1
|
Medina H, Child N. A Review of Developments in Carbon-Based Nanocomposite Electrodes for Noninvasive Electroencephalography. SENSORS (BASEL, SWITZERLAND) 2025; 25:2274. [PMID: 40218785 PMCID: PMC11991328 DOI: 10.3390/s25072274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Wearable biosensors have been of interest for their wide range of uses, varying from recording biological signals to measuring strain of bending joints. Carbon nanoparticles have been utilized in biocompatible polymers to create nanocomposites with highly tunable mechanical and electrical properties. These nanocomposites have been demonstrated to be highly effective as wearable sensors for recording physiological signals such as electroencephalography (EEG), offering advantages in mechanical and electrical properties and signal quality over commercially available sensors while maintaining feasibility and scalability in manufacturing. This review aims to provide a critical summary of the recent literature on the properties, design, fabrication, and performance of carbon-based nanocomposites for EEG electrodes. The goal of this review is to highlight the various design configurations and properties thereof, manufacturing methods, performance measurements, and related challenges associated with these promising noninvasive dry soft electrodes. While this technology offers many advantages over either other noninvasive or their invasive counterparts, there are still various challenges and opportunities for improvements and innovation. For example, the investigation of gradient composite structures, hybrid nanocomposite/composite materials, hierarchical contact surfaces, and the influence of loading and alignment of the dispersal phase in the performance of these electrodes could lead to novel and better designs. Finally, current practices for evaluating the performance of novel EEG electrodes are discussed and challenged, emphasizing the critical need for the development of standardized assessment protocols, which could provide reliability in the field, enable benchmarking, and hence promote innovation.
Collapse
Affiliation(s)
- Hector Medina
- School of Engineering, Liberty University, University Blvd, Lynchburg, VA 24515, USA;
| | | |
Collapse
|
2
|
Wu Y, Lei R, Cao J, Chen S, Zhong Y, Song J, Jin Z, Cheng G, Ding J. High-Sensitivity Flexible Self-Powered Pressure Sensor Based on Solid-Liquid Triboelectrification. ACS Sens 2025; 10:2347-2357. [PMID: 40101150 DOI: 10.1021/acssensors.5c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Self-powered sensors based on triboelectric nanogenerators (TENG) possess advantages such as lightweight, small size, and low cost. However, the trade-off among response time, sensitivity, and wear resistance of the triboelectric layer in such sensors remains unresolved. In this paper, a hydrophobic triboelectric layer was prepared using polydimethylsiloxane (PDMS) doped with polytetrafluoroethylene (PTFE), generating triboelectric signals through the contact and separation of the triboelectric layer with water. Compared to the traditional solid-solid triboelectric charging method in self-powered sensors, this sensor primarily relies on solid-liquid triboelectric charging, effectively avoiding the wear issues caused by traditional solid-solid triboelectric charging. Simultaneously, thanks to the solid-liquid contact mode, the response time of the self-powered sensor is significantly improved, and it maintains high sensitivity under extremely small trigger forces. Finally, this paper demonstrates the application of this self-powered sensor in scenarios such as detecting human joint movements, mechanical finger states, and robotic hand grasping states, showing its promising application prospects in the field of intelligent monitoring.
Collapse
Affiliation(s)
- Yu Wu
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Rui Lei
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jie Cao
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Si Chen
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yan Zhong
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jie Song
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhelin Jin
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Guanggui Cheng
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
3
|
Xu D, Jing Z, Wang H, Yang W, Xu P, Niu D, Ma P. Advanced flexible self-healing triboelectric nanogenerators for applications in complex environments. NANOSCALE 2025; 17:7713-7737. [PMID: 40045753 DOI: 10.1039/d4nr05170j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
With the advent of the smart era, the demand for clean energy is rising, and flexible triboelectric nanogenerators (F-TENGs) based on elastomers have garnered significant attention. Based on the principles of electrostatic induction and coupling, F-TENGs can convert mechanical motion into electrical energy and are widely utilized in wearable devices and blue energy. F-TENGs offer a simple design, ease of manufacturing, and flexible usage scenarios. However, several weaknesses still limit their development. For example, F-TENG materials cannot recover from fatigue damage and are prone to output performance degradation under frequent friction or complex external conditions, leading to failure. To address these issues, researchers have explored the use of self-healable flexible polymer-based friction layers and electrodes. This review will provide a detailed summary of the key scientific and technological challenges faced by F-TENGs in complex and harsh environments, including ambient, high and low temperatures, high humidity, and strong acids and bases. Furthermore, the detailed research progress addressing these issues and the future development of F-TENGs will also be presented and explored. This paper aims to provide valuable insights and guidance for in-depth research and broad applications of flexible TENGs.
Collapse
Affiliation(s)
- Dinglong Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Zhaoyang Jing
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Hong Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Deyu Niu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Luo C, Zhang Y, Zhang J, Hui L, Qi R, Han Y, Sun X, Li Y, Wei Y, Zhang Y, Sun H, Li N, Zhang B. Wearable Arduino-Based Electronic Interactive Tattoo: A New Type of High-Tech Humanized Emotional Expression for Electronic Skin. SENSORS (BASEL, SWITZERLAND) 2025; 25:2153. [PMID: 40218664 PMCID: PMC11991381 DOI: 10.3390/s25072153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Skin is the largest organ of the human body and holds the functions of sensing, protecting, and regulating. Since ancient times, people have decorated their skin by painting themselves, cutting, and using accessories to express their personality and aesthetic consciousness as a kind of artistic expression, one that shows the development and change of aesthetic consciousness. However, there are concerns regarding the inconvenience, high time cost, and negative body perception with traditional tattoos. In addition, the trend of skin decoration has gradually withdrawn due to a lack of intelligent interaction. In response to these problems, we proposed a wearable electronic skin tattoo that offers a novel means of communication and emotional expression for individuals with communication impairments, WABEIT. The tattoo uses skin-friendly PDMS as the base material, combines multi-mode sensing components such as silver wire circuit, a programmable Surface-Mounted Device (SMD), a thin-film-pressure sensor, and a heart rate sensor, and combines the embedded development board Arduino Nano for intelligent interaction, forming a wearable electronic interactive tattoo capable of sensing the environment, human-computer interaction, and the changeable performance of intelligent perception. The sensor is also equipped with a mobile power supply to support portability. The advantages of WABEIT are as follows: first, it avoids the pain, allergy, and long production process of traditional tattoos. Second, the patterns can adapt to different needs and generate feedback for users, which can effectively express personal emotions. Thirdly, the facility of removal reduces social discrimination and occupational constraints, which is especially suitable for East Asia. Experimental results indicate that the device exhibits a high sensitivity in signal response, a wide variety of pattern changes, and reliable interactive capabilities. The study demonstrates that the proposed design philosophy and implementation strategy can be generalized to the interactive design of other wearable devices, thereby providing novel insights and methodologies for human-computer interaction, electronic devices, and sensor applications.
Collapse
Affiliation(s)
- Chuanwen Luo
- Department of Architecture, School of Architecture and Art, North China University of China, Jinyuanzhuang Road 5, Shijingshan District, Beijing 100144, China; (C.L.); (Y.Z.); (J.Z.); (L.H.); (R.Q.); (Y.H.); (X.S.); (Y.L.); (Y.W.); (Y.Z.); (H.S.)
| | - Yan Zhang
- Department of Architecture, School of Architecture and Art, North China University of China, Jinyuanzhuang Road 5, Shijingshan District, Beijing 100144, China; (C.L.); (Y.Z.); (J.Z.); (L.H.); (R.Q.); (Y.H.); (X.S.); (Y.L.); (Y.W.); (Y.Z.); (H.S.)
| | - Juan Zhang
- Department of Architecture, School of Architecture and Art, North China University of China, Jinyuanzhuang Road 5, Shijingshan District, Beijing 100144, China; (C.L.); (Y.Z.); (J.Z.); (L.H.); (R.Q.); (Y.H.); (X.S.); (Y.L.); (Y.W.); (Y.Z.); (H.S.)
| | - Linyuan Hui
- Department of Architecture, School of Architecture and Art, North China University of China, Jinyuanzhuang Road 5, Shijingshan District, Beijing 100144, China; (C.L.); (Y.Z.); (J.Z.); (L.H.); (R.Q.); (Y.H.); (X.S.); (Y.L.); (Y.W.); (Y.Z.); (H.S.)
