1
|
Sharma N, Gupta M, Anand P, Akhter Y, Al-Dayan N, Majed HA, Biswas S, Ali S, Sarwat M. Mechanistic Insight into the Autophagic and Apoptotic Activity of Kaempferol on Liver Cancer Cells. Onco Targets Ther 2024; 17:579-601. [PMID: 39071955 PMCID: PMC11283267 DOI: 10.2147/ott.s460359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Background The accumulation of poorly folded protein in the endoplasmic reticulum (ER) promotes ER stress and contributes to the pathogenesis of hepatocellular carcinoma (HCC). Current therapies have various adverse effects, therefore, laying the need for an alternative approach. Kaempferol (KP), a naturally occurring flavonoid, possesses potent anti-proliferative properties against various cancer cells. Nevertheless, its involvement in HCC remains relatively unexplored, particularly regarding its influence on apoptosis and autophagy pathways. Methods The effect of KP on cell viability, and motility of Hep3B cells was evaluated by MTT, and scratch assay, respectively. Hoechst staining and FACS analysis were done to check the effect of KP on apoptosis and cell cycle progression. qRTPCR was used to evaluate the expression of several apoptosis and autophagy-related genes. KP was docked with several ER stress-related proteins involved in HCC to gain further insights into molecular mechanisms. The results of docking studies were validated with MD simulation and in vitro studies. Results Treatment with KP at different time intervals showed dose- and time-dependent growth inhibition of liver cancer cells. KP decreased motility and arrested the cell cycle at the G0/G1 phase in Hep3B cells. Additionally, in the context of HCC, the relationship between KP, apoptosis, and autophagy is significant. It induced apoptosis and autophagy in Hep3B cells by downregulating the expression of Bcl-2 and upregulated Bax and Bid, Caspase-3, Beclin-1, and LC3. KP showed a better binding affinity with Nrf2, PERK, and IRE1α among all selected proteins. Further, it reversed the protective effect of 4-PBA (ER Stress inhibitor) by inducing apoptosis and autophagy in Hep3B cells. Conclusion The study suggested KP as a potential chemopreventive agent for managing HCC by effectively inducing apoptosis and autophagy in Hep3B cells.
Collapse
Affiliation(s)
- Nidhi Sharma
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Pragya Anand
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Noura Al-Dayan
- Department of Medical Laboratory, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hind Abdul Majed
- Department of Clinical Microbiology and Immunology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Sher Ali
- VC Office, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201301, India
| |
Collapse
|
2
|
Yao YX, Yu YJ, Dai S, Zhang CY, Xue XY, Zhou ML, Yao CH, Li YX. Kaempferol efficacy in metabolic diseases: Molecular mechanisms of action in diabetes mellitus, obesity, non-alcoholic fatty liver disease, steatohepatitis, and atherosclerosis. Biomed Pharmacother 2024; 175:116694. [PMID: 38713943 DOI: 10.1016/j.biopha.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
The incidence of metabolic diseases has progressively increased, which has a negative impact on human health and life safety globally. Due to the good efficacy and limited side effects, there is growing interest in developing effective drugs to treat metabolic diseases from natural compounds. Kaempferol (KMP), an important flavonoid, exists in many vegetables, fruits, and traditional medicinal plants. Recently, KMP has received widespread attention worldwide due to its good potential in the treatment of metabolic diseases. To promote the basic research and clinical application of KMP, this review provides a timely and comprehensive summary of the pharmacological advances of KMP in the treatment of four metabolic diseases and its potential molecular mechanisms of action, including diabetes mellitus, obesity, non-alcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), and atherosclerosis. According to the research, KMP shows remarkable therapeutic effects on metabolic diseases by regulating multiple signaling transduction pathways such as NF-κB, Nrf2, AMPK, PI3K/AKT, TLR4, and ER stress. In addition, the most recent literature on KMP's natural source, pharmacokinetics studies, as well as toxicity and safety are also discussed in this review, thus providing a foundation and evidence for further studies to develop novel and effective drugs from natural compounds. Collectively, our manuscript strongly suggested that KMP could be a promising candidate for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yu-Xin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yu-Jie Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Chao-Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Xin-Yan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Meng-Ling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Chen-Hao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yun-Xia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China.
| |
Collapse
|
3
|
de Morais EF, de Oliveira LQR, de Farias Morais HG, de Souto Medeiros MR, Freitas RDA, Rodini CO, Coletta RD. The Anticancer Potential of Kaempferol: A Systematic Review Based on In Vitro Studies. Cancers (Basel) 2024; 16:585. [PMID: 38339336 PMCID: PMC10854650 DOI: 10.3390/cancers16030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Given the heterogeneity of different malignant processes, planning cancer treatment is challenging. According to recent studies, natural products are likely to be effective in cancer prevention and treatment. Among bioactive flavonoids found in fruits and vegetables, kaempferol (KMP) is known for its anti-inflammatory, antioxidant, and anticancer properties. This systematic review aims to highlight the potential therapeutic effects of KMP on different types of solid malignant tumors. This review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Searches were performed in EMBASE, Medline/PubMed, Cochrane Collaboration Library, Science Direct, Scopus, and Google Scholar. After the application of study criteria, 64 studies were included. In vitro experiments demonstrated that KMP exerts antitumor effects by controlling tumor cell cycle progression, proliferation, apoptosis, migration, and invasion, as well as by inhibiting angiogenesis. KMP was also able to inhibit important markers that regulate epithelial-mesenchymal transition and enhanced the sensitivity of cancer cells to traditional drugs used in chemotherapy, including cisplatin and 5-fluorouracil. This flavonoid is a promising therapeutic compound and its combination with current anticancer agents, including targeted drugs, may potentially produce more effective and predictable results.
