1
|
Feng Y, Li M, Zheng Y, Qu H, Li P, Dong B, Wang Y, Liu G, Jia B, Ma Q. Toxicokinetics of a Single Oral Dose of Aflatoxin B 1 in Plasma, Feces, and Urine of Male Donkeys. Toxins (Basel) 2025; 17:206. [PMID: 40278704 PMCID: PMC12030934 DOI: 10.3390/toxins17040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Aflatoxin B1 (AFB1) is widely present in raw materials for food and feedstock, posing a significant threat to the health of humans and animals. This study explored the toxicokinetics of a single oral administration of AFB1 at a dose of 100 µg·kg-1 BW (body weight). Donkey blood samples were gathered at 0, 5, 10, 15, 20, 30, 45, and 60 min and at 1.5 h, 2 h, 2.5 h, 3 h, 3.5 h, 4 h, 4.5 h, 6 h, 9 h, 12 h, 24 h, 48 h, 72 h, 96 h, and 120 h through jugular vein sampling needles at intervals. Fecal and urinary samples were collected at 0 h and every 6 h thereafter until 120 h. The concentrations of AFB1 and AFM1 in plasma, urine, and feces were quantitatively analyzed using LC-MS/MS. The maximum concentrations of AFB1 and AFM1 in plasma were 13.10 ± 6.35 µg·L-1 and 0.72 ± 0.33 µg·L-1, occurring at 1.38 ± 0.89 h and 2.25 ± 1.57 h after oral administration, respectively. The AFB1 and AFM1 elimination half-lives (T1/2Elim) were 6.65 ± 2.84 h and 5.85 ± 3.00 h, respectively. The total clearances (CL) of AFB1 and AFM1 were 163 ± 52.2 L·kg-1 BW-1·h-1 and 3210 ± 2450 L·kg-1 BW-1·h-1, and the volumes of distribution (Vd) for AFB1 were 1440 ± 417 L·kg-1·BW and 22,400 ± 14,800 L·kg-1·BW, respectively. In addition, the total amounts of AFB1 and AFM1 excreted over 120 h through urine and feces accounted for 3.38 ± 0.92% and 3.44 ± 1.45% of the total intake, respectively (calculated by material mass). Furthermore, the research showed that the absorption and metabolism of AFB1 were rapid in male donkeys, with the tissue exhibiting a wide distribution and long duration.
Collapse
Affiliation(s)
- Yulong Feng
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China;
| | - Min Li
- Shandong Key Laboratory of Gelatine Medicines Research and Development, Dong’e Ejiao Co., Ltd., Liaocheng 252201, China; (M.L.)
| | - Yunduo Zheng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Honglei Qu
- Shandong Key Laboratory of Gelatine Medicines Research and Development, Dong’e Ejiao Co., Ltd., Liaocheng 252201, China; (M.L.)
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pengshuai Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Boying Dong
- Shandong Key Laboratory of Gelatine Medicines Research and Development, Dong’e Ejiao Co., Ltd., Liaocheng 252201, China; (M.L.)
| | - Yantao Wang
- Shandong Key Laboratory of Gelatine Medicines Research and Development, Dong’e Ejiao Co., Ltd., Liaocheng 252201, China; (M.L.)
| | - Guangyuan Liu
- Shandong Key Laboratory of Gelatine Medicines Research and Development, Dong’e Ejiao Co., Ltd., Liaocheng 252201, China; (M.L.)
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China;
| | - Qiugang Ma
- Shandong Key Laboratory of Gelatine Medicines Research and Development, Dong’e Ejiao Co., Ltd., Liaocheng 252201, China; (M.L.)
| |
Collapse
|
2
|
Zhang Y, Chen T, Wang Z, Liang W, Wang X, Zhang X, Lu X, Liu X, Zhao C, Xu G. High-resolution mass spectrometry-based suspect and nontarget screening of natural toxins in foodstuffs and risk assessment of dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125338. [PMID: 39577611 DOI: 10.1016/j.envpol.2024.125338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Daily dietary intake inevitably exposes individuals to various natural toxins, which may pose potential health threats. Focusing only on specific toxins could underestimate dietary risks. Therefore, we have developed a suspect and nontarget method based on ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) to screen both known and unknown natural toxins in various foodstuffs. An in-house database containing 2952 natural toxins including fungal toxins, phytotoxins, animal toxins and cyanotoxins was established, facilitating suspect screening. Predicted retention time and mass spectrometry data were employed to enhance the confidence levels. Subsequently, Nontarget screening method was conducted based on molecular network analysis, annotating the edges and nodes through modified types and fragmentation characteristics. Finally, we analyzed 102 foodstuff samples and identified a total of 90 natural toxins, including mycotoxins and phytotoxins, with 65 identified by suspect screening and 25 by nontarget screening. Based on measured concentrations, the daily per capita dietary intake of total natural toxins was estimated, it was below risk doses for natural toxins with available reference values. Overall, this work established a novel method for the comprehensive identification of natural toxins in foodstuffs and emphasized the importance of dietary risk assessment for natural toxins.
Collapse
Affiliation(s)
- Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zixuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinxin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| |
Collapse
|
3
|
Tian Y, Tian X, Yang B, Ma J, Shan J, Xing F. Analysis of the impact of drying on common wheat quality and safety. Heliyon 2024; 10:e33163. [PMID: 39021959 PMCID: PMC11253061 DOI: 10.1016/j.heliyon.2024.e33163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Mycotoxin contamination in grain has been an ongoing concern in the world. Wheat, as a staple crop in China, is particularly notable for its mycotoxin contamination. The main mycotoxins in wheat include deoxynivalenol (DON) and its derivates, zearalenone (ZEN) and aflatoxin B1 (AFB1). After harvest, drying process is an effective technique and a necessary step to ensure the long-term safe storage of wheat. In this study, the moisture content, the concentrations of total fungi and main mycotoxins in post-harvest wheat of three wheat growing areas in the North China Plain were examined, and the effect of different drying methods on wheat quality was evaluated. The results showed that 87.5% of wheat samples were simultaneously contaminated with two or more mycotoxins. Due to the pre-harvest heavy rainfall, the moisture content, the levels of total fungi and mycotoxins in wheat samples of Liaocheng city were significantly higher compared to other regions. Moreover, the effects of different drying methods on the starch gelatinization and viscosity properties of wheat were investigated. The results showed that both natural air drying and dryer drying altered the crystal structure within starch particles and affected the gelatinization and viscosity properties of wheat starch. However, there is no significant difference between the wheat samples treated with two drying methods.
Collapse
Affiliation(s)
| | | | - Bolei Yang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Junning Ma
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jihao Shan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
4
|
Qu Z, Ren X, Du Z, Hou J, Li Y, Yao Y, An Y. Fusarium mycotoxins: The major food contaminants. MLIFE 2024; 3:176-206. [PMID: 38948146 PMCID: PMC11211685 DOI: 10.1002/mlf2.12112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 07/02/2024]
Abstract
Mycotoxins, which are secondary metabolites produced by toxicogenic fungi, are natural food toxins that cause acute and chronic adverse reactions in humans and animals. The genus Fusarium is one of three major genera of mycotoxin-producing fungi. Trichothecenes, fumonisins, and zearalenone are the major Fusarium mycotoxins that occur worldwide. Fusarium mycotoxins have the potential to infiltrate the human food chain via contamination during crop production and food processing, eventually threatening human health. The occurrence and development of Fusarium mycotoxin contamination will change with climate change, especially with variations in temperature, precipitation, and carbon dioxide concentration. To address these challenges, researchers have built a series of effective models to forecast the occurrence of Fusarium mycotoxins and provide guidance for crop production. Fusarium mycotoxins frequently exist in food products at extremely low levels, thus necessitating the development of highly sensitive and reliable detection techniques. Numerous successful detection methods have been developed to meet the requirements of various situations, and an increasing number of methods are moving toward high-throughput features. Although Fusarium mycotoxins cannot be completely eliminated, numerous agronomic, chemical, physical, and biological methods can lower Fusarium mycotoxin contamination to safe levels during the preharvest and postharvest stages. These theoretical innovations and technological advances have the potential to facilitate the development of comprehensive strategies for effectively managing Fusarium mycotoxin contamination in the future.
