1
|
Jin C, Liao S, Lu G, Geng BD, Ye Z, Xu J, Ge G, Yang D. Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review). Mol Med Rep 2024; 30:162. [PMID: 38994760 PMCID: PMC11258599 DOI: 10.3892/mmr.2024.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
The treatment of patients with metastatic prostate cancer (PCa) is considered to be a long‑standing challenge. Conventional treatments for metastatic PCa, such as radical prostatectomy, radiotherapy and androgen receptor‑targeted therapy, induce senescence of PCa cells to a certain extent. While senescent cells can impede tumor growth through the restriction of cell proliferation and increasing immune clearance, the senescent microenvironment may concurrently stimulate the secretion of a senescence‑associated secretory phenotype and diminish immune cell function, which promotes PCa recurrence and metastasis. Resistance to established therapies is the primary obstacle in treating metastatic PCa as it can lead to progression towards an incurable state of disease. Therefore, understanding the molecular mechanisms that underly the progression of PCa is crucial for the development of novel therapeutic approaches. The present study reviews the phenomenon of treatment‑induced senescence in PCa, the dual role of senescence in PCa treatments and the mechanisms through which senescence promotes PCa metastasis. Furthermore, the present review discusses potential therapeutic strategies to target the aforementioned processes with the aim of providing insights into the evolving therapeutic landscape for the treatment of metastatic PCa.
Collapse
Affiliation(s)
- Cen Jin
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
- Medical Imaging School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Sijian Liao
- Clinical Medicine School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Guoliang Lu
- Department of Pediatrics, Anshun People's Hospital, Anshun, Guizhou 561000, P.R. China
| | - Bill D. Geng
- School of Natural Science, University of Texas at Austin, Austin, TX 78712, USA
| | - Zi Ye
- Clinical Medicine School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Guo Ge
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Dan Yang
- Department of Surgery, Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| |
Collapse
|
2
|
Becker AL, Scholle L, Klause CH, Staege MS, Strauss C, Otto M, Rampp S, Scheller C, Leisz S. Correlation of Immunomodulatory Cytokines with Tumor Volume and Cerebrospinal Fluid in Vestibular Schwannoma Patients. Cancers (Basel) 2024; 16:3002. [PMID: 39272860 PMCID: PMC11394145 DOI: 10.3390/cancers16173002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Sporadic vestibular schwannomas (VSs) often exhibit slow or negligible growth. Nevertheless, some VSs increase significantly in volume within a few months or grow continuously. Recent evidence indicates a role of inflammation in promoting VS growth. Therefore, our study aimed to identify cytokines, which are associated with larger VSs. The expression of different cytokines in VS tumor samples and VS primary cultures was investigated. Additionally, the concentration of cytokines in cell culture supernatants of VS primary cultures and cerebrospinal fluid (CSF) of VS patients and healthy controls were determined. Correlation analysis of cytokine levels with tumor volume, growth rate, Koos grade, age, and hearing was examined with Spearman's-rank test. The mRNA expression of CC-chemokine ligand (CCL) 18, growth differentiation factor (GDF) 15, and interferon regulatory factor 4 correlated positively with tumor volume. Moreover, the amount of GDF15 in the cell culture supernatant of primary cells correlated positively with tumor volume. The concentrations of the cytokines CCL2, CCL5, and CCL18 and transforming growth factor beta (TGFB) 1 in the CSF of the patients were significantly different from those in the CSF controls. Inhibition of immune cell infiltration could be a putative approach to prevent and control VS growth.
Collapse
Affiliation(s)
- Anna-Louisa Becker
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Leila Scholle
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Clara Helene Klause
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Martin Sebastian Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Stefan Rampp
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Sun J, Feng Q, Xu Y, Liu P, Wu Y. Analysis of prognostic value of lactate metabolism-related genes in ovarian cancer based on bioinformatics. J Ovarian Res 2024; 17:110. [PMID: 38778371 PMCID: PMC11110319 DOI: 10.1186/s13048-024-01426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Recent studies have provided evidence supporting the functional role and mechanism of lactate in suppressing anticancer immunity. However, there is no systematic analysis of lactate metabolism-related genes (LMRGs) and ovarian cancer (OV) prognosis. RESULTS Six genes (CCL18, CCND1, MXRA5, NRBP2, OLFML2B and THY1) were selected as prognostic genes and a prognostic model was utilized. Kaplan-Meier (K-M) and Receiver Operating Characteristic (ROC) analyses were further performed and indicated that the prognostic model was effective. Subsequently, the neoplasm_cancer_status and RiskScore were determined as independent prognostic factors, and a nomogram was established with relatively accurate forecasting ability. Additionally, 2 types of immune cells (Central memory CD8 T cell and Immature B cell), 4 types of immune functions (APC co inhibition, DCs, Tfh and Th1 cells), 9 immune checkpoints (BTLA, CTLA4, IDO1, LAG3, VTCN1, CXCL10, CXCL9, IFNG, CD27) and tumor immune dysfunction and exclusion (TIDE) scores were significantly different between risk groups. The expression of 6 genes were verified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and the expression of 6 genes were higher in the high-grade serous carcinoma (HGSC) samples. CONCLUSION A prognostic model related to lactate metabolism was established for OV based on six genes (CCL18, CCND1, MXRA5, NRBP2, OLFML2B and THY1) that could provide new insights into therapy.
Collapse
Affiliation(s)
- Jinrui Sun
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100006, China
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi Province, China
| | - Qinmei Feng
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi Province, China
| | - Yingying Xu
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi Province, China
| | - Ping Liu
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi Province, China
| | - Yumei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100006, China.
| |
Collapse
|
4
|
Xiong J, Liang H, Sun X, Gao K. Histone modification-linked prognostic model for ovarian cancer reveals LBX2 as a novel growth promoter. J Cell Mol Med 2024; 28:e18260. [PMID: 38520216 PMCID: PMC10960176 DOI: 10.1111/jcmm.18260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Ovarian cancer (OC) is a deadly disease with limited treatment options and poor overall survival rates. This study aimed to investigate the role of histone modification-related genes in predicting the prognosis of OC patients. Transcriptome data from multiple cohorts, including bulk RNA-Seq data and single-cell scRNA-Seq data, were collected. Gene set enrichment analysis was used to identify enriched gene sets in the histone modification pathway. Differentially expressed genes (DEGs) between histone modification-high and histone modification-low groups were identified using Lasso regression. A prognostic model was constructed using five selected prognostic genes from the DEGs in the TCGA-OV cohort. The study found enrichment of gene sets in the histone modification pathway and identified five prognostic genes associated with OC prognosis. The constructed risk score model based on histone modification-related genes was correlated with immune infiltration of T cells and M1 macrophages. Mutations are more prevalent in the high-risk group compared to the low-risk group. Several drugs were screened against the model genes. Through in vitro experiments, we confirmed the expression patterns of the model genes. LBX2 facilitates the proliferation of OC. Histone modification-related genes have the potential to serve as biomarkers for predicting OC prognosis. Targeting these genes may lead to the development of more effective therapies for OC. Additionally, LBX2 represents a novel cell proliferation promoter in OC carcinogenesis.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Hongyuan Liang
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Xiang Sun
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Kefei Gao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Wang ZT, Deng ZM, Dai FF, Yuan MQ, Liu SY, Li BS, Cheng YX. Tumor immunity: A brief overview of tumor‑infiltrating immune cells and research advances into tumor‑infiltrating lymphocytes in gynecological malignancies (Review). Exp Ther Med 2024; 27:166. [PMID: 38476909 PMCID: PMC10928974 DOI: 10.3892/etm.2024.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/03/2023] [Indexed: 03/14/2024] Open
Abstract
Tumor immunity is a promising topic in the area of cancer therapy. The 'soil' function of the tumor microenvironment (TME) for tumor growth has attracted wide attention from scientists. Tumor-infiltrating immune cells in the TME, especially the tumor-infiltrating lymphocytes (TILs), serve a key role in cancer. Firstly, relevant literature was searched in the PubMed and Web of Science databases with the following key words: 'Tumor microenvironment'; 'TME'; 'tumor-infiltrating immunity cells'; 'gynecologic malignancies'; 'the adoptive cell therapy (ACT) of TILs'; and 'TIL-ACT' (https://pubmed.ncbi.nlm.nih.gov/). According to the title and abstract of the articles, relevant items were screened out in the preliminary screening. The most relevant selected items were of two types: All kinds of tumor-infiltrating immune cells; and advanced research on TILs in gynecological malignancies. The results showed that the subsets of TILs were various and complex, while each subpopulation influenced each other and their effects on tumor prognosis were diverse. Moreover, the related research and clinical trials on TILs were mostly concentrated in melanoma and breast cancer, but relatively few focused on gynecological tumors. In conclusion, the present review summarized the biological classification of TILs and the mechanisms of their involvement in the regulation of the immune microenvironment, and subsequently analyzed the development of tumor immunotherapy for TILs. Collectively, the present review provides ideas for the current treatment dilemma of gynecological tumor immune checkpoints, such as adverse reactions, safety, personal specificity and efficacy.
Collapse
Affiliation(s)
- Zi-Tao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
6
|
Pampeno C, Opp S, Hurtado A, Meruelo D. Sindbis Virus Vaccine Platform: A Promising Oncolytic Virus-Mediated Approach for Ovarian Cancer Treatment. Int J Mol Sci 2024; 25:2925. [PMID: 38474178 PMCID: PMC10932354 DOI: 10.3390/ijms25052925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This review article provides a comprehensive overview of a novel Sindbis virus vaccine platform as potential immunotherapy for ovarian cancer patients. Ovarian cancer is the most lethal of all gynecological malignancies. The majority of high-grade serous ovarian cancer (HGSOC) patients are diagnosed with advanced disease. Current treatment options are very aggressive and limited, resulting in tumor recurrences and 50-60% patient mortality within 5 years. The unique properties of armed oncolytic Sindbis virus vectors (SV) in vivo have garnered significant interest in recent years to potently target and treat ovarian cancer. We discuss the molecular biology of Sindbis virus, its mechanisms of action against ovarian cancer cells, preclinical in vivo studies, and future perspectives. The potential of Sindbis virus-based therapies for ovarian cancer treatment holds great promise and warrants further investigation. Investigations using other oncolytic viruses in preclinical studies and clinical trials are also presented.