| | - Ruisi Qi
- Department of Architecture, School of Architecture and Art, North China University of China, Jinyuanzhuang Road 5, Shijingshan District, Beijing 100144, China; (C.L.); (Y.Z.); (J.Z.); (L.H.); (R.Q.); (Y.H.); (X.S.); (Y.L.); (Y.W.); (Y.Z.); (H.S.)
| | - Yuxiang Han
- Department of Architecture, School of Architecture and Art, North China University of China, Jinyuanzhuang Road 5, Shijingshan District, Beijing 100144, China; (C.L.); (Y.Z.); (J.Z.); (L.H.); (R.Q.); (Y.H.); (X.S.); (Y.L.); (Y.W.); (Y.Z.); (H.S.)
| | - Xiang Sun
- Department of Architecture, School of Architecture and Art, North China University of China, Jinyuanzhuang Road 5, Shijingshan District, Beijing 100144, China; (C.L.); (Y.Z.); (J.Z.); (L.H.); (R.Q.); (Y.H.); (X.S.); (Y.L.); (Y.W.); (Y.Z.); (H.S.)
| | - Yifan Li
- Department of Architecture, School of Architecture and Art, North China University of China, Jinyuanzhuang Road 5, Shijingshan District, Beijing 100144, China; (C.L.); (Y.Z.); (J.Z.); (L.H.); (R.Q.); (Y.H.); (X.S.); (Y.L.); (Y.W.); (Y.Z.); (H.S.)
| | - Yufei Wei
- Department of Architecture, School of Architecture and Art, North China University of China, Jinyuanzhuang Road 5, Shijingshan District, Beijing 100144, China; (C.L.); (Y.Z.); (J.Z.); (L.H.); (R.Q.); (Y.H.); (X.S.); (Y.L.); (Y.W.); (Y.Z.); (H.S.)
| | - Yiwen Zhang
- Department of Architecture, School of Architecture and Art, North China University of China, Jinyuanzhuang Road 5, Shijingshan District, Beijing 100144, China; (C.L.); (Y.Z.); (J.Z.); (L.H.); (R.Q.); (Y.H.); (X.S.); (Y.L.); (Y.W.); (Y.Z.); (H.S.)
| | - Haoying Sun
- Department of Architecture, School of Architecture and Art, North China University of China, Jinyuanzhuang Road 5, Shijingshan District, Beijing 100144, China; (C.L.); (Y.Z.); (J.Z.); (L.H.); (R.Q.); (Y.H.); (X.S.); (Y.L.); (Y.W.); (Y.Z.); (H.S.)
| | - Ning Li
- Beijing Historical Building Protection Engineering Technology Research Center, Beijing University of Technology, Beijing 100124, China
| | - Bo Zhang
- Department of Architecture, School of Architecture and Art, North China University of China, Jinyuanzhuang Road 5, Shijingshan District, Beijing 100144, China; (C.L.); (Y.Z.); (J.Z.); (L.H.); (R.Q.); (Y.H.); (X.S.); (Y.L.); (Y.W.); (Y.Z.); (H.S.)
| |
Collapse
|
5
|
Song HS, Rumon MMH, Rahman Khan MM, Jeong JH. Toward Intelligent Materials with the Promise of Self-Healing Hydrogels in Flexible Devices. Polymers (Basel) 2025; 17:542. [PMID: 40006203 PMCID: PMC11859541 DOI: 10.3390/polym17040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Flexible sensors are revolutionizing wearable and implantable devices, with conductive hydrogels emerging as key materials due to their biomimetic structure, biocompatibility, tunable transparency, and stimuli-responsive electrical properties. However, their fragility and limited durability pose significant challenges for broader applications. Drawing inspiration from the self-healing capabilities of natural organisms like mussels, researchers are embedding self-repair mechanisms into hydrogels to improve their reliability and lifespan. This review highlights recent advances in self-healing (SH) conductive hydrogels, focusing on synthesis methods, healing mechanisms, and strategies to enhance multifunctionality. It also explores their wide-ranging applications, including in vivo signal monitoring, wearable biochemical sensors, supercapacitors, flexible displays, triboelectric nanogenerators, and implantable bioelectronics. While progress has been made, challenges remain in balancing self-healing efficiency, mechanical strength, and sensing performance. This review offers insights into overcoming these obstacles and discusses future research directions for advancing SH hydrogel-based bioelectronics, aiming to pave the way for durable, high-performance devices in next-generation wearable and implantable technologies.
Collapse
Affiliation(s)
- Han-Seop Song
- Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | | | - Mohammad Mizanur Rahman Khan
- Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Jae-Ho Jeong
- Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
6
|
Fu X, Wan G, Guo H, Kim HJ, Yang Z, Tan YJ, Ho JS, Tee BCK. Self-healing actuatable electroluminescent fibres. Nat Commun 2024; 15:10498. [PMID: 39627213 PMCID: PMC11615400 DOI: 10.1038/s41467-024-53955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Alternating-current electroluminescent fibres are promising candidates as light sources for smart textiles and soft machines. However, physical damage from daily use causes device deterioration or failure, making self-healable electroluminescent fibres attractive. In addition, soft robots could benefit from light-emitting combined with magnetically actuated functions. Here, we present a self-healing and actuatable Scalable Hydrogel-clad Ionotronic Nickel-core Electroluminescent (SHINE) fibre which achieves a record luminance of 1068 cd × m-2 at 5.7 V × μm-1. The SHINE fibre can self-heal across all constituent layers after being severed, recovering 98.6% of pristine luminance and maintaining for over 10 months. SHINE fibre is also magnetically actuatable due to the ferromagnetic nickel electrode core, enabling a soft robotic fibre with omnidirectional actuation and electro-luminescence. Our approach to this multifunctional fibre broadens the design of fibre electronics and fibre robots, with applications in interactive displays and damage-resilient navigation.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Hongchen Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Han-Joon Kim
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Yu Jun Tan
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Jiang Y, Zhu C, Ma X, Fan D. Smart hydrogel-based trends in future tendon injury repair: A review. Int J Biol Macromol 2024; 282:137092. [PMID: 39489238 DOI: 10.1016/j.ijbiomac.2024.137092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Despite advances in tissue engineering for tendon repair, rapid functional repair is still challenging due to its specificity and is prone to complications such as postoperative infections and tendon adhesions. Smart responsive hydrogels provide new ideas for tendon therapy with their flexibly designed three-dimensional cross-linked polymer networks that respond to specific stimuli. In recent years, a variety of smart-responsive hydrogels have been developed for the treatment of tendon disorders, showing great research promise and ability to address complex challenges. This article provides a comprehensive review of recent advances in the field of smart-responsive hydrogels for the treatment of tendon disorders, with a special focus on their response properties to different physical, chemical and biological stimuli. The multiple functional properties of these innovative materials are discussed in depth, including excellent biocompatibility and biodegradability, excellent mechanical properties, biomimetic structural design, convenient injectability, and unique self-healing capabilities. These properties enable the smart-responsive hydrogels to demonstrate significant advantages in solving difficult problems in the treatment of tendon disorders, such as precise drug delivery, tendon adhesion prevention and postoperative infection control. In addition, the article looks at the future prospects of smart-responsive hydrogels and analyses the challenges they may face in achieving widespread application.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
8
|
Yang H, Wu M, Pan M, Zhou C, Sun Y, Huang P, Yang L, Liu J, Zeng H. Highly Stretchable, Transparent, Self-Healing Ion-Conducting Elastomers for Long-Term Reliable Human Motion Detection. Macromol Rapid Commun 2024; 45:e2400362. [PMID: 39078623 DOI: 10.1002/marc.202400362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/01/2024] [Indexed: 07/31/2024]
Abstract
The flexible electronic sensor is a critical component of wearable devices, generally requiring high stretchability, excellent transmittance, conductivity, self-healing capability, and strong adhesion. However, designing ion-conducting elastomers meeting all these requirements simultaneously remains a challenge. In this study, a novel approach is presented to fabricate highly stretchable, transparent, and self-healing ion-conducting elastomers, which are synthesized via photo-polymerization of two polymerizable deep eutectic solvents (PDESs) monomers, i.e., methacrylic acid (MAA)/choline chloride (ChCl) and itaconic acid (IA)/ChCl. The as-prepared ion-conducting elastomers possess outstanding properties, including high transparency, conductivity, and the capability to adhere to various substrates. The elastomers also demonstrate ultra-stretchability (up to 3900%) owing to a combination of covalent cross-linking and noncovalent cross-linking. In addition, the elastomers can recover up to 3250% strain and over 94.5% of their original conductivity after self-healing at room temperature for 5 min, indicating remarkable mechanical and conductive self-healing abilities. When utilized as strain sensors to monitor real-time motion of human fingers, wrist, elbow, and knee joints, the elastomers exhibit stable and strong repetitive electrical signals, demonstrating excellent sensing performance for large-scale movements of the human body. It is anticipated that these ion-conducting elastomers will find promising applications in flexible and wearable electronics.