Collapse
Affiliation(s)
- Zheng Qu
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural SciencesJinanChina
| | - Zhaolin Du
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Jie Hou
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Ye Li
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Yanpo Yao
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Yi An
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| |
Collapse
|
5
|
Zhang D, Luo T, Cai X, Zhao NN, Zhang CY. Recent advances in nucleic acid signal amplification-based aptasensors for sensing mycotoxins. Chem Commun (Camb) 2024; 60:4745-4764. [PMID: 38647208 DOI: 10.1039/d4cc00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Mycotoxin contamination in food products may cause serious health hazards and economic losses. The effective control and accurate detection of mycotoxins have become a global concern. Even though a variety of methods have been developed for mycotoxin detection, most conventional methods suffer from complicated operation procedures, low sensitivity, high cost, and long assay time. Therefore, the development of simple and sensitive methods for mycotoxin assay is highly needed. The introduction of nucleic acid signal amplification technology (NASAT) into aptasensors significantly improves the sensitivity and facilitates the detection of mycotoxins. Herein, we give a comprehensive review of the recent advances in NASAT-based aptasensors for assaying mycotoxins and summarize the principles, features, and applications of NASAT-based aptasensors. Moreover, we highlight the challenges and prospects in the field, including the simultaneous detection of multiple mycotoxins and the development of portable devices for field detection.
Collapse
Affiliation(s)
- Dandan Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ting Luo
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xiangyue Cai
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Lin X, Ge R, Wei J, Jiao T, Chen Q, Oyama M, Chen Q, Chen X. Magnetic-encoded fluorescent nanospheres-based competitive immunoassay for near-simultaneous detection of four mycotoxins in wheat. Food Chem 2024; 432:137267. [PMID: 37672888 DOI: 10.1016/j.foodchem.2023.137267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Simultaneous detection of mycotoxins is important for food safety. In this study, a magnetic-encoded fluorescent nanosphere-based competitive immunosensor (cFMEIS) with 2×2 array was first developed for simultaneous detection of aflatoxin B1 (AFB1), ochratoxin (OTA), deoxynivalenol (DON), and zearalenone (ZEN) in wheat. Specifically, magnetic nanoparticles with strong and weak responses were conjugated with mycotoxin antigens as capture probes. Fluorescent nanoparticles doped with europium ion (Eu3+) and terbium ion (Tb3+) with red and green emission were coupled with mycotoxin antibodies as signal probes. Using a magnetic field, immune complexes were sequentially separated in a complex system and fluorescently detected. The detection limits of AFB1, DON, OTA, and ZEN were 0.032, 0.141, 0.097, and 0.376 μg/kg, respectively. The recoveries in the certified reference material of wheat flour ranged from 81.6 to 120.0 %. Owing to its high accuracy, selectivity, and sensitivity, the cFMEIS shows great promise as an efficient and sensitive multitarget sensor for mycotoxins.
Collapse
Affiliation(s)
- Xueqi Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Rui Ge
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Munetaka Oyama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
7
|
Aytekin Sahin G, Aykemat Y, Yildiz AT, Dishan A, Inanc N, Gonulalan Z. Total aflatoxin and ochratoxin A levels, dietary exposure and cancer risk assessment in dried fruits in Türkiye. Toxicon 2024; 237:107540. [PMID: 38042309 DOI: 10.1016/j.toxicon.2023.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
This study aimed to measure total aflatoxin (AF) (AFB1, AFB2, AFG1, and AFG2) and ochratoxin A (OTA) levels in dried fruit samples and to evaluate the potential dietary exposure and cancer risk to these mycotoxins in Kayseri/Türkiye. Dried fruit samples were collected between April-May 2021. A total of 11 dried grapes and apricot samples, 7 dried fig and plum samples were collected. Total aflatoxins and OTA in dried fruits were determined by ELISA method. Then, the margin of exposure (MOE) and cancer risk were calculated. Total AF was detected in dried fruit samples between 42.86%, and 100%. Between 18.18% and 57.14% of samples exceeded the European Commission (EC) limits for total AF. Moreover, OTA was detected in all samples. Between 71.43% and 100% of samples exceeded the EC limits for OTA. Cancer risk due to OTA exposure was higher than total AF and it was determined that OTA exposure could pose a risk for public health (MOE < 10,000). Although mycotoxin exposure seems to be low due to the low consumption of dried fruit in Türkiye, the risk of exposure and cancer may increase because of complying with the recommendations of the dietary guidelines. The findings provide new insights into exposure to total AF and OTA through the consumption of dried fruit.
Collapse
Affiliation(s)
- Gizem Aytekin Sahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Nuh Naci Yazgan University, Kayseri, Turkey.
| | - Yusuf Aykemat
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Aysegul Tugba Yildiz
- Department of Nursing, Faculty of Health Sciences, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Adalet Dishan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bozok University, Yozgat, Turkey
| | - Neriman Inanc
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Zafer Gonulalan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bozok University, Yozgat, Turkey; Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
8
|
Mannani N, El Boujamaai M, Sifou A, Bennani M, El Adlouni C, Abdennebi EH, Zinedine A. Aflatoxins and Ochratoxin A in dried fruits from Morocco: Monitoring, regulatory aspects, and exposure assessment. Regul Toxicol Pharmacol 2023; 145:105503. [PMID: 37778435 DOI: 10.1016/j.yrtph.2023.105503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The present study aims to investigate the presence of Aflatoxins (AF) in 180 samples dried fruits and Ochratoxin A (OTA) in 210 samples dried fruits and grape juices collected in Morocco. Mycotoxins were analyzed by high performance liquid chromatography (HPLC) coupled to fluorescence detection and immunoaffinity columns (IAC) cleanup. Contamination levels were compared with the maximum regulatory limits (MRL) recently adopted in the country, and mycotoxin exposure of adult consumers was assessed. Results showed that 13.8% of samples were contaminated with AF, with incidences of 23.3, 23.3, 20, 13.8, and 3.3%, in raisins, figs, nuts, peanuts and pistachio, respectively. There were 12 samples (6.6%) that exceeded the MRL of 2-12 ng/g set for aflatoxin B1 (AFB1). While OTA was detected in 17.1% of samples, with incidences of 3.3, 3.3, 30, 30, and 53.3% in walnuts, pistachios, peanuts, raisins and figs, respectively, and a maximum value of 99.1 in dried raisins, that exceeded the MRL (10 ng/g) set for OTA. The co-occurrence of OTA and AF was observed in 4.7% of total samples. Dietary intake showed that the OTA exposure level was lower than safety guidelines set by The Joint FAO/WHO Expert Committee on Food Additives (JECFA) at 100 ng/kg b.w./week.
Collapse
Affiliation(s)
- Nysrine Mannani
- Laboratory of Marine Biotechnologies and Environment (BIOMARE), Faculty of Sciences, Road of Ben Maachou, P.O. Box 20, Chouaib Doukkali University, El Jadida, 24000, Morocco.
| | - Mounir El Boujamaai
- Laboratory of Marine Biotechnologies and Environment (BIOMARE), Faculty of Sciences, Road of Ben Maachou, P.O. Box 20, Chouaib Doukkali University, El Jadida, 24000, Morocco
| | - Aicha Sifou
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University, Faculty of Sciences, Avenue Ibn Battouta, P.O. Box 1014, Rabat, 10000, Morocco
| | - Mohamed Bennani
- Laboratory of Physico-Chemistry and Toxicology, Institut Pasteur (IPM), 1, Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Chakib El Adlouni
- Laboratory of Marine Biotechnologies and Environment (BIOMARE), Faculty of Sciences, Road of Ben Maachou, P.O. Box 20, Chouaib Doukkali University, El Jadida, 24000, Morocco
| | - El Hassane Abdennebi
- Institute of Agronomy and Veterinary (IAV Hassan II), Department of Biological and Pharmaceutical Sciences, P.O. Box 6202, Rabat-Institutes, 10101, Morocco
| | - Abdellah Zinedine
- Laboratory of Marine Biotechnologies and Environment (BIOMARE), Faculty of Sciences, Road of Ben Maachou, P.O. Box 20, Chouaib Doukkali University, El Jadida, 24000, Morocco
| |
Collapse
|
9
|
Zhang Y, Chen T, Chen D, Liang W, Lu X, Zhao C, Xu G. Suspect and nontarget screening of mycotoxins and their modified forms in wheat products based on ultrahigh-performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2023; 1708:464370. [PMID: 37717452 DOI: 10.1016/j.chroma.2023.464370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Various forms of mycotoxins commonly exist in food and pose a significant risk to human health. Here a comprehensive suspect and nontarget screening strategy for both parent and modified mycotoxins was developed using ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLCHRMS). We constructed an in-house MS/MS database containing 82 mycotoxins in 8 categories. Then fragmentation characteristics of different classes of mycotoxins were rapidly extracted by a Python program "Fragmentation pattern screener (FPScreener)" and nontarget screening rules were determined by analyzing the frequencies and average intensities of fragmentation characteristics. Using the suspect and nontarget screening strategy, we successfully identified six parent mycotoxins and eight modified mycotoxins with different confidence levels in contaminated wheat and flour samples. This strategy enables screening of unknown parents and modified mycotoxins in food matrices with corresponding fragmentation characteristics.
