1
|
Wang M, Huang J, Shi Y, Mprah R, Ding H, Zhang S, Li C. Exploring the efficacy of Wenshentiaojing decoction in PCOS: Network pharmacology and mouse model insights. Bioorg Chem 2025; 154:108089. [PMID: 39742672 DOI: 10.1016/j.bioorg.2024.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Wenshentiaojing Decoction (WSTJD), a traditional Chinese herbal prescription, was first recorded in the "Ye Tianshi female department secret recipe for diagnosis and treatment ". It has been proven effective in treating polycystic ovary syndrome (PCOS). However, the active ingredients and molecular mechanism of WSTJD against PCOS remain unclear. AIM OF THE STUDY To explore the therapeutic effect and molecular mechanism of WSTJD against PCOS by using network pharmacology and mouse model. MATERIALS AND METHODS Network pharmacology were used to predict active ingredients, potential targets, and pathways of WSTJD against PCOS. Female mice were injected subcutaneously with DHEA (6 mg/100 g body weight) daily to establish a PCOS model and administered with WSTJD and quercetin to observe its therapeutic effect. Thereafter, mouse phenotypes, indicators related to oxidative stress and ferroptosis, and hub genes were determined. RESULTS We identified 144 potential targets for WSTJD in the treatment of PCOS, which were enriched in immune-related signaling pathways such as reactive oxygen species, TNF and IL-17 signaling pathway. Thirteen hub genes were identified by proteinprotein interaction network (PPI) and algorithmic analysis, all of which were oxidative stress-related genes, and five of which, IL6, PTGS2, HIF1A, MTOR and EGFR, were ferroptosis-related genes. Further analysis revealed that quercetin was a key ingredient for WSTJD and that it had superior binding effects with the hub genes. Moreover, WSTJD and quercetin could significantly depress oxidative stress-related indicators and ferroptosis-related gene expression in PCOS mice. Finally, mouse models showed that the expression of the hub genes were consistent with the analysis results. CONCLUSIONS WSTJD and quercetin alleviated PCOS by suppressing oxidative stress and ferroptosis. Quercetin was the key ingredient for WSTJD against PCOS.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China; National Experimental Teaching Demonstration Center for Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China.
| | - Jing Huang
- Department of Medical Informatics Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China
| | - Yue Shi
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China; National Experimental Teaching Demonstration Center for Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China
| | - Richard Mprah
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China
| | - Huanhuan Ding
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China; National Experimental Teaching Demonstration Center for Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China
| | - Shanshan Zhang
- School of Biological Science, Jining Medical University, Rizhao, Shandong Province 276826, PR China.
| | - Cui Li
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China; National Experimental Teaching Demonstration Center for Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China.
| |
Collapse
|
2
|
Martiniakova M, Penzes N, Biro R, Sarocka A, Kovacova V, Mondockova V, Ciernikova S, Omelka R. Sea buckthorn and its flavonoids isorhamnetin, quercetin, and kaempferol favorably influence bone and breast tissue health. Front Pharmacol 2024; 15:1462823. [PMID: 39444603 PMCID: PMC11497132 DOI: 10.3389/fphar.2024.1462823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Bone tissue and breast tissue are interrelated, as demonstrated by breast microcalcifications, breast cancer bone metastases, bone morphogenetic proteins, and Wnt signaling. In addition, osteoblasts and osteoclasts represent an important switch of tumor cell dormancy during bone metastasis. Damage to both types of tissues mentioned above is highly prevalent, especially in postmenopausal women, and manifests itself in osteoporosis and breast cancer. Sea buckthorn (Elaeagnus rhamnoides L.), a botanical drug with high antioxidant, antitumor, anti-inflammatory, immunomodulatory, and regenerative properties, has great therapeutic potential due to the unique composition of its bioactive metabolites. This review aimed to summarize the current knowledge from in vitro and in vivo studies on the effect of sea buckthorn, as well as its most widespread flavonoids isorhamnetin, quercetin, and kaempferol, on bone and breast tissue health. In vitro studies have revealed the beneficial impacts of sea buckthorn and aforementioned flavonoids on both bone health (bone remodeling, mineralization, and oxidative stress) and breast tissue health (cancer cell proliferation, apoptosis, tumor growth, and metastatic behavior). In vivo studies have documented their protective effects against disturbed bone microarchitecture and reduced bone strength in animal models of osteoporosis, as well as against tumor expansion and metastatic properties in animal xenograft models. In any case, further research and clinical trials are needed to carefully evaluate the potential therapeutic benefits of sea buckthorn and its flavonoids. Based on the available information, however, it can be concluded that these bioactive metabolites favorably affect both bone and breast tissue health.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| |
Collapse
|
3
|
Sakao K, Hamamoto S, Urakawa D, He Z, Hou DX. Anticancer Activity and Molecular Mechanisms of Acetylated and Methylated Quercetin in Human Breast Cancer Cells. Molecules 2024; 29:2408. [PMID: 38792269 PMCID: PMC11124128 DOI: 10.3390/molecules29102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Quercetin, a flavonoid polyphenol found in many plants, has garnered significant attention due to its potential cancer chemoprevention. Our previous studies have shown that acetyl modification of the hydroxyl group of quercetin altered its antitumor effects in HepG2 cells. However, the antitumor effect in other cancer cells with different gene mutants remains unknown. In this study, we investigated the antitumor effect of quercetin and its methylated derivative 3,3',4',7-O-tetramethylquercetin (4Me-Q) and acetylated derivative 3,3',4',7-O-tetraacetylquercetin (4Ac-Q) on two human breast cancer cells, MCF-7 (wt-p53, caspase-3-ve) and MDA-MB-231 (mt-p53, caspase-3+ve). The results demonstrated that 4Ac-Q exhibited significant cell proliferation inhibition and apoptosis induction in both MCF-7 and MDA-MB-231 cells. Conversely, methylation of quercetin was found to lose the activity. The human apoptosis antibody array revealed that 4Ac-Q might induce apoptosis in MCF-7 cells via a p53-dependent pathway, while in MDA-MB-231 cells, it was induced via a caspase-3-dependent pathway. Furthermore, an evaluation using a superoxide inhibitor, MnTBAP, revealed 4Ac-Q-induced apoptosis in MCF-7 cells in a superoxide-independent manner. These findings provide valuable insights into the potential of acetylated quercetin as a new approach in cancer chemoprevention and offer new avenues for health product development.
Collapse
Affiliation(s)
- Kozue Sakao
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Shihomi Hamamoto
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Daigo Urakawa
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
| | - Ziyu He
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
| | - De-Xing Hou
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
4
|
Li T, Feng Y, Chen Z, Hou Q, Serrano BR, Barcenas AR, Wu P, Zhao W, Shen M. Effect of quercetin on granulosa cells development from hierarchical follicles in chicken. Br Poult Sci 2024; 65:44-51. [PMID: 37772759 DOI: 10.1080/00071668.2023.2264792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
1. The bioflavonoid quercetin is a biologically active component, but its functional regulation of granulosa cells (GCs) during chicken follicular development is little studied. To investigate the effect of quercetin on follicular development in laying hens, an in vitro study was conducted on granulosa cells from hierarchical follicles treated with quercetin.2. The effect of quercetin on cell activity, proliferation and apoptosis of granulosa cells was detected by CCK-8, EdU and apoptosis assays. The effect on progesterone secretion from granulosa cells was investigated by enzyme-linked immunosorbent assay (ELISA). Expression of proliferating cell nuclear antigen (PCNA) mRNA and oestrogen receptors (ERs), as well as the expression of steroid acute regulatory protein (StAR), cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD) mRNA during progesterone synthesis, were measured by real-time quantitative polymerase chain reaction (RT-qPCR). PCNA, StAR and CYP11A1 protein expression levels were detected using Western blotting (WB).3. The results showed that treatment with quercetin in granulosa cells significantly enhanced cell vitality and proliferation, reduced apoptosis and promoted the expression of gene and protein levels of PCNA. The levels of progesterone secretion increased significantly following quercetin treatment, as did the expression levels of StAR and CYP11A1 using the Western Blot (WB) method.4. The mRNA expression levels of ERα were significantly upregulated in the 100 ng/ml and 1000 ng/ml quercetin-treated groups, while there was no significant difference in expression levels of ERβ mRNA.
Collapse
Affiliation(s)
- T Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Y Feng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Z Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Q Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - B R Serrano
- Plant Protein and Bionatural Products Research Center, Havana, Cuba
| | - A R Barcenas
- Plant Protein and Bionatural Products Research Center, Havana, Cuba
| | - P Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - W Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - M Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Laying Hen Breeding and Production Laboratory, Jiangsu Institute of Poultry Science, Yangzhou, China
| |
Collapse
|
5
|
Calabrese EJ, Hayes AW, Pressman P, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Quercetin induces its chemoprotective effects via hormesis. Food Chem Toxicol 2024; 184:114419. [PMID: 38142767 DOI: 10.1016/j.fct.2023.114419] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Quercetin is a polyphenol present in numerous fruits and vegetables and therefore widely consumed by humans with average daily dietary intakes of 10-20 mg/day. It is also a popular dietary supplement of 250-1000 mg/day. However, despite the widespread consumer interest in quercetin, due to its possible chemopreventive properties, the extensively studied quercetin presents a highly diverse and complex array of biological effects. Consequently, the present paper provides the first assessment of quercetin-induced hormetic concentration/dose responses, their quantitative features and mechanistic foundations, and their biological, biomedical, clinical, and public health implications. The findings indicate that quercetin-induced hormetic dose responses are widespread, being independent of biological model, cell type, and endpoint. These findings have the potential to enlighten future experimental studies with quercetin especially with respect to study design parameters and may also affect the appraisal of possible public health benefits and risks associated with highly diverse consumer consumption practices.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
6
|
Goyal R, Mittal G, Khurana S, Malik N, Kumar V, Soni A, Chopra H, Kamal MA. Insights on Quercetin Therapeutic Potential for Neurodegenerative Diseases and its Nano-technological Perspectives. Curr Pharm Biotechnol 2024; 25:1132-1141. [PMID: 37649295 DOI: 10.2174/1389201025666230830125410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
The neurodegeneration process begins in conjunction with the aging of the neurons. It manifests in different parts of the brain as Aβ plaques, neurofibrillary tangles, Lewy bodies, Pick bodies, and other structures, which leads to progressive loss or death of neurons. Quercetin (QC) is a flavonoid compound found in fruits, tea, and other edible plants have antioxidant effects that have been studied from subcellular compartments to tissue levels in the brain. Also, quercetin has been reported to possess a neuroprotective role by decreasing oxidative stress-induced neuronal cell damage. The use of QC for neurodegenerative therapy, the existence of the blood-brain barrier (BBB) remains a significant barrier to improving the clinical effectiveness of the drug, so finding an innovative solution to develop simultaneous BBB-crossing ability of drugs for treating neurodegenerative disorders and improving neurological outcomes is crucial. The nanoparticle formulation of QC is considered beneficial and useful for its delivery through this route for the treatment of neurodegenerative diseases seems necessary. Increased QC accumulation in the brain tissue and more significant improvements in tissue and cellular levels are among the benefits of QC-involved nanostructures.