Collapse
Affiliation(s)
- Everton Freitas de Morais
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Lilianny Querino Rocha de Oliveira
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Hannah Gil de Farias Morais
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Maurília Raquel de Souto Medeiros
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Roseana de Almeida Freitas
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil;
| | - Ricardo D. Coletta
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| |
Collapse
|
4
|
Lai KC, Chueh FS, Ma YS, Chou YC, Chen JC, Liao CL, Huang YP, Peng SF. Phenethyl isothiocyanate and irinotecan synergistically induce cell apoptosis in colon cancer HCT 116 cells in vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:457-469. [PMID: 37792803 DOI: 10.1002/tox.23993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Irinotecan (IRI), an anticancer drug to treat colon cancer patients, causes cytotoxic effects on normal cells. Phenethyl isothiocyanate (PEITC), rich in common cruciferous plants, has anticancer activities (induction of cell apoptosis) in many human cancer cells, including colon cancer cells. However, the anticancer effects of IRI combined with PEITC on human colon cancer cells in vitro were unavailable. Herein, the aim of this study is to focus on the apoptotic effects of the combination of IRI and PEITC on human colon cancer HCT 116 cells in vitro. Propidium iodide (PI) exclusion and Annexin V/PI staining assays showed that IRI combined with PEITC decreased viable cell number and induced higher cell apoptosis than that of IRI or PEITC only in HCT 116 cells. Moreover, combined treatment induced higher levels of reactive oxygen species (ROS) and Ca2+ than that of IRI or PEITC only. Cells pre-treated with N-acetyl-l-cysteine (scavenger of ROS) and then treated with IRI, PEITC, or IRI combined with PEITC showed increased viable cell numbers than that of IRI or PEITC only. IRI combined with PEITC increased higher caspase-3, -8, and -9 activities than that of IRI or PEITC only by flow cytometer assay. IRI combined with PEITC induced higher levels of ER stress-, mitochondria-, and caspase-associated proteins than that of IRI or PEITC treatment only in HCT 116 cells. Based on these observations, PEITC potentiates IRI anticancer activity by promoting cell apoptosis in the human colon HCT 116 cells. Thus, PEITC may be a potential enhancer for IRI in humans as an anticolon cancer drug in the future.
Collapse
Affiliation(s)
- Kuang-Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Surgery, China Medical University Beigang Hospital, Beigang, Yunlin, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Ching-Lung Liao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Jeon SJ, Jung GH, Choi EY, Han EJ, Lee JH, Han SH, Woo JS, Jung SH, Jung JY. Kaempferol induces apoptosis through the MAPK pathway and regulates JNK-mediated autophagy in MC-3 cells. Toxicol Res 2024; 40:45-55. [PMID: 38223666 PMCID: PMC10786811 DOI: 10.1007/s43188-023-00206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 01/16/2024] Open
Abstract
This study sought to determine the anticancer effect of kaempferol, a glycone-type flavonoid glycoside with various pharmacological benefits, on human oral cancer MC-3 cells. In vitro studies comprised a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, annexin V and propidium iodide staining, western blotting analysis, and acridine orange staining, while the in vivo studies entailed a xenograft model, hematoxylin and eosin staining, and TdT-mediated dUTP-biotin nick end labelling. In vitro, kaempferol reduced the rate of survival of MC-3 cells, mediated intrinsic apoptosis, increased the number of acidic vesicular organelles, and altered the expression of autophagy-related proteins. Further, treatment with the autophagy inhibitors revealed that the induced autophagy had a cytoprotective effect on apoptosis in kaempferol-treated MC-3 cells. Kaempferol also decreased the expression of phosphorylated extracellular signal-regulated kinase and increased that of phosphorylated c-Jun N-terminal kinase (p-JNK) and phosphorylated p38 kinase in MC-3 cells, suggesting the occurrence of mitogen-activated protein kinase-mediated apoptosis and JNK-mediated autophagy. In vivo, kaempferol reduced tumor growth inducing apoptosis and autophagy. These results showed that kaempferol has the potential use as an adjunctive agent in treating oral cancer.
Collapse
Affiliation(s)
- Su-Ji Jeon
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Gi-Hwan Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Eun-Young Choi
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Eun-Ji Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Jae-Han Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - So-Hee Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Joong-Seok Woo
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Soo-Hyun Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
- Research Institute for Natural Products, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| |
Collapse
|
6
|
Haynes AP, Desta S, Ahmad T, Neikirk K, Hinton A, Bloodworth N, Kirabo A. The Antioxidative Effects of Flavones in Hypertensive Disease. Biomedicines 2023; 11:2877. [PMID: 38001878 PMCID: PMC10669108 DOI: 10.3390/biomedicines11112877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertension is the leading remediable risk factor for cardiovascular morbidity and mortality in the United States. Excess dietary salt consumption, which is a catalyst of hypertension, initiates an inflammatory cascade via activation of antigen-presenting cells (APCs). This pro-inflammatory response is driven primarily by sodium ions (Na+) transporting into APCs by the epithelial sodium channel (ENaC) and subsequent NADPH oxidase activation, leading to high levels of oxidative stress. Oxidative stress, a well-known catalyst for hypertension-related illness development, disturbs redox homeostasis, which ultimately promotes lipid peroxidation, isolevuglandin production and an inflammatory response. Natural medicinal compounds derived from organic materials that are characterized by their anti-inflammatory, anti-oxidative, and anti-mutagenic properties have recently gained traction amongst the pharmacology community due to their therapeutic effects. Flavonoids, a natural phenolic compound, have these therapeutic benefits and can potentially serve as anti-hypertensives. Flavones are a type of flavonoid that have increased anti-inflammatory effects that may allow them to act as therapeutic agents for hypertension, including diosmetin, which is able to induce significant arterial vasodilation in several different animal models. This review will focus on the activity of flavones to illuminate potential preventative and potential therapeutic mechanisms against hypertension.