Collapse
Affiliation(s)
- Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Chen
- Food Safety Research Unit of Chinese Academy of Medical Science (2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China.
| |
Collapse
|
10
|
Long Y, Huang Y, Zhu M, Ma Y, Gan B, Wang Y, Yu Q, Xie J, Chen Y. Development of QuEChERS clean-up based on EMR-lipid for simultaneous analysis of 9 mycotoxins, acaylamide and 5-Hydroxymethylfurfural in biscuit by UHPLC-MS/MS. Food Chem 2023; 409:135265. [PMID: 36584524 DOI: 10.1016/j.foodchem.2022.135265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022]
Abstract
A robust and sensitive analytical method for the simultaneous determination of 9 mycotoxins, AA, and 5-HMF by UHPLC-MS/MS was developed. Clean-up of the extracts was achieved by d-SPE with EMR-lipid. A new column phase (C18-PFP) was selected for HPLC separation after comparison with the C18 column. Finally, the method gave good linear relations with regression coefficients R2 > 0.99. The recovery of all the tested compounds was within the range of 70.67 to 104.88%, and the intraday and interday relative standard deviations (RSD) were lower than 12.49. The proposed method was then applied to investigate the mycotoxins, AA and 5-HMF in 20 food samples sold in the retail market. AA and 5-HMF were widely detected, and half of the samples were found to contain at least one mycotoxin contamination. Therefore, this method is potential to be used as a convenient and effective method for the cookies product quality control in the future.
Collapse
Affiliation(s)
- You Long
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yousheng Huang
- Jiangxi Institute of Analysis and Testing, Nanchang 330029, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yingjie Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Bei Gan
- Jiangxi Provincial Product Quality Supervision Testing College, Nanchang 330029, China
| | - YuanXing Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
11
|
Proteomics as a New-Generation Tool for Studying Moulds Related to Food Safety and Quality. Int J Mol Sci 2023; 24:ijms24054709. [PMID: 36902140 PMCID: PMC10003330 DOI: 10.3390/ijms24054709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mould development in foodstuffs is linked to both spoilage and the production of mycotoxins, provoking food quality and food safety concerns, respectively. The high-throughput technology proteomics applied to foodborne moulds is of great interest to address such issues. This review presents proteomics approaches useful for boosting strategies to minimise the mould spoilage and the hazard related to mycotoxins in food. Metaproteomics seems to be the most effective method for mould identification despite the current problems related to the bioinformatics tool. More interestingly, different high resolution mass spectrometry tools are suitable for evaluating the proteome of foodborne moulds able to unveil the mould's response under certain environmental conditions and the presence of biocontrol agents or antifungals, being sometimes combined with a method with limited ability to separate proteins, the two-dimensional gel electrophoresis. However, the matrix complexity, the high ranges of protein concentrations needed and the performing of multiple steps are some of the proteomics limitations for the application to foodborne moulds. To overcome some of these limitations, model systems have been developed and proteomics applied to other scientific fields, such as library-free data independent acquisition analyses, the implementation of ion mobility, and the evaluation of post-translational modifications, are expected to be gradually implemented in this field for avoiding undesirable moulds in foodstuffs.
Collapse
|
12
|
Leite M, Freitas A, Barbosa J, Ramos F. Mycotoxins in Raw Bovine Milk: UHPLC-QTrap-MS/MS Method as a Biosafety Control Tool. Toxins (Basel) 2023; 15:toxins15030173. [PMID: 36977064 PMCID: PMC10054876 DOI: 10.3390/toxins15030173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Mycotoxins are compounds produced by several fungi that contaminate agricultural fields and, either directly or by carry-over, final food products. Animal exposure to these compounds through contaminated feed can lead to their excretion into milk, posing threats to public health. Currently, aflatoxin M1 is the sole mycotoxin with a maximum level set in milk by the European Union, as well as the most studied. Nonetheless, animal feed is known to be contaminated by several groups of mycotoxins with relevance from the food safety point of view that can be carried over into milk. To evaluate the multi-mycotoxin occurrence in this highly consumed food product it is crucial to develop precise and robust analytical methodologies towards their determination. In this sense, an analytical method for the simultaneous identification of 23 regulated, non-regulated, and emerging mycotoxins in raw bovine milk using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was validated. A modified QuEChERS protocol for extraction purposes was used, and further validation was performed by assessing the selectivity and specificity, limits of detection and quantification (LOD and LOQ), linearity, repeatability, reproducibility, and recovery. The performance criteria were compliant with mycotoxin-specific and general European regulations for regulated, non-regulated, and emerging mycotoxins. The LOD and LOQ ranged between 0.001 and 9.88 ng mL−1 and 0.005 and 13.54 ng mL−1, respectively. Recovery values were between 67.5 and 119.8%. The repeatability and reproducibility parameters were below 15 and 25%, respectively. The validated methodology was successfully applied to determine regulated, non-regulated, and emerging mycotoxins in raw bulk milk from Portuguese dairy farms, proving the importance of widening the monitoring scope of mycotoxins in dairy products. Additionality, this method presents itself as a new strategic and integrated biosafety control tool for dairy farms for the analysis of these natural and relevant human risks.
Collapse
Affiliation(s)
- Marta Leite
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, 4051-401 Porto, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, 4051-401 Porto, Portugal
| | - Jorge Barbosa
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, 4051-401 Porto, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, 4051-401 Porto, Portugal
- Correspondence:
| |
Collapse
|
13
|
De Baere S, Ochieng PE, Kemboi DC, Scippo ML, Okoth S, Lindahl JF, Gathumbi JK, Antonissen G, Croubels S. Development of High-Throughput Sample Preparation Procedures for the Quantitative Determination of Aflatoxins in Biological Matrices of Chickens and Cattle Using UHPLC-MS/MS. Toxins (Basel) 2023; 15:37. [PMID: 36668857 PMCID: PMC9866995 DOI: 10.3390/toxins15010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Aflatoxins (AFs) frequently contaminate food and animal feeds, especially in (sub) tropical countries. If animals consume contaminated feeds, AFs (mainly aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2) and their major metabolites aflatoxin M1 (AFM1) and M2 (AFM2)) can be transferred to edible tissues and products, such as eggs, liver and muscle tissue and milk, which ultimately can reach the human food chain. Currently, the European Union has established a maximum level for AFM1 in milk (0.05 µg kg-1). Dietary adsorbents, such as bentonite clay, have been used to reduce AFs exposure in animal husbandry and carry over to edible tissues and products. To investigate the efficacy of adding bentonite clay to animal diets in reducing the concentration of AFB1, AFB2, AFG1, AFG2, and the metabolites AFM1 and AFM2 in animal-derived foods (chicken muscle and liver, eggs, and cattle milk), chicken and cattle plasma and cattle ruminal fluid, a sensitive and selective ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed. High-throughput sample preparation procedures were optimized, allowing the analysis of 96 samples per analytical batch and consisted of a liquid extraction using 1% formic acid in acetonitrile, followed by a further clean-up using QuEChERS (muscle tissue), QuEChERS in combination with Oasis® Ostro (liver tissue), Oasis® Ostro (egg, plasma), and Oasis® PRiME HLB (milk, ruminal fluid). The different procedures were validated in accordance with European guidelines. As a proof-of-concept, the final methods were used to successfully determine AFs concentrations in chicken and cattle samples collected during feeding trials for efficacy and safety evaluation of mycotoxin detoxifiers to protect against AFs as well as their carry-over to animal products.