Collapse
Affiliation(s)
- Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Garima Mittal
- Panipat Institute of Engineering and Technology, Samalkha, (Panipat), 132102, Haryana, India
| | - Suman Khurana
- Panipat Institute of Engineering and Technology, Samalkha, (Panipat), 132102, Haryana, India
- Amity Institute of Pharmacy, Amity University Haryana, Panchgaon (Manesar), 122413; Haryana, India
- Amity Institute of Pharmacy, Amity University Haryana, Panchgaon (Manesar), 122413; Haryana, India
| | - Neelam Malik
- Panipat Institute of Engineering and Technology, Samalkha, (Panipat), 132102, Haryana, India
| | - Vivek Kumar
- Janta College of Pharmacy, Butana, (Sonipat), 131001, Hayana, India
| | - Arti Soni
- Panipat Institute of Engineering and Technology, Samalkha, (Panipat), 132102, Haryana, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh
- Enzymoics, NSW; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
7
|
Farhadi F, Sharififar F, Jafari M, Rahimi VB, Askari N, Askari VR. Hallmarks of Quercetin Benefits as a Functional Supplementary in the Management of Diabetes Mellitus-Related Maladies: From Basic to Clinical Applications. Curr Drug Metab 2024; 25:653-669. [PMID: 39878112 DOI: 10.2174/0113892002339410250108031621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/31/2025]
Abstract
Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZinduced, alloxan-induced, and its complications have been summarized with a particular focus on in vitro, in vivo, and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance. Moreover, QE stimulates insulin secretion and attenuates insulin resistance through various pathways, namely transient KATP channel, motivating peroxisome proliferator-activated receptor expression, increasing glucose transporter-4, and decreasing inducible nitric oxide synthase in skeletal muscle. QE has protective effects on the complications caused by diabetes, such as polycystic ovary syndrome, high-fat diet-induced obesity, diabetic-induced hepatic damage, vascular inflammation, nephropathy, and neuropathy.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Jafari
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Vonka P, Rarova L, Bazgier V, Tichy V, Kolarova T, Holcakova J, Berka K, Kvasnica M, Oklestkova J, Kudova E, Strnad M, Hrstka R. Small change - big consequence: The impact of C15-C16 double bond in a D‑ring of estrone on estrogen receptor activity. J Steroid Biochem Mol Biol 2023; 233:106365. [PMID: 37468002 DOI: 10.1016/j.jsbmb.2023.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Estrogen receptor alpha (ER) is a key biomarker for breast cancer, and the presence or absence of ER in breast and other hormone-dependent cancers decides treatment regimens and patient prognosis. ER is activated after ligand binding - typically by steroid. 2682 steroid compounds were used in a molecular docking study to identify novel ligands for ER and to predict compounds that may show anticancer activity. The effect of the most promising compounds was determined by a novel luciferase reporter assay. Two compounds, 7 and 12, showing ER inhibitory activity comparable to clinical inhibitors such as tamoxifen or fulvestrant were selected. We propose that the inhibitory effect of compounds 7 and 12 on ER is related to the presence of a double bond in their D-ring, which may protect against ER activation by reducing the electron density of the keto group, or may undergo metabolism leading to an active compound. Western blotting revealed that compound 12 decreased the level of ER in the breast cancer cell line MCF7, which was associated with reduced expression of both isoforms of the progesterone receptor, a well-known downstream target of ER. However, compound 12 has a different mechanism of action from fulvestrant. Furthermore, we found that compound 12 interferes with mitochondrial functions, probably by disrupting the electron transport chain, leading to induction of the intrinsic apoptotic pathway even in ER-negative breast cancer cells. In conclusion, the combination of computational and experimental methods shown here represents a rapid approach to determine the activity of compounds towards ER. Our data will not only contribute to research focused on the regulation of ER activity but may also be useful for the further development of novel steroid receptor-targeted drugs applicable in clinical practice.
Collapse
Affiliation(s)
- Petr Vonka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic; Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Lucie Rarova
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Vaclav Bazgier
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, třída 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Vlastimil Tichy
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tamara Kolarova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Jitka Holcakova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, třída 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo náměstí 2, 166 10, Praha 6, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic; Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
9
|
McKay TB, Emmitte KA, German C, Karamichos D. Quercetin and Related Analogs as Therapeutics to Promote Tissue Repair. Bioengineering (Basel) 2023; 10:1127. [PMID: 37892857 PMCID: PMC10604618 DOI: 10.3390/bioengineering10101127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Quercetin is a polyphenol of the flavonoid class of secondary metabolites that is widely distributed in the plant kingdom. Quercetin has been found to exhibit potent bioactivity in the areas of wound healing, neuroprotection, and anti-aging research. Naturally found in highly glycosylated forms, aglycone quercetin has low solubility in aqueous environments, which has heavily limited its clinical applications. To improve the stability and bioavailability of quercetin, efforts have been made to chemically modify quercetin and related flavonoids so as to improve aqueous solubility while retaining bioactivity. In this review, we provide an updated overview of the biological properties of quercetin and proposed mechanisms of actions in the context of wound healing and aging. We also provide a description of recent developments in synthetic approaches to improve the solubility and stability of quercetin and related analogs for therapeutic applications. Further research in these areas is expected to enable translational applications to improve ocular wound healing and tissue repair.
Collapse
Affiliation(s)
- Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Carrie German
- CFD Research Corporation, Computational Biology Division, Huntsville, AL 35806, USA;
| | - Dimitrios Karamichos
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
10
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
11
|
Shen M, Li T, Feng Y, Wu P, Serrano BR, Barcenas AR, Qu L, Zhao W. Effects of quercetin on granulosa cells from prehierarchical follicles by modulating MAPK signaling pathway in chicken. Poult Sci 2023; 102:102736. [PMID: 37209658 DOI: 10.1016/j.psj.2023.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/22/2023] Open
Abstract
Quercetin (Que), widely found in a huge variety of plants, plays important roles in ovarian function. However, to data, there have been no reports about Que regulating granulosa cells (GCs) in prehierarchical follicles in chicken. Herein, GCs from follicles diameter from 4 to 8 mm in chicken were treated by Que in vitro culture to investigate how Que exerts its effect on follicular development. GCs treated by Que in concentrations of 10, 100, and 1,000 ng/mL were tested for cell proliferation and progesterone secretion. Eight cDNA libraries were constructed from GCs (4 samples per group) to explore transcriptome expression changes. The role of the MAPK/ERK signaling pathway was validated in this process. Treatment with 100 and 1,000 ng/mL levels of Que significantly promoted cell proliferation and progesterone secretion (P < 0.05). RNA-seq analysis data showed that 402 and 263 differentially expressed genes (DEGs) were up- and down-regulated, respectively. Functional enrichment analysis that the pathways related to follicular development included biosynthesis of amino acids, MAPK signaling pathway, and calcium signaling pathway. Notably, the function exerted in GCs of the different levels of Que was associated with the suppression of the MAPK pathway. In conclusion, our results proved that low levels of Que could promote MAPK signaling pathway, but high levels of Que inhibit MAPK signaling pathway in GCs from the prehierarchical follicles, promote cell proliferation and progesterone secretion, and benefit follicle selection.
Collapse
Affiliation(s)
- Manman Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 225108, China; Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tao Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 225108, China
| | - Yuan Feng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 225108, China
| | - Ping Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 225108, China
| | | | | | - Liang Qu
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Weiguo Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 225108, China.
| |
Collapse
|
12
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
13
|
Huang S, Qi B, Yang L, Wang X, Huang J, Zhao Y, Hu Y, Xiao W. Phytoestrogens, novel dietary supplements for breast cancer. Biomed Pharmacother 2023; 160:114341. [PMID: 36753952 DOI: 10.1016/j.biopha.2023.114341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
While endocrine therapy is considered as an effective way to treat breast cancer, it still faces many challenges, such as drug resistance and individual discrepancy. Therefore, novel preventive and therapeutic modalities are still in great demand to decrease the incidence and mortality rate of breast cancer. Numerous studies suggested that G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor, is a potential target for breast cancer prevention and treatment. It was also shown that not only endogenous estrogens can activate GPERs, but many phytoestrogens can also function as selective estrogen receptor modulators (SERMs) to interact GPERs. In this review, we discussed the possible mechanisms of GPERs pathways and shed a light of developing novel phytoestrogens based dietary supplements against breast cancers.
Collapse
Affiliation(s)
- Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Baowen Qi
- South China Hospital of Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen, 518116, P. R. China; BioCangia Inc., 205 Torbay Road, Markham, ON L3R 3W4, Canada
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ya Zhao
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Yonghe Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| |
Collapse
|
14
|
Targets Involved in the Anti-Cancer Activity of Quercetin in Breast, Colorectal and Liver Neoplasms. Int J Mol Sci 2023; 24:ijms24032952. [PMID: 36769274 PMCID: PMC9918234 DOI: 10.3390/ijms24032952] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Phytochemicals have long been effective partners in the fight against several diseases, including cancer. Among these, flavonoids are valuable allies for both cancer prevention and therapy since they are known to influence a large panel of tumor-related processes. Particularly, it was revealed that quercetin, one of the most common flavonoids, controls apoptosis and inhibits migration and proliferation, events essential for the development of cancer. In this review, we collected the evidence on the anti-cancer activity of quercetin exploring the network of interactions between this flavonol and the proteins responsible for cancer onset and progression focusing on breast, colorectal and liver cancers, owing to their high worldwide incidence. Moreover, quercetin proved to be also a potentiating agent able to push further the anti-cancer activity of common employed anti-neoplastic agents, thus allowing to lower their dosages and, above all, to sensitize again resistant cancer cells. Finally, novel approaches to delivery systems can enhance quercetin's pharmacokinetics, thus boosting its great potentiality even further. Overall, quercetin has a lot of promise, given its multi-target potentiality; thus, more research is strongly encouraged to properly define its pharmaco-toxicological profile and evaluate its potential for usage in adjuvant and chemoprevention therapy.