Collapse
Affiliation(s)
- Christine Pampeno
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | | | - Alicia Hurtado
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
7
|
Scherr BF, Reiner MF, Baumann F, Höhne K, Müller T, Ayata K, Müller-Quernheim J, Idzko M, Zissel G. Prevention of M2 polarization and temporal limitation of differentiation in monocytes by extracellular ATP. BMC Immunol 2023; 24:11. [PMID: 37353774 PMCID: PMC10288684 DOI: 10.1186/s12865-023-00546-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Elevated levels of extracellular adenosine triphosphate (ATP) modulate immunologic pathways and are considered to be a danger signal in inflammation, lung fibrosis and cancer. Macrophages can be classified into two main types: M1 macrophages are classically activated, pro-inflammatory macrophages, whereas M2 macrophages are alternatively activated, pro-fibrotic macrophages. In this study, we examined the effect of ATP on differentiation of native human monocytes into these macrophage subtypes. We characterized M1 and M2 like macrophages by their release of Interleukin-1beta (IL-1β) and Chemokine (C-C motif) ligand 18 (CCL18), respectively. RESULTS Monocytes were stimulated with ATP or the P2X7 receptor agonist Benzoylbenzoyl-ATP (Bz-ATP), and the production of various cytokines was analyzed, with a particular focus on CCL18 and IL-1β, along with the expression of different purinergic receptors. Over a 72 h period of cell culture, monocytes spontaneously differentiated to M2 like macrophages, as indicated by an increased release of CCL18. Immediate stimulation of monocytes with ATP resulted in a dose-dependent reduction in CCL18 release, but had no effect on the concentration of IL-1β. In contrast, delayed stimulation with ATP had no effect on either CCL18 or IL-1β release. Similar results were observed in a model of inflammation using lipopolysaccharide-stimulated human monocytes. Stimulation with the P2X7 receptor agonist Bz-ATP mimicked the effect of ATP on M2-macrophage differentiation, indicating that P2X7 is involved in ATP-induced inhibition of CCL18 release. Indeed, P2X7 was downregulated during spontaneous M2 differentiation, which may partially explain the ineffectiveness of late ATP stimulation of monocytes. However, pre-incubation of monocytes with PPADS, Suramin (unselective P2X- and P2Y-receptor blockers) and KN62 (P2X7-antagonist) failed to reverse the reduction of CCL18 by ATP. CONCLUSIONS ATP prevents spontaneous differentiation of monocytes into M2-like macrophages in a dose- and time-dependent manner. These effects were not mediated by P2X and P2Y receptors.
Collapse
Affiliation(s)
- Benedikt F Scherr
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany
- Institute of Intensive Care Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Martin F Reiner
- Department of Cardiology, University Heart Center, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Flavia Baumann
- Emergency Department, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Kerstin Höhne
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany
| | - Tobias Müller
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany
- Department of Pneumology, University Medical Center Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Korcan Ayata
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Joachim Müller-Quernheim
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany
| | - Marco Idzko
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, 1090, Vienna, Austria
| | - Gernot Zissel
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany.
| |
Collapse
|
8
|
Pankowska KA, Będkowska GE, Chociej-Stypułkowska J, Rusak M, Dąbrowska M, Osada J. Crosstalk of Immune Cells and Platelets in an Ovarian Cancer Microenvironment and Their Prognostic Significance. Int J Mol Sci 2023; 24:ijms24119279. [PMID: 37298230 DOI: 10.3390/ijms24119279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.
Collapse
Affiliation(s)
- Katarzyna Aneta Pankowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Grażyna Ewa Będkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Chociej-Stypułkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Małgorzata Rusak
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Milena Dąbrowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Osada
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| |
Collapse
|
9
|
Yang B, Fan Y, Chen M, Tang L, Tang X, Li H, Gu A, Liang R, Wu Y. Identification and validation of a CCL18-related signature for prediction of overall survival in patients with uveal melanoma. Exp Eye Res 2023; 230:109448. [PMID: 36967081 DOI: 10.1016/j.exer.2023.109448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Uveal melanoma (UM), the most frequent primary intraocular tumor in adults, has poor prognosis. High C-C motif chemokine ligand 18 (CCL18) has been detected in various tumors and is closely correlated with patients' clinicopathological characteristics. However, the essential role of CCL18 in UM remains unclear. Therefore, this study aimed to explore the prognostic value of CCL18 in UM. Uveal melanoma cells (M17) were transfected with pcDNA3.1-CCL18 si-RNA using Lipofectamine™ 2000. Cell growth and invasion abilities were measured through Cell Counting Kit-8 assay and invasion assay. RNA expression data and clinical and histopathological details were downloaded from the UM in The Cancer Genome Atlas (TCGA-UM) and GSE22138 datasets, which were defined as the training and validation cohorts, respectively. Univariate and multivariate Cox regression analyses were performed to identify significant prognostic biomarkers. The coefficients of these significant biomarkers generated by multivariate Cox proportional hazard regression analysis were used to establish a risk score formula. Functional enrichment analyses were also carried out. We found that downregulated CCL18 inhibits M17 cell growth and invasion in vitro. CCL18 may affect UM progression by altering C-C motif receptor 8 related pathways. Higher CCL18 expression was associated with worse clinical outcomes and tumor-specific death in the TCGA-UM dataset. Based on the coefficients obtained from the Cox proportional hazard regression analysis, a CCL18-related prognostic signature formula was constructed as follows: risk score = 0.05590 × age +2.43437 × chromosome 3 status +0.39496 × ExpressionCCL18. Notably, in this formula, the normal chromosome 3 was coded as 0, whereas the chromosome 3 loss was coded as 1. Each patient was assigned to either low-risk or high-risk groups using the median cut-off in the training cohort. High-risk patients survived for a shorter time than low-risk patients. The time-dependent and multivariate receiver operating characteristic curves showed promising diagnostic efficacy. Multivariate Cox regression analysis demonstrated the potential of this CCL18-related signature as an independent prognostic indicator. These results were validated using the GSE22138 dataset. In addition, in both TCGA-UM and GSE22138 datasets, stratification of clinical correlations and survival analyses based on this signature indicated the involvement of clinical progression and survival outcome in UM. In the high-risk group, Gene Ontology analyses mainly indicated the enrichment of immune response pathways, such as the T cell activation, response to interferon-gamma, antigen processing and presentation, interferon-gamma-mediated signaling pathway, MHC protein complex, MHC class II protein complex, antigen binding, and cytokine binding. Meanwhile, Kyoto Encyclopedia of Genes and Genomes analyses showed enrichments of pathways in cancer, cell adhesion, cytokine-cytokine receptor interaction, chemokine signaling pathway, Th1 and Th2 cell differentiation, and chemokine signaling pathway. Moreover, single-sample gene set enrichment analysis demonstrated the enrichment of almost all immune cells and immune functions in the high-risk group. In summary, a new prognostic CCL18-related signature was successfully established using the TCGA-UM dataset and validated using the GSE22138 dataset with meaningful predictive and diagnostic efficacies. This signature could serve as an independent and promising prognostic biomarker for patients with UM.
Collapse
|
10
|
Liu Y, Shi L, Yuan C, Feng Y, Li M, Liu H, Chen X, Yao D, Wang Q. Downregulation of ITIH3 contributes to cisplatin-based chemotherapy resistance in ovarian carcinoma via the Bcl-2 mediated anti-apoptosis signaling pathway. Oncol Lett 2022; 25:61. [PMID: 36644154 PMCID: PMC9827458 DOI: 10.3892/ol.2022.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Platinum resistance of ovarian cancer is one of the primary factors of poor prognosis and inter-α-trypsin inhibitor heavy chain 3 (ITIH3) is a potential DDP resistance-associated gene. The present study assessed protein expression levels of ITIH3 in human ovarian cancer and evaluated the relationship between its expression and platinum-resistance in patients. Furthermore, the effect of ITIH3 on cisplatin (DDP)-resistant ovarian cancer cells and the underlying molecular mechanism were evaluated. Tissue microarrays of ovarian cancer samples were used to assess the association between ITIH3 protein expression levels and drug resistance and the prognosis of ovarian cancer. ITIH3 RNA interference (RNAi) ovarian cancer cell lines were constructed and expression levels of anti- and pro-apoptotic proteins of the Bcl-2 associated pathway, including Bcl-2, Bcl-xL, Mcl-1, Bak, Bim, Bax, caspase 3 and poly ADP-ribose polymerase (PARP), were assessed following DDP treatment. The Bcl-2 inhibitor ABT-737 was used to rescue DDP-resistance induced by loss of ITIH3 in vitro. Finally, a subcutaneous xenograft tumor model was used to evaluate the effect of multiple DDP injections on expression levels of apoptosis-related proteins like Bcl-2, Bcl-xL, Bak, caspase 3 and PARP. The results of tissue microarray immunohistochemistry revealed that decreased ITIH3 protein expression levels were associated with a shorter overall survival for patients with ovarian cancer. The results of Cell Counting Kit-8 assay showed that the half-maximal inhibitory concentration and resistance index of DDP in SKOV3-ITIH3 and OVCAR3-ITIH3 RNAi cells were significantly higher than in control groups. Following DDP treatment, the results of western blotting revealed that expression levels of anti-apoptotic proteins of the Bcl-2 family significantly increased in SKOV3-ITIH3 and OVCAR3-ITIH3 RNAi cells. Pro-apoptotic protein expression was not significantly changed following DDP treatment, whereas cleaved caspase 3, caspase 3 and cleaved (C-PARP) were markedly downregulated. The Bcl-2 inhibitor ABT-737 was demonstrated to reverse increased DDP resistance induced by ITIH3 expression in flow cytometric and western blotting analysis. In the subcutaneous murine xenograft model, an increased number of DDP injections yielded a decrease in phosphorylated Bcl-2, cleaved caspase 3, caspase 3 and C-PARP protein expression levels in the SKOV3-ITIH3 RNAi group tested by western blotting. To the best of our knowledge, this is the first study to demonstrate that ITIH3 could be a vital molecule involved in chemosensitivity via regulation of the Bcl-2 family-mediated apoptotic pathway. Lower protein expression levels of ITIH3 were significantly associated with platinum resistance and poor prognosis in ovarian cancer. ITIH3 may predict cisplatin-resistance in ovarian cancer.