Collapse
Affiliation(s)
- Haoyu Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Meng Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Chengliang Zhou
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Pan Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lin Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
9
|
Wu X, Yang X, Wang P, Wang Z, Fan X, Duan W, Yue Y, Xie J, Liu Y. Strain-Temperature Dual Sensor Based on Deep Learning Strategy for Human-Computer Interaction Systems. ACS Sens 2024; 9:4216-4226. [PMID: 39068608 DOI: 10.1021/acssensors.4c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Thermoelectric (TE) hydrogels, mimicking human skin, possessing temperature and strain sensing capabilities, are well-suited for human-machine interaction interfaces and wearable devices. In this study, a TE hydrogel with high toughness and temperature responsiveness was created using the Hofmeister effect and TE current effect, achieved through the cross-linking of PVA/PAA/carboxymethyl cellulose triple networks. The Hofmeister effect, facilitated by Na+ and SO42- ions coordination, notably increased the hydrogel's tensile strength (800 kPa). Introduction of Fe2+/Fe3+ as redox pairs conferred a high Seebeck coefficient (2.3 mV K-1), thereby enhancing temperature responsiveness. Using this dual-responsive sensor, successful demonstration of a feedback mechanism combining deep learning with a robotic hand was accomplished (with a recognition accuracy of 95.30%), alongside temperature warnings at various levels. It is expected to replace manual work through the control of the manipulator in some high-temperature and high-risk scenarios, thereby improving the safety factor, underscoring the vast potential of TE hydrogel sensors in motion monitoring and human-machine interaction applications.
Collapse
Affiliation(s)
- Xiaolong Wu
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
| | - Xiaoyu Yang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
| | - Peng Wang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding 071003, China
| | - Zinan Wang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
| | - Xiaolong Fan
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
| | - Wei Duan
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding 071003, China
| | - Ying Yue
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding 071003, China
| | - Jun Xie
- Department of Electrical Engineering, North China Electric Power University, Baoding 071000, China
| | - Yunpeng Liu
- Department of Electrical Engineering, North China Electric Power University, Baoding 071000, China
| |
Collapse
|
10
|
Zhang Y, Yuan Y, Yu H, Cai C, Sun J, Tian X. A stretchable conductive elastomer sensor with self-healing and highly linear strain for human movement detection and pressure response. MATERIALS HORIZONS 2024; 11:3911-3920. [PMID: 38836844 DOI: 10.1039/d4mh00448e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Expanding the detection information of wearable smart devices in applications has practical implications for their use in daily life and healthcare. Damage and breakage caused by mechanical injuries and continuous use are unavoidable for polymer matrices so self-healing properties are expected to be conferred on flexible sensors to extend their life and durability. In addition, a good linearity of relative resistance change vs. strain (gauge factor, GF) facilitates the streamlined conversion of electrical signals to 3D information of human motion, whereas existing works on sensors neglect the quantitative analysis of signals. This letter reports a self-healable flexible electronic sensor based on hydrogen bonding and electrostatic interaction between maleic acid-grafted natural rubber (MNR), polyaniline (PANI), and phytic acid (PA). MNR is the flexible matrix and the template for aniline (ANI) polymerization, and PA acts as the dopant and crosslinking agent. The MNR-PANI-PA sensor shows easy self-healing at room temperature, enhanced mechanical behaviour (∼2.5 MPa, 1000% strain), and excellent linearity (GF of 13.8 over 250% strain and GF of 32.0 over 250-100% strain). Due to the highly linear relationship between ΔR/R and bending angle, the electrical signals of human limb movement can output relevant information on bending angle and frequency. By constructing a sensing array, changes in the position and magnitude of applied pressure could also be detected in real-time. Based on these advantages, the MNR-PANI-PA composite sensor is expected to have potential applications in health monitoring, body motion detection, and electronic skins.
Collapse
Affiliation(s)
- Yao Zhang
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yizhong Yuan
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Huimei Yu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinyu Sun
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Xiaohui Tian
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
11
|
Zhang H, Pan Y, Hou Y, Li M, Deng J, Wang B, Hao S. Smart Physical-Based Transdermal Drug Delivery System:Towards Intelligence and Controlled Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306944. [PMID: 37852939 DOI: 10.1002/smll.202306944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/05/2023] [Indexed: 10/20/2023]
Abstract
Transdermal drug delivery systems based on physical principles have provided a stable, efficient, and safe strategy for disease therapy. However, the intelligent device with real-time control and precise drug release is required to enhance treatment efficacy and improve patient compliance. This review summarizes the recent developments, application scenarios, and drug release characteristics of smart transdermal drug delivery systems fabricated with physical principle. Special attention is paid to the progress of intelligent design and concepts in of physical-based transdermal drug delivery technologies for real-time monitoring and precise drug release. In addition, facing with the needs of clinical treatment and personalized medicine, the recent progress and trend of physical enhancement are further highlighted for transdermal drug delivery systems in combination with pharmaceutical dosage forms to achieve better transdermal effects and facilitate the development of smart medical devices. Finally, the next generation and future application scenarios of smart physical-based transdermal drug delivery systems are discussed, a particular focus in vaccine delivery and tumor treatment.
Collapse
Affiliation(s)
- Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
12
|
Kowalewska A, Majewska-Smolarek K. Synergistic Self-Healing Enhancement in Multifunctional Silicone Elastomers and Their Application in Smart Materials. Polymers (Basel) 2024; 16:487. [PMID: 38399865 PMCID: PMC10892785 DOI: 10.3390/polym16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Organosilicon polymers (silicones) are of enduring interest both as an established branch of polymer chemistry and as a segment of commercial products. Their unique properties were exploited in a wide range of everyday applications. However, current silicone trends in chemistry and materials engineering are focused on new smart applications, including stretchable electronics, wearable stress sensors, protective coatings, and soft robotics. Such applications require a fresh approach to methods for increasing the durability and mechanical strength of polysiloxanes, including crosslinked systems. The introduction of self-healing options to silicones has been recognized as a promising alternative in this field, but only carefully designed multifunctional systems operating with several different self-healing mechanisms can truly address the demands placed on such valuable materials. In this review, we summarized the progress of research efforts dedicated to the synthesis and applications of self-healing hybrid materials through multi-component systems that enable the design of functional silicon-based polymers for smart applications.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | | |
Collapse
|
13
|
Yang Z, Yu X, Song Y, Hu Y, Yang Q, Xiong C, Shi Z. Flexible and ultrasensitive piezoresistive electronic skin based on chitin/sulfonated carbon nanotube films. Int J Biol Macromol 2024; 259:129103. [PMID: 38181907 DOI: 10.1016/j.ijbiomac.2023.129103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Wearable electronic skin has gained increasing popularity due to its remarkable properties of high flexibility, sensitivity, and lightweight, making it an ideal choice for detecting human physiological activity. In this study, we successfully prepared e-skin using regenerated chitin (RCH) and sulfonated carbon nanotubes (SCNTs). The e-skin demonstrated brilliant mechanical and sensing properties, exhibiting a sensitivity of 1.75 kPa-1 within the 0-5 kPa range and a fast response-recovery time of <10 ms. Furthermore, it displayed an ultra-low detection limit of 1.39 Pa (5 mg), exceptional stability (up to 11,000 cycles), and a remarkable mechanical strength, reaching up to 50 MPa. Moreover, the e-skin was fabricated through a simple and economical approach. With the popularity of micro sensing devices, the e-skin holds tremendous potential for various applications, including wearable electronic devices, health and sports monitoring, artificial intelligence and other fields.