Collapse
|
15
|
Hu X, Li X, Deng P, Zhang Y, Liu R, Cai D, Xu Q, Jiang X, Sun J, Bai W. The consequence and mechanism of dietary flavonoids on androgen profiles and disorders amelioration. Crit Rev Food Sci Nutr 2022; 63:11327-11350. [PMID: 35796699 DOI: 10.1080/10408398.2022.2090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Androgen is a kind of steroid hormone that plays a vital role in reproductive system and homeostasis of the body. Disrupted androgen balance serves as the causal contributor to a series of physiological disorders and even diseases. Flavonoids, as an extremely frequent family of natural polyphenols, exist widely in plants and foods and have received great attention when considering their inevitable consumption and estrogen-like effects. Mounting evidence illustrates that flavonoids have a propensity to interfere with androgen synthesis and metabolism, and also have a designated improvement effect on androgen disorders. Therefore, flavonoids were divided into six subclasses based on the structural feature in this paper, and the literature about their effects on androgens published in the past ten years was summarized. It could be concluded that flavonoids have the potential to regulate androgen levels and biological effects, mainly by interfering with the hypothalamic-pituitary-gonadal axis, androgen synthesis and metabolism, androgen binding with its receptors and membrane receptors, and antioxidant effects. The faced challenges about androgen regulation by flavonoids masterly include target mechanism exploration, individual heterogeneity, food matrixes interaction, and lack of clinical study. This review also provides a scientific basis for nutritional intervention using flavonoids to improve androgen disorder symptoms.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Qingjie Xu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
16
|
Scott MB, Styring AK, McCullagh JSO. Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals. Pathogens 2022; 11:770. [PMID: 35890016 PMCID: PMC9324685 DOI: 10.3390/pathogens11070770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored.
Collapse
Affiliation(s)
- Michael B. Scott
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - Amy K. Styring
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - James S. O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| |
Collapse
|
17
|
Khurana P, Varshney R, Gupta A. A Network-Biology led Computational Drug repurposing Strategy to prioritize therapeutic options for COVID-19. Heliyon 2022; 8:e09387. [PMID: 35578630 PMCID: PMC9093055 DOI: 10.1016/j.heliyon.2022.e09387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/17/2021] [Accepted: 05/03/2022] [Indexed: 12/15/2022] Open
Abstract
The alarming pandemic situation of novel Severe Acute Respiratory Syndrome Coronavirus 2 (nSARS-CoV-2) infection, high drug development cost and slow process of drug discovery have made repositioning of existing drugs for therapeutics a popular alternative. It involves the repurposing of existing safe compounds which results in low overall development costs and shorter development timeline. In the present study, a computational network-biology approach has been used for comparing three candidate drugs i.e. quercetin, N-acetyl cysteine (NAC), and 2-deoxy-glucose (2-DG) to be effectively repurposed against COVID-19. For this, the associations between these drugs and genes of Severe Acute Respiratory Syndrome (SARS) and the Middle East Respiratory Syndrome (MERS) diseases were retrieved and a directed drug-gene-gene-disease interaction network was constructed. Further, to quantify the associations between a target gene and a disease gene, the shortest paths from the target gene to the disease genes were identified. A vector DV was calculated to represent the extent to which a disease gene was influenced by these drugs. Quercetin was quantified as the best among the three drugs, suited for repurposing with DV of -70.19, followed by NAC with DV of -39.99 and 2-DG with DV of -13.71. The drugs were also assessed for their safety and efficacy balance (in terms of therapeutic index) using network properties. It was found that quercetin was a forerunner than other two drugs.
Collapse
|
18
|
Zhang X, Wu C. In Silico, In Vitro, and In Vivo Evaluation of the Developmental Toxicity, Estrogenic Activity, and Mutagenicity of Four Natural Phenolic Flavonoids at Low Exposure Levels. ACS OMEGA 2022; 7:4757-4768. [PMID: 35187296 PMCID: PMC8851455 DOI: 10.1021/acsomega.1c04239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Flavonoids are bioactive phenolic compounds widely present in plant food and used in various nutraceutical, pharmaceutical, and cosmetic products. However, recent studies showed rising concerns of endocrine disruptions and developmental toxicities for many flavonoids. To understand the impacts of flavonoid structure on toxicity, we used a new multitiered platform to investigate the toxicities of four common flavonoids, luteolin, apigenin, quercetin, and genistein, from flavone, flavonol, and isoflavone. Weak estrogenic activity was detected for four flavonoids (genistein, apigenin, quercetin, and luteolin) at 10-12 to 10-7 M by the MCF-7 cell proliferation assay, which agreed with the molecular docking results. Consistent with the simulation results of Toxicity Estimation Software Tool, genistein and luteolin showed high developmental toxicity in the chicken embryonic assay (45-477 μg/kg) with mortality rate up to 50%. Luteolin, quercetin, and apigenin showed signs of mutagenicity at 5 × 10-3 pmol/plate. The findings showed nonmonotonic dose responses for the chemicals.
Collapse
|
19
|
Bolouki A, Zal F, Mostafavi-Pour Z, Bakhtari A. Protective effects of quercetin on uterine receptivity markers and blastocyst implantation rate in diabetic pregnant mice. Taiwan J Obstet Gynecol 2021; 59:927-934. [PMID: 33218414 DOI: 10.1016/j.tjog.2020.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Diabetic women have different reproductive problems. In pregnant diabetic women, high rates of perinatal mortality, spontaneous abortion and congenital anomalies are observed. We hypothesized that quercetin, as an antidiabetic and phytoestrogen, might have protective effects on the embryo implantation in pregnant diabetic mice. We investigated the ameliorative effects of quercetin on the levels of serum estrogen and progesterone, rate of blastocyst implantation, and uterine receptivity markers in diabetic mice. MATERIALS AND METHODS Diabetic and healthy female mice were treated with quercetin (30 mg/kg/day) four weeks before pregnancy. Plasma sex-steroid levels were determined on day 4 of pregnancy. Also, uteri were harvested for investigation of protein and mRNA expression changes. In another set of our study, implantation rate was determined on day 5 of pregnancy. RESULTS Our results indicated that quercetin was significantly reduced blood glucose levels in diabetic mice. The number of implantation sites as well as serum estradiol level was reduced in diabetic mice, and then treatment with quercetin significantly increased both. On the other hand, insulin like growth factor1, integrin αvβ3, and cyclooxygenase2 mRNA expression in the uterus of diabetic mice were significantly reduced, and quercetin treatment augmented the expression level of these genes. Besides, the level of inactive β-catenin protein level in the uterus of diabetic mice was higher than normal group; treatment with quercetin reduced the level of inactive β-catenin protein as compared to diabetic mice. CONCLUSION We conclude that administration of quercetin before pregnancy can probably alleviate reproductive problems in diabetic women likely via its estrogenic and antihyperglycemic effects.
Collapse
Affiliation(s)
- Ayeh Bolouki
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zohreh Mostafavi-Pour
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azizollah Bakhtari
- Reproductive Biology Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Galván-Portillo M, Vázquez-Salas RA, Hernández-Pérez JG, Blanco-Muñoz J, López-Carrillo L, Torres-Sánchez L. Dietary flavonoid patterns and prostate cancer: evidence from a Mexican population-based case-control study. Br J Nutr 2021; 127:1-9. [PMID: 34256878 DOI: 10.1017/s0007114521002646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Flavonoids are a broad group of bioactive compounds with anticarcinogenic effects on the prostate that have been scarcely evaluated in Latin American populations. Our objective was to evaluate the association between dietary patterns of flavonoid intake and prostate cancer (PC) in a population-based case-control study carried out in Mexico City. Based on a semi-quantitative FFQ with a frame reference of 3 years before diagnosis or interview, we used an updated database for estimating the daily intake (mg/d) of flavones, flavonols and flavanols for 395 confirmed incident PC cases and 797 population controls matched by age (± 5 years). Histological PC differentiation was evaluated using the Gleason score at diagnosis. Flavonoid dietary intake patterns (FDIP) were determined through principal component analysis, and their association with PC was estimated using logistic regression models. Three FDIP were identified: gallate pattern (GP) characterised by (-)-epicatechin-3-O-gallate, (-)-epigallocatechin-3-O-gallate and (+)-gallocatechin; luteolin pattern (LP) characterised by luteolin and (-)-epigallocatechin-3-O-gallate; and a mixed pattern (MP) that included (+)-catechin, (-)-epicatechin and quercetin. A higher GP (ORT3 v.T1 = 0·47; 95 % CI 0·33, 0·66) and LP intake (ORT3 v. T1 = 0·39; 95 % CI 0·27, 0·59) were associated with a decreased PC likelihood. In contrast, a higher MP intake (ORT3 v. T1 = 2·32; 95 % CI 1·67, 3·23) increased PC likelihood. The possible differential and synergistic anticarcinogenic role of flavonoid compounds in PC deserves further study.