Collapse
Affiliation(s)
- Yingzhao Liu
- Department of Gynecologic Oncology, Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lijun Shi
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China,Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yan Feng
- Research Department, Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Mengdi Li
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China,Research Department, Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hongmei Liu
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China,Research Department, Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xi Chen
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China,Research Department, Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Desheng Yao
- Department of Gynecologic Oncology, Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China,Correspondence to: Professor Qi Wang or Professor Desheng Yao, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China, E-mail: , E-mail:
| | - Qi Wang
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China,Research Department, Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China,Correspondence to: Professor Qi Wang or Professor Desheng Yao, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China, E-mail: , E-mail:
| |
Collapse
|
11
|
Szczerba A, Śliwa A, Pieta PP, Jankowska A. The Role of Circulating Tumor Cells in Ovarian Cancer Dissemination. Cancers (Basel) 2022; 14:cancers14246030. [PMID: 36551515 PMCID: PMC9775737 DOI: 10.3390/cancers14246030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Metastatic ovarian cancer is the main reason for treatment failures and consequent deaths. Ovarian cancer is predisposed to intraperitoneal dissemination. In comparison to the transcoelomic route, distant metastasis via lymph vessels and blood is less common. The mechanisms related to these two modes of cancer spread are poorly understood. Nevertheless, the presence of tumor cells circulating in the blood of OC patients is a well-established phenomenon confirming the significant role of lymphatic and hematogenous metastasis. Thus, the detection of CTCs may provide a minimally invasive tool for the identification of ovarian cancer, monitoring disease progression, and treatment effectiveness. This review focuses on the biology of ovarian CTCs and the role they may play in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Anna Szczerba
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Aleksandra Śliwa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Pawel P. Pieta
- Department of Bionic and Experimental Medical Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Anna Jankowska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
- Correspondence: ; Tel.: +48-618-547-190
| |
Collapse
|
12
|
Rajtak A, Ostrowska-Leśko M, Żak K, Tarkowski R, Kotarski J, Okła K. Integration of local and systemic immunity in ovarian cancer: Implications for immunotherapy. Front Immunol 2022; 13:1018256. [PMID: 36439144 PMCID: PMC9684707 DOI: 10.3389/fimmu.2022.1018256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/18/2022] [Indexed: 08/21/2023] Open
Abstract
Cancer is a disease that induces many local and systemic changes in immunity. The difficult nature of ovarian cancer stems from the lack of characteristic symptoms that contributes to a delayed diagnosis and treatment. Despite the enormous progress in immunotherapy, its efficacy remains limited. The heterogeneity of tumors, lack of diagnostic biomarkers, and complex immune landscape are the main challenges in the treatment of ovarian cancer. Integrative approaches that combine the tumor microenvironment - local immunity - together with periphery - systemic immunity - are urgently needed to improve the understanding of the disease and the efficacy of treatment. In fact, multiparametric analyses are poised to improve our understanding of ovarian tumor immunology. We outline an integrative approach including local and systemic immunity in ovarian cancer. Understanding the nature of both localized and systemic immune responses will be crucial to boosting the efficacy of immunotherapies in ovarian cancer patients.
Collapse
Affiliation(s)
- Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Marta Ostrowska-Leśko
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
- Chair and Department of Toxicology, Medical University of Lublin, Lublin, Poland
| | - Klaudia Żak
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Rafał Tarkowski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Okła
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
- Department of Surgery, University of Michigan Rogel Cancer Center, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Geng Y, Feng J, Huang H, Wang Y, Yi X, Wei S, Zhang M, Li Z, Wang W, Hu W. Single-cell transcriptome analysis of tumor immune microenvironment characteristics in colorectal cancer liver metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1170. [PMID: 36467341 PMCID: PMC9708492 DOI: 10.21037/atm-22-5270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 10/22/2023]
Abstract
BACKGROUND Liver metastasis is the leading cause of death in colorectal cancer (CRC) patients, and the precise mechanisms remain unclear. In this study, single-cell RNA sequencing (scRNA-seq) was used to analyze the cellular and molecular heterogeneity between CRC primary lesion and corresponding liver metastasis, and to clarify the characteristics of the tumor microenvironment (TME) in synchronous liver metastasis of CRC. METHODS A case of microsatellite stable (MSS) sigmoid carcinoma with synchronous liver metastasis was selected, and tissues from the primary tumor and the liver metastasis were collected for scRNA-seq. The EdgeR package software was used to identify the differentially expressed genes between cells. Gene Set Enrichment Analysis (GSEA) was performed and the clusterProfiler R package was used for Gene Ontology (GO) enrichment analysis. The SCENIC and CellphoneDB packages were used to reconstruct the transcriptional regulatory networks and to analyze the intercellular interaction network, respectively. RESULTS Compared to the primary tumor, the proportion of myeloid cells in the metastatic tumor was significantly increased, while B cells and plasma cells were decreased. In the metastatic tumor, the myeloid-derived suppressor cell (MDSC) characteristic gene, mannose receptor C-type 1 (MRC1) and tumor associated macrophage 2 (TAM2)-related gene, were highly expressed. Furthermore, angiogenesis, oxidative phosphorylation, and endothelial mesenchymal transition (EMT) of myeloid cells were also significantly enhanced. There were less myeloid cells in primary tumors, and these were mainly monocytes and TAM1; while the number of TAM2 was significantly upregulated in the metastatic samples. In liver metastasis, the T cell population was exhausted, and this was accompanied by a significant increase in the number of CD4+ T cells and a decrease in the number of CD8+ T cells. Furthermore, some immune checkpoint molecules were highly expressed. Interactions between myeloid cells and other cell populations appeared to be strong. CONCLUSIONS The TME of CRC liver metastasis is significantly immunosuppressed. Interactions between myeloid cells and other cell populations in the TME contribute to the establishment of a pro-metastatic niche that promotes colonization and growth of CRC cells in the liver. TAMs may be a potential immunotherapeutic target for MSS CRC.
Collapse
Affiliation(s)
- Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Huang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ying Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xing Yi
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mingyue Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhong Li
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
14
|
Wang C, Liang H, Li Y, Tang Z, Zhang Y. Chemokine (C-C motif) ligand 18/membrane-associated 3/forkhead box O1 axis promotes the proliferation, migration, and invasion of intrahepatic cholangiocarcinoma. Bioengineered 2022; 13:12738-12748. [PMID: 35609322 PMCID: PMC9276021 DOI: 10.1080/21655979.2022.2069383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Phosphatidylinositol Transfer Protein, Membrane-Associated 3 (PITPNM3) often bind with chemokine (C-C motif) ligand 18 (CCL18) to promote tumor progression. However, the role of PITPNM3 in intrahepatic cholangiocarcinoma (ICC) is unclear. We first searched GEPIA database and detected the PITPNM3 expression using immunohistochemistry and real-time quantitative PCR. The results showed that PITPNM3 is high expression in ICC tissues and cells. Then we investigated the cell function of CLL18 and PITPNM3 through cell clone formation assay and transwell assay. The results indicated that CCL18 treatment promoted the proliferation, migration, and invasion of ICC cells. Silence of PITPNM3 reversed the effect of CCL18 on cell function. Simultaneously, we detected key protein expression of forkhead box O1 (FOXO1) and nuclear factor kappa B (NF-KB) through western blotting and found that CCL18 activated NF-KB pathway while inhibited FOXO1 pathway, the effect of which were attenuated by silence of PITPNM3. Finally, we confirmed which pathway affected the cell function using inhibitor of FOXO1 (AS1842856) and activator of NF-KB (Asatone). The results showed that AS1842856, not Asatone, relieved the inhibitory effect of si-PITPNM3 on the cell function of CCL18. In short, CCL18 treatment activated PITPNM3 to promote the proliferation, migration, and invasion of ICC via FOXO1 signaling pathway. These results provided a new insight for the diagnosis and therapy of ICC.
Collapse
Affiliation(s)
- Chusi Wang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Liang
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaofeng Tang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Schweer D, McAtee A, Neupane K, Richards C, Ueland F, Kolesar J. Tumor-Associated Macrophages and Ovarian Cancer: Implications for Therapy. Cancers (Basel) 2022; 14:2220. [PMID: 35565348 PMCID: PMC9101750 DOI: 10.3390/cancers14092220] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) has been implicated to play an important role in the progression of ovarian cancer. One of the most important components of the TME is tumor associated macrophages (TAMs). Phenotypically, macrophages are broadly categorized as M1 pro-inflammatory or M2 anti-inflammatory, based on the cytokines and chemokines that they secrete. The tumor microenvironment is associated with macrophages of an M2 phenotype which suppress the surrounding immune environment, assist tumor cells in evading immune targeting, and support tumor growth and metastasis. Contrarily, M1 macrophages help mount an immune response against tumors, and are associated with a more favorable prognosis in solid tumors. One of the characteristic indicators of a poor prognosis in ovarian cancer is the overrepresentation of M2-type TAMs. As such, therapeutic modalities targeting TME and TAMs are of increasing interest. Pharmacological approaches to eliminate TAMs, include decreasing macrophage survival and recruitment and increasing phagocytosis, have been underwhelming. Clinical strategies targeting these macrophage subtypes via repolarization to an M1 antitumoral state deserve increasing attention, and may serve as a new modality for immunotherapy.
Collapse
Affiliation(s)
- David Schweer
- Markey Cancer Center, Division of Gynecologic Oncology, University of Kentucky, Lexington, KY 40536, USA; (D.S.); (F.U.)
| | - Annabel McAtee
- School of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Khaga Neupane
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA; (K.N.); (C.R.)
| | - Christopher Richards
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA; (K.N.); (C.R.)
| | - Frederick Ueland
- Markey Cancer Center, Division of Gynecologic Oncology, University of Kentucky, Lexington, KY 40536, USA; (D.S.); (F.U.)
| | - Jill Kolesar
- Department of Pharmacology and Toxicology, University of Kentucky, Lexington, KY 40202, USA
| |
Collapse
|
16
|
Bose S, Saha P, Chatterjee B, Srivastava AK. Chemokines driven ovarian cancer progression, metastasis and chemoresistance: potential pharmacological targets for cancer therapy. Semin Cancer Biol 2022; 86:568-579. [DOI: 10.1016/j.semcancer.2022.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022]
|
17
|
Tumor-Derived Extracellular Vesicles Induce CCL18 Production by Mast Cells: A Possible Link to Angiogenesis. Cells 2022; 11:cells11030353. [PMID: 35159163 PMCID: PMC8834361 DOI: 10.3390/cells11030353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
Mast cells (MCs) function as a component of the tumor microenvironment (TME) and have both pro- and anti-tumorigenic roles depending on the tumor type and its developmental stage. Several reports indicate the involvement of MCs in angiogenesis in the TME by releasing angiogenic mediators. Tumor cells and other cells in the TME may interact by releasing extracellular vesicles (EVs) that affect the cells in the region. We have previously shown that tumor-derived microvesicles (TMVs) from non-small-cell lung cancer (NSCLC) cells interact with human MCs and activate them to release several cytokines and chemokines. In the present study, we characterized the MC expression of other mediators after exposure to TMVs derived from NSCLC. Whole-genome expression profiling disclosed the production of several chemokines, including CC chemokine ligand 18 (CCL18). This chemokine is expressed in various types of cancer, and was found to be associated with extensive angiogenesis, both in vitro and in vivo. We now show that CCL18 secreted from MCs activated by NSCLC-TMVs increased the migration of human umbilical cord endothelial cells (HUVECs), tube formation and endothelial- to-mesenchymal transition (EndMT), thus promoting angiogenesis. Our findings support the conclusion that TMVs have the potential to influence MC activity and may affect angiogenesis in the TME.
