and inflammation during reperfusion. Penthorum chinense Pursh is a traditional Chinese medicine widely used to treat liver disease since ancient times. Kaempferol (KAE), a highly purified flavonoid active monomer isolated and extracted from Penthorum chinense Pursh, was investigated for its protective effect on HI/RI. Our study indicates that KAE pretreatment alleviated I/R-induced transaminase elevation and pathological changes. Further analysis revealed that KAE pretreatment attenuates I/R-induced oxidative stress (as measured by the content of MDA, SOD and GSH) in vivo and reduces hypoxia/reoxygenation (H/R) -induced reactive oxygen species (ROS) generation in vitro. Meanwhile, KAE inhibits activation of NF-κB/p65 and reduces the release of pro-inflammatory factors (TNF-α and IL-6) to protect the liver from I/R-induced inflammation. Nuclear erythroid 2-related factor 2 (Nrf2) is a crucial cytoprotection regulator because it induces anti-inflammatory, antioxidant, and cytoprotective genes. Therefore, we analyzed the protein levels of Nrf2 and its downstream heme oxygenase-1 (HO-1) in the liver of mice and hepatocytes of humankind, respectively, and discovered that KAE pretreatment activates the Nrf2/HO-1 signaling pathway. In summary, this study confirmed the hepatoprotective effect of KAE on HI/RI, which inhibits oxidative stress and inflammation by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yifan Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tongxi Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Peng Tan
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Shi
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yonglang Cheng
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianying Cai
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junjie Bai
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yichao Du
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Yichao Du, ; Wenguang Fu,
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Yichao Du, ; Wenguang Fu,
| |
Collapse
|
39
|
Belcher DA, Williams AT, Munoz CJ, Muller CR, Walser C, Palmer AF, Cabrales P. Attenuating ischemia-reperfusion injury with polymerized albumin. J Appl Physiol (1985) 2022; 132:489-496. [PMID: 34913740 PMCID: PMC8816619 DOI: 10.1152/japplphysiol.00117.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ischemia-reperfusion injury increased vascular permeability, resulting in fluid extravasation from the intravascular compartment into the tissue space. Fluid and small protein extravasation lead to increased interstitial fluid pressure and capillary collapse, impairing capillary exchange. Polymerized human serum albumin (PolyHSA) has an increased molecular weight (MW) compared with unpolymerized human serum albumin (HSA) and can improve intravascular fluid retention and recovery from ischemia-reperfusion injury. To test the hypothesis that polymerization of HSA can improve recovery from ischemia-reperfusion injury, we studied how exchange transfusion of 20% of the blood volume with HSA or PolyHSA immediately before reperfusion can affect local ischemic tissue microhemodynamics, vascular integrity, and tissue viability in a hamster dorsal window chamber model. Microvascular flow and functional capillary density were maintained in animals exchanged with PolyHSA compared with HSA. Likewise, exchange transfusion with PolyHSA preserved vascular permeability measured with extravasation of fluorescently labeled dextran. The intravascular retention time of the exchanged PolyHSA was significantly longer compared with the intravascular retention time of HSA. Lastly, the viability of tissue subjected to ischemia-reperfusion injury increased in animals exchanged with PolyHSA compared with HSA. Therefore maintenance of microvascular perfusion, improvement in vascular integrity, and reduction in tissue damage resulting from reperfusion with PolyHSA suggest that PolyHSA is a promising fluid therapy to improve outcomes of ischemia-reperfusion injury.NEW & NOTEWORTHY Polymerized human serum albumin reduced reperfusion injury and preservers microvascular hemodynamics. Polymerized human serum albumin reduces fluid extravasation and prevents fluid extravasation. Consequently, the tissue viability of ischemic tissue is preserved by polymerized human serum.