Collapse
Affiliation(s)
- Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| | - Selam Desta
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC 20059, USA
| | - Taseer Ahmad
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
- Department of Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Punjab, Pakistan
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (K.N.); (A.H.)
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (K.N.); (A.H.)
| | - Nathaniel Bloodworth
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| |
Collapse
|
7
|
Amrati FEZ, Elmadbouh OHM, Chebaibi M, Soufi B, Conte R, Slighoua M, Saleh A, Al Kamaly O, Drioiche A, Zair T, Edderkaoui M, Bousta D. Evaluation of the toxicity of Caralluma europaea ( C.E) extracts and their effects on apoptosis and chemoresistance in pancreatic cancer cells. J Biomol Struct Dyn 2023; 41:8517-8534. [PMID: 36271642 DOI: 10.1080/07391102.2022.2135595] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
Pancreatic adenocarcinoma is a disease with no effective treatment. Chemo-resistance contributes to the dismal prognosis for patients diagnosed with the disease. This study aims to evaluate the toxicity and the effect of Caralluma europaea (C.E) extracts on cancer cell survival, apoptosis, chemo-resistance, and pro-cancer pathways, in pancreatic cancer. The acute and subacute toxicities of C.E extracts were evaluated. The cytotoxic effect on pancreatic cancer cell survival and apoptosis was determined by MTT assay and DNA fragmentation. The expression of cancer stemness markers was measured using Western blot. A molecular docking was used to test the possible effects of C.E compounds in inhibiting the Hedgehog and activating caspase-3. The hydroethanolic extract's DL50 was over 5000 mg/kg. During the subacute toxicity, only saponins extract showed some hepatic toxicity signs. Cells treated with C.E extracts combined with gemcitabine revealed an additive anti-survival activity. C.E extracts sensitized resistant MIA-PaCa-2 to gemcitabine treatment. Most of the C.E extracts downregulated the expression of cancer stemness-associated genes. Luteolin-7-O-glucoside presented the highest docking Gscore on human Smoothened. Isorhamnetin-3-O-rutinoside induced apoptosis via activation of caspase-3. C.E extracts can be considered safe in inhibiting pancreatic cancer cell survival, inducing apoptosis, and sensitizing cells to chemotherapy via Hedgehog inhibition and caspase-3 activation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Omer Hany Miligy Elmadbouh
- Departments of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohamed Chebaibi
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Badr Soufi
- Departments of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Naples, Italy
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aziz Drioiche
- Laboratory of Innovative Materials and Biotechnology of Natural Resources. Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Touria Zair
- Laboratory of Innovative Materials and Biotechnology of Natural Resources. Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Mouad Edderkaoui
- Departments of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, CA, USA
| | - Dalila Bousta
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
8
|
Farani MR, Sarlak M, Gholami A, Azaraian M, Binabaj MM, Kakavandi S, Tambuwala MM, Taheriazam A, Hashemi M, Ghasemi S. Epigenetic drugs as new emerging therapeutics: What is the scale's orientation of application and challenges? Pathol Res Pract 2023; 248:154688. [PMID: 37494800 DOI: 10.1016/j.prp.2023.154688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Sarlak
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Amir Gholami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Azaraian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maryam Moradi Binabaj
- Clinical Biochemistry, Department of Biochemistry and Nutrition, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, 0United Kingdom
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Dos Santos JS, Suzan AJ, Bonafé GA, Fernandes AMADP, Longato GB, Antônio MA, Carvalho PDO, Ortega MM. Kaempferol and Biomodified Kaempferol from Sophora japonica Extract as Potential Sources of Anti-Cancer Polyphenolics against High Grade Glioma Cell Lines. Int J Mol Sci 2023; 24:10716. [PMID: 37445894 DOI: 10.3390/ijms241310716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 07/15/2023] Open
Abstract
The enzymatic hydrolysis of the extract of Sophora japonica by two glycosyl hydrolases (hesperidinase and galactosidase) was performed in order to obtain kaempferol (KPF)-enriched extract with an enhanced anticancer activity. The current study examined the effectiveness of both Sophora japonica extracts (before (KPF-BBR) and after (KPF-ABR) bioconversion reactions) in reducing cell viability and inducing apoptosis in human high-degree gliomas in vitro. Cytotoxicity was determined using an MTT assay. The effects of both compounds on the proliferation of glioma cell lines were measured using trypan blue exclusion, flow cytometry for cell cycle, wound healing (WH), and neurosphere formation assays. Cellular apoptosis was detected by DNA fragmentation and phosphatidylserine exposure. qPCR and luciferase assays evaluated NF-kB pathway inhibition. The survival rate of NG-97 and U-251 cells significantly decreased in a time- and dose-dependent manner after the addition of KPF-BBR or KPF-ABR. Thus, a 50% reduction was observed in NG-97 cells at 800 µM (KPF-BBR) and 600 µM (KPF-ABR) after 72 h. Both compounds presented an IC50 of 1800 µM for U251 after 72 h. The above IC50 values were used in all of the following analyses. Neither of the KPF presented significant inhibitory effects on the non-tumoral cells (HDFa). However, after 24 h, both extracts (KPF-BBR and KPF-ABR) significantly inhibited the migration and proliferation of NG-97 and U-251 cells. In addition, MMP-9 was downregulated in glioma cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) plus KPF-BBR and TPA+KPF-ABR compared with the TPA-treated cells. Both KPF-BBR and KPF-ABR significantly inhibited the proliferation of glioma stem cells (neurospheres) after 24 h. DNA fragmentation assays demonstrated that the apoptotic ratio of KPF-ABR-treated cell lines was significantly higher than in the control groups, especially NG-97, which is not TMZ resistant. In fact, the flow cytometric analysis indicated that KPF-BBR and KPF-ABR induced significant apoptosis in both glioma cells. In addition, both KPF induced S and G2/M cell cycle arrest in the U251 cells. The qPCR and luciferase assays showed that both KPFs downregulated TRAF6, IRAK2, IL-1β, and TNF-α, indicating an inhibitory effect on the NF-kB pathway. Our findings suggest that both KPF-BBR and KPF-ABR can confer anti-tumoral effects on human cell glioma cells by inhibiting proliferation and inducing apoptosis, which is related to the NF-κB-mediated pathway. The KPF-enriched extract (KPF-ABR) showed an increased inhibitory effect on the cell migration and invasion, characterizing it as the best antitumor candidate.