Collapse
|
18
|
Dual mTORC1/2 inhibitor AZD2014 diminishes myeloid-derived suppressor cells accumulation in ovarian cancer and delays tumor growth. Cancer Lett 2021; 523:72-81. [PMID: 34560229 DOI: 10.1016/j.canlet.2021.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
Mechanistic target of rapamycin (mTOR) forms two distinct complexes, mTOR complex 1 (mTORC1) and mTORC2. Here we investigated the antitumor effect of dual mTORC1/2 inhibitor AZD2014 on epithelial ovarian cancer (EOC) and its potential effect on immunosuppressive myeloid-derived suppressor cells (MDSCs). Immunohistochemical analysis of mTORC1 and mTORC2 was performed on a human ovarian cancer tissue microarray. High mTORC2 expression level was associated with shorter survival in EOC, whereas mTORC1 was not correlate with patients' prognosis. AZD2014 suppressed mTOR signaling pathway in ovarian cancer cells, inhibited proliferation and induced G1-phase cell cycle arrest and apoptosis. In tumor-bearing mice, AZD2014 treatment limited tumor growth, reduced peritoneal ascites, and prolonged survival. AZD2014 specifically reduced MDSCs migration and accumulation in EOC peritoneal fluid but not in the spleen. Moreover, subsequent AZD2014 treatment after cisplatin chemotherapy delayed EOC recurrence. Collectively, we observed that high mTORC2 expression level in EOC indicated a poor prognosis. Remarkably, in tumor-bearing mice, AZD2014 diminished MDSC accumulation and delayed tumor growth and recurrence.
Collapse
|
19
|
Fucikova J, Coosemans A, Orsulic S, Cibula D, Vergote I, Galluzzi L, Spisek R. Immunological configuration of ovarian carcinoma: features and impact on disease outcome. J Immunother Cancer 2021; 9:jitc-2021-002873. [PMID: 34645669 PMCID: PMC8515436 DOI: 10.1136/jitc-2021-002873] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC) is a relatively rare malignancy but is the fifth-leading cause of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant disease to the peritoneum. At odds with other neoplasms, EOC is virtually insensitive to immune checkpoint inhibitors, correlating with a tumor microenvironment that exhibits poor infiltration by immune cells and active immunosuppression. Here, we comparatively summarize the humoral and cellular features of primary and metastatic EOC, comparatively analyze their impact on disease outcome, and propose measures to alter them in support of treatment sensitivity and superior patient survival.
Collapse
Affiliation(s)
- Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sandra Orsulic
- UCLA David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
20
|
A multi-cellular molecular signaling and functional network map of C-C motif chemokine ligand 18 (CCL18): a chemokine with immunosuppressive and pro-tumor functions. J Cell Commun Signal 2021; 16:293-300. [PMID: 34196939 DOI: 10.1007/s12079-021-00633-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/23/2021] [Indexed: 12/09/2022] Open
Abstract
The C-C Motif Chemokine Ligand 18 (CCL18) is a beta-chemokine sub-family member with immunomodulatory functions in primates. CCL18-dependent migration and epithelial-to-mesenchymal transition of oral squamous cell carcinoma, squamous cell carcinoma of head and neck, breast cancer, hepatocellular carcinoma, non-small cell lung carcinoma, ovarian cancer, pancreatic ductal carcinoma and bladder cancer cells are well-established. In the tumor niche, tumor-associated macrophages produce CCL18 and its overexpression is correlated with reduced patient survival in multiple cancers. Although multiple receptors including C-C chemokine receptor type 3 (CCR3), type 6 (CCR6), type 8 (CCR8) and G-protein coupled estrogen receptor (GPER1) are reported for CCL18, the Phosphatidylinositol Transfer Protein, Membrane-Associated 3 (PITPNM3) receptor is currently considered as its predominant receptor. Characterization of the molecular events and check points associated with the immunosuppressive and cancer progression support functions induced by CCL18 for their potential towards therapeutic applications is an area of active research. Hence, in this study, we assembled 917 signaling events reported to be induced by CCL18 through their studied receptors in diverse cell types as an integrated knowledgebase for reference, data integration and gene-set enrichment analysis of global transcriptomic and/or proteomics datasets.
Collapse
|
21
|
Exploring the Crosstalk between Inflammation and Epithelial-Mesenchymal Transition in Cancer. Mediators Inflamm 2021; 2021:9918379. [PMID: 34220337 PMCID: PMC8219436 DOI: 10.1155/2021/9918379] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor cells undergo invasion and metastasis through epithelial-to-mesenchymal cell transition (EMT) by activation of alterations in extracellular matrix (ECM) protein-encoding genes, enzymes responsible for the breakdown of ECM, and activation of genes that drive the transformation of the epithelial cell to the mesenchymal type. Inflammatory cytokines such as TGFβ, TNFα, IL-1, IL-6, and IL-8 activate transcription factors such as Smads, NF-κB, STAT3, Snail, Twist, and Zeb that drive EMT. EMT drives primary tumors to metastasize in different parts of the body. T and B cells, dendritic cells (DCs), and tumor-associated macrophages (TAMs) which are present in the tumor microenvironment induce EMT. The current review elucidates the interaction between EMT tumor cells and immune cells under the microenvironment. Such complex interactions provide a better understanding of tumor angiogenesis and metastasis and in defining the aggressiveness of the primary tumors. Anti-inflammatory molecules in this context may open new therapeutic options for the better treatment of tumor progression. Targeting EMT and the related mechanisms by utilizing natural compounds may be an important and safe therapeutic alternative in the treatment of tumor growth.
Collapse
|
22
|
Cardoso AP, Pinto ML, Castro F, Costa ÂM, Marques-Magalhães Â, Canha-Borges A, Cruz T, Velho S, Oliveira MJ. The immunosuppressive and pro-tumor functions of CCL18 at the tumor microenvironment. Cytokine Growth Factor Rev 2021; 60:107-119. [PMID: 33863622 DOI: 10.1016/j.cytogfr.2021.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Chemokines are essential mediators of immune cell trafficking. In a tumor microenvironment context, chemotactic cytokines are known to regulate the migration, positioning and interaction of different cell subsets with both anti- and pro-tumor functions. Additionally, chemokines have critical roles regarding non-immune cells, highlighting their importance in tumor growth and progression. CCL18 is a primate-specific chemokine produced by macrophages and dendritic cells. This chemokine presents both constitutive and inducible expression. It is mainly associated with a tolerogenic response and involved in maintaining homeostasis of the immune system under physiological conditions. Recently, CCL18 has been noticed as an important component of the complex chemokine system involved in the biology of tumors. This chemokine induces T regulatory cell differentiation and recruitment to the tumor milieu, with subsequent induction of a pro-tumor (M2-like) macrophage phenotype. CCL18 is also directly involved in cancer cell-invasion, migration, epithelial-to-mesenchymal transition and angiogenesis stimulation, pinpointing an important role in the promotion of cancer progression. Interestingly, this chemokine is highly expressed in tumor tissues, particularly at the invasive front of more advanced stages (e.g. colorectal cancer), and high levels are detected in the serum of patients, correlating with poor prognosis. Despite the promising role of CCL18 as a biomarker and/or therapeutic target to hamper disease progression, its pleiotropic functions in a context of cancer are still poorly explored. The scarce knowledge concerning the receptors for this chemokine, together with the insufficient insight on the downstream signaling pathways, have impaired the selection of this molecule as an immediate target for translational research. In this Review, we will discuss recent findings concerning the role of CCL18 in cancer, integrate recently disclosed molecular mechanisms and compile data from current clinical studies.
Collapse
Affiliation(s)
- Ana Patrícia Cardoso
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal.
| | | | - Flávia Castro
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal
| | - Ângela Margarida Costa
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal
| | - Ângela Marques-Magalhães
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal; ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Ana Canha-Borges
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal
| | - Tânia Cruz
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal
| | - Sérgia Velho
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; IPATIMUP, Institute of Pathology and Molecular Immunology, University of Porto, Portugal
| | - Maria José Oliveira
- i3S, Institute for Research and Innovation in Health, University of Porto, Portugal; INEB, Institute of Biomedical Engineering, University of Porto, Portugal; ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
23
|
Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J, Pan B, Gao J, Wang Z. Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med 2021; 11:e288. [PMID: 33463063 PMCID: PMC7805405 DOI: 10.1002/ctm2.288] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most abundant immune cell populations in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play important roles in multiple solid malignancies, including breast cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, gastric cancer, pancreatic cancer, and colorectal cancer. TAMs could contribute to carcinogenesis, neoangiogenesis, immune-suppressive TME remodeling, cancer chemoresistance, recurrence, and metastasis. Therefore, reprogramming of the immune-suppressive TAMs by pharmacological approaches has attracted considerable research attention in recent years. In this review, the promising pharmaceutical targets, as well as the existing modulatory strategies of TAMs were summarized. The chemokine-chemokine receptor signaling, tyrosine kinase receptor signaling, metabolic signaling, and exosomal signaling have been highlighted in determining the biological functions of TAMs. Besides, both preclinical research and clinical trials have suggested the chemokine-chemokine receptor blockers, tyrosine kinase inhibitors, bisphosphonates, as well as the exosomal or nanoparticle-based targeting delivery systems as the promising pharmacological approaches for TAMs deletion or reprogramming. Lastly, the combined therapies of TAMs-targeting strategies with traditional treatments or immunotherapies as well as the exosome-like nanovesicles for cancer therapy are prospected.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Shengqi Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Xuan Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Yifeng Zheng
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bowen Yang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Juping Zhang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bo Pan
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Jianli Gao
- Academy of Traditional Chinese MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiyu Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
24
|
Korbecki J, Olbromski M, Dzięgiel P. CCL18 in the Progression of Cancer. Int J Mol Sci 2020; 21:ijms21217955. [PMID: 33114763 PMCID: PMC7663205 DOI: 10.3390/ijms21217955] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
A neoplastic tumor consists of cancer cells that interact with each other and non-cancerous cells that support the development of the cancer. One such cell are tumor-associated macrophages (TAMs). These cells secrete many chemokines into the tumor microenvironment, including especially a large amount of CCL18. This chemokine is a marker of the M2 macrophage subset; this is the reason why an increase in the production of CCL18 is associated with the immunosuppressive nature of the tumor microenvironment and an important element of cancer immune evasion. Consequently, elevated levels of CCL18 in the serum and the tumor are connected with a worse prognosis for the patient. This paper shows the importance of CCL18 in neoplastic processes. It includes a description of the signal transduction from PITPNM3 in CCL18-dependent migration, invasion, and epithelial-to-mesenchymal transition (EMT) cancer cells. The importance of CCL18 in angiogenesis has also been described. The paper also describes the effect of CCL18 on the recruitment to the cancer niche and the functioning of cells such as TAMs, regulatory T cells (Treg), cancer-associated fibroblasts (CAFs) and tumor-associated dendritic cells (TADCs). The last part of the paper describes the possibility of using CCL18 as a therapeutic target during anti-cancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Correspondence: ; Tel.: +48-717-841-354
| | - Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Department of Physiotherapy, Wroclaw University School of Physical Education, Ignacego Jana Paderewskiego 35 Av., 51-612 Wroclaw, Poland
| |
Collapse
|
25
|
Liu J, Li SM. MiR-484 suppressed proliferation, migration, invasion and induced apoptosis of gastric cancer via targeting CCL-18. Int J Exp Pathol 2020; 101:203-214. [PMID: 32985776 DOI: 10.1111/iep.12366] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/22/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a common and high-incidence malignant gastro-intestinal cancer that seriously threatens human life. Evidence suggests that microRNAs (miRNAs) play an essential role in regulating the occurrence and development of gastric cancer, but the possible mechanisms and effects remain to be further explored. In the present study, a new tumour suppresser function of miR-484 was identified in gastric cancer. The expression of miR-484 was obviously decreased, and the expression of CCL-18 was obviously increased in gastric cancer tissues and cell lines. In addition, upregulation of miR-484 suppressed cell proliferation, migration and invasion, and induced cell cycle arrest in G1 phase and cell apoptosis in gastric cancer cells. Besides, miR-484 mimics could block the PI3K/AKT signalling pathway. Moreover, CCL-18 was confirmed as a direct target of miR-484 by binding its 3'-UTR, and over-expression of CCL-18 could restore the effects of miR-484 on the growth and metastasis of gastric cancer. Finally, in vivo experiments showed that over-expression of miR-484 inhibited the subcutaneous tumorigenicity of gastric cancer cells, and the inhibition was blocked after over-expression of CCL-18. To conclude, miR-484 expression was downregulated in gastric cancer tissues and cells and played an anti-cancer role in the occurrence and development of gastric cancer, which may be achieved by inhibiting the expression of transcription factor CCL-18 and blocking the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jin Liu
- Department of Oncology, Suqian First Hospital, Suqian, China
| | - Shi Meng Li
- Department of Oncology, Suqian First Hospital, Suqian, China
| |
Collapse
|
26
|
Feng Y, Xiao M, Zhang Z, Cui R, Jiang X, Wang S, Bai H, Liu C, Zhang Z. Potential interaction between lysophosphatidic acid and tumor-associated macrophages in ovarian carcinoma. JOURNAL OF INFLAMMATION-LONDON 2020; 17:23. [PMID: 32774171 PMCID: PMC7405460 DOI: 10.1186/s12950-020-00254-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Ovarian carcinoma is the deadliest type of gynecological cancer. The unique tumor microenvironment enables specific and efficient metastasis, weakens immunological monitoring, and mediates drug resistance. Tumor associated macrophages (TAMs) are a crucial part of the TME and are involved in various aspects of tumor behavior. Lysophosphatidic acid (LPA) is elevated in the blood of ovarian carcinoma patients, as well as in the tumor tissues and ascites, which make it a useful biomarker and a potential therapeutic target. Recent studies have shown that LPA transforms monocytes into macrophages and regulates the formation of macrophages through the AKT/mTOR pathway, and PPAR γ is a major regulator of LPA-derived macrophages. In addition, TAMs synthesize and secrete LPA and express LPA receptor (LPAR) on the surface. With these data in mind, we hypothesize that LPA can convert monocytes directly into TAMs in the microenvironment of ovarian cancer. LPA may mediate TAM formation by activating the PI3K/AKT/mTOR signaling pathway through LPAR on the cell surface, which may also affect the function of PPAR γ, leading to increased LPA production by TAMs. Thus, LPA and TAMs form a vicious circle that affects the malignant behavior of ovarian cancer.