Collapse
Affiliation(s)
- Marcia Galván-Portillo
- Center for Population Health Research, National Institute of Public Health of Mexico, Av. Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, CP 62100Cuernavaca, Morelos, Mexico
| | - Ruth Argelia Vázquez-Salas
- National Council for Science and Technology (CONACYT), National Institute of Public Health of Mexico, Av. Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera. CP 62100Cuernavaca, Morelos, Mexico
| | - Jesús Gibran Hernández-Pérez
- Center for Population Health Research, National Institute of Public Health of Mexico, Av. Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, CP 62100Cuernavaca, Morelos, Mexico
| | - Julia Blanco-Muñoz
- Center for Population Health Research, National Institute of Public Health of Mexico, Av. Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, CP 62100Cuernavaca, Morelos, Mexico
| | - Lizbeth López-Carrillo
- Center for Population Health Research, National Institute of Public Health of Mexico, Av. Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, CP 62100Cuernavaca, Morelos, Mexico
| | - Luisa Torres-Sánchez
- Center for Population Health Research, National Institute of Public Health of Mexico, Av. Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, CP 62100Cuernavaca, Morelos, Mexico
| |
Collapse
|
21
|
Oyewopo A, Adeleke O, Johnson O, Akingbade A. Quercetin upregulates CREM gene expression in cyanide-induced endocrine dysfunction. Heliyon 2021; 7:e06901. [PMID: 34027151 PMCID: PMC8121865 DOI: 10.1016/j.heliyon.2021.e06901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/13/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
Cyanide is among the ubiquitous chemicals that humans are usually exposed to and it is well documented that cyanide induces infertility in humans and experimental rodents. However, the pathogenesis remains unknown. Likewise, quercetin is an important nutraceutical that detoxifies reactive oxygen species, but its effects on testicular damage is not clear. The present study investigated the role of nutraceutical, quercetin on cyanide-induced testicular toxicity and probable involvement of cAMP-response-element modulator (CREM) which is a transcription factor necessary for the process of spermatogenesis. Thus, this work hypothesized that quercetin will mitigate endocrine dysfunction induced by cyanide. Seventy-two adult male Wistar rats were divided into seven groups (A to G). Groups A, B, C, F and G comprised of eight (8) rats per group while groups D and E comprised of sixteen (16) rats per group. Group A was designated as control while Groups B and C were given 0.5 and 1 mg/kg of cyanide respectively for 56 days. Group D and E received 0.5 and 1 mg/kg body weight cyanide respectively for 30 days. At day 30, eight animals were sacrificed from Group D and E and the remaining eight (8) rats were subdivided into sub-groups (D1 and E1) and were given 20 and 40 mg/kg of quercetin respectively for twenty-six (26) days. Group F and G were given concurrent administration of cyanide and quercetin at a dose of 0.5 + 20 mg/kg and 1 + 40 mg/kg respectively for 56 days. Body and testicular weight were significantly reduced in cyanide treated groups while quercetin modulates the reduction. Significant down-regulation of CREM gene and reduction in serum level of follicle stimulating hormone (FSH), Luteinizing hormone (LH), testosterone, glutathione peroxidase (GPx) and zinc in cyanide-treated groups, whereas administration of quercetin concomitantly with cyanide exposure or post-treated significantly reversed the alterations.
Collapse
Affiliation(s)
- Adeoye Oyewopo
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Opeyemi Adeleke
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - Olawumi Johnson
- Department of Anatomy, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Adebanji Akingbade
- Department of Anatomy, College of Medicine and Health Sciences, Ekiti State University, Ekiti State, Nigeria
| |
Collapse
|
22
|
Najjar RS, Turner CG, Wong BJ, Feresin RG. Berry-Derived Polyphenols in Cardiovascular Pathologies: Mechanisms of Disease and the Role of Diet and Sex. Nutrients 2021; 13:nu13020387. [PMID: 33513742 PMCID: PMC7911141 DOI: 10.3390/nu13020387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) prevalence, pathogenesis, and manifestation is differentially influenced by biological sex. Berry polyphenols target several signaling pathways pertinent to CVD development, including inflammation, oxidative stress, and cardiac and vascular remodeling, and there are innate differences in these pathways that also vary by sex. There is limited research systematically investigating sex differences in berry polyphenol effects on these pathways, but there are fundamental findings at this time that suggest a sex-specific effect. This review will detail mechanisms within these pathological pathways, how they differ by sex, and how they may be individually targeted by berry polyphenols in a sex-specific manner. Because of the substantial polyphenolic profile of berries, berry consumption represents a promising interventional tool in the treatment and prevention of CVD in both sexes, but the mechanisms in which they function within each sex may vary.
Collapse
Affiliation(s)
- Rami S. Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
| | - Casey G. Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Brett J. Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
- Correspondence:
| |
Collapse
|
23
|
Bai X, Tang Y, Li Q, Chen Y, Liu D, Liu G, Fan X, Ma R, Wang S, Li L, Zhou K, Zheng Y, Liu Z. Network pharmacology integrated molecular docking reveals the bioactive components and potential targets of Morinda officinalis-Lycium barbarum coupled-herbs against oligoasthenozoospermia. Sci Rep 2021; 11:2220. [PMID: 33500463 PMCID: PMC7838196 DOI: 10.1038/s41598-020-80780-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Oligoasthenozoospermia (OA) is one of the most common types of male infertility affecting sperm count and sperm motility. Unfortunately, it is difficult for existing drugs to fundamentally improve the sperm quality of OA patients, because the pathological mechanism of OA has not been fully elucidated yet. Morinda officinalis-Lycium barbarum coupled-herbs (MOLBCH), as traditional Chinese Medicines, has been widely used for treating OA over thousands of years, but its molecular mechanism is still unclear. For this purpose, we adopted a comprehensive approach integrated network pharmacology and molecular docking to reveal the bioactive components and potential targets of MOLBCH against OA. The results showed that MOLBCH alleviated apoptosis, promoted male reproductive function, and reduced oxidant stress in the treatment of OA. Ohioensin-A, quercetin, beta-sitosterol and sitosterol were the key bioactive components. Androgen receptor (AR), Estrogen receptor (ESR1), Mitogen-activated protein kinase 3 (MAPK3), RAC-alpha serine/threonine-protein kinase (AKT1), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were the core potential targets. PI3K/Akt signaling pathway, prostate cancer, AGE-RAGE signaling pathway in diabetic complications were the most representative pathways. Moreover, molecular docking was performed to validate the strong binding interactions between the obtained core components and targets. These observations provide deeper insight into the pathogenesis of OA and can be used to design new drugs and develop new therapeutic instructions to treat OA.
Collapse
Affiliation(s)
- Xue Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yafei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ru Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kailin Zhou
- School of Humanities, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
24
|
Wang Z, Zhang G, Le Y, Ju J, Zhang P, Wan D, Zhao Q, Jin G, Su H, Liu J, Feng J, Fu Y, Hou R. Quercetin promotes human epidermal stem cell proliferation through the estrogen receptor/β-catenin/c-Myc/cyclin A2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1102-1110. [PMID: 32840291 DOI: 10.1093/abbs/gmaa091] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Skin epidermal stem cells (EpSCs) play an important role in wound healing. Quercetin is a phytoestrogen reported to accelerate skin wound healing, but its effect on EpSCs is unknown. In this study, we investigated the effect of quercetin on human EpSC proliferation and explored the underlying mechanisms. We found that quercetin at 0.1~1 μM significantly promoted EpSC proliferation and increased the number of cells in S phase. The pro-proliferative effect of quercetin on EpSCs was confirmed in cultured human skin tissue. Mechanistic studies showed that quercetin significantly upregulated the expressions of β-catenin, c-Myc, and cyclins A2 and E1. Inhibitor for β-catenin or c-Myc significantly inhibited quercetin-induced EpSC proliferation. The β-catenin inhibitor XAV-939 suppressed quercetin-induced expressions of β-catenin, c-Myc, and cyclins A2 and E1. The c-Myc inhibitor 10058-F4 inhibited the upregulation of c-Myc and cyclin A2 by quercetin. Pretreatment of EpSCs with estrogen receptor (ER) antagonist ICI182780, but not the G protein-coupled ER1 antagonist G15, reversed quercetin-induced cell proliferation and upregulation of β-catenin, c-Myc, and cyclin A2. Collectively, these results indicate that quercetin promotes EpSC proliferation through ER-mediated activation of β-catenin/c-Myc/cyclinA2 signaling pathway and ER-independent upregulation of cyclin E1 and that quercetin may accelerate skin wound healing through promoting EpSC proliferation. As EpSCs are used not only in clinic to treat skin wounds but also as seed cells in skin tissue engineering, quercetin is a useful reagent to expand EpSCs for basic research, skin wound treatment, and skin tissue engineering.
Collapse
Affiliation(s)
- Zhaodong Wang
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Guangliang Zhang
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jihui Ju
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Ping Zhang
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Dapeng Wan
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Qiang Zhao
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Guangzhe Jin
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Hao Su
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Jinwei Liu
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Jiaxuan Feng
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Ruixing Hou
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| |
Collapse
|
25
|
Dobrydnev AV, Tkachuk TM, Atamaniuk VP, Popova MV. Quercetin-Amino Acid Conjugates are Promising Anti-Cancer Agents in Drug Discovery Projects. Mini Rev Med Chem 2020; 20:107-122. [PMID: 31595850 DOI: 10.2174/1389557519666191009152007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Quercetin is a plant flavonoid with great potential for the prevention and treatment of disease. Despite the curative application of quercetin is hampered by low bioavailability, its core serves as a scaffold for generating more potent compounds with amplified therapeutic window. This review aims to describe recent advances in the improvement of the pharmacokinetic profile of quercetin via the amino acid prodrug approach which offers wide structural diversity, physicochemical and biological properties improvement. According to the findings, conjugation of quercetin with amino acids results in increased solubility, stability, cellular permeability as well as biological activity. In particular quercetin- amino acid conjugates exhibited potent anticancer, MDR-reversal and antibiotic resistance reversal activities. The synthetic pathways and examples of quercetin-amino acid conjugates are considered. Practical considerations and challenges associated with the development of these prodrugs are also discussed. This mini-review covers the literature on quercetin-amino acid conjugates since 2001 when the first thematic work was published.