Collapse
Affiliation(s)
- Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Alexander T. Williams
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Carlos J. Munoz
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Cynthia R. Muller
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Cynthia Walser
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Pedro Cabrales
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| |
Collapse
|
40
|
Qiang X, Li J, Zhu S, He M, Chen W, Al-Abed Y, Brenner M, Tracey KJ, Wang P, Wang H. Human Dermcidin Protects Mice Against Hepatic Ischemia-Reperfusion-Induced Local and Remote Inflammatory Injury. Front Immunol 2022; 12:821154. [PMID: 35095926 PMCID: PMC8795592 DOI: 10.3389/fimmu.2021.821154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hepatic ischemia and reperfusion (I/R) injury is commonly associated with surgical liver resection or transplantation, and represents a major cause of liver damage and graft failure. Currently, there are no effective therapies to prevent hepatic I/R injury other than ischemic preconditioning and some preventative strategies. Previously, we have revealed the anti-inflammatory activity of a sweat gland-derived peptide, dermcidin (DCD), in macrophage/monocyte cultures. Here, we sought to explore its therapeutic potential and protective mechanisms in a murine model of hepatic I/R. Methods Male C57BL/6 mice were subjected to hepatic ischemia by clamping the hepatic artery and portal vein for 60 min, which was then removed to initiate reperfusion. At the beginning of reperfusion, 0.2 ml saline control or solution of DCD (0.5 mg/kg BW) or DCD-C34S analog (0.25 or 0.5 mg/kg BW) containing a Cys (C)→Ser (S) substitution at residue 34 was injected via the internal jugular vein. For survival experiments, mice were subjected to additional resection to remove non-ischemic liver lobes, and animal survival was monitored for 10 days. For mechanistic studies, blood and tissue samples were collected at 24 h after the onset of reperfusion, and subjected to measurements of various markers of inflammation and tissue injury by real-time RT-PCR, immunoassays, and histological analysis. Results Recombinant DCD or DCD-C34S analog conferred a significant protection against lethal hepatic I/R when given intravenously at the beginning of reperfusion. This protection was associated with a significant reduction in hepatic injury, neutrophilic CXC chemokine (Mip-2) expression, neutrophil infiltration, and associated inflammation. Furthermore, the administration of DCD also resulted in a significant attenuation of remote lung inflammatory injury. Mechanistically, DCD interacted with epidermal growth factor receptor (EGFR), a key regulator of liver inflammation, and significantly inhibited hepatic I/R-induced phosphorylation of EGFR as well as a downstream signaling molecule, protein kinase B (AKT). The suppression of EGFR expression by transducing Egfr-specific shRNA plasmid into macrophages abrogated the DCD-mediated inhibition of nitric oxide (NO) production induced by a damage-associated molecular pattern (DAMP), cold-inducible RNA-binding protein, CIRP. Conclusions The present study suggests that human DCD and its analog may be developed as novel therapeutics to attenuate hepatic I/R-induced inflammatory injury possibly by impairing EGFR signaling.
Collapse
Affiliation(s)
- Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Mingzhu He
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Yousef Al-Abed
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Max Brenner
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- TheraSource LLC, Manhasset, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Ping Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- TheraSource LLC, Manhasset, NY, United States
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
41
|
Kyriakopoulos G, Lambropoulou M, Valsami G, Kostomitsopoulos N, Konstandi O, Anagnostopoulos K, Tsalikidis C, Oikonomou P, Simopoulos CE, Tsaroucha AK. Pro-inflammatory cytokines/chemokines, TNF-α, IL-6 and MCP-1, as biomarkers for the nephro- and pneumoprotective effect of silibinin after hepatic ischemia/reperfusion: confirmation by immunihistochemistry and qRT-PCR. Basic Clin Pharmacol Toxicol 2022; 130:457-467. [PMID: 34994100 DOI: 10.1111/bcpt.13704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022]
Abstract
The present study investigated the potential nephro- and pneumoprotective effect of silibinin (Si) after hepatic ischemia-reperfusion (I/R) injury, by measuring pro-inflammatory factors. Sixty-three rats were randomly assigned into three groups, as follows: (a) the sham group (n=7 rats), subjected to opening and closing the abdomen; (b) the control group (n = 28 rats), subjected to 45-min hepatic ischemia followed by reperfusion; and (c) the silibinin group (n=28), subjected to 45-min hepatic ischemia followed by intravenous administration of lyophilized SLB-HP-β-CD before reperfusion. Control and silibinin groups were further subdivided into time-point groups, according to the duration of reperfusion. TNF-α, IL-6 and MCP-1 expressions were determined immunihistochemically and by qrT-PCR at each time-point. Kidney TNF-α expression was significantly lower at 180 and 240 min, while lung TNF-α expression was significantly lower at 240 min. Comparison between the control and Si group at the same time-points, showed very strong evidence of difference at 240 min, with the levels of IL-6 shifting towards lower values in the Si group. Finally, we found a high MCP-1 expression after 120 min. We conclude that hepatic I/R injury remotely increases proinflammatory mediators in the kidney and lung, whereas silibinin shows a time-dependent nephro- and pneumoprotective effect.