Collapse
Affiliation(s)
- Ying Feng
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Meizhu Xiao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Zihan Zhang
- Department of Gynecology and Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ran Cui
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Xuan Jiang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| |
Collapse
|
27
|
Hunt AL, Pierobon M, Baldelli E, Oliver J, Mitchell D, Gist G, Bateman NW, Larry Maxwell G, Petricoin EF, Conrads TP. The impact of ultraviolet- and infrared-based laser microdissection technology on phosphoprotein detection in the laser microdissection-reverse phase protein array workflow. Clin Proteomics 2020; 17:9. [PMID: 32165870 PMCID: PMC7061469 DOI: 10.1186/s12014-020-09272-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Reversible protein phosphorylation represents a key mechanism by which signals are transduced in eukaryotic cells. Dysregulated phosphorylation is also a hallmark of carcinogenesis and represents key drug targets in the precision medicine space. Thus, methods that preserve phosphoprotein integrity in the context of clinical tissue analyses are crucially important in cancer research. Here we investigated the impact of UV laser microdissection (UV LMD) and IR laser capture microdissection (IR LCM) on phosphoprotein abundance of key cancer signaling protein targets assessed by reverse-phase protein microarray (RPPA). Tumor epithelial cells from consecutive thin sections obtained from four high-grade serous ovarian cancers were harvested using either UV LMD or IR LCM methods. Phosphoprotein abundances for ten phosphoproteins that represent important drug targets were assessed by RPPA and revealed no significant differences in phosphoprotein integrity from those obtained using higher-energy UV versus the lower-energy IR laser methods.
Collapse
Affiliation(s)
- Allison L. Hunt
- Women’s Service Line, Inova Health System, 3300 Gallows Rd., Falls Church, VA 22042 USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - G. Larry Maxwell
- Women’s Service Line, Inova Health System, 3300 Gallows Rd., Falls Church, VA 22042 USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Thomas P. Conrads
- Women’s Service Line, Inova Health System, 3300 Gallows Rd., Falls Church, VA 22042 USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- 3289 Woodburn Rd, Suite 375, Annandale, VA 22003 USA
| |
Collapse
|
28
|
Finkernagel F, Reinartz S, Schuldner M, Malz A, Jansen JM, Wagner U, Worzfeld T, Graumann J, von Strandmann EP, Müller R. Dual-platform affinity proteomics identifies links between the recurrence of ovarian carcinoma and proteins released into the tumor microenvironment. Am J Cancer Res 2019; 9:6601-6617. [PMID: 31588238 PMCID: PMC6771240 DOI: 10.7150/thno.37549] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 01/10/2023] Open
Abstract
The peritoneal fluid (ascites), replete with abundant tumor-promoting factors and extracellular vesicles (EVs) reflecting the tumor secretome, plays an essential role in ovarian high-grade serous carcinoma (HGSC) metastasis and immune suppression. A comprehensive picture of mediators impacting HGSC progression is, however, not available. Methods: Proteins in ascites from HGSC patients were quantified by the aptamer-based SOMAscan affinity proteomic platform. SOMAscan data were analyzed by bioinformatic methods to reveal clinically relevant links and functional connections, and were validated using the antibody-based proximity extension assay (PEA) Olink platform. Mass spectrometry was used to identify proteins in extracellular microvesicles released by HGSC cells. Results: Consistent with the clinical features of HGSC, 779 proteins in ascites identified by SOMAscan clustered into groups associated either with metastasis and a short relapse-free survival (RFS), or with immune regulation and a favorable RFS. In total, 346 proteins were linked to OC recurrence in either direction. Reanalysis of 214 of these proteins by PEA revealed an excellent median Spearman inter-platform correlation of ρ=0.82 for the 46 positively RFS-associated proteins in both datasets. Intriguingly, many proteins strongly associated with clinical outcome were constituents of extracellular vesicles. These include proteins either linked to a poor RFS, such as HSPA1A, BCAM and DKK1, or associated with a favorable outcome, such as the protein kinase LCK. Finally, based on these data we defined two protein signatures that clearly classify short-term and long-term relapse-free survivors. Conclusion: The ascites secretome points to metastasis-promoting events and an anti-tumor response as the major determinants of the clinical outcome of HGSC. Relevant proteins include both bone fide secreted and vesicle-encapsulated polypeptides, many of which have previously not been linked to HGSC recurrence. Besides a deeper understanding of the HGSC microenvironment our data provide novel potential tools for HGSC patient stratification. Furthermore, the first large-scale inter-platform validation of SOMAscan and PEA will be invaluable for other studies using these affinity proteomics platforms.
Collapse
|
29
|
Yang YZ, Zhang W, Zhao BB, Li L. Expression of CCL18 gene in ovarian cancer and its impact on the biologic function of ovarian cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2572-2584. [PMID: 31934085 PMCID: PMC6949555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to evaluate the expression of the chemokine ligand 18 (CCL18) gene in ovarian cancer and to investigate the effects of its overexpression or suppression on growth, invasion, and metastasis in an ovarian carcinoma cell line (SKOV3) in vitro. CCL18 mRNA expression in epithelial ovarian carcinoma (EOC), benign ovarian tumor and normal ovarian tissues was measured by fluorescence quantitative polymerase chain reaction. A CCL18 restructuring plasmid was constructed, and SKOV3 cells were transfected with the plasmid DNA in vitro. A restructuring interference vector was also transfected into CCL18-positive SKOV3 cells. The growth curves, cell cycle distribution, and invasive, migrative and adhesive capacities of SKOV3 cells following overexpression and suppression of CCL18 were evaluated by MTT assay, flow cytometry, Transwell assay, migration assay, and the fibronectin adhesion method, respectively. The positive expression rate of CCL18 in EOC was significantly higher than in benign ovarian tumor (P = 0.002) and normal ovarian tissues (P = 0.003). However, there was no statistical significance in the expression of CCL18 with regard to clinical pathology (including histological classification, pathological grade and surgical pathological stage), and the median survival times of CCL18-positive and CCL18-negative patients did not differ significantly. The invasive, migrative, and adhesive capacities of SKOV3-CCL18 cells were significantly higher than those of SKOV3 and SKOV3-vector cells (P < 0.05). However, there was no significant difference in cell proliferation between the SKOV3-CCL18 and negative control cells. The invasive, migrative, and adhesive capacities of the pSilencer4.1-CCL18-small interfering RNA127 group were significantly lower than those of non-transfected pSilencer4.1-negative and pSilencer4.1 groups (P < 0.05). In conclusion, the overexpression and silencing of CCL18 affected invasion, adhesion, and migration in EOC cells; thus CCL18 may have potential as a clinical marker for early diagnosis of malignant ovarian tumors, and as a target molecule in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ying-Zhu Yang
- Department of Gynecology, Ningbo Women and Children’s HospitalNingbo 315000, Zhejiang, P. R. China
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, P. R. China
| | - Wei Zhang
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, P. R. China
| | - Bing-Bing Zhao
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, P. R. China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, P. R. China
- Guangxi Key Laboratory for High-Incidence Tumor Prevention and Treatment, Guangxi Medical UniversityNanning 530021, Guangxi, P. R. China
| |
Collapse
|
30
|
Aydin B, Arga KY. Co-expression Network Analysis Elucidated a Core Module in Association With Prognosis of Non-functioning Non-invasive Human Pituitary Adenoma. Front Endocrinol (Lausanne) 2019; 10:361. [PMID: 31244774 PMCID: PMC6563679 DOI: 10.3389/fendo.2019.00361] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Non-functioning pituitary adenomas (NFPAs) are tumors with clinically challenging features since they have insidious progression. A complex network of gene interactions is thought to have roles in tumor formation and progression. Therefore, revealing the genetic network behind NFPA tumorigenesis is not only essential to attain further knowledge of tumor biology, but also plays a fundamental role in the development of efficacious treatment strategies. Differential co-expression network analysis is an outstanding approach for elucidation of groups of genes which show distinct co-expression patterns among phenotypes. In this study, we carried out a differential co-expression network analysis of NFPA-associated transcriptome dataset (n = 40) considering invasive (n = 22) and non-invasive (n = 18) phenotypes. Furthermore, we identified differentially co-expressed and co-regulated mRNA modules, which might be considered as potential systems biomarkers for NFPA prognosis and invasiveness. As a result, we have identified a novel 13-gene module, including CEACAM6, CYP4B1, EIF2S2, HID1, IFFO1, MYO18A, PDCD2, SGIP1, SWSAP1, and four unknown genes (A_24_P127621, A_24_P255786, A_24_P683553, and A_24_P916979), which was able to categorize the patients into two groups as invasive and non-invasive NFPA with distinct prognosis. The prognostic core module genes were associated with progression and prognosis of brain and glandular based cancers as well. Furthermore, these module genes were also expressed in blood, salivary gland, and spinal cord tissues. These results may provide the evidence on featured gene module which might play a prominent role in NFPA prognosis and sub-typing as effective biomarkers and therapeutic targets in the future.