Collapse
Affiliation(s)
- Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Phillis E. Ochieng
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Food Analysis, FARAH—Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - David C. Kemboi
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Department of Veterinary Pathology, Microbiology, and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya
- Department of Animal Sciences, Chuka University, P.O. Box 109-60400, Chuka 00625, Kenya
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH—Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Sheila Okoth
- Department of Biology, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Johanna F. Lindahl
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 05 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - James K. Gathumbi
- Department of Veterinary Pathology, Microbiology, and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya
| | - Gunther Antonissen
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Chair Poultry Health Sciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
14
|
Gao YN, Wang ZW, Yang X, Wang JQ, Zheng N. Aflatoxin M1 and ochratoxin A induce a competitive endogenous RNA regulatory network of intestinal immunosuppression by whole-transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158777. [PMID: 36115400 DOI: 10.1016/j.scitotenv.2022.158777] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Aflatoxin M1 (AFM1) and ochratoxin A (OTA) are common mycotoxins in cereal foods and milk products, and may cause serious negative impacts on human health. The intestine is crucial for immune regulation as it protects host homeostatic health from external contaminants; however, the underlying mechanisms of AFM1 and OTA mediated intestinal immunotoxicity remain unclear. In this study, whole transcriptome analysis was used to characterize BALB/c mouse intestines exposed to individual and combined AFM1 and OTA [3.0 mg/kg body weight (BW)] for 28 days to screen for key intestinal immunotoxicity-related differentially expressed mRNAs (DEmRNAs), differentially expressed microRNAs (DEmiRNAs), differentially expressed long non-coding RNAs (DElncRNAs), and associated enriched signaling pathways. Functional validation was then conducted in intestinal differentiated Caco-2 cells using different inhibitor assays to verify the accuracy of transcriptome and the importance of the key screened regulatory factors. In vivo data revealed that AFM1 and OTA exposure disrupted the intestines and exerted intestinal immunosuppression effects. When compared with AFM1, OTA had stronger intestinal toxicity in combined treatments. Further analyses of competitive endogenous RNA (ceRNA) regulatory networks in mice showed that AFM1 and OTA mediated-intestinal immunosuppression was putatively explained as follows: (i) toxins affected DEmRNAs regarding transfer and transduction mechanisms between cells (Csf1, Csf1r, Cxcl10, Cx3cr1, and Irf1), which were regulated by key DEmiRNAs (miR-106-x, miR-107-y, and miR-124-y) and the DElncRNA Rian, and (ii) toxins inhibited transforming growth factor-β-activated kinase 1 (TAK1)/I-kappaB kinase (IKK)/inhibitor of kappa Bα (IκBα)/p65 nuclear factor-κB (NF-κB) signaling phosphorylation levels, which was validated in differentiated Caco-2 cells using the TAK1 inhibitor (5Z-7-oxozeaenol). In conclusion, we evaluated the risk of co-exposure to AFM1 and OTA and associated health hazards from a whole transcriptome perspective.
Collapse
Affiliation(s)
- Ya-Nan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zi-Wei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jia-Qi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
15
|
Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022; 54:355-388. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycotoxins, which are toxic secondary metabolites produced by fungi, are harmful to humans. Mycotoxin-induced contamination has drawn attention worldwide. Consequently, the development of reliable and sensitive detection methods and high-efficiency control strategies for mycotoxins is important to safeguard food industry safety and public health. With the rapid development of nanotechnology, many novel nanomaterials that provide tremendous opportunities for greatly improving the detection and control performance of mycotoxins because of their unique properties have emerged. This review comprehensively summarizes recent trends in the application of nanomaterials for detecting mycotoxins (fluorescence, colorimetric, surface-enhanced Raman scattering, electrochemical, and point-of-care testing) and controlling mycotoxins (inhibition of fungal growth, mycotoxin absorption, and degradation). These detection methods possess the advantages of high sensitivity and selectivity, operational simplicity, and rapidity. With research attention on the control of mycotoxins and the gradual excavation of the properties of nanomaterials, nanomaterials are also employed for the inhibition of fungal growth, mycotoxin absorption, and mycotoxin degradation, and impressive controlling effects are obtained. This review is expected to provide the readers insight into this state-of-the-art area and a reference to design nanomaterials-based schemes for the detection and control of mycotoxins.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
16
|
Lavrinenko IA, Donskikh AO, Minakov DA, Sirota AA. Analysis and classification of peanuts with fungal diseases based on real-time spectral processing. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:990-1000. [PMID: 35044871 DOI: 10.1080/19440049.2021.2017001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The study presents an approach to the analysis and classification of peanuts performed in order to detect kernels with fungi diseases, i.e. kernels prone to contamination with mycotoxigenic Aspergillus flavus (Aspergillus parasiticus). The aim of this study was to evaluate the effectiveness of luminescent spectroscopy with a violet laser (405 nm wavelength) as the excitation source of the fluorescence when applied for real-time detection of mould in peanuts performed by means of multispectral processing based on machine learning methods. We suggest a laboratory unit used to form, register, and process the luminescence spectra of peanuts in visible and near-infrared wavelength ranges in the real-time mode. The study demonstrated that contaminated peanuts have increased luminous intensity and show a redshift in the fluorescence peaks of the contaminated samples as compared to the pure ones. The difference in the fluorescence spectra of pure and contaminated kernels is compatible with the results obtained when traditional UV-light sources are used (365 nm). To classify peanuts by their spectral characteristics, neural network algorithms were used combined with dimensionality reduction methods. The paper presents the probabilities of incorrect recognition of the peanuts' type depending on the number of relevant secondary features determined when reducing the dimensionality of the initial data. When 10 spectral components were used, the error ratios were 0.7% or 0.3% depending on the method of reducing the dimensionality of the initial data.
Collapse
Affiliation(s)
- Igor A Lavrinenko
- Department of Human and Animal Physiology, Voronezh State University, Voronezh, Russia
| | - Artem O Donskikh
- Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia
| | - Dmitriy A Minakov
- Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia
| | - Alexander A Sirota
- Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia
| |
Collapse
|
17
|
Ahmadi SF, Hojjatoleslamy M, Kiani H, Molavi H. Monitoring of Aflatoxin M1 in milk using a novel electrochemicalaptasensorbased on reduced graphene oxide and gold nanoparticles. Food Chem 2022; 373:131321. [PMID: 34742040 DOI: 10.1016/j.foodchem.2021.131321] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/04/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022]
Abstract
Accurate and rapid detection of Aflatoxins as one of the most hazardous compounds in foodstuffs is very important. In this study, a label-free electrochemical aptasensor was developed to identify aflatoxin M1 using a reduced graphene oxide (rGO) and gold nanoparticles (AuNPs)-based pencil graphite electrode (PGE). The morphological characteristics of the electrode surface were investigated using SEM and rGO functional groups were confirmed by FTIR. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were used to characterize various stages of electrode modification. In order to optimize the impedimetric response of the aptasensor, aptamer immobilization time, aptamer concentration, and binding aflatoxin M1 with aptamer time were optimized. Under optimal conditions, the linear concentration range of 0.5-800 ng/L and limit of detection (LOD) of 0.3 ng/L were obtained for aflatoxin M1 by measuring the resistance charge transfer data. Finally, the fabricated aptasensor was successfully used to measure AFM1 compared to HPLC method.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Ahmadi
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran
| | - Mohammad Hojjatoleslamy
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran
| | - Hossein Kiani
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran; Bioprocessing and Biodetection Lab, Department of Food Science and Technology, University of Tehran, Karaj, Iran
| | - Hooman Molavi
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran
| |
Collapse
|
18
|
Juraschek LM, Kappenberg A, Amelung W. Mycotoxins in soil and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152425. [PMID: 34952071 DOI: 10.1016/j.scitotenv.2021.152425] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi that have harmful effects on animals and humans. Worldwide more than 300 different mycotoxins are already known, frequently with concentrations in harvest products exceeding acceptable limits. Nevertheless, although these compounds have extensively been studied in food and feed, only little is known about their occurrence and fate in soil and agro-environmental matrices, such as manure, sewage sludge, drainage water and sediments. Therefore, the aim of this review was to (i) resume available methods for quantifying mycotoxins in soil, (ii) describe the occurrence and quantities of mycotoxins in soil and related agro-environmental matrices, and (iii) discuss the environmental fate of these target compounds with specific focus on their leaching potential into groundwater. The safest and most reliable method for mycotoxin quantification relies on mass spectrometry, while the extraction method and solvent composition differ depending on the compound under investigation. Mycotoxin levels detected in soils to date were in the μg range, reaching maximum amounts of 72.1 μg kg-1 for zearalenone, 32.1 μg kg-1 for deoxynivalenol, 23.7 μg kg-1 for ochratoxin A, 6.7 μg kg-1 for nivalenol, and 5.5 μg kg-1 for aflatoxin. Different compartments in the agroecosystem (cereals, corn, rice, water, manure, sewage sludge) each contained at least one mycotoxin. Mycotoxin retention in soils is controlled by texture, with significant adsorption of the compounds to clays but leaching potentials in sandy soils. We did not find any reports detecting mycotoxins in sediments, although there are increasing reports of mycotoxins in freshwater samples. Overall, it appears that soils and sediments are still underrepresented in research on potential environmental contamination with mycotoxins.