Collapse
Affiliation(s)
- Jéssica Silva Dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Amanda Janaína Suzan
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Anna Maria Alves de Piloto Fernandes
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Giovanna Barbarini Longato
- Laboratory of Molecular Pharmacology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Márcia Aparecida Antônio
- Integrated Unit of Pharmacology and Gastroenterology (UNIFAG), São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| |
Collapse
|
10
|
Almatroudi A, Allemailem KS, Alwanian WM, Alharbi BF, Alrumaihi F, Khan AA, Almatroodi SA, Rahmani AH. Effects and Mechanisms of Kaempferol in the Management of Cancers through Modulation of Inflammation and Signal Transduction Pathways. Int J Mol Sci 2023; 24:8630. [PMID: 37239974 PMCID: PMC10218111 DOI: 10.3390/ijms24108630] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is the principal cause of death and its incidence is increasing continuously worldwide. Various treatment approaches are in practice to treat cancer, but these treatment strategies may be associated with severe side effects and also produce drug resistance. However, natural compounds have established their role in cancer management with minimal side effects. In this vista, kaempferol, a natural polyphenol, mainly found in vegetables and fruits, has been revealed to have many health-promoting effects. Besides its health-promoting potential, its anti-cancer potential has also been described in in vivo as well as in in vitro studies. The anti-cancer potential of kaempferol has been proven through modulation of cell signaling pathways in addition to the induction of apoptosis and cell cycle arrest in cancer cells. It leads to the activation of tumor suppressor genes, inhibition of angiogenesis, PI3K/AKT pathways, STAT3, transcription factor AP-1, Nrf2 and other cell signaling molecules. Poor bioavailability of this compound is one of the major limitations for its proper and effective disease management actions. Recently, some novel nanoparticle-based formulations have been used to overcome these limitations. The aim of this review is to provide a clear picture regarding the mechanism of action of kaempferol in different cancers through the modulation of cell signaling molecules. Besides this, strategies to improve the efficacy and synergistic effects of this compound have also been described. However, more studies are needed based on clinical trials to fully explore the therapeutic role of this compound, especially in cancer treatment.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Wanian M. Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Basmah F. Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| |
Collapse
|
11
|
Bader Ul Ain H, Tufail T, Javed M, Tufail T, Arshad MU, Hussain M, Gull Khan S, Bashir S, Al Jbawi E, Abdulaali Saewan S. Phytochemical profile and pro-healthy properties of berries. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2096062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Huma Bader Ul Ain
- University Institute of Diet & Nutritional Sciences, the University of Lahore, Pakistan
| | - Tabussam Tufail
- University Institute of Diet & Nutritional Sciences, the University of Lahore, Pakistan
| | - Mehak Javed
- Faisalabad Medical University, Faisalabad, Pakistan
| | | | | | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Samreen Gull Khan
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Shahid Bashir
- University Institute of Diet & Nutritional Sciences, the University of Lahore, Pakistan
| | | | | |
Collapse
|
12
|
Qattan MY, Khan MI, Alharbi SH, Verma AK, Al-Saeed FA, Abduallah AM, Al Areefy AA. Therapeutic Importance of Kaempferol in the Treatment of Cancer through the Modulation of Cell Signalling Pathways. Molecules 2022; 27:8864. [PMID: 36557997 PMCID: PMC9788613 DOI: 10.3390/molecules27248864] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-derived flavonoids are considered natural nontoxic chemo-preventers and have been widely studied for cancer treatment in recent decades. Mostly all flavonoid compounds show significant anti-inflammatory, anticancer and antioxidant properties. Kaempferol (Kmp) is a well-studied compound and exhibits remarkable anticancer and antioxidant potential. Kmp can regulate various cancer-related processes and activities such as cell cycle, oxidative stress, apoptosis, proliferation, metastasis, and angiogenesis. The anti-cancer properties of Kmp primarily occur via modulation of apoptosis, MAPK/ERK1/2, P13K/Akt/mTOR, vascular endothelial growth factor (VEGF) signalling pathways. The anti-cancer property of Kmp has been recognized in several in-vivo and in-vitro studies which also includes numerous cell lines and animal models. This flavonoid possesses toxic activities against only cancer cells and have restricted toxicity on healthy cells. In this review, we present extensive research investigations about the therapeutic potential of Kmp in the management of different types of cancers. The anti-cancer properties of Kmp are discussed by concentration on its capability to target molecular-signalling pathway such as VEGF, STAT, p53, NF-κB and PI3K-AKT signalling pathways. The anti-cancer property of Kmf has gained a lot of attention, but the accurate action mechanism remains unclear. However, this natural compound has a great pharmacological capability and is now considered to be an alternative cancer treatment.