Collapse
|
31
|
Huang H, Li J, Hu WJ, Chen C, Luo HQ, Tang XD, Zhou KY, Zhong WT, Li XY. The serum level of CC chemokine ligand 18 correlates with the prognosis of non-small cell lung cancer. Int J Biol Markers 2019; 34:156-162. [DOI: 10.1177/1724600819829758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background: CC chemokine ligand 18 (CCL18) is a chemotactic cytokine involved in the pathogenesis and progression of various cancers. Our previous research showed that the expression of CCL18 is obviously higher in non-small cell lung cancer (NSCLC) than in the adjacent normal tissues, suggesting its role in NSCLC. Methods: We further examined the serum level of CCL18 in 80 NSCLC patients with enzyme-linked immunosorbent assay and simultaneously analyzed the survival curve of these patients by the Kaplan–Meier method, and then utilized a log-rank test to evaluate the correlation of CCL18 expression with the malignant progression of NSCLC. Results: Our results showed that the median serum concentration of CCL18 was significantly elevated to 436.11 ng/mL in NSCLC patients compared to 41.97 ng/ml in healthy people ( P<0.01), which was also positively related to the expression of lung cancer biomarkers carcinoma–embryonic antigen and cytokeratin fragment antigen 21-1. Moreover, correlation analysis showed that an increased level of serum CCL18 was associated with a worse survival time in NSCLC patients. Conclusion: Our findings suggest that the serum CCL18 level of NSCLC patients was negatively correlated with the prognosis, thus suggesting that CCL18 may serve as a potential circulating biomarker for NSCLC diagnosis.
Collapse
Affiliation(s)
- Hui Huang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
| | - Jing Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
| | - Wen-jia Hu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
| | - Chen Chen
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
| | - Hai-qing Luo
- Center of Oncology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, P.R. China
| | - Xu-dong Tang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, P.R. China
| | - Ke-yuan Zhou
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, P.R. China
| | - Wang-tao Zhong
- Department of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, P.R. China
| | - Xiang-yong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, P.R. China
| |
Collapse
|
32
|
Zheng Z, Cai Y, Chen H, Chen Z, Zhu D, Zhong Q, Xie W. CXCL13/CXCR5 Axis Predicts Poor Prognosis and Promotes Progression Through PI3K/AKT/mTOR Pathway in Clear Cell Renal Cell Carcinoma. Front Oncol 2019; 8:682. [PMID: 30723697 PMCID: PMC6349755 DOI: 10.3389/fonc.2018.00682] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/31/2018] [Indexed: 12/30/2022] Open
Abstract
The chemokine ligands and their receptors play critical roles in cancer progression and patients outcomes. We found that CXCL13 was significantly upregulated in ccRCC tissues compared with normal tissues in both The Cancer Genome Atlas (TCGA) cohort and a validated cohort of 90 pairs ccRCC tissues. Statistical analysis showed that high CXCL13 expression related to advanced disease stage and poor prognosis in ccRCC. We also revealed that serum CXCL13 levels in ccRCC patients (n = 50) were significantly higher than in healthy controls (n = 40). Receiver operating characteristic (ROC) curve revealed that tissue and serum CXCL13 expression might be a diagnostic biomarker for ccRCC with an area under curve (AUC) of 0.809 and 0.704, respectively. CXCL13 was significantly associated with its receptor, CXCR5, in ccRCC tissues, and ccRCC patients in high CXCL13 high CXCR5 expression group have a worst prognosis. Functional and mechanistic study revealed that CXCL13 promoted the proliferation and migration of ccRCC cells by binding to CXCR5 and activated PI3K/AKT/mTOR signaling pathway. These results suggested that CXCL13/CXCR5 axis played a significant role in ccRCC and might be a therapeutic target and prognostic biomarker.
Collapse
Affiliation(s)
- Zaosong Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat- sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuhong Cai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat- sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haicheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat- sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiliang Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat- sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dingjun Zhu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat- sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiyu Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat- sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenlian Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat- sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Liu X, Xu X, Deng W, Huang M, Wu Y, Zhou Z, Zhu K, Wang Y, Cheng X, Zhou X, Chen L, Li Y, Wang G, Fu B. CCL18 enhances migration, invasion and EMT by binding CCR8 in bladder cancer cells. Mol Med Rep 2018; 19:1678-1686. [PMID: 30592282 PMCID: PMC6390063 DOI: 10.3892/mmr.2018.9791] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Increased expression of CCL18 has been observed in various malignancies and in the urine samples of patients with bladder cancer (BC). However, the roles of CCL18 in the development, progression and metastasis of BC remain unclear. The present study demonstrated that CCL18 expression was significantly associated with advanced clinical stages of BC. Furthermore, exogenous CCL18 promoted cell invasion and migration, and induced cell epithelial-mesenchymal transition (EMT) in BC cells. Western blotting demonstrated that E-cadherin, an epithelial marker, was decreased, whereas matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF)-C were increased in CCL18-treated cells. Blocking CCR8 via a small molecule inhibitor or short hairpin (sh)RNA mitigated the decrease in E-cadherin, and increase in MMP-2 and VEGF-C, caused by human recombinant (r)CCL18. CCR8 knockdown by shRNA reversed rCCL18-induced cancer cell invasion, migration and EMT. In conclusion, these data suggested that CCL18 may promote migration, invasion and EMT by binding CCR8 in BC cells. Inhibition of CCL18 activity by blocking CCR8 could be a potential therapeutic strategy for preventing the progression of BC.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiangyun Xu
- Department of Urology, The Third Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mingchuan Huang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanlong Wu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengtao Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ke Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yibing Wang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinfu Cheng
- Department of Urology, The Second People's Hospital of Jingdezhen, Jingdezhen, Jiangxi 333000, P.R. China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
34
|
Zhao T, Bao Y, Lu X, He Y, Gan X, Wang J, Liu B, Wang L. Pyk2 promotes tumor progression in renal cell carcinoma. Oncol Lett 2018; 16:5953-5959. [PMID: 30344745 PMCID: PMC6176372 DOI: 10.3892/ol.2018.9412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/09/2018] [Indexed: 12/29/2022] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2), a member of the focal adhesion kinase family, has recently been associated with tumor development. However, the role of Pyk2 in renal cell carcinoma (RCC) remains unexplored. The present study investigated the expression pattern, clinical significance, and function of Pyk2 in RCC. By using a reverse transcription-quantitative polymerase chain reaction, tissue microarray and immunohistochemistry, it was demonstrated that RCC tissues display a higher Pyk2 expression compared with paired adjacent nontumor tissues. Furthermore, it was revealed that Pyk2 upregulation was associated with poor clinical outcomes in patients with RCC. By using loss-of-function approaches, it was demonstrated that Pyk2 knockdown reduced cell viability, invasive ability and migratory ability, and increased apoptosis in RCC cell lines. In contrast, Pyk2 overexpression promoted tumor cell proliferation, invasion and migration and reduced apoptosis. Collectively, the results of the present study present the tumor-promoting function of Pyk2 in RCC and thus provide molecular evidence for novel tyrosine kinase inhibitors as novel therapeutic options for RCC.
Collapse
Affiliation(s)
- Tangliang Zhao
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Xin Lu
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Yi He
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Xinxin Gan
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Jianchao Wang
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Bing Liu
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| |
Collapse
|
35
|
miR-128 targets the CC chemokine ligand 18 gene (CCL18) in cutaneous malignant melanoma progression. J Dermatol Sci 2018; 91:317-324. [DOI: 10.1016/j.jdermsci.2018.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/24/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
|
36
|
She L, Qin Y, Wang J, Liu C, Zhu G, Li G, Wei M, Chen C, Liu G, Zhang D, Chen X, Wang Y, Qiu Y, Tian Y, Zhang X, Liu Y, Huang D. Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck. Cancer Cell Int 2018; 18:120. [PMID: 30181713 PMCID: PMC6114178 DOI: 10.1186/s12935-018-0620-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/14/2018] [Indexed: 11/20/2022] Open
Abstract
Background Alternatively activated macrophages in tumor microenvironment is defined as M2 tumor-associated macrophages (M2 TAMs) that promote cancer progression. However, communicative mechanisms between M2 TAMs and cancer cells in squamous cell carcinoma of head and neck (SCCHN) remain largely unknown. Methods Quantitative real-time PCR, western blotting, enzyme-linked immunosorbent assay and flow cytometry were applied to quantify mRNA and protein expression of genes related to M2 TAMs, epithelial–mesenchymal transition (EMT) and stemness. Wounding-healing and Transwell invasion assays were performed to detect the invasion and migration. Sphere formation assay was used to detect the stemness of SCCHN cells. RNA-sequencing and following bioinformatics analysis were used to determine the alterations of transcriptome. Results THP-1 monocytes were successfully polarized into M2-like TAMs, which was manifested by increased mRNA and protein expression of CCL18, IL-10 and CD206. Conditioned medium from M2-like TAMs promoted the migration and invasion of SCCHN cells, which was accompanied by the occurrence of EMT and enhanced stemness. Importantly, CCL18 neutralizing antibody partially abrogated these effects that caused by conditional medium from M2-like TAMs. In addition, recombinant human CCL18 (rhCCL18) correspondingly promoted the malignant biological behaviors of SCCHN in vitro. Finally, RNA-sequencing analysis identified 331 up-regulated and 363 down-regulated genes stimulated by rhCCL18, which were statistically enriched in 10 cancer associated signaling pathways. Conclusion These findings indicate that CCL18 derived from M2-like TAMs promotes metastasis via inducing EMT and cancer stemness in SCCHN in vitro. Electronic supplementary material The online version of this article (10.1186/s12935-018-0620-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li She
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yuexiang Qin
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Juncheng Wang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Chao Liu
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Gangcai Zhu
- 3Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410010 Hunan People's Republic of China
| | - Guo Li
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Ming Wei
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Changhan Chen
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Guancheng Liu
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Diekuo Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Xiyu Chen
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yunyun Wang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yuanzheng Qiu
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yongquan Tian
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Xin Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yong Liu
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Donghai Huang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| |
Collapse
|
37
|
Zou Y, Li L. Identification of six serum antigens and autoantibodies for the detection of early stage epithelial ovarian carcinoma by bioinformatics analysis and liquid chip analysis. Oncol Lett 2018; 16:3231-3240. [PMID: 30127919 DOI: 10.3892/ol.2018.9027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 06/19/2018] [Indexed: 01/22/2023] Open
Abstract
The early detection of ovarian cancer is critical for improving the prognosis of patients, but there are currently insufficient tumor biomarkers for early detection owing to their low diagnostic sensitivity and specificity. The aim of the present study was to investigate the use of the serum antigens C-C motif chemokine ligand 18 and C-X-C motif chemokine ligand 1, and autoantibodies C1D, transmembrane 4 L six family member 1, zinc finger protein 675 and fragile X mental retardation 1 autosomal homolog 1, for the early screening of epithelial ovarian cancer (EOC). The expression of these sex genes/proteins in ovarian cancer and normal ovarian tissue was examined, and the potential functions of the six genes/proteins in ovarian cancer were analyzed by bioinformatics. Finally, these data were verified in clinical samples, and the multi-analyte suspension array method was compared with the ELISA method. Taken together, these data indicated that these six genes/proteins may serve as potential biomarkers for the early detection of EOC.