Collapse
Affiliation(s)
- Lena Marie Juraschek
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Arne Kappenberg
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| |
Collapse
|
19
|
Zhang K, Tan S, Xu D. Determination of Mycotoxins in Dried Fruits Using LC-MS/MS-A Sample Homogeneity, Troubleshooting and Confirmation of Identity Study. Foods 2022; 11:foods11060894. [PMID: 35327316 PMCID: PMC8954288 DOI: 10.3390/foods11060894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
To monitor co-exposure to toxic mycotoxins in dried fruits, it is advantageous to simultaneously determine multiple mycotoxins using a single extraction and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. In this study, we applied a stable isotope dilution and LC-MS/MS method to multi-mycotoxin analysis in dried fruits, selecting raisins, plums, figs, and cranberries for matrix extension. Samples were prepared using cryogenic grinding, followed by the fortification of carbon-13 (13C) uniformly labeled internal standards for twelve mycotoxins, and extraction using 50% acetonitrile. Homogeneity of prepared samples, defined as particle size Dv90 < 850 µm for the tested matrices, was characterized using a laser diffraction particle size analyzer, and reached using cryogenic grinding procedures. The majority of recoveries in the four matrices for aflatoxins and ochratoxin A spiked at 1−100 ng/g; fumonisins, T-2 toxin, HT-2 toxin, and zearalenone spiked at 10−1000 ng/g, ranged from 80 to 120% with relative standard deviations (RSDs) of <20%. Deoxynivalenol was not detected at 10 and 100 ng/g in plums, and additional troubleshooting procedures using liquid-liquid extraction (LLE), solid phase extraction (SPE), and elution gradient were evaluated to improve the detectability of the mycotoxin. Furthermore, we confirmed the identity of detected mycotoxins, ochratoxin A and deoxynivalenol, in incurred samples using enhanced product ion scans and spectral library matching.
Collapse
Affiliation(s)
- Kai Zhang
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, HFS-717. 5001 Campus Drive, College Park, MD 20740, USA;
- Correspondence: ; Tel.: +1-240-402-2318
| | - Steven Tan
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, HFS-717. 5001 Campus Drive, College Park, MD 20740, USA;
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, 2134 Patapsco Building, 5145 Campus Drive, College Park, MD 20740, USA;
| | - David Xu
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, 2134 Patapsco Building, 5145 Campus Drive, College Park, MD 20740, USA;
| |
Collapse
|
20
|
Er Demirhan B, Demirhan B. Investigation of Twelve Significant Mycotoxin Contamination in Nut-Based Products by the LC–MS/MS Method. Metabolites 2022; 12:metabo12020120. [PMID: 35208195 PMCID: PMC8877173 DOI: 10.3390/metabo12020120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, a total of 80 peanut butter, hazelnut butter, and chocolate samples were obtained from local markets in Ankara, Turkey. These foods were analyzed for twelve toxicological important mycotoxins, such as aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2); fumonisin B1 (FB1) and fumonisin B2 (FB2); ochratoxin A (OTA); sterigmatocystin (STE); deoxynivalenol (DON); zearalenone (ZON); T-2 toxin (T2); and HT-2 toxin (HT2) by the LC–MS/MS multi-mycotoxin method. In addition to this analysis, the presence of total aerobic mesophilic bacteria was investigated in the samples. The samples were analyzed microbiologically using standard procedures. Finally, the minimum and maximum levels of AFB1, AFB2, AFG1, FB2, OTA, STE, DON, ZON, T2, and HT2 in the samples were found to be 0.04–27.37 µg/kg, 0.06–6.19 µg/kg, 0.14–0.40 µg/kg, 2.73–2.93 µg/kg, 0.01–37.26 µg/kg, 0.19–2.25 µg/kg, 11.81–42.09 µg/kg, 0.03–7.57 µg/kg, 1.41–2.54 µg/kg, and 6.94–7.43 µg/kg, respectively. AFG2 and FB1 were not detected in any of the samples. The most frequently detected mycotoxins in analyzed samples were OTA (78.75%) and AFB1 (75%). In addition, total aerobic mesophilic bacteria were isolated from 53.75% of samples. Some of the tested food samples contained mycotoxins above the Turkish Food Codex maximum limit.
Collapse
|
21
|
Ariafar S, Oftadeh Harsin A, Fadaiie A, Mahboobian MM, Mohammadi M. Toxicity effects of mycotoxins and autophagy: a mechanistic view. TOXIN REV 2021. [DOI: 10.1080/15569543.2019.1711416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Saba Ariafar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Oftadeh Harsin
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Fadaiie
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
22
|
The mycotoxins in edible oils: An overview of prevalence, concentration, toxicity, detection and decontamination techniques. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Development of a LC-MS/MS Method for the Simultaneous Determination of the Mycotoxins Deoxynivalenol (DON) and Zearalenone (ZEA) in Soil Matrix. Toxins (Basel) 2021; 13:toxins13070470. [PMID: 34357942 PMCID: PMC8310301 DOI: 10.3390/toxins13070470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022] Open
Abstract
Mycotoxins, toxins of fungal origin, can directly or indirectly contaminate food and feed and are poisonous to livestock and humans. While a large amount is known about their occurrence in crops, food, and feeds, little is known about mycotoxin amounts in soil. However, soil is known as a major fungal habitat and a potential sink for mycotoxins in the environment. Furthermore, there is neither a reliable detection nor an extraction method for mycotoxins testing in different soil textures or for potential deficits due to aging processes. Therefore, the aim of the present study was to present a reliable extraction and detection method for the simultaneous quantification of the most common mycotoxins, deoxynivalenol (DON) and zearalenone (ZEA), via liquid chromatography-tandem mass spectrometry (LC–MS/MS). This method was validated with six different samples with different textures and different soil organic matter (SOM). Deuterated standards were used to overcome possible matrix effects. This extraction method could eliminate potential aging processes. The recovery rate was always >80% for DON and >82% for ZEA. The quantification limits were 1 ng per g soil for DON and 0.5 ng per g soil for ZEA.
Collapse
|
24
|
Vilas-Boas AA, Pintado M, Oliveira ALS. Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns. Foods 2021; 10:1564. [PMID: 34359434 PMCID: PMC8304211 DOI: 10.3390/foods10071564] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Although synthetic bioactive compounds are approved in many countries for food applications, they are becoming less and less welcome by consumers. Therefore, there has been an increasing interest in replacing these synthetic compounds by natural bioactive compounds. These natural compounds can be used as food additives to maintain the food quality, food safety and appeal, and as food supplements or nutraceuticals to correct nutritional deficiencies, maintain a suitable intake of nutrients, or to support physiological functions, respectively. Recent studies reveal that numerous food wastes, particularly fruit and vegetables byproducts, are a good source of bioactive compounds that can be extracted and reintroduced into the food chain as natural food additives or in food matrices for obtaining nutraceuticals and functional foods. This review addresses general questions concerning the use of fruit and vegetables byproducts as new sources of natural bioactive compounds that are being addressed to foods as natural additives and supplements. Those bioactive compounds must follow the legal requirements and evaluations to assess the risks for human health and their toxicity must be considered before being launched into the market. To overcome the potential health risk while increasing the biological activity, stability and biodistribution of the supplements' technological alternatives have been studied such as encapsulation of bioactive compounds into micro or nanoparticles or nanoemulsions. This will allow enhancing the stability and release along the gastrointestinal tract in a controlled manner into the specific tissues. This review summarizes the valorization path that a bioactive compound recovered from an agro-food waste can face from the moment their potentialities are exhibited until it reaches the final consumer and the safety and toxicity challenges, they may overcome.
Collapse
Affiliation(s)
| | | | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal; (A.A.V.-B.); (M.P.)
| |
Collapse
|
25
|
Konak Ü, Yatmaz H, Nilüfer Ş, Erkaymaz T, Certel M. Multiresidue method for the simultaneous analysis of antibiotics and mycotoxins in feeds by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2020.00159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractResidues in animal feeds and foods of animal origin have been important safety issue concerning both human and animal health. A multiresidue method for determination of eight mycotoxins and ten antibiotics was developed and validated in animal feeds by using QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction followed by UHPLC-MS/MS. Optimisation of UHPLC-MS/MS parameters was performed to achieve good separation and resolution. The method was validated according to the European Commission Decision 2002/657/EC. Matrix matched calibration curves showed good r2 (≥0.995) values, and limit of quantification (LOQ) values varied between 1.2 and 5.2 μg kg−1. Average recoveries ranged from 60 to 102% with relative standard deviations of 2.2 and 15.6% for all type of feed samples except for tetracyclines, lincomycin, tylosin, ochratoxin A, and fumonisin (B1 and B2).