Collapse
Affiliation(s)
- Zhibo Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xichen Yu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yunze Song
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yang Hu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Quanling Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; Hainan Institute, Wuhan University of Technology, Sanya 572024, China.
| | - Chuanxi Xiong
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhuqun Shi
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
14
|
Tian Y, Wang Z, Cao S, Liu D, Zhang Y, Chen C, Jiang Z, Ma J, Wang Y. Connective tissue inspired elastomer-based hydrogel for artificial skin via radiation-indued penetrating polymerization. Nat Commun 2024; 15:636. [PMID: 38245537 PMCID: PMC10799914 DOI: 10.1038/s41467-024-44949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Robust hydrogels offer a candidate for artificial skin of bionic robots, yet few hydrogels have a comprehensive performance comparable to real human skin. Here, we present a general method to convert traditional elastomers into tough hydrogels via a unique radiation-induced penetrating polymerization method. The hydrogel is composed of the original hydrophobic crosslinking network from elastomers and grafted hydrophilic chains, which act as elastic collagen fibers and water-rich substances. Therefore, it successfully combines the advantages of both elastomers and hydrogels and provides similar Young's modulus and friction coefficients to human skin, as well as better compression and puncture load capacities than double network and polyampholyte hydrogels. Additionally, responsive abilities can be introduced during the preparation process, granting the hybrid hydrogels shape adaptability. With these unique properties, the hybrid hydrogel can be a candidate for artificial skin, fluid flow controller, wound dressing layer and many other bionic application scenarios.
Collapse
Affiliation(s)
- Yuan Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Zhihao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Shuiyan Cao
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Dong Liu
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, Sichuan, China
| | - Yukun Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Chong Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Zhiwen Jiang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jun Ma
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China.
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Yunlong Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China.
| |
Collapse
|
15
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
16
|
Islam MA, Talukder L, Al MF, Sarker SK, Muyeen SM, Das P, Hasan MM, Das SK, Islam MM, Islam MR, Moyeen SI, Badal FR, Ahamed MH, Abhi SH. A review on self-healing featured soft robotics. Front Robot AI 2023; 10:1202584. [PMID: 37953963 PMCID: PMC10637358 DOI: 10.3389/frobt.2023.1202584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/19/2023] [Indexed: 11/14/2023] Open
Abstract
Soft robots are becoming more popular because they can solve issues stiff robots cannot. Soft component and system design have seen several innovations recently. Next-generation robot-human interactions will depend on soft robotics. Soft material technologies integrate safety at the material level, speeding its integration with biological systems. Soft robotic systems must be as resilient as biological systems in unexpected, uncontrolled situations. Self-healing materials, especially polymeric and elastomeric ones, are widely studied. Since most currently under-development soft robotic systems are composed of polymeric or elastomeric materials, this finding may provide immediate assistance to the community developing soft robots. Self-healing and damage-resilient systems are making their way into actuators, structures, and sensors, even if soft robotics remains in its infancy. In the future, self-repairing soft robotic systems composed of polymers might save both money and the environment. Over the last decade, academics and businesses have grown interested in soft robotics. Despite several literature evaluations of the soft robotics subject, there seems to be a lack of systematic research on its intellectual structure and development despite the rising number of articles. This article gives an in-depth overview of the existing knowledge base on damage resistance and self-healing materials' fundamental structure and classifications. Current uses, problems with future implementation, and solutions to those problems are all included in this overview. Also discussed are potential applications and future directions for self-repairing soft robots.
Collapse
Affiliation(s)
- Md. Ariful Islam
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Labanya Talukder
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Firoj Al
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Subrata K. Sarker
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - S. M. Muyeen
- Department of Electrical Engineering, Qatar University, Doha, Qatar
| | - Prangon Das
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Mehedi Hasan
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Sajal K. Das
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Manirul Islam
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Robiul Islam
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Sumaya Ishrat Moyeen
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Faisal R. Badal
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Hafiz Ahamed
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Sarafat Hussain Abhi
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| |
Collapse
|
17
|
Ding H, Liu J, Shen X, Li H. Advances in the Preparation of Tough Conductive Hydrogels for Flexible Sensors. Polymers (Basel) 2023; 15:4001. [PMID: 37836050 PMCID: PMC10575238 DOI: 10.3390/polym15194001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The rapid development of tough conductive hydrogels has led to considerable progress in the fields of tissue engineering, soft robots, flexible electronics, etc. Compared to other kinds of traditional sensing materials, tough conductive hydrogels have advantages in flexibility, stretchability and biocompatibility due to their biological structures. Numerous hydrogel flexible sensors have been developed based on specific demands for practical applications. This review focuses on tough conductive hydrogels for flexible sensors. Representative tactics to construct tough hydrogels and strategies to fulfill conductivity, which are of significance to fabricating tough conductive hydrogels, are briefly reviewed. Then, diverse tough conductive hydrogels are presented and discussed. Additionally, recent advancements in flexible sensors assembled with different tough conductive hydrogels as well as various designed structures and their sensing performances are demonstrated in detail. Applications, including the wearable skins, bionic muscles and robotic systems of these hydrogel-based flexible sensors with resistive and capacitive modes are discussed. Some perspectives on tough conductive hydrogels for flexible sensors are also stated at the end. This review will provide a comprehensive understanding of tough conductive hydrogels and will offer clues to researchers who have interests in pursuing flexible sensors.
Collapse
Affiliation(s)
- Hongyao Ding
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (H.D.)
| | - Jie Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (H.D.)
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (H.D.)
| | - Hui Li
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
18
|
Wei J, Xiao P, Chen T. Water-Resistant Conductive Gels toward Underwater Wearable Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211758. [PMID: 36857417 DOI: 10.1002/adma.202211758] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Conductive gels are developing vigorously as superior wearable sensing materials due to their intrinsic conductivity, softness, stretchability, and biocompatibility, showing a great potential in many aspects of lives. However, compared to their wide application on land, it is significant yet rather challenging for traditional conductive gels to realize sensing application under water. The swelling of gels and the loss of conductive components in the aqueous environment, resulted from the diffusion across the interface, lead to structural instability and sensing performance decline. Fortunately, great efforts are devoted to improving the water resistance of conductive gels and employing them in the field of underwater wearable sensing in recent years, and some exciting achievements are obtained, which are of great significance for promoting the safety and efficiency of underwater activities. However, there is no review to thoroughly summarize the underwater sensing application of conductive gels. This review presents a brief overview of the representative design strategies for developing water-resistant conductive gels and their diversified applications in the underwater sensing field as wearable sensors. Finally, the ongoing challenges for further developing water-resistant conductive gels for underwater wearable sensing are also discussed along with recommendations for the future.
Collapse
Affiliation(s)
- Junjie Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Cao J, Zhang Z, Li K, Ma C, Zhou W, Lin T, Xu J, Liu X. Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensor for Human Motion Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2465. [PMID: 37686973 PMCID: PMC10489763 DOI: 10.3390/nano13172465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Strain sensors based on conducting polymer hydrogels are considered highly promising candidates for wearable electronic devices. However, existing conducting polymer hydrogels are susceptible to aging, damage, and failure, which can greatly deteriorate the sensing performance of strain sensors based on these substances and the accuracy of data collection under large deformation. Developing conductive polymer hydrogels with concurrent high sensing performance and self-healing capability is a critical yet challenging task to improve the stability and lifetime of strain sensors. Herein, we design a self-healable conducting polymer hydrogel by compositing poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanofibers and poly(vinyl alcohol) (PVA) via both physical and chemical crosslinking. This PEDOT:PSS-PVA nanocomposite hydrogel strain sensor displays an excellent strain monitoring range (>200%), low hysteresis (<1.6%), a high gauge factor (GF = 3.18), and outstanding self-healing efficiency (>83.5%). Electronic skins based on such hydrogel strain sensors can perform the accurate monitoring of various physiological signals, including swallowing, finger bending, and knee bending. This work presents a novel conducting polymer hydrogel strain sensor demonstrating both high sensing performance and self-healability, which can satisfy broad application scenarios, such as wearable electronics, health monitoring, etc.
Collapse
Affiliation(s)
- Jie Cao
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.C.); (Z.Z.)
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zhilin Zhang
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.C.); (Z.Z.)
| | - Kaiyun Li
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.C.); (Z.Z.)
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Cha Ma
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
| | - Weiqiang Zhou
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.C.); (Z.Z.)
| | - Tao Lin
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Jingkun Xu
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.C.); (Z.Z.)