Collapse
Affiliation(s)
- Malak Yahia Qattan
- Department of Health Sciences, College of Applied Studies and Community Service, King Saud University, KSA- 4545, Riyadh 11451, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Shudayyed Hasham Alharbi
- Pharmacy Department, Maternity and Children Hospital (MCH), Qassim Cluster, Ministry of Health, Buraydah 52384, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia University, New Delhi 110025, India
| | - Fatimah A. Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Alduwish Manal Abduallah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkarj 11942, Saudi Arabia
| | - Azza A. Al Areefy
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Nutrition & Food Science Department, Faculty of Home Economics, Helwan University, P.O. Box 11795, Cairo 11281, Egypt
| |
Collapse
|
13
|
Yan Q, Yang J, Yao Y, Jia Z, Wang Y, Cheng M, Yan X, Xu Y. Research of the Active Components and Potential Mechanisms of Qingfei Gujin Decoction in the Treatment of Osteosarcoma Based on Network Pharmacology and Molecular Docking Technology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7994425. [PMID: 36466554 PMCID: PMC9713469 DOI: 10.1155/2022/7994425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 09/10/2024]
Abstract
Aim Qingfei Gujin Decoction (QGD) has been shown to be effective against osteosarcoma. This research was aimed at investigating the main active ingredients and potential mechanisms of QGD acting on osteosarcoma through network pharmacology and molecular docking techniques. Methods The active ingredients and targets of QGD were screened from the TCMSP database, and the predicted targets were obtained from the PharmMapper database. Meanwhile, the targets of osteosarcoma were collected using OMIM, PharmGKB, and DisGeNET databases. Then, GO and KEGG enrichment analyses were performed by RStudio. PPI and drug-ingredient-target networks were constructed using Cytoscape 3.2.1 to screen the major active ingredients, key networks, and targets. Finally, molecular docking of key genes and their regulatory active ingredients was performed using AutoDockTools 1.5.6 software. Results 38 active ingredients were collected, generating 89 cross-targets; quercetin, luteolin, β-sitosterol, and kaempferol were the main active ingredients of QGD acting on osteosarcoma, and major signaling pathways such as PI3K-Akt signaling pathway, MAPK signaling pathway, and IL-17 signaling pathway were observed. TP53, SRC, and ESR1 were identified as key proteins that docked well with their regulated compounds. Conclusion QGD is effective against osteosarcoma through multicomponent, multitarget, and multipathway. This study was helpful for finding effective targets and compounds for osteosarcoma treatment.
Collapse
Affiliation(s)
- Qingying Yan
- Department of Oncology, Hangzhou Third People's Hospital, Hangzhou, China
- Department of Oncology, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiewen Yang
- Department of Oncology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Yongwei Yao
- Department of Oncology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Zhen Jia
- Department of Oncology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Yiqing Wang
- Department of Oncology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Miao Cheng
- Department of Oncology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Xiaobo Yan
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yefeng Xu
- Department of Oncology, Hangzhou Third People's Hospital, Hangzhou, China
| |
Collapse
|
14
|
A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell Int 2022; 22:260. [PMID: 35986346 PMCID: PMC9392350 DOI: 10.1186/s12935-022-02673-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022] Open
Abstract
It has been shown in multiple experimental and biological investigations that kaempferol, an edible flavonoid generated from plants, may be used as an anti-cancer drug and has been shown to have anti-cancer properties. Many signaling pathways are altered in cancer cells, resulting in cell growth inhibition and death in various tumor types. Cancer is a multifaceted illness coordinated by multiple external and internal mechanisms. Natural extracts with the fewest side effects have piqued the attention of researchers in recent years, attempting to create cancer medicines based on them. An extensive array of natural product-derived anti-cancer agents have been examined to find a successful method. Numerous fruits and vegetables have high levels of naturally occurring flavonoid kaempferol, and its pharmacological and biological effects have been studied extensively. Certain forms of cancer are sensitive to kaempferol-mediated anti-cancer activity, although complete research is needed. We have endeavored to concentrate our review on controlling carcinogenic pathways by kaempferol in different malignancies. Aside from its extraordinary ability to modify cell processes, we have also discussed how kaempferol has the potential to be an effective therapy for numerous tumors.
Collapse
|
15
|
He X, Liao Y, Liu J, Sun S. Research Progress of Natural Small-Molecule Compounds Related to Tumor Differentiation. Molecules 2022; 27:2128. [PMID: 35408534 PMCID: PMC9000768 DOI: 10.3390/molecules27072128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor differentiation is a therapeutic strategy aimed at reactivating the endogenous differentiation program of cancer cells and inducing cancer cells to mature and differentiate into other types of cells. It has been found that a variety of natural small-molecule drugs can induce tumor cell differentiation both in vitro and in vivo. Relevant molecules involved in the differentiation process may be potential therapeutic targets for tumor cells. Compared with synthetic drugs, natural small-molecule antitumor compounds have the characteristics of wide sources, structural diversity and low toxicity. In addition, natural drugs with structural modification and transformation have relatively concentrated targets and enhanced efficacy. Therefore, using natural small-molecule compounds to induce malignant cell differentiation represents a more targeted and potential low-toxicity means of tumor treatment. In this review, we focus on natural small-molecule compounds that induce differentiation of myeloid leukemia cells, osteoblasts and other malignant cells into functional cells by regulating signaling pathways and the expression of specific genes. We provide a reference for the subsequent development of natural small molecules for antitumor applications and promote the development of differentiation therapy.