Collapse
Affiliation(s)
- Alexey V Dobrydnev
- SMC Ecopharm Ltd., Naberezhno-Korchuvatska Street 136-B, Kyiv 03045, Ukraine
| | - Tetiana M Tkachuk
- SMC Ecopharm Ltd., Naberezhno-Korchuvatska Street 136-B, Kyiv 03045, Ukraine
| | - Viktor P Atamaniuk
- SMC Ecopharm Ltd., Naberezhno-Korchuvatska Street 136-B, Kyiv 03045, Ukraine
| | - Maria V Popova
- Chemistry Department, National Taras Shevchenko University of Kyiv, Lva Tolstoho Street 12, Kyiv 01033, Ukraine
| |
Collapse
|
26
|
Tauchen J, Huml L, Rimpelova S, Jurášek M. Flavonoids and Related Members of the Aromatic Polyketide Group in Human Health and Disease: Do They Really Work? Molecules 2020; 25:E3846. [PMID: 32847100 PMCID: PMC7504053 DOI: 10.3390/molecules25173846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Some aromatic polyketides such as dietary flavonoids have gained reputation as miraculous molecules with preeminent beneficial effects on human health, for example, as antioxidants. However, there is little conclusive evidence that dietary flavonoids provide significant leads for developing more effective drugs, as the majority appears to be of negligible medicinal importance. Some aromatic polyketides of limited distribution have shown more interesting medicinal properties and additional research should be focused on them. Combretastatins, analogues of phenoxodiol, hepatoactive kavalactones, and silymarin are showing a considerable promise in the advanced phases of clinical trials for the treatment of various pathologies. If their limitations such as adverse side effects, poor water solubility, and oral inactivity are successfully eliminated, they might be prime candidates for the development of more effective and in some case safer drugs. This review highlights some of the newer compounds, where they are in the new drug pipeline and how researchers are searching for additional likely candidates.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, 165 00 Praha, Czech Republic
| | - Lukáš Huml
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28 Prague, Czech Republic; (L.H.); (M.J.)
| | - Silvie Rimpelova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic;
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28 Prague, Czech Republic; (L.H.); (M.J.)
| |
Collapse
|
27
|
Despite Blocking Doxorubicin-Induced Vascular Damage, Quercetin Ameliorates Its Antibreast Cancer Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8157640. [PMID: 33728016 PMCID: PMC7939741 DOI: 10.1155/2020/8157640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/21/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023]
Abstract
Quercetin is a naturally occurring flavonol present in many foods. Doxorubicin is an effective anticancer agent despite its dose-limiting cardiovascular toxicity. Herein, we investigated the potential protective effects of quercetin against doxorubicin-induced vascular toxicity and its effect on the therapeutic cytotoxic profile of doxorubicin in breast cancer cell lines. The incubation of isolated aortic rings with doxorubicin produced concentration-dependent exaggeration of vasoconstriction responses to phenylephrine but impaired vasodilation responses to acetylcholine. Coincubation with quercetin completely blocked the exaggerated vasoconstriction responses and the impaired vasodilation. In addition, doxorubicin incubation increased reactive oxygen species generation from the isolated aorta, while coincubation with quercetin inhibited ROS generation back to normal values. On the other hand, quercetin in combination with doxorubicin, doubled the IC50 of doxorubicin alone in MCF-7 cells from 0.4 ± 0.03 to 0.8 ± 0.06 μM. To a lesser extent, the IC50 of doxorubicin did not change after combination with quercetin in MDA-MB-231 cells. These findings indicate a significant antagonistic interaction between quercetin and doxorubicin in the aforementioned cell lines. Only in T47D cells, quercetin combination with doxorubicin was an additive interaction (CI − value = 1.17). Yet, quercetin significantly impaired the immediate phase of intracellular ROS generation by doxorubicin within breast cancer cells from 125.2 ± 3.6% to 102.5 ± 3.9% of control cells. Using annexin-V/FITC staining technique, the quercetin/doxorubicin combination showed a significantly lower percent of apoptotic cells compared to doxorubicin alone treated cells. Cell cycle distribution in breast cancer cells was performed using DNA content flowcytometry after propidium iodide staining. Quercetin induced significant accumulation of cells in the S phase as well as in the G2/M phase within both MCF-7 and MDA-MB-231 cell lines and interfered with doxorubicin-induced cell cycle effects. Interestingly, quercetin was found to inhibit the P-glycoprotein ATPase subunit with a consequent enhanced intracellular concentration of doxorubicin in MDA-MB-231 and T47D cells. In conclusion, quercetin, despite its potent vascular protective activity against doxorubicin, was found to influence doxorubicin-induced antibreast cancer effects via pharmacodynamic as well as cellular pharmacokinetic aspects.
Collapse
|
28
|
Ciebiera M, Ali M, Prince L, Jackson-Bey T, Atabiekov I, Zgliczyński S, Al-Hendy A. The Evolving Role of Natural Compounds in the Medical Treatment of Uterine Fibroids. J Clin Med 2020; 9:E1479. [PMID: 32423112 PMCID: PMC7290481 DOI: 10.3390/jcm9051479] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Uterine fibroids (UFs) remain a significant health issue for many women, with a disproportionate impact on women of color, likely due to both genetic and environmental factors. The prevalence of UFs is estimated to be approximately 70% depending on population. UF-derived clinical symptoms include pelvic pain, excessive uterine bleeding, gastrointestinal and voiding problems, as well as impaired fertility. Nowadays numerous methods of UF treatment are available-from conservative treatment to invasive surgeries. Selecting an appropriate treatment option should be individualized and adjusted to the patient's expectations as much as possible. So far, the mainstay of treatment is surgery, but their negative impact of future fertility is clear. On the other hand, emerging new pharmaceutical options have significant adverse effects like liver function impairment, hot flashes, bone density loss, endometrial changes, and inability to attempt conception during treatment. Several natural compounds are found to help treat UFs and relieve their symptoms. In this review we summarize all the current available data about natural compounds that may be beneficial for patients with UFs, especially those who want to preserve their future fertility or have treatment while actively pursuing conception. Vitamin D, epigallocatechin gallate, berberine, curcumin, and others are being used as alternative UF treatments. Moreover, we propose the concept of using combined therapies of natural compounds on their own or combined with hormonal agents to manage UFs. There is a strong need for more human clinical trials involving these compounds before promoting widespread usage.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Mohamed Ali
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Lillian Prince
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Tia Jackson-Bey
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Ihor Atabiekov
- Moscow Region Cancer Center, Balashikha 143900, Russian;
| | - Stanisław Zgliczyński
- Department of Internal Diseases and Endocrinology, Central Teaching Clinical Hospital, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
29
|
Ma Z, Zhen Y, Hu C, Yi H. Myeloid-Derived Suppressor Cell-Derived Arginase-1 Oppositely Modulates IL-17A and IL-17F Through the ESR/STAT3 Pathway During Colitis in Mice. Front Immunol 2020; 11:687. [PMID: 32391010 PMCID: PMC7188946 DOI: 10.3389/fimmu.2020.00687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) play a crucial role in regulating the intestinal immune response during colitis. We previously revealed an essential role of MDSC in promoting TH17 cell polarization, which was found to be arginase-1 (Arg-1)-dependent; however, the underlying mechanism remains obscure. Here we report that percentage of MDSC decreased in ArgmyeKO mice during DSS-induced colitis. IL-17A levels reduced but IL-17F levels increased significantly in the colorectum of ArgmyeKO mice, leading to severe tissue damage and high risk of mortality rate. Activation of estrogen receptor (ESR) increased pSTAT3 level in MDSC and consequently led to elevated percentage of MDSC and more Arg-1 and inducible nitric oxide synthase expression in MDSC. Increased level of IL-17A and reduced level of IL-17F alleviated colitis in mice consequently. Together, these findings demonstrate a protective role of MDSC-derived Arg-1 during colitis after activates ESR/STAT3 signaling in MDSC. High level of Arg-1 favors accumulation of IL-17A, but reduced IL-17F expression in the colorectum of mice and ultimately leading to relief of colitis, indicating a potential clinical impact of MDSC-derived Arg-1 for controlling inflammatory bowel disease.
Collapse
Affiliation(s)
- Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Yu Zhen
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Cong Hu
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| |
Collapse
|
30
|
Quercetin promotes the survival of granulocytic myeloid-derived suppressor cells via the ESR2/STAT3 signaling pathway. Biomed Pharmacother 2020; 125:109922. [PMID: 32007919 DOI: 10.1016/j.biopha.2020.109922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Quercetin is a natural product that has been shown to induce tumor apoptosis and necrosis through multiple mechanisms. Tumor-induced myeloid-derived suppressor cell (MDSC) expansion negatively regulates the immune response by inhibiting T cell function through signal transducer and activator of transcription 3 (STAT3) activation, thereby facilitating tumor escape from host immune surveillance. Thus MDSC is an attractive target for cancer immunotherapy to enhance cytotoxic T cell responses. However, the effects of quercetin on MDSC are poorly understood. Here, we demonstrate that quercetin treatment enhanced mouse- and human- derived granulocytic-myeloid-derived suppressor cells (G-MDSC) survival and promoted the secretion of T cell-suppressive factors in vitro. Bioinformatics analysis further showed that quercetin was highly correlated with the estrogen receptor signaling pathway, which was confirmed by quantitative reverse transcription-polymerase chain reaction and flow cytometric analysis. These findings highlight the potential advantages and feasibility of quercetin in reinforcing the suppressive property of G-MDSC. Thus impact of G-MDSC should be taken into consideration when quercetin is applied to tumor therapy.
Collapse
|
31
|
Estrogenic biological activity and underlying molecular mechanisms of green tea constituents. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Song JE, Tian J, Kook YJ, Thangavelu M, Choi JH, Khang G. A BMSCs-laden quercetin/duck's feet collagen/hydroxyapatite sponge for enhanced bone regeneration. J Biomed Mater Res A 2019; 108:784-794. [PMID: 31794132 DOI: 10.1002/jbm.a.36857] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Treating critical-sized bone defects is an important issue in the field of tissue engineering and bone regeneration. From the various biomaterials for bone regeneration, collagen is an important and widely used biomaterial in biomedical applications, hence, it has numerous attractive properties including biocompatibility, hyper elastic behavior, prominent mechanical properties, support cell adhesion, proliferation, and biodegradability. In the present study, collagen was extracted from duck's feet (DC) as a new collagen source and combined with quercetin (Qtn), a type of flavonoids found in apple and onions and has been reported to affect the bone metabolism, for increasing osteogenic differentiation. Further, improving osteoconductive properties of the scaffold hydroxyapatite (HAp) a biodegradable material was used. We prepared 0, 25, 50, and 100 μM Qtn/DC/HAp sponges using Qtn, DC, and HAp. Their physiochemical characteristics were evaluated using scanning electron microscopy, compressive strength, porosity, and Fourier transform infrared spectroscopy. To assess the effect of Qtn on osteogenic differentiation, we cultured bone marrow mesenchymal stem cells on the sponges and evaluated by alkaline phosphatase, 3-4-2, 5-diphenyl tetrazolium bromide assay, and real-time polymerase chain reaction. Additionally, they were studied implanting in rat, analyzed through Micro-CT and histological staining. From our in vitro and in vivo results, we found that Qtn has an effect on bone regeneration. Among the different experimental groups, 25 μM Qtn/DC/HAp sponge was found to be highly increased in cell proliferation and osteogenic differentiation compared with other groups. Therefore, 25 μM Qtn/DC/HAp sponge can be used as an alternative biomaterial for bone regeneration in critical situations.