- School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ximei Liu
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.C.); (Z.Z.)
| |
Collapse
|
20
|
Jiang R, Zheng X, Zhu S, Li W, Zhang H, Liu Z, Zhou X. Recent Advances in Functional Polyurethane Chemistry: From Structural Design to Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Rijia Jiang
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Xiangyu Zheng
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Shanshan Zhu
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Wenyao Li
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Haiwei Zhang
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Zhihao Liu
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Xing Zhou
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| |
Collapse
|
21
|
Zou Q, Zhang S, Su Q, Xue T, Lan K. Flexible Multimodal Sensor Based on Double‐network Hydrogel for Human and Robotic Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Qiang Zou
- School of Microelectronics Tianjin International Joint Research Center for Internet of Things Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology Tianjin University 300072 Tianji China
| | - Shiwen Zhang
- School of Microelectronics Tianjin International Joint Research Center for Internet of Things Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology Tianjin University 300072 Tianji China
| | - Qi Su
- School of Microelectronics Tianjin International Joint Research Center for Internet of Things Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology Tianjin University 300072 Tianji China
| | - Tao Xue
- Center for Analysis and Tests Tianjin University 300072 Tianjin China
| | - Kuibo Lan
- School of Microelectronics Tianjin International Joint Research Center for Internet of Things Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology Tianjin University 300072 Tianji China
| |
Collapse
|
22
|
Zhao R, Kang S, Wu C, Cheng Z, Xie Z, Liu Y, Zhang D. Designable Electrical/Thermal Coordinated Dual-Regulation Based on Liquid Metal Shape Memory Polymer Foam for Smart Switch. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205428. [PMID: 36658714 PMCID: PMC10015848 DOI: 10.1002/advs.202205428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Electronic components with tunable resistance, especially with synergistic regulation of thermal conductivity, play important roles in the fields of electronics, smart switch, soft robots, and so on. However, it is still a challenge to get the material with various resistance and thermal conductivity stably without lasting external force. Herein, a liquid metal shape memory polymer foam (LM-SMF) is developed by loading electrically and thermally conductive liquid metal (LM) on deformable foam skeleton. Based on thermal response shape memory effect, the foam skeleton can be reversibly pressed, the process of which enables LM to transfer between connected and disconnected states. As a result, obtained LM-SMF shows that the resistance stably changes from 0.8 Ω (conductor) to 200 MΩ (insulator), and the thermal conductivity difference is up to 4.71 times (0.108 to 0.509 W m-1 K-1 ), which indicates that LM-SMF can achieve the electrical and thermal dual-regulation. Moreover, LM-SMF can be used as a designable self-feedback/-warning integrated smart switch or tunable infrared stealth switch. This work proposes a novel strategy to get the material with electrical-thermal coordinated dual-regulation, which is possibly applied in intelligent heating system with real-time monitoring function, electrothermal sensor in the future.
Collapse
Affiliation(s)
- Ruoxi Zhao
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Sibo Kang
- State Key Laboratory of Marine CoatingMarine Chemical Research Institute Co., Ltd.Qingdao266071P. R. China
| | - Chao Wu
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Zhongjun Cheng
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Zhimin Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150080P. R. China
| | - Yuyan Liu
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Dongjie Zhang
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| |
Collapse
|
23
|
Fan K, Li K, Han L, Yang Z, Yang J, Zhang J, Cheng J. Multifunctional double-network Ti3C2Tx MXene composite hydrogels for strain sensors with effective electromagnetic interference and UV shielding properties. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
24
|
Li Z, Yin F, He W, Hang T, Li Z, Zheng J, Li X, Jiang S, Chen Y. Anti-freezing, recoverable and transparent conductive hydrogels co-reinforced by ethylene glycol as flexible sensors for human motion monitoring. Int J Biol Macromol 2023; 230:123117. [PMID: 36603716 DOI: 10.1016/j.ijbiomac.2022.123117] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Wearable flexible sensors based on conductive hydrogels have received extensive attention in the fields of electronic skin and smart monitoring. However, conductive hydrogels contain a large amount of water, which greatly affects their performances in harsh environments. It is therefore necessary to prepare hydrogel sensors that are stable at low temperatures. Herein, metal ions (MgCl2) and ethylene glycol (EG) were combined with polyvinyl alcohol (PVA) to obtain a conductive PVA/EG hydrogel with tensile strength and elongation at break of 1.1 MPa and 442.3 %, respectively, which could withstand >6000-fold its own weight. The binary solvent system composed of water and EG contributed to the excellent anti-freezing properties and long-term storage (>1 week), flexibility, and stability of the hydrogel even at -20 °C. The wearable PVA/EG hydrogel as a flexible sensor possessed desirable sensing performances with a competitive GF value of 0.725 and fatigue resistance (50 cycles) when used to monitor various human motions and physiological signals. Overall, this hydrogel sensor shows strong potential for application in the fields of human motion monitoring, written information sensing, and information encryption and transmission.
Collapse
Affiliation(s)
- Zhaochun Li
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fuqiang Yin
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weiwei He
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Tianyi Hang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhihui Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Jiajia Zheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China.
| | - Xiping Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiming Chen
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
25
|
Nichifor M. Role of Hydrophobic Associations in Self-Healing Hydrogels Based on Amphiphilic Polysaccharides. Polymers (Basel) 2023; 15:polym15051065. [PMID: 36904306 PMCID: PMC10005649 DOI: 10.3390/polym15051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Self-healing hydrogels have the ability to recover their original properties after the action of an external stress, due to presence in their structure of reversible chemical or physical cross-links. The physical cross-links lead to supramolecular hydrogels stabilized by hydrogen bonds, hydrophobic associations, electrostatic interactions, or host-guest interactions. Hydrophobic associations of amphiphilic polymers can provide self-healing hydrogels with good mechanical properties, and can also add more functionalities to these hydrogels by creating hydrophobic microdomains inside the hydrogels. This review highlights the main general advantages brought by hydrophobic associations in the design of self-healing hydrogels, with a focus on hydrogels based on biocompatible and biodegradable amphiphilic polysaccharides.
Collapse
Affiliation(s)
- Marieta Nichifor
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania
| |
Collapse
|
26
|
Yang G, Luo H, Ding Y, Yang J, Li Y, Ma C, Yan J, Zhuang X. Hierarchically Structured Carbon Nanofiber-Enabled Skin-Like Strain Sensors with Full-Range Human Motion Monitoring and Autonomous Self-Healing Capability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7380-7391. [PMID: 36700659 DOI: 10.1021/acsami.2c20104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible strain sensors that mimic the properties of human skin have recently attracted tremendous attention. However, integrating multiple functions of skin into one strain sensor, e.g., stretchability, full-range motion response, and self-healing capability, is still an enormous challenge. Herein, a skin-like strain sensor was presented by the construction of hierarchically structured carbon nanofibers (CNFs), followed by encapsulation of elastic self-healing polyurethane (PU). The hierarchical sensing structure was composed of diversified CNFs with orientations from highly aligned to randomly oriented, and their different fracture mechanisms enabled the resultant strain sensor to successfully integrate key sensing properties including high sensitivity (gauge factor of 90), wide sensing range (∼80% strain), and fast response (52 ms). These properties, combined with high stretchability (870%) and excellent stability (>2000 cycles), allowed the sensor to precisely detect full-range human motions from large joint motions to subtle physiological signals. Moreover, the strain sensor had spontaneous self-healing capability at room temperature with high healing efficiencies of 97.7%, while the healing process could substantially be accelerated by the natural sunlight (24 h → 0.5 h). The healed sensor possessed comparable stretchability, sensing performance, and accurate monitoring ability of subtle body signals with the original sensor. The biomimetic self-healing functionality along with skin-like sensing properties makes it attractive for next-generation wearable electronics.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Haojun Luo
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yunpeng Ding
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Jingwen Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yafang Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Chongqi Ma
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Jing Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| |
Collapse
|
27
|
Zhang Z, Lei D, Zhang C, Wang Z, Jin Y, Zhang W, Liu X, Sun J. Strong and Tough Supramolecular Covalent Adaptable Networks with Room-Temperature Closed-Loop Recyclability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208619. [PMID: 36367361 DOI: 10.1002/adma.202208619] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Development of closed-loop chemically recyclable plastics (CCRPs) that can be widely used in daily life can be a fundamental solution to the global plastic waste crisis. Hence, it is of great significance to develop easy-to-recycle CCRPs that possess superior or comparable material properties to the commodity plastics. Here, a novel dual crosslinked CCRP, namely, supramolecular covalent adaptable networks (supra-CANs), is reported, which not only displays mechanical properties higher than the strong and tough commodity polycarbonate, but also exhibits excellent solvent resistance as thermosets. The supra-CANs are constructed by introducing reversible noncovalent crosslinks into the dynamic covalent polymer networks, resulting in highly stiff and strong thermosets that also exhibit thermoplastic-like ductile and tough behaviors as well as reprocessability and rehealability. In great contrast, the analogs that do not have noncovalent crosslinks (CANs) show elastomeric properties with significantly decreased mechanical strength. Importantly, the developed supra-CANs and CANs can be converted back into the initial monomers in high yields and purity at room temperature, even with additives, which enables the sustainable polymer-monomer-polymer circulation. This work provides new design principles for high-performance chemically recyclable polymers as sustainable substitutes for the conventional plastics.