Collapse
Affiliation(s)
- Yupeng Zou
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
38
|
Karapetsas A, Tokamani M, Evangelou C, Sandaltzopoulos R. The homeodomain transcription factor MEIS1 triggers chemokine expression and is involved in CD8+ T-lymphocyte infiltration in early stage ovarian cancer. Mol Carcinog 2018; 57:1251-1263. [DOI: 10.1002/mc.22840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Athanasios Karapetsas
- Department of Molecular Biology and Genetics; Democritus University of Thrace; Alexandroupolis Greece
| | - Maria Tokamani
- Department of Molecular Biology and Genetics; Democritus University of Thrace; Alexandroupolis Greece
| | - Christos Evangelou
- Department of Molecular Biology and Genetics; Democritus University of Thrace; Alexandroupolis Greece
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics; Democritus University of Thrace; Alexandroupolis Greece
| |
Collapse
|
39
|
Wu J, Long Z, Cai H, Du C, Liu X, Yu S, Wang Y. High expression of WISP1 in colon cancer is associated with apoptosis, invasion and poor prognosis. Oncotarget 2018; 7:49834-49847. [PMID: 27409174 PMCID: PMC5226551 DOI: 10.18632/oncotarget.10486] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/31/2016] [Indexed: 01/18/2023] Open
Abstract
Colon cancer (CC) likes many epithelial-derived cancers, resulting from a complex tumorigenic process. However, the exactly mechanisms of development and progression of CC are still unknown. In this study, integrated analysis in the GSE33113 and Fudan University Shanghai Cancer Center Hospital datasets revealed that WISP1 expression was significantly increased in CC cases, positivity correlated with the advanced pathologic stage and a poor prognosis was more likely in CC patients with higher levels of WISP1. Downregulation of WISP1 inhibited cell proliferation and invasion through increasing apoptosis and blocking cell cycle at G1 phase in CC LOVO and RKO cells. Besides, Gene set enrichment analysis (GSEA) revealed that relative genes involved in the Cell adhesion molecules and Cytokine-cytokine receptor interaction pathways were enriched in WISP1-higher expression patients. Western blot analysis showed that Cell adhesion molecules pathway associated genes (ICAM- 1, VCAM-1, SDC2 and CDH2) and Cytokine-cytokine receptor interaction pathway associated genes (VEGFC, CCL18, CXCR4 and TGFBR1) were also modulated by WISP1 downregulation. Then, we found that the protein β-catenin was identified as a binding partner of WISP1 and mediated the functions of WISP1 through promoting cell proliferation and invasion in LOVO and RKO cells. Further in vivo tumor formation study in nude mice indicated that inhibition of WISP1 delayed the progress of tumor formation and inhibited PCNA expression. These results indicate that WISP1 could act as an oncogene and may serve as a promising therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Jianghong Wu
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ziwen Long
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hong Cai
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunyan Du
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaowen Liu
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shengjia Yu
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanong Wang
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
40
|
Aziz AUR, Farid S, Qin K, Wang H, Liu B. PIM Kinases and Their Relevance to the PI3K/AKT/mTOR Pathway in the Regulation of Ovarian Cancer. Biomolecules 2018; 8:biom8010007. [PMID: 29401696 PMCID: PMC5871976 DOI: 10.3390/biom8010007] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is a medical term that includes a number of tumors with different molecular biology, phenotypes, tumor progression, etiology, and even different diagnosis. Some specific treatments are required to address this heterogeneity of ovarian cancer, thus molecular characterization may provide an important tool for this purpose. On a molecular level, proviral-integration site for Moloney-murine leukemia virus (PIM) kinases are over expressed in ovarian cancer and play a vital role in the regulation of different proteins responsible for this tumorigenesis. Likewise, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is also a central regulator of the ovarian cancer. Interestingly, recent research has linked the PIM kinases to the PI3K/AKT/mTOR pathway in several types of cancers, but their connection in ovarian cancer has not been studied yet. Once the exact relationship of PIM kinases with the PI3K/AKT/mTOR pathway is acquired in ovarian cancer, it will hopefully provide effective treatments on a molecular level. This review mainly focuses on the role of PIM kinases in ovarian cancer and their interactions with proteins involved in its progression. In addition, this review suggests a connection between the PIM kinases and the PI3K/AKT/mTOR pathway and their parallel mechanism in the regulation of ovarian cancer.
Collapse
Affiliation(s)
- Aziz Ur Rehman Aziz
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Sumbal Farid
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Kairong Qin
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Hanqin Wang
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China.
| | - Bo Liu
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
41
|
Yi J, Jiang SJ. Dysregulation of CCL18/CCR8 axis predicts poor prognosis in patients with gastric cancer. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218796887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Increasing data have shown that the dysregulation of C-C motif chemokine ligand 18 (CCL18) and C-C motif chemokine receptor (CCR8) is involved in the development and progression of multiple malignancies. However, the clinical significance of CCL18/CCR8 axis in gastric cancer (GC) was still undocumented. In this study, the expression levels of CCL18 and its receptor CCR8 and their correlation with the clinicopathological characteristics and prognosis in patients with GC were analyzed by TCGA RNA sequencing data. Cox proportional hazard regression model was performed to assess the association between CCL18/CCR8 expression and overall survival (OS) and tumor recurrence in patients with GC. As a consequence, we found that the expression of CCL18 was markedly elevated in GC samples as compared with the adjacent normal tissues and acted as an independent prognostic factor of tumor recurrence in patients with GC. Subsequently, Pearson correlation analysis revealed that CCL18 possessed a positive correlation with CCR8 expression in GC samples. CCR8 expression was upregulated in GC tissues and exhibited the association with poor survival in patients with GC. Taken together, our findings demonstrated that the dysregulation of CCL18/CCR8 axis could predict the poor prognosis in patients with GC and provide a potential antitumor target for the treatment of GC.
Collapse
Affiliation(s)
- Jie Yi
- Department of Gastroenterology, The Jingmen No. 1 People’s Hospital, Jingmen, P.R. China
| | - Shao-Jie Jiang
- Department of Gastroenterology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, P.R. China
| |
Collapse
|
42
|
Yuan L, Wan J, Huang C, Liang J, Liu M, Yue C, Li L. Evaluation of serum CCL18 as a potential biomarker for ovarian cancer. Cancer Biomark 2017; 21:97-104. [PMID: 29036787 DOI: 10.3233/cbm-170305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Linjing Yuan
- Department of Gynaecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- Department of Gynaecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jianxin Wan
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- Department of Gynaecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Chumei Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jingjing Liang
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Min Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Caifeng Yue
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Laisheng Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
43
|
Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data. Sci Rep 2017. [PMID: 29170526 DOI: 10.1038/s41598-017-16286-5]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Multiple types of high throughput genomics data create a potential opportunity to identify driver patterns in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. To identify candidate driver genes and the corresponding driving patterns for resistant and sensitive tumors from the heterogeneous data, we combined gene co-expression modules with mutation modulators and proposed the method to identify driver patterns. Firstly, co-expression network analysis is applied to explore gene modules for gene expression profiles through weighted correlation network analysis (WGCNA). Secondly, mutation matrix is generated by integrating the CNV data and somatic mutation data, and a mutation network is constructed from the mutation matrix. Thirdly, candidate modulators are selected from significant genes by clustering vertexs of the mutation network. Finally, a regression tree model is utilized for module network learning, in which the obtained gene modules and candidate modulators are trained for the driving pattern identification and modulators regulatory exploration. Many identified candidate modulators are known to be involved in biological meaningful processes associated with ovarian cancer, such as CCL11, CCL16, CCL18, CCL23, CCL8, CCL5, APOB, BRCA1, SLC18A1, FGF22, GADD45B, GNA15, GNA11, and so on.
Collapse
|
44
|
Lu X, Lu J, Liao B, Li X, Qian X, Li K. Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data. Sci Rep 2017. [PMID: 29170526 DOI: 10.1038/s41598-017-16286-5] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Multiple types of high throughput genomics data create a potential opportunity to identify driver patterns in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. To identify candidate driver genes and the corresponding driving patterns for resistant and sensitive tumors from the heterogeneous data, we combined gene co-expression modules with mutation modulators and proposed the method to identify driver patterns. Firstly, co-expression network analysis is applied to explore gene modules for gene expression profiles through weighted correlation network analysis (WGCNA). Secondly, mutation matrix is generated by integrating the CNV data and somatic mutation data, and a mutation network is constructed from the mutation matrix. Thirdly, candidate modulators are selected from significant genes by clustering vertexs of the mutation network. Finally, a regression tree model is utilized for module network learning, in which the obtained gene modules and candidate modulators are trained for the driving pattern identification and modulators regulatory exploration. Many identified candidate modulators are known to be involved in biological meaningful processes associated with ovarian cancer, such as CCL11, CCL16, CCL18, CCL23, CCL8, CCL5, APOB, BRCA1, SLC18A1, FGF22, GADD45B, GNA15, GNA11, and so on.