Collapse
Affiliation(s)
- Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jingwen Tian
- Department of Nuclear Medicine, Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Yeon Ji Kook
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Muthukumar Thangavelu
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Joo Hee Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
33
|
Neisy A, Zal F, Seghatoleslam A, Alaee S. Amelioration by quercetin of insulin resistance and uterine GLUT4 and ERα gene expression in rats with polycystic ovary syndrome (PCOS). Reprod Fertil Dev 2019; 31:315-323. [PMID: 30103849 DOI: 10.1071/rd18222] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/05/2018] [Indexed: 12/23/2022] Open
Abstract
Insulin resistance (IR) and infertility are two major complications of polycystic ovary syndrome (PCOS), which are the results of changes in certain parts of the reproductive and metabolic systems. We aimed to observe the effect of quercetin on dehydroepiandrosterone (DHEA)-induced PCOS and insulin resistance in rats. All animals were divided into five groups and DHEA was used to induce PCOS. Bodyweight and ovarian morphology of all groups were observed. Fasting blood glucose and insulin levels were analysed. The homeostasis model assessment of insulin resistance (HOMA-IR) method was used for IR level determination. The expression of oestrogen receptor α (ERα) and glucose transporter 4 (GLUT4) genes in the uterus was examined by real-time polymerase chain reaction. Liver hexokinase (HK) and glucokinase (GK) activity was determined using spectrophotometry. Quercetin significantly improved the IR state in PCOS rats. PCOS resulted in a decrease in liver GK and an increase in liver HK specific activity, whereas quercetin increased both liver HK and GK activity. Our data also showed a significant reduction in uterine ERα and GLUT4 expression in the PCOS group, which was increased by quercetin. A remarkable effect of quercetin was the intensive reduction of PCOS-IR and significant induction of uterine GLUT4 and ERα gene expression; it could thus be a possible effective treatment for PCOS and its complications, IR and infertility.
Collapse
Affiliation(s)
- Asma Neisy
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 7134845794 Iran
| | - Fatemeh Zal
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 7134845794 Iran
| | - Atefeh Seghatoleslam
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 7134845794 Iran
| | - Sanaz Alaee
- Reproductive Biology Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7134845794 Iran
| |
Collapse
|
34
|
Zadegan S, Nourmohammadi J, Vahidi B, Haghighipour N. An investigation into osteogenic differentiation effects of silk fibroin-nettle (Urtica dioica L.) nanofibers. Int J Biol Macromol 2019; 133:795-803. [PMID: 31028813 DOI: 10.1016/j.ijbiomac.2019.04.165] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/28/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023]
Abstract
The purpose of this study was to investigate physical, mechanical, and osteogenic properties of silk fibroin (SF) nanofibers containing Urtica dioica L. (nettle) extract at different concentrations. In this respect, the successful incorporation of nettle in SF nanofibers was analyzed and then confirmed through Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The mean fiber diameter, water uptake, breaking strain, cellular attachment, and proliferation of the given nanofibers also increased as the nettle content was added, while this trend was opposite in terms of tensile strength and modulus. The in vitro release studies correspondingly demonstrated that the nettle release had been controlled according to Fickian diffusion and it was faster in the samples including more nettle. Furthermore, both ARS staining and real-time RT-PCR results suggested that nettle had enhanced the expression of both early and late markers of osteoblast differentiation in a dose-dependent manner.
Collapse
Affiliation(s)
- Sara Zadegan
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | |
Collapse
|
35
|
Zhang H, Pan J, Wu X, Zuo AR, Wei Y, Ji ZL. Large-Scale Target Identification of Herbal Medicine Using a Reverse Docking Approach. ACS OMEGA 2019; 4:9710-9719. [PMID: 31460061 PMCID: PMC6648299 DOI: 10.1021/acsomega.9b00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/17/2019] [Indexed: 06/10/2023]
Abstract
Herbal medicine has been used to countermine various diseases for centuries. However, most of the therapeutic targets underlying herbal therapy remain unclear, which largely slow down the novel drug discovery process from natural products. In this study, we developed a novel computational pipeline for assisting de novo identification of protein targets for herbal ingredients. The pipeline involves pharmacophore comparison and reverse ligand-protein docking simulation in a high throughput manner. We evaluated the pipeline using three traditional Chinese medicine ingredients such as acteoside, quercetin, and epigallocatechin gallate as examples. A majority of current known targets of these ingredients were successfully identified by the pipeline. Structural comparative analyses confirmed that the predicted ligand-target interactions used the same binding pockets and binding modes as those of known ligand-target interactions. Furthermore, we illustrated the mechanism of actions of the ingredients by constructing the pharmacological networks on the basis of the predicted target profiles. In summary, we proposed an efficient and economic option for large-scale target exploration in the herb study. This pipeline will be particularly valuable in aiding precise drug discovery and drug repurposing from natural products.
Collapse
Affiliation(s)
- Haiping Zhang
- State
Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
- Joint
Engineering Research Center for Health Big Data Intelligent Analysis
Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province 518055, People’s Republic
of China
| | - Jianbo Pan
- Department
of Ophthalmology, Johns Hopkins School of
Medicine, Baltimore, Maryland 21205, United States
| | - Xuli Wu
- School
of Medicine, Shenzhen University, Shenzhen, Guangdong Province 518060, People’s Republic
of China
| | - Ai-Ren Zuo
- Jiangxi
University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Yanjie Wei
- Joint
Engineering Research Center for Health Big Data Intelligent Analysis
Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province 518055, People’s Republic
of China
| | - Zhi-Liang Ji
- State
Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| |
Collapse
|
36
|
Chen FP, Chien MH. Effects of phytoestrogens on the activity and growth of primary breast cancer cells ex vivo. J Obstet Gynaecol Res 2019; 45:1352-1362. [PMID: 31099163 DOI: 10.1111/jog.13982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 04/06/2019] [Indexed: 11/25/2022]
Abstract
AIM To explore the ex vivo effects of phytoestrogens on primary human breast cancer cells. METHODS Breast cancer cells were obtained from patients who underwent primary breast cancer surgery, which were treated with 10-8 M 17β-estradiol (E2 ), one of three phytoestrogens (genistein, resveratrol and quercetin, 10-7 M), and a combination of E2 and one of the three phytoestrogens for 48 h. These cells were then extracted for viability and apoptosis assay. The proteins involved in the proliferative and apoptotic pathways were evaluated by western blot analysis. RESULTS Human breast cancer cell viability was inhibited by all phytoestrogens but induced by E2 with or without phytoestrogen. Apoptotic cells, as well as the proteins involved in apoptotic pathway and estrogen receptor (ER) β, were significantly increased in the cells treated with phytoestrogen alone. The use of E2 with or without a phytoestrogen revealed completely opposite results. The proteins involved in the proliferative pathway and ER α expression were all increased in the cultures with E2 with or without phytoestrogens. CONCLUSION In the presence of E2 , these phytoestrogens lose the effects of suppressing breast cancer cells; contrastingly, induce growth stimulatory effects by inhibiting apoptosis and stimulating proliferation in primary breast cancer cells. Thus, the effects of phytoestrogens on breast cancer should be considered as E2 still present in breast cancer tissue.
Collapse
Affiliation(s)
- Fang-Ping Chen
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Hua Chien
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
37
|
Akbari Kordkheyli V, Khonakdar Tarsi A, Mishan MA, Tafazoli A, Bardania H, Zarpou S, Bagheri A. Effects of quercetin on microRNAs: A mechanistic review. J Cell Biochem 2019; 120:12141-12155. [PMID: 30957271 DOI: 10.1002/jcb.28663] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
MicroRNA (miRNA)-dependent pathways are one of the newest gene regulation mechanisms in various diseases, particularly in cancers. miRNAs are endogenous noncoding RNAs with about 18 to 25 nucleotide length, which can regulate the expression of at least 60% of human total genome posttranscriptionally. Quercetin is the most abundant flavonoid in a variety of fruits, flowers, and medical herbs, known as a strong free radical scavenger that could show antioxidant, anti-inflammatory, and antitumor activities. Recent studies also reported its strong impact on various miRNA expressions in different abnormalities. In this review, we aimed to summarize the studies focused on the effects of quercetin on different miRNA expressions to more clear the main possible mechanisms of quercetin influences and introduce it as a beneficial agent for regulation of miRNAs in various biological directions.
Collapse
Affiliation(s)
- Vahid Akbari Kordkheyli
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar Tarsi
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad A Mishan
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland.,Department of Endocrinology, Diabetology and Internal Medicine, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Setareh Zarpou
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
38
|
Chen X, Peng X, Luo Y, You J, Yin D, Xu Q, He H, He M. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol Mech Methods 2019; 29:344-354. [PMID: 30636491 DOI: 10.1080/15376516.2018.1564948] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiotoxicity limits the clinical applications of doxorubicin (Dox), which mechanism might be excess generation of intracellular ROS. Quercetin (Que) is a flavonoid that possesses anti-oxidative activities, exerts myocardial protection. We hypothesized that the cardioprotection against Dox injury of Que involved 14-3-3γ, and mitochondria. To investigate the hypothesis, we treated primary cardiomyocytes with Dox and determined the effects of Que pretreatment with or without 14-3-3γ knockdown. We analyzed various cellular and molecular indexes. Our data showed that Que attenuated Dox-induced toxicity in cardiomyocytes by upregulating 14-3-3γ expression. Que pretreatment increased cell viability, SOD, catalase, and GPx activities, GSH levels, MMP and the GSH/GSSG ratio; decreased LDH and caspase-3 activities, MDA and ROS levels, mPTP opening and the percentage of apoptotic cells. However, Que's cardioprotection were attenuated by knocking down 14-3-3γ expression using pAD/14-3-3γ-shRNA. In conclusion, Que protects cardiomyocytes against Dox injury by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ.