Collapse
Affiliation(s)
- Zhuoqiang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dong Lei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chenxuan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhenyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
28
|
Yan J, Wang L, Zhao C, Xiang D, Li H, Lai J, Wang B, Li Z, Lu H, Zhou H, Wu Y. Stretchable Semi-Interpenetrating Carboxymethyl Guar Gum-Based Composite Hydrogel for Moisture-Proof Wearable Strain Sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1061-1071. [PMID: 36623252 DOI: 10.1021/acs.langmuir.2c02725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wearable strain sensors of conductive hydrogels have very broad application prospects in electronic skins and human-machine interfaces. However, conductive hydrogels suffer from unstable signal transmission due to environmental humidity and inherent shortcomings of their materials. Herein, we introduce a novel moisture-proof conductive hydrogel with high toughness (2.89 MJ m-3), mechanical strength (1.00 MPa), and high moisture-proof sensing performance by using dopamine-functionalized gold nanoparticles as conductive fillers into carboxymethyl guar gum and acrylamide. Moreover, the hydrogel can realize real-time monitoring of major and subtle human movements with good sensitivity and repeatability. In addition, the hydrogel-assembled strain sensor exhibits stable sensing signals after being left for 1 h, and the relative resistance change rate under different strains (25-300%) shows no obvious noise signal up to 99% relative humidity. Notably, the wearable strain sensing is suitable for wearable sensor devices with high relative humidity.
Collapse
Affiliation(s)
- Jiao Yan
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Li Wang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Chunxia Zhao
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Dong Xiang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Hui Li
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Jingjuan Lai
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Bin Wang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Zhenyu Li
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu610500, China
| | - Hongwei Zhou
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an710021, China
| | - Yuanpeng Wu
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu610500, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu610500, China
| |
Collapse
|
29
|
Xia J, Luo J, Chang B, Sun C, Li K, Zhang Q, Li Y, Wang H, Hou C. High-Performance Zwitterionic Organohydrogel Fiber in Bioelectronics for Monitoring Bioinformation. BIOSENSORS 2023; 13:115. [PMID: 36671950 PMCID: PMC9855821 DOI: 10.3390/bios13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Bioinformation plays an imperative role in day-to-day life. Wearable bioelectronics are important for sensing bioinformation in real-time and conductive hydrogel fibers are a key component in next generation wearable bioelectronics. However, current conductive hydrogel fibers have remarkable disadvantages such as insufficient conductivity, stability, and bioinformation sensing ability. Here, we report the synthesis of a zwitterionic organohydrogel (ZOH) fiber by the combination of the mold method and solvent replacement strategy. The ZOH fiber shows transparency (92.1%), stretchability (905.8%), long-term stability, anti-freezing ability (-35-60 °C), and low light transmission loss (0.17 dB/cm). Then, we integrate the ZOH fiber into fabric for use as a bioinformation sensor, the results prove its capability as a bioinformation monitor, monitoring information such as motion and bioelectric signals. In addition, the potential of the ZOH fiber in optogenetic applications is also confirmed.
Collapse
Affiliation(s)
- Jun Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiabei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Boya Chang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chuanyue Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
30
|
Construction and characterization of highly stretchable ionic conductive hydrogels for flexible sensors with good anti-freezing performance. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Wang C, Guo Z, Wang C, Liu W, Yang X, Huo H, Cai Y, Geng Z, Su Z. High-performance self-healing composite ultrafiltration membrane based on multiple molecular dynamic interactions. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Highly stretchable, self-healing, and degradable ionic conductive cellulose hydrogel for human motion monitoring. Int J Biol Macromol 2022; 223:1530-1538. [PMID: 36402382 DOI: 10.1016/j.ijbiomac.2022.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
Self-healing biomass-based conductive hydrogels are applied as flexible strain sensors for wearable devices and human movement monitoring. Cellulose is the most abundant biomass-based materials and exhibits excellent toughness, dispersion and degradability. In this paper, nanocellulose crystals (NCCs) prepared from sisal, used as reinforcing fillers were coated with tannic acid (TA) to prepare inexpensive bio-nanocomposite hydrogels that also included polyvinyl alcohol, okra polysaccharide (OP), and borax. These hydrogels exhibit excellent self-healing and mechanical properties with the maximum elongation, toughness, and self-healing efficiency (9 min) of 1426.2 %, 264.4 kJ/m3, and 62.1 %, respectively. A fabricated hydrogel strain sensor was successfully used to detect and monitor various human movements such as wrist bending, elbow bending, and slight changes in facial expression. In addition, this sensor possessed excellent durability and good working stability after repeated circulation. The nanocomposite hydrogel synthesized in this work utilized natural polysaccharide to manufacture flexible functional materials with good application prospects in the field of flexible sensors.
Collapse
|
33
|
Xin F, Lyu Q. A Review on Thermal Properties of Hydrogels for Electronic Devices Applications. Gels 2022; 9:gels9010007. [PMID: 36661775 PMCID: PMC9858193 DOI: 10.3390/gels9010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels, as a series of three-dimensional, crosslinked, hydrophilic network polymers, exhibit extraordinary properties in softness, mechanical robustness and biocompatibility, which have been extensively utilized in various fields, especially for electronic devices. However, since hydrogels contain plenty of water, the mechanical and electrochemical properties are susceptible to temperature. The thermal characteristics of hydrogels can significantly affect the performance of flexible electronic devices. In this review, recent research on the thermal characteristics of hydrogels and their applications in electronic devices is summarized. The focus of future work is also proposed. The thermal stability, thermoresponsiveness and thermal conductivity of hydrogels are discussed in detail. Anti-freezing and anti-drying properties are the critical points for the thermal stability of hydrogels. Methods such as introducing soluble ions and organic solvents into hydrogels, forming ionogels, modifying polymer chains and incorporating nanomaterials can improve the thermal stability of hydrogels under extreme environments. In addition, the critical solution temperature is crucial for thermoresponsive hydrogels. The thermoresponsive capacity of hydrogels is usually affected by the composition, concentration, crosslinking degree and hydrophilic/hydrophobic characteristics of copolymers. In addition, the thermal conductivity of hydrogels plays a vital role in the electronics applications. Adding nanocomposites into hydrogels is an effective way to enhance the thermal conductivity of hydrogels.
Collapse
Affiliation(s)
- Fei Xin
- Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University, Xi’an 710071, China
- Correspondence:
| | - Qiang Lyu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
34
|
Xu J, Wang H, Wen X, Wang S, Wang H. Mechanically Strong, Wet Adhesive, and Self-Healing Polyurethane Ionogel Enhanced with a Semi-interpenetrating Network for Underwater Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54203-54214. [PMID: 36409304 DOI: 10.1021/acsami.2c15058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The gel-based sensors have developed rapidly in recent years toward multifunctionality. However, there are still some challenges that need to be solved, such as poor mechanical properties and inaccessibility to wet or water environments. To address these issues, we have developed an ionogel with a semi-interpenetrating network structure by adopting poly(vinylidene fluoride-co-hexafluoropropylene) as the linear non-cross-linked network, a double-bonded ionic liquid and double-bonded capped polyurethane as the cross-linked network, and an ionic liquid as the conductive media. The obtained ionogel exhibits tunable mechanical properties (3.67-8.76 MPa) and excellent sensing properties (IG-20, GF = 8.2). The superb environmental stability and self-healing properties of the ionogel were also demonstrated. Meanwhile, adhesion, self-healing, and sensing performance were guaranteed for underwater due to the presence of a large number of C-F bonds. We strongly believe that this ionogel with excellent mechanical properties and underwater communication is expected for monitoring the health of the human body and information transmission in the future.