Collapse
Affiliation(s)
- Georgios Kyriakopoulos
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgia Valsami
- School of Health Sciences, Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | | | - Ourania Konstandi
- Faculty of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Greece
| | | | - Christos Tsalikidis
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Panagoula Oikonomou
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Constantinos E Simopoulos
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandra K Tsaroucha
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Bioethics, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
42
|
Chen Z, Lin R, Zhuo H, Xu F, Liu X. Intravenous immunoglobulin is effective in alleviating hepatic ischemia-reperfusion injury: a rat model study. Mol Biol Rep 2022; 49:341-349. [PMID: 34727292 DOI: 10.1007/s11033-021-06879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (I/R) is an important factor affecting the prognosis of patients undergoing liver surgery. This study aimed to explore the value of intravenous immunoglobulin (IVIG) in hepatic I/R and its mechanism in a rat model. MATERIALS AND METHODS Forty eight adult male Sprague-Dawley (SD) rats were divided into six groups randomly: (1-2) treated with normal saline (NS) without ischemia or reperfusion; (3-4) treated with NS + 30 min ischemia; (5-6) treated with IVIG + 30 min ischemia. Rats of group 1/3/5 were euthanized at 12 h after operation (sham + NS + 12 h, I/R + NS + 12 h, I/R + IVIG + 12 h group) while group 2/4/6 were euthanized at 24 h (sham + NS + 24 h, I/R + NS + 24 h, I/R + IVIG + 24 h group). Interleukin 10 (IL-10), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) were quantified as well as serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Hepatic pathological changes were observed while nuclear factor kappa B p65 (NF-κB p65), Inhibitory Subunit of NF Kappa B Alpha (IKB-alpha) and cleaved caspase-3 were detected. CONCLUSION ALT, AST, IL-6, TNF-alpha, NF-κB p65 and cleaved caspase-3 were increased by I/R whereas IL-10 and IKB-alpha were decreased. However, IVIG pretreatment reduced ALT, AST, IL-6, TNF-alpha, NF-κB p65 and cleaved caspase-3, but increased IL-10 and IKB-alpha. IVIG treatment attenuates the infiltration of inflammatory cell and cell apoptosis which were observed in I/R groups. IVIG may alleviate hepatic I/R in rats by inhibiting the classical NF-κB signaling pathway, reducing IL-6, TNF-alpha, promoting IL-10, and inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Zeming Chen
- Shantou University Medical College, Shantou, China
| | - Runzhui Lin
- Shantou University Medical College, Shantou, China
| | - Hua Zhuo
- Shantou University Medical College, Shantou, China
| | - Fengjie Xu
- Shantou University Medical College, Shantou, China
| | - Xingmu Liu
- Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
43
|
Chen J, Chen L, Wu Y, Fang Y, Zeng F, Wu S, Zhao Y. A H 2O 2-activatable nanoprobe for diagnosing interstitial cystitis and liver ischemia-reperfusion injury via multispectral optoacoustic tomography and NIR-II fluorescent imaging. Nat Commun 2021; 12:6870. [PMID: 34824274 PMCID: PMC8617030 DOI: 10.1038/s41467-021-27233-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
Developing high-quality NIR-II fluorophores (emission in 1000-1700 nm) for in vivo imaging is of great significance. Benzothiadiazole-core fluorophores are an important class of NIR-II dyes, yet ongoing limitations such as aggregation-caused quenching in aqueous milieu and non-activatable response are still major obstacles for their biological applications. Here, we devise an activatable nanoprobe to address these limitations. A molecular probe named BTPE-NO2 is synthesized by linking a benzothiadiazole core with two tetraphenylene groups serving as hydrophobic molecular rotors, followed by incorporating two nitrophenyloxoacetamide units at both ends of the core as recognition moieties and fluorescence quenchers. An FDA-approved amphiphilic polymer Pluronic F127 is then employed to encapsulate the molecular BTPE-NO2 to render the nanoprobe BTPE-NO2@F127. The pathological levels of H2O2 in the disease sites cleave the nitrophenyloxoacetamide groups and activate the probe, thereby generating strong fluorescent emission (950~1200 nm) and ultrasound signal for multi-mode imaging of inflammatory diseases. The nanoprobe can therefore function as a robust tool for detecting and imaging the disease sites with NIR-II fluorescent and multispectral optoacoustic tomography (MSOT) imaging. Moreover, the three-dimensional MSOT images can be obtained for visualizing and locating the disease foci.