Collapse
Affiliation(s)
- Xiaoli He
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yongkang Liao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
16
|
Wu MD, Zhang YY, Yi SY, Sun BB, Lan J, Jiang HM, Hao GP. Acetylshikonin induces autophagy-dependent apoptosis through the key LKB1-AMPK and PI3K/Akt-regulated mTOR signalling pathways in HL-60 cells. J Cell Mol Med 2022; 26:1606-1620. [PMID: 35106915 PMCID: PMC8899184 DOI: 10.1111/jcmm.17202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Acetylshikonin (ASK) is a natural naphthoquinone derivative of traditional Chinese medicine Lithospermum erythrorhyzon. It has been reported that ASK has bactericidal, anti‐inflammatory and antitumour effects. However, whether ASK induces apoptosis and autophagy in acute myeloid leukaemia (AML) cells and the underlying mechanism are still unclear. Here, we explored the roles of apoptosis and autophagy in ASK‐induced cell death and the potential molecular mechanisms in human AML HL‐60 cells. The results demonstrated that ASK remarkably inhibited the cell proliferation, viability and induced apoptosis in HL‐60 cells through the mitochondrial pathway, and ASK promoted cell cycle arrest in the S‐phase. In addition, the increased formation of autophagosomes, the turnover from light chain 3B (LC3B) I to LC3B II and decrease of P62 suggested the induction of autophagy by ASK. Furthermore, ASK significantly decreased PI3K, phospho‐Akt and p‐p70S6K expression, while enhanced phospho‐AMP‐activated protein kinase (AMPK) and phospho‐liver kinase B1(LKB1) expression. The suppression of ASK‐induced the conversion from LC3B I to LC3B II caused by the application of inhibitors of AMPK (compound C) demonstrated that ASK‐induced autophagy depends on the LKB1/AMPK pathway. These data suggested that the autophagy induced by ASK were dependent on the activation of LKB1/AMPK signalling and suppression of PI3K/Akt/mTOR pathways. The cleavage of the apoptosis‐related markers caspase‐3 and caspase‐9 and the activity of caspase‐3 induced by ASK were markedly reduced by inhibitor of AMPK (compound C), an autophagy inhibitor 3‐methyladenine (3‐MA) and another autophagy inhibitor chloroquine (CQ). Taken together, our data reveal that ASK‐induced HL‐60 cell apoptosis is dependent on the activation of autophagy via the LKB1/AMPK and PI3K/Akt‐regulated mTOR signalling pathways.
Collapse
Affiliation(s)
- Meng-Di Wu
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan-Ying Zhang
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Shu-Ying Yi
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Bei-Bei Sun
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Lan
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Han-Ming Jiang
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Gang-Ping Hao
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
17
|
Rabelo ACS, Borghesi J, Noratto GD. The role of dietary polyphenols in osteosarcoma: A possible clue about the molecular mechanisms involved in a process that is just in its infancy. J Food Biochem 2021; 46:e14026. [PMID: 34873724 DOI: 10.1111/jfbc.14026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor mainly affecting children, teenagers and young adults, being associated with early metastasis and poor prognosis. The beneficial effects of polyphenols have been investigated in different areas, including their potential to fight OS. Polyphenols are believed to reduce morbidity and/or slow down the development of cancer. This review aimed to assess the effect of polyphenols in OS and investigate their molecular mechanisms. It was observed that the broad spectrum of health-promoting properties of plant polyphenols in OS occurs mainly due to modulation of reactive oxygen species, anti-inflammatory activity, anti-angiogenesis, apoptosis inducer, inhibition of invasion and metastasis. However, it is worth mentioning that although the promising effects of polyphenols in the fight against OS, most of the studies have been performed using in vitro and in vivo animal models. Therefore, studies in humans are needed to validate the effectiveness of polyphenols in OS treatment. PRACTICAL APPLICATIONS: Polyphenols are widely used for various diseases, however, until now, their real role in the treatment of osteosarcoma remains unknown. This review provides a broad spectrum of research conducted with polyphenols and their potential as adjuvant therapy in the treatment of osteosarcoma. However, prior to their clinical application for osteosarcoma treatment, there is a need to isolate and identify specific polyphenolic compounds with high antitumor activity, increase their oral bioavailability, and to investigate their interactions with chemotherapeutic drugs being used in clinical practice.
Collapse
Affiliation(s)
- Ana Carolina Silveira Rabelo
- Department of Food and Experimental Nutrition, Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Jéssica Borghesi
- Department of Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, Brazil
| | - Giuliana D Noratto
- Departament of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
18
|
Yang L, Gao Y, Bajpai VK, El-Kammar HA, Simal-Gandara J, Cao H, Cheng KW, Wang M, Arroo RRJ, Zou L, Farag MA, Zhao Y, Xiao J. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Crit Rev Food Sci Nutr 2021; 63:2773-2789. [PMID: 34554029 DOI: 10.1080/10408398.2021.1980762] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As a major ubiquitous secondary metabolite, flavonoids are widely distributed in planta. Among flavonoids, kaempferol is a typical natural flavonol in diets and medicinal plants with myriad bioactivities, such as anti-inflammatory activity, anti-cancer activity, antioxidant activity, and anti-diabetic activity. However, the natural sources, absorption and metabolism as well as the bioactivities of kaempferol have not been reviewed comprehensively and systematically. This review highlights the latest research progress and the effect of kaempferol in the prevention and treatment of various chronic diseases, as well as its protective health effects, and provides a theoretical basis for future research to be used in nutraceuticals. Further, comparison of the different extraction and analytical methods are presented to highlight the most optimum for PG recovery and its detection in plasma and body fluids. Such review aims at improving the value-added applications of this unique dietary bioactive flavonoids at commercial scale and to provide a reference for its needed further development.