Collapse
Affiliation(s)
- Junhuai Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Hui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu610041, P. R. China
| | - Xiao Wen
- College of Biomass Science and Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Shuang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu610065, P. R. China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, P. R. China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu610065, P. R. China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, P. R. China
| |
Collapse
|
35
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
36
|
Zhang J, Wang Y, Wei Q, Wang Y, Li M, Li D, Zhang L. A 3D printable, highly stretchable, self-healing hydrogel-based sensor based on polyvinyl alcohol/sodium tetraborate/sodium alginate for human motion monitoring. Int J Biol Macromol 2022; 219:1216-1226. [PMID: 36058388 DOI: 10.1016/j.ijbiomac.2022.08.175] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
Self-healing hydrogels have great application potential in the field of bio-sensors due to their self-healing, flexibility and excellent tensile properties. However, most hydrogel-based sensors are processed by template method, which is unable to fabricate complex three-dimensional (3D) structures, and limits the development of hydrogel-based sensor devices. A simple yet efficient one-pot method was proposed to fabricate polyvinyl alcohol/sodium tetraborate/sodium alginate hydrogel inks (SPB), also a fabricating process of self-healing hydrogel based on 3D printing technology has been proposed. The SPB hydrogel rapidly healed (<30 s) at room temperature, while its mechanical properties and conductivity also recovered quickly after healing. Besides, it could be used as wearable strain sensors, whose high stretchability (>2800 % strain) and sensitivity (gauge factor: 18.56 at 2000 % strain) could not only detect very large stretch deformations, but also detect the tiny pressure changes in the human body, such as finger flexion, knee flexion, and respiration. This study provides a method for the rapid fabrication of complex-structured hydrogel-based sensors, which is helpful for the hydrogel-based sensor applications in human motion detection and wearable devices.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dinghao Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Longyu Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
37
|
Zhang T, Meng L, Hu Y, Ouyang Z, Li W, Xie B, Zhu F, Wan J, Wu Q. Nature-inspired preparation of self-adhesive, frost-resistant, and ion-conductive hydrogels for flexible strain sensors. RSC Adv 2022; 12:23637-23643. [PMID: 36090414 PMCID: PMC9389370 DOI: 10.1039/d2ra03822f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022] Open
Abstract
A nature-inspired strategy has been developed to prepare polyvinyl alcohol (PVA)/catechol-modified quaternized chitosan (QCS-C)/MXene hydrogels with good self-adhesion, frost-resistance, and high ion-conductivity. The PVA/QCS-C/MXene hydrogel shows an ionic conductivity of 8.82 S m-1 and a gauge factor of 33.53 at low strain (0-10%), and remains flexible and conductive at -47 °C. The PVA/QCS-C15/MXene hydrogel displays promising potential as an ionically conductive hydrogel sensor for applications in flexible electronic devices.
Collapse
Affiliation(s)
- Tiantian Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials Engineering and Research Center of Hubei Province, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Lihui Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials Engineering and Research Center of Hubei Province, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Yanru Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials Engineering and Research Center of Hubei Province, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Zhiyuan Ouyang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials Engineering and Research Center of Hubei Province, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Wenchao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials Engineering and Research Center of Hubei Province, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Bin Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials Engineering and Research Center of Hubei Province, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Fang Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials Engineering and Research Center of Hubei Province, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials Engineering and Research Center of Hubei Province, Wuhan University of Technology Wuhan 430070 P. R. China
| |
Collapse
|
38
|
Li L, Bao X, Meng J, Zhang C, Liu T. Sponge-Hosting Polyaniline Array Microstructures for Piezoresistive Sensors with a Wide Detection Range and High Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30228-30235. [PMID: 35728515 DOI: 10.1021/acsami.2c07404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of highly elastic spongy conductors is attractive for use in piezoresistive sensors due to their low cost, easy fabrication, and wide sensing range. However, the combination of high sensitivity and broad sensing range in a single piezoresistive sensor, though highly demanded, is challenging because they are contradictory in principle. Herein, a highly elastic spongy conductor with sponge-hosting polyaniline (PANI) fluff-like array microstructures is fabricated through cryopolymerization. The as-obtained sponge-hosting conductors exhibited an excellent elasticity under high compression strain and stress of up to 80% and 101 kPa, respectively, covering typical deformation ranges for detecting complex human activities. Benefiting from the presence of the sponge-hosting fluff-like PANI arrays, the as-prepared sponge-hosting conductors for piezoresistive sensors possessed a high sensitivity of 0.54 kPa-1 in a broad pressure range of 0.1-101 kPa, ascribing to the formation of the sponge-hosting fluff arrays with graded conductive network structures of array contacts and sponge-skeleton contacts at low and high compressions, respectively. As a result, the as-assembled piezoresistive sensors were demonstrated for tactile sensing and human-motion monitoring. This work reveals new approaches for tailored fabrication of sponge-hosting conducting polymers with tunable fluff-like microstructures for highly sensitive and wide-range wearable piezoresistive sensors.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xuran Bao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Meng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
39
|
Mohd Sani NF, Yee HJ, Othman N, Talib AA, Shuib RK. Intrinsic self-healing rubber: A review and perspective of material and reinforcement. POLYMER TESTING 2022; 111:107598. [DOI: 10.1016/j.polymertesting.2022.107598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
40
|
Tan M, Xu Y, Gao Z, Yuan T, Liu Q, Yang R, Zhang B, Peng L. Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108491. [PMID: 35008128 DOI: 10.1002/adma.202108491] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Indexed: 05/27/2023]
Abstract
The primary roles of precision medicine are to perform real-time examination, administer on-demand medication, and apply instruments continuously. However, most current therapeutic systems implement these processes separately, leading to treatment interruption and limited recovery in patients. Personalized healthcare and smart medical treatment have greatly promoted research on and development of biosensing and drug-delivery integrated systems, with intelligent wearable medical devices (IWMDs) as typical systems, which have received increasing attention because of their non-invasive and customizable nature. Here, the latest progress in research on IWMDs is reviewed, including their mechanisms of integrating biosensing and on-demand drug delivery. The current challenges and future development directions of IWMDs are also discussed.
Collapse
Affiliation(s)
- Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ziqi Gao
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tiejun Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qingjun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xian, 710126, P. R. China
| | - Bin Zhang
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China
| |
Collapse
|
41
|
Chen R, Zhang Z, Zhou M, Han Y, Li F, Liu J, Zhang L. Molecular Dynamics Simulations of Polymer Nanocomposites Welding: Interfacial Structure, Dynamics and Strength. Macromol Rapid Commun 2022; 43:e2200221. [PMID: 35686731 DOI: 10.1002/marc.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/16/2022] [Indexed: 11/12/2022]
Abstract
Polymer welding has received numerous scientific attention, however, the welding of polymer nanocomposites (PNCs) has not been studied yet. In this work, via coarse-grained molecular dynamics simulation, we focus our attention on investigating the welding interfacial structure, dynamics and strength by constructing the upper and lower layers of PNCs, by varying the polymer-nanoparticle (NP) interaction strength εNP-p . Remarkably, at low εNP-p , the NPs gradually migrate into the top and bottom surface layer perpendicular to the z direction during the adhesion process, while they are distributed in the middle region at high εNP-p . Meanwhile, the dimension of polymer chains is found to exhibit a remarkable anisotropy evidenced by the root-mean-square radius of gyration in the xy- (Rg,xy ) and z- (Rg,z ) component. The welding interdiffusion depth increases the fastest at low εNP-p, attributed to the high mobility of polymer chains and NPs. Lastly, although the mechanical properties of PNCs at high εNP-p is the strongest because of the presence of the NPs in the bulk region, the welding efficiency is the greatest at low εNP-p . Generally, our work could provide a fundamental understanding of the interfacial welding of PNCs, in hopes of guiding to design and fabricate excellent self-healable PNCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ruisi Chen
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhiyu Zhang
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Mengyu Zhou
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yue Han
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Fanzhu Li
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jun Liu
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liqun Zhang
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
42
|
Yang H, van Ruymbeke E, Fustin CA. Influence of Network Topology on the Viscoelastic Properties of Double Dynamics Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Yang
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, Louvain-la-Neuve B-1348, Belgium
| | - Evelyne van Ruymbeke
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, Louvain-la-Neuve B-1348, Belgium
| | - Charles-André Fustin
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, Louvain-la-Neuve B-1348, Belgium
| |
Collapse
|
43
|
Cerdan K, Brancart J, Roels E, Vanderborght B, Van Puyvelde P. Humins Blending in Thermoreversible Diels-Alder Networks for Stiffness Tuning and Enhanced Healing Performance for Soft Robotics. Polymers (Basel) 2022; 14:1657. [PMID: 35566827 PMCID: PMC9101211 DOI: 10.3390/polym14091657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Humins waste valorization is considered to be an essential pathway to improve the economic viability of many biorefinery processes and further promote their circularity by avoiding waste formation. In this research, the incorporation of humins in a Diels-Alder (DA) polymer network based on furan-maleimide thermoreversible crosslinks was studied. A considerable enhancement of the healing efficiency was observed by just healing for 1 h at 60 °C at the expense of a reduction of the material mechanical properties, while the unfilled material showed no healing under the same conditions. Nevertheless, the thermal healing step favored the irreversible humins polycondensation, thus strengthening the material while keeping the enhanced healing performance. Our hypothesis states a synergistic healing mechanism based on humins flowing throughout the damage, followed by thermal humins crosslinking during the healing trigger, together with DA thermoreversible bonds recombination. A multi-material soft robotic gripper was manufactured out of the proposed material, showing not only improved recovery of the functional performance upon healing but also stiffness-tunable features by means of humins thermal crosslinking. For the first time, both damage healing and zone reinforcement for further damage prevention are achieved in a single intrinsic self-healing system.