Collapse
Affiliation(s)
- Junjie Chen
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Longqi Chen
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Yinglong Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yichang Fang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
44
|
Mitochondrial respiratory chain and Krebs cycle enzyme function in human donor livers subjected to end-ischaemic hypothermic machine perfusion. PLoS One 2021; 16:e0257783. [PMID: 34710117 PMCID: PMC8553115 DOI: 10.1371/journal.pone.0257783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Marginal human donor livers are highly susceptible to ischaemia reperfusion injury and mitochondrial dysfunction. Oxygenation during hypothermic machine perfusion (HMP) was proposed to protect the mitochondria but the mechanism is unclear. Additionally, the distribution and uptake of perfusate oxygen during HMP are unknown. This study aimed to examine the feasibility of mitochondrial function analysis during end-ischaemic HMP, assess potential mitochondrial viability biomarkers, and record oxygenation kinetics. METHODS This was a randomised pilot study using human livers retrieved for transplant but not utilised. Livers (n = 38) were randomised at stage 1 into static cold storage (n = 6), hepatic artery HMP (n = 7), and non-oxygen supplemented portal vein HMP (n = 7) and at stage 2 into oxygen supplemented and non-oxygen supplemented portal vein HMP (n = 11 and 7, respectively). Mitochondrial parameters were compared between the groups and between low- and high-risk marginal livers based on donor history, organ steatosis and preservation period. The oxygen delivery efficiency was assessed in additional 6 livers using real-time measurements of perfusate and parenchymal oxygen. RESULTS The change in mitochondrial respiratory chain (complex I, II, III, IV) and Krebs cycle enzyme activity (aconitase, citrate synthase) before and after 4-hour preservation was not different between groups in both study stages (p > 0.05). Low-risk livers that could have been used clinically (n = 8) had lower complex II-III activities after 4-hour perfusion, compared with high-risk livers (73 nmol/mg/min vs. 113 nmol/mg/min, p = 0.01). Parenchymal pO2 was consistently lower than perfusate pO2 (p ≤ 0.001), stabilised in 28 minutes compared to 3 minutes in perfusate (p = 0.003), and decreased faster upon oxygen cessation (75 vs. 36 minutes, p = 0.003). CONCLUSIONS Actively oxygenated and air-equilibrated end-ischaemic HMP did not induce oxidative damage of aconitase, and respiratory chain complexes remained intact. Mitochondria likely respond to variable perfusate oxygen levels by adapting their respiratory function during end-ischaemic HMP. Complex II-III activities should be further investigated as viability biomarkers.
Collapse
|
45
|
Chao T, Hsieh C, Kuo Y, Yu Y, Wan C, Hsieh S. Bracteanolide A abrogates oxidative stress-induced cellular damage and protects against hepatic ischemia and reperfusion injury in rats. Food Sci Nutr 2021; 9:4758-4769. [PMID: 34531989 PMCID: PMC8441430 DOI: 10.1002/fsn3.2374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Liver diseases, including viral hepatitis, liver cirrhosis, and liver cancer, mostly remain silent until the late stages and pose a continuing threat to millions of people worldwide. Liver transplantation is the most appropriate solution in the case of liver failure, but it is associated with hepatic ischemia and reperfusion (I/R) injury which severely reduces the prognosis of the patients. In order to ameliorate I/R injury, we investigated the potential of bracteanolide A, from the herb Tradescantia albiflora Kunth in protecting the liver from I/R injury. We first determined the protective effect of bracteanolide A against oxidative stress and DNA damage using HepG2 hepatocyte cell line and then assessed the levels of inflammatory cytokines and antioxidant proteins in response to hepatic insult using an animal model of hepatic I/R injury. The results showed bracteanolide A greatly enhanced cell survival and decreased reactive oxygen species (ROS) production under H2O2 induction. It also upregulated the expression of nuclear factor (erythroid-derived 2)-like2 (Nrf2) and its downstream cytoprotective proteins NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1). Bracteanolide A effectively reduced the severity of liver lesions in I/R-injured rats revealed by histological analysis and significantly decreased the levels of alanine transaminase (ALT), aspartate transaminase (AST), cyclooxygenase-2, and inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Bracteanolide A preconditioning effectively protected the liver from I/R damage in the animal model, and this easily applied procedure may provide a new means to ameliorate hepatic I/R injury during liver surgeries.