Collapse
Affiliation(s)
- Xinguo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China.
| | - Jibo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Bo Liao
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Xing Li
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Xin Qian
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Keqin Li
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China.,Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA
| |
Collapse
|
45
|
Lu X, Lu J, Liao B, Li X, Qian X, Li K. Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data. Sci Rep 2017; 7:16188. [PMID: 29170526 PMCID: PMC5700962 DOI: 10.1038/s41598-017-16286-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023] Open
Abstract
Multiple types of high throughput genomics data create a potential opportunity to identify driver patterns in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. To identify candidate driver genes and the corresponding driving patterns for resistant and sensitive tumors from the heterogeneous data, we combined gene co-expression modules with mutation modulators and proposed the method to identify driver patterns. Firstly, co-expression network analysis is applied to explore gene modules for gene expression profiles through weighted correlation network analysis (WGCNA). Secondly, mutation matrix is generated by integrating the CNV data and somatic mutation data, and a mutation network is constructed from the mutation matrix. Thirdly, candidate modulators are selected from significant genes by clustering vertexs of the mutation network. Finally, a regression tree model is utilized for module network learning, in which the obtained gene modules and candidate modulators are trained for the driving pattern identification and modulators regulatory exploration. Many identified candidate modulators are known to be involved in biological meaningful processes associated with ovarian cancer, such as CCL11, CCL16, CCL18, CCL23, CCL8, CCL5, APOB, BRCA1, SLC18A1, FGF22, GADD45B, GNA15, GNA11, and so on.
Collapse
Affiliation(s)
- Xinguo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China.
| | - Jibo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Bo Liao
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Xing Li
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Xin Qian
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Keqin Li
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
- Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA
| |
Collapse
|
46
|
Worzfeld T, Finkernagel F, Reinartz S, Konzer A, Adhikary T, Nist A, Stiewe T, Wagner U, Looso M, Graumann J, Müller R. Proteotranscriptomics Reveal Signaling Networks in the Ovarian Cancer Microenvironment. Mol Cell Proteomics 2017; 17:270-289. [PMID: 29141914 PMCID: PMC5795391 DOI: 10.1074/mcp.ra117.000400] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer is characterized by early transcoelomic metastatic spread via the peritoneal fluid, where tumor cell spheroids (TU), tumor-associated T cells (TAT), and macrophages (TAM) create a unique microenvironment promoting cancer progression, chemoresistance, and immunosuppression. However, the underlying signaling mechanisms remain largely obscure. To chart these signaling networks, we performed comprehensive proteomic and transcriptomic analyses of TU, TAT, and TAM from ascites of ovarian cancer patients. We identify multiple intercellular signaling pathways driven by protein or lipid mediators that are associated with clinical outcome. Beyond cytokines, chemokines and growth factors, these include proteins of the extracellular matrix, immune checkpoint regulators, complement factors, and a prominent network of axon guidance molecules of the ephrin, semaphorin, and slit families. Intriguingly, both TU and TAM from patients with a predicted short survival selectively produce mediators supporting prometastatic events, including matrix remodeling, stemness, invasion, angiogenesis, and immunosuppression, whereas TAM associated with a longer survival express cytokines linked to effector T-cell chemoattraction and activation. In summary, our study uncovers previously unrecognized signaling networks in the ovarian cancer microenvironment that are of potential clinical relevance.
Collapse
Affiliation(s)
- Thomas Worzfeld
- From the ‡Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany 35043; .,§Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany 61231
| | - Florian Finkernagel
- ¶Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany 35043
| | - Silke Reinartz
- ‖Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany 35043
| | - Anne Konzer
- **Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany 61231
| | - Till Adhikary
- ¶Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany 35043
| | - Andrea Nist
- ‡‡Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany 35043
| | - Thorsten Stiewe
- ‡‡Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany 35043
| | - Uwe Wagner
- §§Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM), Marburg, Germany 35043
| | - Mario Looso
- ¶¶Bioinformatics, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany 61231
| | - Johannes Graumann
- **Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany 61231
| | - Rolf Müller
- ¶Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany 35043;
| |
Collapse
|
47
|
Liu J, Wang HL, Ma FM, Guo HP, Fang NN, Wang SS, Li XH. Systematic module approach identifies altered genes and pathways in four types of ovarian cancer. Mol Med Rep 2017; 16:7907-7914. [PMID: 28983627 PMCID: PMC5779873 DOI: 10.3892/mmr.2017.7649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/09/2017] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to identify altered genes and pathways associated with four histotypes of ovarian cancer, according to the systematic tracking of dysregulated modules of reweighted protein-protein interaction (PPI) networks. Firstly, the PPI network and gene expression data were initially integrated to infer and reweight normal ovarian and four types of ovarian cancer (endometrioid, serous, mucinous and clear cell carcinoma) PPI networks based on Spearman's correlation coefficient. Secondly, modules in the PPI network were mined using a clique-merging algorithm and the differential modules were identified through maximum weight bipartite matching. Finally, the gene compositions in the altered modules were analyzed, and pathway functional enrichment analyses for disrupted module genes were performed. In five conditional-specific networks, universal alterations in gene correlations were revealed, which leads to the differential correlation density among disrupted module pairs. The analyses revealed 28, 133, 139 and 33 altered modules in endometrioid, serous, mucinous and clear cell carcinoma, respectively. Gene composition analyses of the disrupted modules revealed five common genes (mitogen-activated protein kinase 1, phosphoinositide 3-kinase-encoding catalytic 110-KDα, AKT serine/threonine kinase 1, cyclin D1 and tumor protein P53) across the four subtypes of ovarian cancer. In addition, pathway enrichment analysis confirmed one common pathway (pathways in cancer), in the four histotypes. This systematic module approach successfully identified altered genes and pathways in the four types of ovarian cancer. The extensive differences of gene correlations result in dysfunctional modules, and the coordinated disruption of these modules contributes to the development and progression of ovarian cancer.
Collapse
Affiliation(s)
- Jing Liu
- Physical Examination Center, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Hui-Ling Wang
- Department of Gynecology, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Feng-Mei Ma
- Department of Infectious Disease, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Hong-Ping Guo
- Physical Examination Center, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Ning-Ning Fang
- Intensive Care Unit, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Shan-Shan Wang
- Department of Obstetrics, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Xin-Hong Li
- Department of Internal Medicine, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
48
|
Cai DL, Jin LP. Immune Cell Population in Ovarian Tumor Microenvironment. J Cancer 2017; 8:2915-2923. [PMID: 28928882 PMCID: PMC5604442 DOI: 10.7150/jca.20314] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer, the third most common with highest mortality rates gynecological malignancy among women in China, is characterized by a unique tumor immune microenvironment. Immune-cell population infiltrated into the tumor tissue among patients with ovarian cancer are associated positively or negatively with antitumor activity. The imbalance between immune activation and immune suppression can result in oncogenesis and cancer progression. Therefore, intense investigation of the immunologic mechanism of ovarian cancer is urgently needed, and a comprehensive understanding of the network in which immune cells interact with the microenvironment, tumor cells and each other will greatly promote the development of more effective immunotherapies for ovarian cancer. In this review, we will focus on the main immune-cell population in ovarian tumor microenvironment, discuss their role in tumor progression and try to give the readers a new perspective in finding more promising therapeutic targets for cancers.
Collapse
Affiliation(s)
- Dong Li Cai
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Li-Ping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| |
Collapse
|
49
|
Wang H, Liang X, Li M, Tao X, Tai S, Fan Z, Wang Z, Cheng B, Xia J. Chemokine (CC motif) ligand 18 upregulates Slug expression to promote stem-cell like features by activating the mammalian target of rapamycin pathway in oral squamous cell carcinoma. Cancer Sci 2017; 108:1584-1593. [PMID: 28574664 PMCID: PMC5543498 DOI: 10.1111/cas.13289] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
Chemokine (CC motif) ligand 18 (CCL18) is involved in remodeling of the tumor microenvironment and plays critical roles in oncogenesis, invasiveness, and metastasis. We previously investigated the overexpression of CCL18 in primary oral squamous cell carcinoma (OSCC) tissues and its association with advanced clinical stage in OSCC patients. However, the underlying mechanisms of this CCL18‐derived activity remains unidentified. This study showed exogenous CCL18 increased cell migration and invasion and induced cell epithelial–mesenchymal transition (EMT), and that E‐cadherin, an epithelial marker, decreased and N‐cadherin, a mesenchymal marker, increased, compared to negative control in OSCC cells. Furthermore, we detected that CCL18 induced the acquisition of cancer stem(‐like) cell characteristics in oral cancer cells, but also found a significantly positive correlation between the expression of CCL18 and Bmi‐1 (P < 0.001) in OSCC surgical specimens by immunohistochemistry analysis. The expression of octamer‐binding transcription factor 4 and Bmi‐1 were significantly upregulated, and proportions of aldehyde dehydrogenasehigh+ cells and CD133+ cells were markedly increased in CCL18‐treated cells compared to untreated cells. Sphere formation ability was observably enhanced when cells were continually exposed to high levels of CCL18. Moreover, CCL18 upregulated Slug expression by stimulating the mammalian target of rapamycin (mTOR) signaling pathway in OSCC cell lines. Inhibition of the mTOR pathway by INK128, or Slug knockdown by RNA interference, reversed CCL18‐induced EMT and the stemness response at both molecular and functional levels. In conclusion, our data suggested that CCL18 upregulated Slug expression to promote EMT and stem cell‐like features by activating the mTOR pathway in oral cancer. These findings provide new potential targets for the early diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Hongfei Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xueyi Liang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mianxiang Li
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoan Tao
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanshan Tai
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaona Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juan Xia
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
50
|
Suarez‐Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol 2017; 11:805-823. [PMID: 28599100 PMCID: PMC5496491 DOI: 10.1002/1878-0261.12095] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Tumors can be depicted as wounds that never heal, and are infiltrated by a large array of inflammatory and immune cells. Tumor-associated chronic inflammation is a hallmark of cancer that fosters progression to a metastatic stage, as has been extensively reviewed lately. Indeed, inflammatory cells persisting in the tumor establish a cross-talk with tumor cells that may result in a phenotype switch into tumor-supporting cells. This has been particularly well described for macrophages and is referred to as tumor-associated 'M2' polarization. Epithelial-to-mesenchymal transition (EMT), the embryonic program that loosens cell-cell adherence complexes and endows cells with enhanced migratory and invasive properties, can be co-opted by cancer cells during metastatic progression. Cancer cells that have undergone EMT are more aggressive, displaying increased invasiveness, stem-like features, and resistance to apoptosis. EMT programs can also stimulate the production of proinflammatory factors by cancer cells. Conversely, inflammation is a potent inducer of EMT in tumors. Therefore, the two phenomena may sustain each other, in an alliance for metastasis. This is the focus of this review, where the interconnections between EMT programs and cellular and molecular actors of inflammation are described. We also recapitulate data linking the EMT/inflammation axis to metastasis.
Collapse
Affiliation(s)
- Meggy Suarez‐Carmona
- National Center for Tumor Diseases (NCT) – University Hospital HeidelbergGermany
| | - Julien Lesage
- Laboratory of Tumor and Development BiologyGIGA‐Cancer University of LiègeBelgium
| | - Didier Cataldo
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| | - Christine Gilles
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| |
Collapse
|