Collapse
Affiliation(s)
- Kenneth Cerdan
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium;
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Ellen Roels
- Brubotics and Imec, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (E.R.); (B.V.)
| | - Bram Vanderborght
- Brubotics and Imec, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (E.R.); (B.V.)
| | - Peter Van Puyvelde
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium;
| |
Collapse
|
44
|
Roy A, Manna K, Ray PG, Dhara S, Pal S. β-Cyclodextrin-Based Ultrahigh Stretchable, Flexible, Electro- and Pressure-Responsive, Adhesive, Transparent Hydrogel as Motion Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17065-17080. [PMID: 35394754 DOI: 10.1021/acsami.2c00101] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the present work, a multiple-stimuli-responsive hydrogel has been synthesized via polymerization of acrylamide (AAm) and N-hydroxy methyl acrylamide (HMAm) on β-cyclodextrin (β-CD). The synthesized hydrogel β-CD-g-(pAAm/pHMAm) exhibited various striking features like ultrahigh stretchability (>6000%), flexibility, stab resistivity, self-recoverability, electroresponsiveness, pressure-responsiveness, adhesiveness, and high transparency (>90%). Besides, the hydrogel has demonstrated enhanced biocompatibility, UV resistance, and thermoresponsive shape memory behaviors. On the basis of these attractive characteristics of the hydrogel, a flexible pressure sensor for the real-time monitoring of human motion with superior biocompatibility and transparency was fabricated. Moreover, due to the nanofibrillar surface morphology of the β-CD-g-(pAAm/pHMAm) hydrogel, the sensor based on the gel exhibited high sensitivity (0.053 kPa-1 for 0-3.3 kPa). The flexible sensor demonstrates very fast response time (130 ms-210 ms) with adequate stability (5000 cycles). Interestingly, the sensor can rapidly sense both robust (index finger and wrist) motions as well as tiny (swallowing and phonation) physiological actions. In addition, this adhesive hydrogel patch also acts as a potential carrier for the sustained topical release of (∼80.8% in 48 h) the antibiotic drug gentamicin sulfate.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad 826004, India
| | - Kalipada Manna
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad 826004, India
| | - Preetam Guha Ray
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Sagar Pal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad 826004, India
| |
Collapse
|
45
|
Khodadadi Yazdi M, Zarrintaj P, Khodadadi A, Arefi A, Seidi F, Shokrani H, Saeb MR, Mozafari M. Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications. Carbohydr Polym 2022; 278:118998. [PMID: 34973800 DOI: 10.1016/j.carbpol.2021.118998] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023]
Abstract
Architecting an appropriate platform for biomedical applications requires setting a balance between simplicity and complexity. Polysaccharides (PSAs) play essential roles in our life in food resources, structural materials, and energy storage capacitors. Moreover, the diversity and abundance of PSAs have made them an indispensable part of food ingredients and cosmetics. PSA-based hydrogels have been extensively reviewed in biomedical applications. These hydrogels can be designed in different forms to show optimum performance. For instance, electroactive PSA-based hydrogels respond under an electric stimulus. Such performance can be served in stimulus drug release and determining cell fate. This review classifies and discusses the structure, properties, and applications of the most important polysaccharide-based electroactive hydrogels (agarose, alginate, chitosan, cellulose, and dextran) in medicine, focusing on their usage in tissue engineering, flexible electronics, and drug delivery applications.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Ali Khodadadi
- Department of Internal Medicine, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ahmad Arefi
- Department of Chemical Engineering, McMaster University, Hamilton, Canada
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Hanieh Shokrani
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Li WD, Ke K, Jia J, Pu JH, Zhao X, Bao RY, Liu ZY, Bai L, Zhang K, Yang MB, Yang W. Recent Advances in Multiresponsive Flexible Sensors towards E-skin: A Delicate Design for Versatile Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103734. [PMID: 34825473 DOI: 10.1002/smll.202103734] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/16/2021] [Indexed: 05/07/2023]
Abstract
Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e-skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real-time and all-round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next-generation e-skin and wearable electronics.
Collapse
Affiliation(s)
- Wu-Di Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jin Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jun-Hong Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xing Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Lu Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kai Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
47
|
Qin T, Liao W, Yu L, Zhu J, Wu M, Peng Q, Han L, Zeng H. Recent progress in conductive self‐healing hydrogels for flexible sensors. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tao Qin
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Wenchao Liao
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Li Yu
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Junhui Zhu
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Meng Wu
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Qiongyao Peng
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Linbo Han
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Hongbo Zeng
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
48
|
Zhang K, Wang Z, Liu Y, Zhao H, Gao C, Wu Y. Cephalopods-inspired Repairable MWCNTs/PDMS Conductive Elastomers for Sensitive Strain Sensor. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2674-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Roels E, Terryn S, Iida F, Bosman AW, Norvez S, Clemens F, Van Assche G, Vanderborght B, Brancart J. Processing of Self-Healing Polymers for Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104798. [PMID: 34610181 DOI: 10.1002/adma.202104798] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Soft robots are, due to their softness, inherently safe and adapt well to unstructured environments. However, they are prone to various damage types. Self-healing polymers address this vulnerability. Self-healing soft robots can recover completely from macroscopic damage, extending their lifetime. For developing healable soft robots, various formative and additive manufacturing methods have been exploited to shape self-healing polymers into complex structures. Additionally, several novel manufacturing techniques, noted as (re)assembly binding techniques that are specific to self-healing polymers, have been created. Herein, the wide variety of processing techniques of self-healing polymers for robotics available in the literature is reviewed, and limitations and opportunities discussed thoroughly. Based on defined requirements for soft robots, these techniques are critically compared and validated. A strong focus is drawn to the reversible covalent and (physico)chemical cross-links present in the self-healing polymers that do not only endow healability to the resulting soft robotic components, but are also beneficial in many manufacturing techniques. They solve current obstacles in soft robots, including the formation of robust multi-material parts, recyclability, and stress relaxation. This review bridges two promising research fields, and guides the reader toward selecting a suitable processing method based on a self-healing polymer and the intended soft robotics application.
Collapse
Affiliation(s)
- Ellen Roels
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Seppe Terryn
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Fumiya Iida
- Machine Intelligence Lab, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Anton W Bosman
- SupraPolix B. V., Horsten 1.29, Eindhoven, 5612 AX, The Netherlands
| | - Sophie Norvez
- Chimie Moléculaire, Macromoléculaire, Matériaux, École Supérieure de Physique et de Chimie (ESPCI), 10 Rue Vauquelin, Paris, 75005, France
| | - Frank Clemens
- Laboratory for High Performance Ceramics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Guy Van Assche
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
50
|
Wang P, Chen T, Zhang X, Duan W, Zhang C, Han H, Xie Q. A Superhydrophobic Hydrogel for
Self‐Healing
and Robust Strain Sensor with Liquid Impalement Resistance. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Peng Wang
- School of Energy, Power and Mechanical Engineering North China Electric Power University Baoding Hebei 071003 China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention North China Electric Power University Baoding Hebei 071003 China
| | - Tao Chen
- School of Energy, Power and Mechanical Engineering North China Electric Power University Baoding Hebei 071003 China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention North China Electric Power University Baoding Hebei 071003 China
| | - Xuesong Zhang
- School of Energy, Power and Mechanical Engineering North China Electric Power University Baoding Hebei 071003 China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention North China Electric Power University Baoding Hebei 071003 China
| | - Wei Duan
- School of Energy, Power and Mechanical Engineering North China Electric Power University Baoding Hebei 071003 China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention North China Electric Power University Baoding Hebei 071003 China
| | - Chongyuan Zhang
- School of Electrical and Electronic Engineering North China Electric Power University Baoding Hebei 071003 China
| | - Huilong Han
- School of Energy, Power and Mechanical Engineering North China Electric Power University Baoding Hebei 071003 China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention North China Electric Power University Baoding Hebei 071003 China
| | - Qing Xie
- School of Electrical and Electronic Engineering North China Electric Power University Baoding Hebei 071003 China
| |
Collapse
|