Collapse
Affiliation(s)
- Li Yang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University Seoul, Seoul, Republic of Korea
| | - Heba A El-Kammar
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | | | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, Egypt
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
Yang G, Xing J, Aikemu B, Sun J, Zheng M. Kaempferol exhibits a synergistic effect with doxorubicin to inhibit proliferation, migration, and invasion of liver cancer. Oncol Rep 2021; 45:32. [PMID: 33649865 PMCID: PMC7905650 DOI: 10.3892/or.2021.7983] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/22/2021] [Indexed: 01/10/2023] Open
Abstract
Kaempferol (KF), a flavonoid compound isolated from herbal medicines, has been reported to play a significant role in inhibiting certain types of cancer. Although recent studies reported that KF exerted inhibitive activity on liver cancer, they failed to elucidate the signaling pathways and synergistic effects in combination with chemotherapeutic drugs currently in use in the clinical setting. In the present study, the signaling pathways and synergistic effects of KF in liver cancer cells were investigated. Nine liver cancer cell lines were used to assess the inhibitive activity and synergistic effects of KF. Cellular behavioral experiments, such as viability, colony formation, cell cycle arrest, apoptotic, wound healing, and Transwell assays were used to assess the effects of KF on the proliferation, apoptosis, migration, and invasion of liver cancer cells. Western blotting was performed to validate the key signaling pathway elements underlying those cellular behaviors. KF exhibited inhibitory effects on nine liver cancer cell lines in time- and dose-dependent manners and was mostly nontoxic to the normal hepatocyte cells. The combination of KF and doxorubicin revealed a stronger inhibitive effect on the viability of liver cancer cells. Combination therapy also revealed higher suppressive effects on colony formation, cell cycle progression, survival, DNA damage response, and mitochondrial function. By western blotting assay, mitochondrial and caspase signaling pathways were determined to be involved in proliferation inhibition. In wound healing and Transwell invasion assays, combination therapy also exhibited more robust inhibitory activity in blocking the migration and invasion of liver cancer cells. PI3K/mTOR/MMP protein pathways were also revealed to be related to cell migration inhibition. KF alone exhibited an inhibitory effect on proliferation, migration, and invasion of liver cancer cells, and its synergistic effects revealed stronger inhibitory activities. The present data indicated that KF is a promising candidate as a complementary medicine to conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, P.R. China
| | - Jun Xing
- Department of PET/CT Center, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Batuer Aikemu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, P.R. China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, P.R. China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, P.R. China
| |
Collapse
|
20
|
A system biological approach to investigate the genetic profiling and comorbidities of type 2 diabetes. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Neamtu AA, Szoke-Kovacs R, Mihok E, Georgescu C, Turcus V, Olah NK, Frum A, Tita O, Neamtu C, Szoke-Kovacs Z, Cziaky Z, Mathe E. Bilberry ( Vaccinium myrtillus L.) Extracts Comparative Analysis Regarding Their Phytonutrient Profiles, Antioxidant Capacity along with the In Vivo Rescue Effects Tested on a Drosophila melanogaster High-Sugar Diet Model. Antioxidants (Basel) 2020; 9:E1067. [PMID: 33143302 PMCID: PMC7694118 DOI: 10.3390/antiox9111067] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Bilberries (Vaccinium myrtillus L.) have been reported to hold a plentitude of health-promoting properties beyond basic nutrition, mainly attributed to their anthocyanin content and antioxidant activity. In this article, we built the phytochemical profile of three wild bilberry fruit extract formulations (aqueous, methanolic, and hydro-methanolic) using UHPLC-ESI-MS/MS putative analysis, identifying 88 individual phytochemicals, mainly flavonoids (total content 8.41 ± 0.11 mg QE/g dw), free amino acids, polyphenols (total content 21.68 ± 0.19 mg GAE/g dw), carboxylic acids, and vitamins. Furthermore, the antioxidant activity of the extract was assessed, reaching 78.03 ± 0.16% DPPH free radical scavenging activity, comparable to literature values determined for bilberry extracts of other origin. Due to the increased prevalence of metabolic syndrome and based on the reviewed benefits of bilberries, we tested the most potent formulation of our bilberry extracts in this biological context. The in vivo rescue effect of a bilberry extract supplemented diet on Drosophila melanogaster was assessed by monitoring biochemical and genomic markers. Hemolymph trehalose levels were halved upon addition of 3% hydro-methanolic bilberry extract to a high-sugar (1.5 M sucrose) diet, as compared to the non-supplemented high-sugar diet. Noteworthy, the rescue seen for flies kept on the bilberry extract supplemented high-sugar diet appeared to parallel the trehalose levels observed in the case of the control diet (50 mM sucrose) flies. Moreover, next to the trehalose-lowering type of in vivo effects, other gene expression related rescues were also detected for genes such as InR, Akh, AstA, AstC, Irk, Npc2g, and CCHa2 upon supplementation of the high-sugar diet with our hydro-methanolic bilberry fruit extract. Our findings suggest that such a bilberry fruit extract could generate physiological and genomic type of compensatory mechanisms so that further translational approaches would advance the understanding of some human specific pathological conditions.
Collapse
Affiliation(s)
| | - Rita Szoke-Kovacs
- Doctoral School of Molecular Cell Biology and Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Emoke Mihok
- Doctoral School of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Cecilia Georgescu
- Faculty of Agricultural Science, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (A.F.); (O.T.)
| | - Violeta Turcus
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania; (V.T.); (C.N.)
| | - Neli Kinga Olah
- Faculty of Pharmacy, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania;
| | - Adina Frum
- Faculty of Agricultural Science, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (A.F.); (O.T.)
| | - Ovidiu Tita
- Faculty of Agricultural Science, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (A.F.); (O.T.)
| | - Carmen Neamtu
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania; (V.T.); (C.N.)
| | - Zsombor Szoke-Kovacs
- Doctoral School of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Zoltan Cziaky
- Agricultural and Molecular Research and Service Institute, University of Nyiregyhaza, H-4400 Nyíregyháza, Hungary;
| | - Endre Mathe
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania; (V.T.); (C.N.)