Collapse
Affiliation(s)
- Xuanying Chen
- a Department of Pharmacy, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaoping Peng
- b Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital, Nanchang University , Nanchang , China
| | - Yong Luo
- c Jiangxi Provincial Key Laboratory of Women's Reproductive Health , Jiangxi Provincial Maternal and Child Health Hospital , Nanchang , China
| | - Jiegen You
- d Jiangxi Academy of Medical Science, Nanchang University , Nanchang , China
| | - Dong Yin
- e Jiangxi Provincial Key Laboratory of Molecular Medicine , The Second Affiliated Hospital, Nanchang University , Nanchang , China
| | - Qiang Xu
- f Drug Clinical Trial Institution, Jiangxi Province Tumor Hospital , Nanchang , China
| | - Huan He
- g Jiangxi Provincial Key Laboratory of Basic Pharmacology , Nanchang University School of Pharmaceutical Science , Nanchang , China
| | - Ming He
- b Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital, Nanchang University , Nanchang , China
| |
Collapse
|
39
|
Zakaria N, Khalil SR, Awad A, Khairy GM. Quercetin Reverses Altered Energy Metabolism in the Heart of Rats Receiving Adriamycin Chemotherapy. Cardiovasc Toxicol 2019; 18:109-119. [PMID: 28702745 DOI: 10.1007/s12012-017-9420-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The primary aim of this study was to find the potential modulatory roles of quercetin (QUE) against Adriamycin (ADR)-induced cardiotoxicity. A total of 50 rats were assigned to five groups: a control group, an ADR-treated group, a QUE-treated group, a prophylaxis-cotreated group, and a therapeutic-cotreated group, respectively. QUE exhibited a significant cardioprotective effect, particularly, when it was administered prior to and concurrently with ADR treatment (prophylaxis-cotreated group). This effect was biochemically evident by the significant decreases in the serum levels of myocardial injury biomarkers such as troponin, creatine kinase-myocardium bound, and creatine phosphokinase. In addition, significant elevations in myocardial antioxidant indices coupled with significant reductions in myocardial malondialdehyde contents and DNA damage, elicited by ADR injection, were observed. All these biochemical improvements were accompanied by a significant histopathological recovery and obvious modulation of the AMP-activated protein kinase (AMPK) signaling pathway by promoting the expression of the AMPKα2, PPARα, and PCG-1α genes. Taken together, these findings conclusively showed that QUE administration through its antioxidant capacity and myocardial energy metabolism restoration provides a prophylactic effect in response to ADR-induced deleterious effects, in the rat heart.
Collapse
Affiliation(s)
- Naglaa Zakaria
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ghada M Khairy
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
40
|
Smith C, Swart A. Aspalathus linearis (Rooibos) - a functional food targeting cardiovascular disease. Food Funct 2019; 9:5041-5058. [PMID: 30183052 DOI: 10.1039/c8fo01010b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing consumer bias toward natural products and the considerable wealth of indigenous knowledge has precipitated an upturn in market-driven research into potentially beneficial medicinal plants. In this context, Aspalathus linearis (Rooibos) has been identified to be a promising candidate which may impact cardiovascular disease (CVD), which is one of the most widely studied chronic diseases of modern times. Despite these efforts, ischemic heart disease remains the number one cause of mortality globally. Apart from genetic predisposition and other aetiological mechanisms specific to particular types of CVD, co-factors from interlinked systems contribute significantly to disease development and the severity of its clinical manifestation. The bioactivity of Rooibos is directed towards multiple therapeutic targets. Experimental data to date include antioxidant, anti-inflammatory and anti-diabetic effects, as well as modulatory effects in terms of the immune system, adrenal steroidogenesis and lipid metabolism. This review integrates relevant literature on the therapeutic potential of Rooibos in the context of CVD, which is currently the most common of non-communicable diseases. The therapeutic value of whole plant extracts versus isolated active ingredients are addressed, together with the potential for overdose or herb-drug interaction. The body of research undertaken to date clearly underlines the benefits of Rooibos as both preventative and complementary therapeutic functional food in the context of CVD.
Collapse
Affiliation(s)
- Carine Smith
- Dept Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa.
| | | |
Collapse
|
41
|
Possible role of phytoestrogens in breast cancer via GPER-1/GPR30 signaling. Clin Sci (Lond) 2018; 132:2583-2598. [PMID: 30545896 DOI: 10.1042/cs20180885] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
Estrogens generated within endocrine organs and the reproductive system act as ligands for at least three types of estrogen receptors. Estrogen receptors α (ERα) and β (ERβ) belong to the so-called classical family of estrogen receptors, whereas the G protein-coupled receptor GPR30, also known as GPER-1, has been described as a novel estrogen receptor sited in the cell membrane of target cells. Furthermore, these receptors are under stimulation of a family of exogenous estrogens, known as phytoestrogens, which are a diverse group of non-steroidal plant compounds derived from plant food consumed by humans and animals. Because phytoestrogens are omnipresent in our daily diet, they are becoming increasingly important in both human health and disease. Recent evidence indicates that in addition to classical estrogen receptors, phytoestrogens also activate GPER-1 a relevant observation since GPER-1 is involved in several physiopathological disorders and especially in estrogen-dependent diseases such as breast cancer.The first estrogen receptors discovered were the classical ERα and ERβ, but from an evolutionary point of view G protein-coupled receptors trace their origins in history to over a billion years ago suggesting that estrogen receptors like GPER-1 may have been the targets of choice for ancient phytoestrogens and/or estrogens.This review provides a comprehensive and systematic literature search on phytoestrogens and its relationship with classical estrogen receptors and GPER-1 including its role in breast cancer, an issue still under discussion.
Collapse
|
42
|
Abarikwu SO, Simple G, Onuoha CS. Morphometric Evaluation of the Seminiferous Tubules and the Antioxidant Protective Effects of Gallic Acid and Quercetin in the Testis and Liver of Butyl Phthalate Treated Rats. Indian J Clin Biochem 2018; 35:20-31. [PMID: 32071493 DOI: 10.1007/s12291-018-0788-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/10/2018] [Indexed: 11/28/2022]
Abstract
The antioxidant protective effects of gallic acid (GAL) and quercetin (QUE) against oxidative stress induced by di-butyl phthalate (DnBP) in the liver and testis of rats were evaluated in this study. Adult albino Wistar rats (180-225 g) were treated with QUE or GAL (50 mg/kg) alone or in combination with DnBP (1 mL/kg) for 15 days. After treatment, tissue samples were taken for determination of glutathione and malondialdehyde levels, and superoxide dismutase and catalase activities. Serial sections of the testis and liver were stained with haematoxylin and eosin for microscopy and seminiferous tubular morphometry. As expected, DnBP induced oxidative stress was evident by increased malondialdehyde level in both organs. Co-treatment with GAL or QUE reversed the malondialdehyde by 45.42, 37.44 and 37.57%, 23.32% and catalase by 52.21, 70.15 and 85%, 38.14% in the testis and liver respectively whereas superoxide dismutase activity and glutathione level were differently modulated parallel to histopathological improvement in both tissues. The seminiferous tubular diameter, epithelial height, epithelial germ cell count and tubular length were significantly decreased by 11.09, 51.91, 40.65 and 11.10% respectively versus control values after DnBP treatments and were attenuated on co-treatment with GAL or QUE. Co-treatment with GAL afforded better protective effects in both tissues but QUE treatment alone appeared more effective than GAL on the investigated morphometric data. It seems likely that GAL or QUE prevented the tissue damage but the antioxidant profiles of the liver and testis are different in response to the oxidative stress.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Godwin Simple
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | |
Collapse
|
43
|
Cipolletti M, Solar Fernandez V, Montalesi E, Marino M, Fiocchetti M. Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: the Modulation of Estrogen Receptors (ERs) Signaling. Int J Mol Sci 2018; 19:E2624. [PMID: 30189583 PMCID: PMC6165334 DOI: 10.3390/ijms19092624] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
The potential "health benefits" of dietary polyphenols have been ascribed to their direct antioxidant activity and their impact on the regulation of cell and tissue redox balance. However, because of the relative poor bioavailability of many of these compounds, their effects could not be easily explained by the antioxidant action, which may occur only at high circulating and tissue concentrations. Therefore, many efforts have been put forward to clarify the molecular mechanisms underlining the biological effect of polyphenols in physiological and pathological conditions. Polyphenols' bioavailability, metabolism, and their effects on enzyme, membrane, and/or nuclear receptors and intracellular transduction mechanisms may define the overall impact of these compounds on cancer risk and progression, which is still debated and not yet clarified. Polyphenols are able to bind to estrogen receptor α (ERα) and β (ERβ), and therefore induce biological effects in human cells through mimicking or inhibiting the action of endogenous estrogens, even at low concentrations. In this work, the role and effects of food-contained polyphenols in hormone-related cancers will be reviewed, mainly focusing on the different polyphenols' mechanisms of action with particular attention on their estrogen receptor-based effects, and on the consequences of such processes on tumor progression and development.