Collapse
Affiliation(s)
- Ting‐Yu Chao
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Cheng‐Chu Hsieh
- Biologics DivisionAnimal Health Research InstituteCouncil of AgricultureExecutive Yuan, New Taipei CityTaiwan
| | - Yueh‐Hsiung Kuo
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine ResourcesChina Medical UniversityTaichungTaiwan
- Department of BiotechnologyAsia UniversityTaichungTaiwan
- Chinese Medicine Research CenterChina Medical UniversityTaichungTaiwan
| | - Ya‐Ju Yu
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Cho‐Hua Wan
- Graduate Institute of Molecular and Comparative PathobiologySchool of Veterinary MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Shu‐Chen Hsieh
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
46
|
Hepatic interferon regulatory factor 8 expression mediates liver ischemia/reperfusion injury in mice. Biochem Pharmacol 2021; 192:114728. [PMID: 34400126 DOI: 10.1016/j.bcp.2021.114728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia/reperfusion (I/R) injury is an inevitable complication of hepatic surgery occasioned by liver transplantation and resection. The progression from liver ischemia to reperfusion injury is accompanied by abnormal metabolism, Kupffer cell activation, neutrophil recruitment and the release of cytokines. Activation of several interferon regulatory factors (IRFs) has been reported to either enhance or restrict I/R progression, but the role of IRF8 in the regulation of I/R injury progression is still unknown. In this study, we explore the IRF8 function in the I/R-mediated liver injury using overexpressed hepatic IRF8 and knockout mice. According to our results, IRF8 knockout mice had significantly lower inflammatory cells infiltration, inflammatory cytokines release and serum aspartate aminotransferase/alanine aminotransferase levels that improved the necrotic injury after I/R, unlike the control mice. Conversely, the overexpression of IRF8 in WT mice markedly aggravated the liver structure damage and its abnormal function. We further showed that IRF8-mediated inflammatory cells infiltration were partly dependent on early autophagy and NF-κΒ signal pathway during I/R. AAV8-IRF8-I/R mice pretreated with autophagy inhibitor hydroxychloroquine and NF-κΒ signal pathway inhibitor secukinumab could drastically reverse the IRF8-mediated increase of neutrophil infiltration and chemokine release at different degrees. This work uncovered a critical role of IRF8 in the modulation of the hepatic microenvironment and as a potential target in the initial treatment of I/R injury.
Collapse
|
47
|
Resolving the graft ischemia-reperfusion injury during liver transplantation at the single cell resolution. Cell Death Dis 2021; 12:589. [PMID: 34103479 PMCID: PMC8187624 DOI: 10.1038/s41419-021-03878-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/13/2023]
Abstract
Ischemia–reperfusion injury (IRI) remains the major reason for impaired donor graft function and increased mortality post-liver transplantation. The mechanism of IRI involves multiple pathophysiological processes and numerous types of cells. However, a systematic and comprehensive single-cell transcriptional profile of intrahepatic cells during liver transplantation is still unclear. We performed a single-cell transcriptome analysis of 14,313 cells from liver tissues collected from pre-procurement, at the end of preservation and 2 h post-reperfusion. We made detailed annotations of mononuclear phagocyte, endothelial cell, NK/T, B and plasma cell clusters, and we described the dynamic changes of the transcriptome of these clusters during IRI and the interaction between mononuclear phagocyte clusters and other cell clusters. In addition, we found that TNFAIP3 interacting protein 3 (TNIP3), specifically and highly expressed in Kupffer cell clusters post-reperfusion, may have a protective effect on IRI. In summary, our study provides the first dynamic transcriptome map of intrahepatic cell clusters during liver transplantation at single-cell resolution.
Collapse
|
48
|
Jia X, Wei C, Li Z, Liu L, Wang M, Zhang P, Li X. Selective Imaging of HClO in the Liver Tissue In Vivo Using a Near-infrared Hepatocyte-specific Fluorescent Probe. Chem Asian J 2021; 16:1967-1972. [PMID: 34036742 DOI: 10.1002/asia.202100476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Indexed: 12/16/2022]
Abstract
Liver injury is typified by an inflammatory response. Hypochlorous acid (HClO), an important endogenous reactive oxygen species, is regarded as a biomarker associated with liver injury. Near-infrared (NIR) fluorescent probes with the advantage of deep tissue penetrating and low auto-fluorescence interference are more suitable for bioimaging in vivo. Thus, in this work, we designed and synthesized a novel NIR hepatocyte-specific fluorescent probe named NHF. The probe NHF showed fast response (<3 s), large spectral variation, and good selectivity to trace HClO in buffer solution. By employing N-acetylgalactosamine (GalNAc) as the targeting ligand, probe NHF can be actively delivered to the liver tissue of zebrafish and mice. It is important that probe NHF is the first NIR hepatocyte-specific fluorescent probe, which successfully visualized the up-regulation of endogenous HClO in the oxygen-glucose deprivation/reperfusion (OGD/R) model HepG2 cells and dynamically monitored APAP-induced endogenous HClO in the liver tissue of zebrafish and mice.