Collapse
Affiliation(s)
- Ü.İ. Konak
- 1Department of Food Engineering, Faculty of Engineering and Architecture, Avrasya University, 61250, Trabzon, Turkey
| | - H.A. Yatmaz
- 2Food Safety and Agricultural Research Center, Akdeniz University, 07059, Antalya, Turkey
| | - Ş. Nilüfer
- 2Food Safety and Agricultural Research Center, Akdeniz University, 07059, Antalya, Turkey
| | - T. Erkaymaz
- 3Rose and Rose Products Research and Application Center, Süleyman Demirel University, 32260, Isparta, Turkey
| | - M. Certel
- 4Department of Food Engineering, Faculty of Engineering, Akdeniz University, 07059, Antalya, Turkey
| |
Collapse
|
26
|
Recent Advances in Mycotoxin Analysis and Detection of Mycotoxigenic Fungi in Grapes and Derived Products. SUSTAINABILITY 2021. [DOI: 10.3390/su13052537] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycotoxins are secondary metabolites of filamentous fungi that can cause toxic effects in human and animal health. Most of the filamentous fungi that produce these mycotoxins belong to four genera, namely, Aspergillus, Penicillium, Fusarium, and Alternaria. Mycotoxigenic fungi, along with mycotoxins, create a constant and serious economic threat for agriculture in many terms, counting product losses due to crop contamination and food spoilage, as well malnutrition when considering nutritional quality degradation. Given the importance of robust and precise diagnostics of mycotoxins and the related producing fungi in the grape food chain, one of the most important agricultural sectors worldwide, the present review initially delivers a comprehensive presentation of mycotoxin reports on grape and derived products, including a wide range of commodities such as fresh grapes, raisins, wine, juices, and other processed products. Next, based on worldwide regulations’ requirements for mycotoxins, and referring to the relative literature, this work presents methodological approaches for mycotoxin determination, and stresses major methods for the detection of fungal species responsible for mycotoxin production. The principle of function and basic technical background on the available analytical and molecular biology techniques developed—including chromatography, mass spectrometry, immunochemical-based assays, biosensors, and molecular assays—is briefly given, and references for their application to grape and derived product testing are highlighted.
Collapse
|
27
|
Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116156] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Silver-109/Silver/Gold Nanoparticle-Enhanced Target Surface-Assisted Laser Desorption/Ionisation Mass Spectrometry-The New Methods for an Assessment of Mycotoxin Concentration on Building Materials. Toxins (Basel) 2021; 13:toxins13010045. [PMID: 33435302 PMCID: PMC7827835 DOI: 10.3390/toxins13010045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to detect and quantify mycotoxins on building materials using innovative laser mass spectroscopy methods—silver-109/silver/gold nanoparticle-enhanced target surface-assisted laser desorption/ionisation mass spectrometry (109AgNPs, AgNPs and AuNPs SALDI). Results from SALDI-type methods were also compared with commonly used matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Standards of seven moulds mycotoxin in a final concentration of 100 µg/mL for patulin, citrinin, 3-nitropropionic acid, alternariol and 20 µg/mL for sterigmatocystin, cyclopiazonic acid, roquefortine C in the mixture were tested in pure solutions and after extraction from the plasterboards. Among the studied SALDI-type method, the lowest detection limits and the highest signal intensity of the mycotoxins tested were obtained with the use of 109AgNPs SALDI MS. The 109AgNPs method may be considered as an alternative to the currently most frequently used method MALDI MS and also liquid chromatography tandem mass spectrometry LC-MS/MS for mycotoxin determination. Future studies should attempt to use these methods for mass spectrometry imaging (MSI) to evaluate spatial distribution and depth of mycotoxin penetration into building materials.
Collapse
|
29
|
Křížová L, Dadáková K, Dvořáčková M, Kašparovský T. Feedborne Mycotoxins Beauvericin and Enniatins and Livestock Animals. Toxins (Basel) 2021; 13:32. [PMID: 33466409 PMCID: PMC7824875 DOI: 10.3390/toxins13010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by several species of fungi, including the Fusarium, Aspergillus, and Penicillium species. Currently, more than 300 structurally diverse mycotoxins are known, including a group called minor mycotoxins, namely enniatins, beauvericin, and fusaproliferin. Beauvericin and enniatins possess a variety of biological activities. Their antimicrobial, antibiotic, or ionoforic activities have been proven and according to various bioassays, they are believed to be toxic. They are mainly found in cereal grains and their products, but they have also been detected in forage feedstuff. Mycotoxins in feedstuffs of livestock animals are of dual concern. First one relates to the safety of animal-derived food. Based on the available data, the carry-over of minor mycotoxins from feed to edible animal tissues is possible. The second concern relates to detrimental effects of mycotoxins on animal health and performance. This review aims to summarize current knowledge on the relation of minor mycotoxins to livestock animals.
Collapse
Affiliation(s)
- Ludmila Křížová
- Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (K.D.); (M.D.)
| | - Michaela Dvořáčková
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (K.D.); (M.D.)
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (K.D.); (M.D.)
| |
Collapse
|
30
|
A review on graphene-based electrochemical sensor for mycotoxins detection. Food Chem Toxicol 2020; 148:111931. [PMID: 33340616 DOI: 10.1016/j.fct.2020.111931] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/21/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022]
Abstract
This work focuses on the study of nanomaterial-based sensors for mycotoxins detection. Due to their adverse effects on humans and animals, mycotoxins are heavily regulated, and the foodstuff and feed stocks with a high probability of being contaminated are often analyzed. In this context, the recent developments in graphene-based electrochemical sensors for mycotoxins detection were examined. The mycotoxins' toxicity implications on their detection and the development of diverse recognition elements are described considering the current challenges and limitations.
Collapse
|
31
|
Pickova D, Ostry V, Toman J, Malir F. Presence of Mycotoxins in Milk Thistle ( Silybum marianum) Food Supplements: A Review. Toxins (Basel) 2020; 12:E782. [PMID: 33302488 PMCID: PMC7763672 DOI: 10.3390/toxins12120782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/29/2022] Open
Abstract
The consumption of herbal-based supplements, which are believed to have beneficial effects on human health with no side effects, has become popular around the world and this trend is still increasing. Silybum marianum (L.) Gaertn, commonly known as milk thistle (MT), is the most commonly studied herb associated with the treatment of liver diseases. The hepatoprotective effects of active substances in silymarin, with silybin being the main compound, have been demonstrated in many studies. However, MT can be affected by toxigenic micro-fungi and contaminated by mycotoxins with adverse effects. The beneficial effect of silymarin can thus be reduced or totally antagonized by mycotoxins. MT has proven to be affected by micro-fungi of the Fusarium and Alternaria genera, in particular, and their mycotoxins. Alternariol-methyl-ether (AME), alternariol (AOH), beauvericin (BEA), deoxynivalenol (DON), enniatin A (ENNA), enniatin A1 (ENNA1), enniatin B (ENNB), enniatin B1 (ENNB1), HT-2 toxin (HT-2), T-2 toxin (T-2), tentoxin (TEN), and zearalenone (ZEA) seem to be most significant in MT-based dietary supplements. This review focuses on summarizing cases of mycotoxins in MT to emphasize the need for strict monitoring and regulation, as mycotoxins in relation with MT-based dietary supplements are not covered by European Union legislation.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
- Center for Health, National Institute of Public Health in Prague, Nutrition and Food in Brno, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| |
Collapse
|
32
|
Laser Ablation Remote-Electrospray Ionisation Mass Spectrometry (LARESI MSI) Imaging-New Method for Detection and Spatial Localization of Metabolites and Mycotoxins Produced by Moulds. Toxins (Basel) 2020; 12:toxins12110720. [PMID: 33217921 PMCID: PMC7698717 DOI: 10.3390/toxins12110720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 01/11/2023] Open
Abstract
To date, no method has been developed to assess the distribution of mycotoxins on the surface of grains, or other plant material, and the depth of their penetration into the interior. The Infrared (IR) Laser Ablation-Remote-Electrospray Ionization (LARESI) platform coupled to a tandem mass spectrometer (MS/MS), measuring in selected reaction monitoring (SRM) mode, was employed for the targeted imaging of selected metabolites of Aspergillus fumigatus, including mycotoxins in biological objects for the first time. This methodology allowed for the localisation of grain metabolites and fungal metabolites of grain infected by this mould. The distribution of metabolites in spelt grain was differentiated: fumigaclavine C, fumitremorgin C, and fumiquinazoline D were located mainly in the embryo, brevianamide F in the seed coat, and fumagillin in the endosperm. The LARESI mass spectrometry imaging method can be used in the future for the metabolomic analysis of mould metabolites in various plants and agricultural products.
Collapse
|
33
|
Moretti S, Cavanna D, Lambertini F, Catellani D, Sammarco G, Barola C, Paoletti F, Saluti G, Galarini R, Suman M. Practical approach to develop a multi-group screening method for detection of mycotoxins, pesticides and veterinary drugs in food. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4618. [PMID: 32757493 DOI: 10.1002/jms.4618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
A multi-group screening method to detect residues of veterinary drugs in meat and environmental contaminants in wheat flour has been developed using liquid chromatography coupled to quadrupole-Orbitrap high-resolution mass spectrometry (LC-HRMS). The procedure was tested for over 300 representative compounds (173 veterinary drugs, 122 pesticides and 9 mycotoxins) analysing in parallel negative and positive (spiked) samples according to European validation rules. The Screening Target Concentrations (STCs) were chosen conservatively with respect to the method purposes. Interpretation of results was based on retention time, mass accuracy of precursor and MS2 spectral library. Evaluating the percentage of false negative results, 280 out of the 304 analytes were detectable at the STCs (false compliant rate ≤ 5%). In wheat flours, incurred levels of mycotoxins, deoxynivalenol and 3-acetyldeoxynivalenol, higher than STCs, were frequently found, whereas in meat, the most detected veterinary drugs were antibiotics generally at negligible concentrations (<10 μg kg-1 ). Finally, seven test materials from proficiency test schemes were successfully tested.