Collapse
Affiliation(s)
- Manuela Cipolletti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | | | - Emiliano Montalesi
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| |
Collapse
|
44
|
Lin M, Wang N, Yao B, Zhong Y, Lin Y, You T. Quercetin improves postpartum hypogalactia in milk-deficient mice via stimulating prolactin production in pituitary gland. Phytother Res 2018; 32:1511-1520. [PMID: 29671937 DOI: 10.1002/ptr.6079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 01/16/2023]
Abstract
Postpartum dysgalactia is a common clinical problem for lactating women. Seeking out the safe and efficient phytoestrogens will be a promising strategy for postpartum dysgalactia therapy. In this study, the postpartum mice within four groups, including control group, the model group, and the treatment groups intragastrically administrated with normal saline, bromocriptine, bromocriptine plus 17α-ethinyl estradiol, and bromocriptine plus quercetin, respectively, were used. The results showed that quercetin, a kind of natural phytoestrogen, could efficiently promote lactation yield and mammary gland development in the agalactosis mice produced by bromocriptine administration. Mechanically, quercetin, such as 17α-ethinyl estradiol, significantly stimulated prolactin (PRL) production and deposition in the mammary gland in the agalactosis mice determined by western blotting, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. Furthermore, quercetin could increase the expression of β-casein, stearoyl-CoA desaturase, fatty acid synthase, and α-lactalbumin in the breast tissues that are responsible for the production of fatty acid, lactose, and galactose in the milk at the transcriptional level determined by quantitative polymerase chain reaction. Specifically, quercetin promoted primary mammary epithelial cell proliferation and stimulated prolactin receptor (PRLR) expression probably via AKT activation in vitro. In conclusion, this study indicates that estrogen-like quercetin promotes mammary gland development and lactation yield in milk-deficient mice, probably via stimulating PRL expression and release from the pituitary gland, as well as induces PRLR expression in primary mammary epithelial cells.
Collapse
Affiliation(s)
- Man Lin
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Na Wang
- Department of gynecology, the Eleventh People's Hospital of Guangzhou, Guangzhou, China
| | - Bei Yao
- Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yao Zhong
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Lin
- Department of Nursing, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Tianhui You
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China.,Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
45
|
Darband SG, Kaviani M, Yousefi B, Sadighparvar S, Pakdel FG, Attari JA, Mohebbi I, Naderi S, Majidinia M. Quercetin: A functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer. J Cell Physiol 2018; 233:6544-6560. [PMID: 29663361 DOI: 10.1002/jcp.26595] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Recently, an intense attention has been paid to the application of natural compounds as a novel therapeutic strategy for cancer treatment. Quercetin, a natural flavonol present in many commonly consumed food items, is widely demonstrated to exert inhibitory effects on cancer progression through various mechanisms. Since there is a strong association with diets containing abundant vegetables, fruits, and grains, and significant decline in the risk of colon cancer, accumulation studies have focused on the anticancer potential of quercetin in colorectal cancer. Cell cycle arrest, increase in apoptosis, antioxidant replication, modulation of estrogen receptors, regulation of signaling pathways, inhibition of and metastasis and angiogenesis are among various mechanisms underlying the chemo-preventive effects of quercetin in colorectal cancer. This review covers various therapeutic interactions of Quercetin as to how targets cellular involved in cancer treatment.
Collapse
Affiliation(s)
- Saber G Darband
- Danesh Pey Hadi Co., Health Technology, Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Firouz G Pakdel
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Javad A Attari
- Department of Neurosurgery, Urmia University of Medical Sciences, Urmia, Iran
| | - Iraj Mohebbi
- Social Determinants of Health Center, Occupational Medicine Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Somayeh Naderi
- Danesh Pey Hadi Co., Health Technology, Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
46
|
Damiano S, Sasso A, De Felice B, Di Gregorio I, La Rosa G, Lupoli GA, Belfiore A, Mondola P, Santillo M. Quercetin Increases MUC2 and MUC5AC Gene Expression and Secretion in Intestinal Goblet Cell-Like LS174T via PLC/PKCα/ERK1-2 Pathway. Front Physiol 2018; 9:357. [PMID: 29681865 PMCID: PMC5897515 DOI: 10.3389/fphys.2018.00357] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
The main dietary flavonoid quercetin, is known to preserve the integrity of gastrointestinal barrier and to have anti-inflammatory, anti-cancer, anti-fibrotic, and other beneficial properties. Many of the biological effects of quercetin appear to be associated to the modulation of cell signaling pathways, rather than to its antioxidant activity. In spite of the large number of data available on the molecular and cellular mechanisms by which quercetin exerts its biological effects, including protection of intestinal barrier function, there is a lack of data about the role of this substance on the expression and/or the secretion of mucins released by intestinal goblet cells. Here we investigated the effects of quercetin on the secretion and the gene expression of the main intestinal gel-forming mucins, MUC2 and MUC5AC, and the signaling mechanisms underlined, in human intestinal goblet cell-like LS174T. We found that quercetin increases intracellular Ca2+ levels and induces MUC2 and MUC5AC secretion in a Ca2+-dependent manner. Quercetin also induces mRNA levels of both secretory mucins. Quercetin stimulation of LS174T cells increases phosphorylation levels of extracellular signal regulated kinase (ERK)1-2 and protein kinase C (PKC) α and the induction of MUC2 and MUC5AC secretion and mRNA relies on phospholipase C (PLC), PKC, and ERK1-2 signaling pathways since the PLC inhibitor U73122, the PKC inhibitor bisindolylmaleimide (BIM) and the ERK1-2 pathway inhibitor PD98059, all revert the stimulatory effects of quercetin. We also demonstrated that the induction of mucin gene expression by quercetin is not limited to goblet cells. Indeed, quercetin induces mRNA levels of MUC2 and MUC5AC via PKCα/ERK1-2 pathway also in the human intestinal epithelial Caco-2 cells. These data highlight a novel mechanism thereby quercetin, regulating the secretory function of intestinal goblet cells and mucin levels in enterocytes may exert its protective effects on intestinal mucosal barrier.
Collapse
Affiliation(s)
- Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Naples, Italy
| | - Anna Sasso
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Naples, Italy
| | - Bruna De Felice
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania Luigi Vanvitelli, Caserta, Italy
| | - Ilaria Di Gregorio
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Naples, Italy
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Naples, Italy
| | - Gelsi A Lupoli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Naples, Italy
| | - Anna Belfiore
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Naples, Italy
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Naples, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Naples, Italy
| |
Collapse
|
47
|
Quercetin Potentiates the NGF-Induced Effects in Cultured PC 12 Cells: Identification by HerboChips Showing a Binding with NGF. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1502457. [PMID: 29681968 PMCID: PMC5850895 DOI: 10.1155/2018/1502457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/18/2018] [Indexed: 11/17/2022]
Abstract
Dementia is a persistent disorder of the mental processes and is strongly related to depression. However, the performance of current antidepression medicine is far from satisfactory. Herbal extract provides an excellent source to identify compounds for possible drug development against depression. Here, HerboChips were employed to search herbal compounds that could bind nerve growth factor (NGF). By screening over 500 types of herbal extracts, the water extract of Ginkgo Folium, the leaf of Ginkgo biloba, showed a strong binding to NGF. The herbal fractions showing NGF binding were further isolated and enriched. By using LC-MS/MS analysis, one of the NGF binding fractions was enriched, which was further identified as quercetin, a major flavonoid in Ginkgo Folium. Quercetin, similar to Ginkgo Folium extract, could enhance the effect of NGF in cultured PC 12 cells, including potentiation of neurite outgrowth and phosphorylation of Erk-1/2. This is the first report of discovering an NGF binding compound by using HerboChips from herbal extracts, which could be further developed for antidepression application.
Collapse
|
48
|
Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst KI, Lampen A. Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol Nutr Food Res 2017; 62. [PMID: 29127724 DOI: 10.1002/mnfr.201700447] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/13/2017] [Indexed: 12/13/2022]
Abstract
The flavonoid quercetin is frequently found in low amounts as a secondary plant metabolite in fruits and vegetables. Isolated quercetin is also marketed as a dietary supplement, mostly as the free quercetin aglycone, and frequently in daily doses of up to 1000 mg d-1 exceeding usual dietary intake levels. The present review is dedicated to safety aspects of isolated quercetin used as single compound in dietary supplements. Among the numerous published human intervention studies, adverse effects following supplemental quercetin intake have been rarely reported and any such effects were mild in nature. Published adequate scientific data for safety assessment in regard to the long-term use (>12 weeks) of high supplemental quercetin doses (≥1000 mg) are currently not available. Based on animal studies involving oral quercetin application some possible critical safety aspects could be identified such as the potential of quercetin to enhance nephrotoxic effects in the predamaged kidney or to promote tumor development especially in estrogen-dependent cancer. Furthermore, animal and human studies with single time or short-term supplemental quercetin application revealed interactions between quercetin and certain drugs leading to altered drug bioavailability. Based on these results, some potential risk groups are discussed in the present review.
Collapse
Affiliation(s)
- Susanne Andres
- Department of Food Safety, Former employee of the German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sophie Pevny
- Department of Food Safety, Former employee of the German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Rainer Ziegenhagen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Nadiya Bakhiya
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Bernd Schäfer
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
49
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|
50
|
Boonpawa R, Spenkelink A, Punt A, Rietjens IMCM. In vitro-in silico-based analysis of the dose-dependent in vivo oestrogenicity of the soy phytoestrogen genistein in humans. Br J Pharmacol 2017; 174:2739-2757. [PMID: 28585232 DOI: 10.1111/bph.13900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 05/21/2017] [Accepted: 05/28/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The in vivo oestrogenicity of genistein and its glycoside genistin is still under debate. The present study aimed to develop a physiologically based kinetic (PBK) model that provides insight in dose-dependent plasma concentrations of genistein aglycone and its metabolites and enables prediction of in vivo oestrogenic effective dose levels of genistein and genistin in humans. EXPERIMENTAL APPROACH A PBK model for genistein and genistin in humans was developed based on in vitro metabolic parameters. The model obtained was used to translate in vitro oestrogenic concentration-response curves of genistein to in vivo oestrogenic dose-response curves for intake of genistein and genistin. KEY RESULTS The model predicted that genistein-7-O-glucuronide was the major circulating metabolite and that levels of the free aglycone were generally low [0.5-17% of total plasma genistein at oral doses from 0.01 to 50 mg (kg·bw)-1 ]. The predicted in vivo benchmark dose for 5% response values for oestrogenicity varied between 0.06 and 4.39 mg kg-1 genistein. For genistin, these values were 1.3-fold higher. These values are in line with reported human data and show that oestrogenic responses can be expected at an Asian dietary and a supplementary intake, while intake resulting from a Western diet may not be effective. CONCLUSIONS AND IMPLICATIONS The present study shows how plasma concentrations of genistein and its metabolites and oestrogenic dose levels of genistein in humans can be predicted by combining in vitro oestrogenicity with PBK model-based reverse dosimetry, eliminating the need for human intervention studies.
Collapse
Affiliation(s)
- Rungnapa Boonpawa
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | | | - Ans Punt
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|