Collapse
Affiliation(s)
- Xu Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Chao Wei
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Zimeng Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Liyan Liu
- Medical Comprehensive Experimental Center, Hebei University, East Road Yuhua 342, Baoding, 071000, P. R. China
| | - Mei Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Pingzhu Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Xiaoliu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| |
Collapse
|
49
|
Verheij M, Zeerleder S, Voermans C. Heme oxygenase-1: Equally important in allogeneic hematopoietic stem cell transplantation and organ transplantation? Transpl Immunol 2021; 68:101419. [PMID: 34089821 DOI: 10.1016/j.trim.2021.101419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
The intracellular enzyme heme oxygenase-1 (HO-1) is responsible for the degradation of cell-free (cf) heme. Cfheme, released upon cell damage and cell death from hemoglobin, mitochondria and myoglobin, functions as a powerful damage-associated molecular pattern (DAMP). Indeed, cfheme plays a role in a myriad of diseases characterized by (systemic) inflammation, and its rapid degradation by HO-1 is pivotal to maintain homeostasis. In the past decade, HO-1 has been extensively studied for its potential protective role in different transplantation settings, including allogeneic hematopoietic stem cell transplantation (HSCT), solid organ transplantation and pancreatic islet transplantation. These studies have shown that HO-1 can be induced by a wide range of molecules, and that induction of HO-1 has the potential to significantly reduce the incidence and severity of transplantation-related complications such as graft-versus-host disease (GvHD) and ischemia/reperfusion injury (IRI). As such, further investigation into the use of HO-1-inducing agents in human transplantation settings to facilitate the potential use of these agents in the clinic is warranted. In this review, we summarize the literature of the past 10 years on the role of HO-1 in allogeneic HSCT, solid organ transplantation (focusing on kidney and liver) and pancreatic islet transplantation. Furthermore, we provide a hypothesis about the way that HO-1 is able to provide protection against acute GvHD after allogeneic HSCT. A total of 48 research articles and 17 review articles were included in this review.
Collapse
Affiliation(s)
- Myrddin Verheij
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Sacha Zeerleder
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Department for Biomedical Research, University of Bern, Switzerland
| | - Carlijn Voermans
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands.
| |
Collapse
|
50
|
Ahmed O, Robinson MW, O'Farrelly C. Inflammatory processes in the liver: divergent roles in homeostasis and pathology. Cell Mol Immunol 2021; 18:1375-1386. [PMID: 33864004 PMCID: PMC8166849 DOI: 10.1038/s41423-021-00639-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
The hepatic immune system is designed to tolerate diverse harmless foreign moieties to maintain homeostasis in the healthy liver. Constant priming and regulation ensure that appropriate immune activation occurs when challenged by pathogens and tissue damage. Failure to accurately discriminate, regulate, or effectively resolve inflammation offsets this balance, jeopardizing overall tissue health resulting from an either overly tolerant or an overactive inflammatory response. Compelling scientific and clinical evidence links dysregulated hepatic immune and inflammatory responses upon sterile injury to several pathological conditions in the liver, particularly nonalcoholic steatohepatitis and ischemia-reperfusion injury. Murine and human studies have described interactions between diverse immune repertoires and nonhematopoietic cell populations in both physiological and pathological activities in the liver, although the molecular mechanisms driving these associations are not clearly understood. Here, we review the dynamic roles of inflammatory mediators in responses to sterile injury in the context of homeostasis and disease, the clinical implications of dysregulated hepatic immune activity and therapeutic developments to regulate liver-specific immunity.
Collapse
Affiliation(s)
- Ola Ahmed
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Mark W Robinson
- Department of Biology, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Cliona O'Farrelly
- School of Medicine, Trinity College Dublin, Dublin, Ireland.
- School of Biochemistry & Immunology, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|