Collapse
Affiliation(s)
- Simone Moretti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Daniele Cavanna
- Advance Research Laboratory, Barilla G. R. F.lli SpA, Parma, Italy
| | | | - Dante Catellani
- Advance Research Laboratory, Barilla G. R. F.lli SpA, Parma, Italy
| | - Giuseppe Sammarco
- Advance Research Laboratory, Barilla G. R. F.lli SpA, Parma, Italy
- Food and Drug Department, University of Parma, Parma, Italy
| | - Carolina Barola
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Fabiola Paoletti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Giorgio Saluti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Michele Suman
- Advance Research Laboratory, Barilla G. R. F.lli SpA, Parma, Italy
| |
Collapse
|
34
|
Gonçalves C, Mischke C, Stroka J. Determination of deoxynivalenol and its major conjugates in cereals using an organic solvent-free extraction and IAC clean-up coupled in-line with HPLC-PCD-FLD. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1765-1776. [PMID: 32870740 DOI: 10.1080/19440049.2020.1800829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A method for the determination of deoxynivalenol (DON) and its major conjugates in cereals was developed including an immunoaffinity column (IAC) clean-up coupled in-line with high-performance liquid chromatography, post-column derivatisation and fluorescence detection. An IAC for DON with cross-reactivity to 15-AcDON, 3-AcDON and DON-3-G enabled this approach. The isolated analytes were introduced into the chromatographic system without aliquotation employing the hot water elution technique, resulting in the desired low LOQ values for monitoring these analytes in cereals. The absence of any organic solvent during sample preparation in combination with an in-line IAC clean-up renders the method simple, fast, and environmentally friendly. Special attention was paid to inherent IACs properties such as cross-reactivity, analytes' competition and capacity. The method was applied to determine DON and its major conjugates in barley, wheat and maize in the range of 10-1000 µg kg-1 of DON, 10-300 µg kg-1 of DON-3-G and 15-AcDON and 10-100 µg kg-1 of 3-AcDON. The apparent recoveries varied from 87% to 110% (average of 98%) and the intermediate precision was below 13.5% RSD (except for DON-3-G in wheat). Fifteen maize, wheat and barley samples were analysed revealing levels of DON conjugates that accounted from 9% to 60% of the "total DON" content (m/m). In general, the frequency and the measured mass fractions decreased in the following order: DON>DON-3-G>15-AcDON>3-AcDON.
Collapse
Affiliation(s)
- Carlos Gonçalves
- European Commission, Joint Research Centre (JRC) , Geel, Belgium
| | - Carsten Mischke
- European Commission, Joint Research Centre (JRC) , Geel, Belgium
| | - Joerg Stroka
- European Commission, Joint Research Centre (JRC) , Geel, Belgium
| |
Collapse
|
35
|
Turnipseed SB, Jayasuriya H. Analytical methods for mixed organic chemical residues and contaminants in food. Anal Bioanal Chem 2020; 412:5969-5980. [PMID: 32350581 PMCID: PMC10984255 DOI: 10.1007/s00216-020-02668-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Developing methods that can analyze multiple categories of organic chemical residues such as pesticides, veterinary drugs, mycotoxins, human drugs, and environmental contaminants in food with a single analytical procedure is a growing trend. These methods for mixed organic chemical residues and contaminants focus on the chemical properties of these analytes rather than how they are used and adulterate the food supply. This paper highlights recently published methods for mixed residue and contaminant methods in food including advances in technology (instrumental hardware, data processing programs, and sample cleanup) that allow for a larger number of compounds to be monitored simultaneously. The factors that determine the scope, or number and type of analytes in a given method, including needs for specific food commodities, complexity of the analytical procedure, and the intended purpose (qualitative vs quantitative analysis) will be examined. Although there are clear advantages to expanding the number of unwanted chemicals being monitored in the global food supply, challenges to developing and implementing mixed organic residue and contaminant methods will also be discussed. Going forward, it will be important to implement these methods to more thoroughly protect the food supply for a wide variety of targeted and non-targeted chemical residues and contaminants while also having the regulatory framework in place to effectively manage the results of these comprehensive analyses. Graphical abstract.
Collapse
Affiliation(s)
- Sherri B Turnipseed
- Animal Drugs Research Center, US Food and Drug Administration, Denver, CO, 80225, USA.
| | - Hiranthi Jayasuriya
- Center for Veterinary Medicine, Office of Research, US Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
36
|
Gonkowski S, Gajęcka M, Makowska K. Mycotoxins and the Enteric Nervous System. Toxins (Basel) 2020; 12:toxins12070461. [PMID: 32707706 PMCID: PMC7404981 DOI: 10.3390/toxins12070461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by various fungal species. They are commonly found in a wide range of agricultural products. Mycotoxins contained in food enter living organisms and may have harmful effects on many internal organs and systems. The gastrointestinal tract, which first comes into contact with mycotoxins present in food, is particularly vulnerable to the harmful effects of these toxins. One of the lesser-known aspects of the impact of mycotoxins on the gastrointestinal tract is the influence of these substances on gastrointestinal innervation. Therefore, the present study is the first review of current knowledge concerning the influence of mycotoxins on the enteric nervous system, which plays an important role, not only in almost all regulatory processes within the gastrointestinal tract, but also in adaptive and protective reactions in response to pathological and toxic factors in food.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland;
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
37
|
Leite M, Freitas A, Silva AS, Barbosa J, Ramos F. Maize (Zea mays L.) and mycotoxins: A review on optimization and validation of analytical methods by liquid chromatography coupled to mass spectrometry. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Afshar P, Shokrzadeh M, Raeisi SN, Ghorbani-HasanSaraei A, Nasiraii LR. Aflatoxins biodetoxification strategies based on probiotic bacteria. Toxicon 2020; 178:50-58. [DOI: 10.1016/j.toxicon.2020.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
|
39
|
Arce-López B, Lizarraga E, Vettorazzi A, González-Peñas E. Human Biomonitoring of Mycotoxins in Blood, Plasma and Serum in Recent Years: A Review. Toxins (Basel) 2020; 12:E147. [PMID: 32121036 PMCID: PMC7150965 DOI: 10.3390/toxins12030147] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
This manuscript reviews the state-of-the-art regarding human biological monitoring (HBM) of mycotoxins in plasma serum and blood samples. After a comprehensive and systematic literature review, with a focus on the last five years, several aspects were analyzed and summarized: a) the biomarkers analyzed and their encountered levels, b) the analytical methodologies developed and c) the relationship between biomarker levels and some illnesses. In the literature reviewed, aflatoxin B1-lysine (AFB1-lys) and ochratoxin A (OTA) in plasma and serum were the most widely studied mycotoxin biomarkers for HBM. Regarding analytical methodologies, a clear increase in the development of methods for the simultaneous determination of multiple mycotoxins has been observed. For this purpose, the use of liquid chromatography (LC) methodologies, especially when coupled with tandem mass spectrometry (MS/MS) or high resolution mass spectrometry (HRMS), has grown. A high percentage of the samples analyzed for OTA or aflatoxin B1 (mostly as AFB1-lys) in the reviewed papers were positive, demonstrating human exposure to mycotoxins. This review confirms the importance of mycotoxin human biomonitoring and highlights the important challenges that should be faced, such as the inclusion of other mycotoxins in HBM programs, the need to increase knowledge of mycotoxin metabolism and toxicokinetics, and the need for reference materials and new methodologies for treating samples. In addition, guidelines are required for analytical method validation, as well as equations to establish the relationship between human fluid levels and mycotoxin intake.
Collapse
Affiliation(s)
- Beatriz Arce-López
- Department of Pharmaceutical Technology and Chemistry; Universidad de Navarra, 31008 Pamplona, Navarra, Spain; (B.A.-L.); (E.G.-P.)
| | - Elena Lizarraga
- Department of Pharmaceutical Technology and Chemistry; Universidad de Navarra, 31008 Pamplona, Navarra, Spain; (B.A.-L.); (E.G.-P.)
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology. School of Pharmacy and Nutrition, 31008 Pamplona, Navarra, Spain;
- IdiSNA, Institute for Health Research, 31008 Pamplona, Navarra, Spain
| | - Elena González-Peñas
- Department of Pharmaceutical Technology and Chemistry; Universidad de Navarra, 31008 Pamplona, Navarra, Spain; (B.A.-L.); (E.G.-P.)
| |
Collapse
|
40
|
|
41
|
Development and validation of a methodology based on Captiva EMR-lipid clean-up and LC-MS/MS analysis for the simultaneous determination of mycotoxins in human plasma. Talanta 2020; 206:120193. [DOI: 10.1016/j.talanta.2019.120193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/25/2023]
|
42
|
Transcriptome Analysis of Ochratoxin A-Induced Apoptosis in Differentiated Caco-2 Cells. Toxins (Basel) 2019; 12:toxins12010023. [PMID: 31906179 PMCID: PMC7020595 DOI: 10.3390/toxins12010023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022] Open
Abstract
Ochratoxin A (OTA), an important mycotoxin that occurs in food and animal feed, has aroused widespread concern in recent years. Previous studies have indicated that OTA causes nephrotoxicity, hepatotoxicity, genotoxicity, immunotoxicity, cytotoxicity, and neurotoxicity. The intestinal toxicity of OTA has gradually become a focus of research, but the mechanisms underlying this toxicity have not been described. Here, differentiated Caco-2 cells were incubated for 48 h with different concentrations of OTA and transcriptome analysis was used to estimate damage to the intestinal barrier. Gene expression profiling was used to compare the characteristics of differentially expressed genes (DEGs). There were altogether 10,090 DEGs, mainly clustered into two downregulation patterns. The Search Tool for Retrieval of Interacting Genes (STRING), which was used to analyze the protein-protein interaction network, indicated that 24 key enzymes were mostly responsible for regulating cell apoptosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis was used to validate eight genes, three of which were key genes (CASP3, CDC25B, and EGR1). The results indicated that OTA dose-dependently induces apoptosis in differentiated Caco-2 cells. Transcriptome analysis showed that the impairment of intestinal function caused by OTA might be partly attributed to apoptosis, which is probably associated with downregulation of murine double minute 2 (MDM2) expression and upregulation of Noxa and caspase 3 (CASP3) expression. This study has highlighted the intestinal toxicity of OTA and provided a genome-wide view of biological responses, which provides a theoretical basis for enterotoxicity and should be useful in establishing a maximum residue limit for OTA.
Collapse
|
43
|
A Novel Magnetic Molecular Imprinted Polymer for Selective Extraction of Zearalenone from Cereal Flours before Liquid Chromatography-Tandem Mass Spectrometry Determination. Toxins (Basel) 2019; 11:toxins11090493. [PMID: 31461866 PMCID: PMC6784151 DOI: 10.3390/toxins11090493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin produced by various Fusarium species and commonly occurring in corn and other cereals. Even though its acute toxicity is low, still the estrogenic activity of ZEN and metabolites is a matter of concern. In this work, a new magnetic molecularly imprinted polymer (mMIP) for the selective extraction of ZEN from cereal flours is presented. The mMIP was synthesized previously using quercetin as dummy template, and here we wanted to test its applicability to complex food samples. Analyte determination was carried out by high-performance liquid chromatography coupled to tandem mass spectrometry. The selectivity of the mMIP and the main validation method parameters were assessed. In particular, even in samples as complex as cereals, matrix effect was negligible. Although the mMIP showed cross-selectivity towards both ZEN-related and quercetin-related compounds, nonetheless ZEN recovery was > 95% for the two lower spiking levels, and the quantification limit was 0.14 ng g−1, i.e., ca. 500 times lower than the maximum limit fixed for most cereals by European law. Therefore, the material, also in comparison with a commercial sorbent, appears suitable for the application in food analysis, also to isolate ZEN at trace levels.
Collapse
|
44
|
Occurrence and Quantitative Risk Assessment of Twelve Mycotoxins in Eggs and Chicken Tissues in China. Toxins (Basel) 2018; 10:toxins10110477. [PMID: 30453492 PMCID: PMC6265989 DOI: 10.3390/toxins10110477] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Aflatoxins (AFs), deoxynivalenols (DONs), and zearalenones (ZENs) are common mycotoxins that contaminate feedstuff, causing contamination of poultry products. In our study, these mycotoxins were quantified in 152 egg samples collected from markets in Jiangsu (JS), Zhejiang (ZJ), and Shanghai (SH) and in 70 chicken tissue samples (liver, heart, and gizzard) from ZJ in China. The main mycotoxins observed in egg samples were DON, 15-AcDON, and ZEN, although only ZEN family mycotoxins (ZEN, α-ZEL, β-ZEL, and α-ZAL) were detected in chicken tissues. Furthermore, for the first time, we assessed the health risks of exposure of three populations (children, adults, and elder adults) to DONs (DON, 3-AcDON, and 15-AcDON) and ZEN in eggs (from three different areas) and to ZEN in chicken tissues. We show that the mean dietary intake (DI) values and the 97.5th percentile DI values of DON and ZEN through egg ingestion were lower than the provisional maximum tolerable daily intake (PMTDI) (1 μg/kg body weight (BW)/day) for the three populations in the three geographical areas studied. However, eggs contaminated with high levels of DONs and ZEN contributed to a large proportion of the PMTDI of these mycotoxins, especially in children and elder adults. Although ZEN was highly detected in the chicken tissues, no significant health risk was observed.
Collapse
|
45
|
Luo J, Zhou W, Dou X, Qin J, Zhao M, Yang M. Occurrence of multi-class mycotoxins in Menthae haplocalycis analyzed by ultra-fast liquid chromatography coupled with tandem mass spectrometry. J Sep Sci 2018; 41:3974-3984. [PMID: 30168664 DOI: 10.1002/jssc.201800557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022]
Abstract
To determine the presence of multi-class mycotoxins in Menthae haplocalycis, a sample processing procedure based on a modified quick, easy, effective, rugged, and safe method, and a rapid and accurate testing method using ultra-fast performance liquid chromatography coupled with tandem mass spectrometry, was developed and validated. We systematically evaluated the methodology for multi-mycotoxin analysis in the Menthae haplocalycis samples, and chose matrix-matched calibration curves as a reference to calculate the recoveries. Overall, the average recoveries varied between 67.1 and 103%, with relative standard deviations ranging from 0.34 to 10.3%. The optimized and validated method was applied to detect the presence of the target mycotoxins in 40 batches of Menthae haplocalycis samples. Results showed that the levels of mycotoxins varied among the samples. The most prevalent mycotoxin was tentoxin, followed by alternariol, alternariol monomethyl ether, zearalenone, fumonisin B2 , fumonisin B1 , ochratoxin A, aflatoxin B1 , aflatoxin B2 , aflatoxin G1 , and T-2 toxin. The analytical method developed herein could be applied for the routine monitoring of multi-mycotoxins in Menthae haplocalycis.
Collapse
Affiliation(s)
- Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wenju Zhou
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Xiaowen Dou
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ming Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Goud KY, Kailasa SK, Kumar V, Tsang YF, Lee SE, Gobi KV, Kim KH. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosens Bioelectron 2018; 121:205-222. [PMID: 30219721 DOI: 10.1016/j.bios.2018.08.029] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Nanomaterial-embedded sensors have been developed and applied to monitor various targets. Mycotoxins are fungal secondary metabolites that can exert carcinogenic, mutagenic, teratogenic, immunotoxic, and estrogenic effects on humans and animals. Consequently, the need for the proper regulation on foodstuff and feed materials has been recognized from times long past. This review provides an overview of recent developments in electrochemical sensors and biosensors employed for the detection of mycotoxins. Basic aspects of the toxicity of mycotoxins and the implications of their detection are comprehensively discussed. Furthermore, the development of different molecular recognition elements and nanomaterials required for the detection of mycotoxins (such as portable biosensing systems for point-of-care analysis) is described. The current capabilities, limitations, and future challenges in mycotoxin detection and analysis are also addressed.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea; Department of Chemistry, National Institute of Technology Warangal, Telangana 506004, India
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat 395007, Gujarat, India.
| | - Vanish Kumar
- Department of Applied Sciences, U.I.E.T., Panjab University, Chandigarh 160014, India
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China
| | - S E Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
47
|
Assunção R, Martins C, Vasco E, Jager A, Oliveira C, Cunha SC, Fernandes J, Nunes B, Loureiro S, Alvito P. Portuguese children dietary exposure to multiple mycotoxins – An overview of risk assessment under MYCOMIX project. Food Chem Toxicol 2018; 118:399-408. [DOI: 10.1016/j.fct.2018.05.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/05/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
|
48
|
|
49
|
|
50
|
Liquid chromatography – high resolution mass spectrometry method for monitoring of 17 mycotoxins in human plasma for exposure studies. J Chromatogr A 2018; 1548:51-63. [DOI: 10.1016/j.chroma.2018.03.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
|