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
22
|
Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med Hypotheses 2020; 141:109723. [DOI: 10.1016/j.mehy.2020.109723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 01/16/2023]
|
23
|
Chiang JH, Tsai FJ, Hsu YM, Yin MC, Chiu HY, Yang JS. Sensitivity of allyl isothiocyanate to induce apoptosis via ER stress and the mitochondrial pathway upon ROS production in colorectal adenocarcinoma cells. Oncol Rep 2020; 44:1415-1424. [PMID: 32700751 PMCID: PMC7448487 DOI: 10.3892/or.2020.7700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Allyl isothiocyanate (AITC), a bioactive phytochemical compound that is a constituent of dietary cruciferous vegetables, possesses promising chemopreventive and anticancer effects. However, reports of AITC exerting antitumor effects on apoptosis induction of colorectal cancer (CRC) cells in vitro are not well elucidated. The present study focused on the functional mechanism of the endoplasmic reticulum (ER) stress-based apoptotic machinery induced by AITC in human colorectal cancer HT-29 cells. Our results indicated that AITC decreased cell growth and number, reduced viability, and facilitated morphological changes of apoptotic cell death. DNA analysis by flow cytometry showed G2/M phase arrest, and alterations in the modulated protein levels caused by AITC were detected via western blot analysis. AITC also triggered vital intrinsic apoptotic factors (caspase-9/caspase-3 activity), disrupted mitochondrial membrane potential, and stimulated mitochondrial-related apoptotic molecules (e.g., cytochrome c, apoptotic protease activating factor 1, apoptosis-inducing factor, and endonuclease G). Additionally, AITC prompted induced cytosolic Ca2+ release and Ca2+-dependent ER stress-related signals, such as calpain 1, activating transcription factor 6α, glucose-regulated proteins 78 and 94, growth arrest- and DNA damage-inducible protein 153 (GADD153), and caspase-4. The level of reactive oxygen species (ROS) production was found to induce the hallmark of ER stress GADD153, proapoptotic marker caspase-3, and calpain activity after AITC treatment. Our findings showed for the first time that AITC induced G2/M phase arrest and apoptotic death via ROS-based ER stress and the intrinsic pathway (mitochondrial-dependent) in HT-29 cells. Overall, AITC may exert an epigenetic effect and is a potential bioactive compound for CRC treatment.
Collapse
Affiliation(s)
- Jo-Hua Chiang
- Department of Nursing, Chung‑Jen Junior College of Nursing, Health Sciences and Management, Chiayi County 62241, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Mei-Chin Yin
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40442, Taiwan, R.O.C
| |
Collapse
|
24
|
Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers (Basel) 2020; 12:cancers12071985. [PMID: 32708138 PMCID: PMC7409346 DOI: 10.3390/cancers12071985] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.
Collapse
|
25
|
Chang PY, Tsai FJ, Bau DT, Hsu YM, Yang JS, Tu MG, Chiang SL. Potential effects of allyl isothiocyanate on inhibiting cellular proliferation and inducing apoptotic pathway in human cisplatin-resistant oral cancer cells. J Formos Med Assoc 2020; 120:515-523. [PMID: 32624316 DOI: 10.1016/j.jfma.2020.06.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/PURPOSE Cisplatin-resistant oral cancer is clinically difficult to manage and the dose-dependent toxicities of cisplatin has been widely concerned. Allyl isothiocyanate (AITC), known as mustard oil, is a plant-derived compound abundant in cruciferous vegetables. It is reported to have anti-cancer potential as a natural dietary chemopreventive compound against a variety of cancers, but the effect of AITC on cisplatin-resistant cancer cells is still little-known. METHODS Human CAL27-cisplatin-resistant oral cancer cells (CAR cells) were examined to investigate the antitumor properties of AITC. 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay, IncuCyte™ S3 cell proliferation assay, 4',6-diamidino-2-phenylindole (DAPI) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining as well as Western blot analysis were deployed. RESULTS AITC decreased CAR cell viability, induced cell death of CAR cells and inhibited the confluences of cultured CAR cells. When CAR cells were treated with AITC, activation of caspase-3 and caspase-9 by AITC was observed and could be reversed by Z-VAD-fmk (pan-caspase inhibitor). Furthermore, the protein expressions of phosphorylated protein kinase B (p-AKT) and phosphorylated mammalian target of rapamycin (p-mTOR) were suppressed in AITC-treated CAR cells, whereas protein expressions of Bax, cytochrome c, Apaf-1, cleaved caspase-3, and cleaved caspase-9 were upregulated in AITC-treated CAR cells. CONCLUSION AITC can inhibit Akt/mTOR proliferation signaling and promote mitochondria-dependent apoptotic pathway through AITC-enhanced activities of caspase-3 and caspase-9 in CAR cells.
Collapse
Affiliation(s)
- Pei-Ying Chang
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; School of Dentistry, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ming-Gene Tu
- School of Dentistry, China Medical University, Taichung, Taiwan; Department of Dentistry, China Medical University Hospital, Taichung, Taiwan.
| | - Shang-Lun Chiang
- Environment-Omics-Disease Research Center, China Medical University Hospital, Taichung, Taiwan; Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
26
|
Pérez-Manríquez J, Escalona N, Pérez-Correa J. Bioactive Compounds of the PVPP Brewery Waste Stream and their Pharmacological Effects. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190723112623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beer, one of the most commonly consumed alcoholic beverages, is rich in polyphenols
and is the main dietary source of xanthohumol and related prenylflavonoids. However, to avoid haze
formation caused by the interaction between polyphenols and proteins, most phenolic compounds are
removed from beer and lost in the brewery waste stream via polyvinylpolypyrrolidone (PVPP)
adsorption. This waste stream contains several polyphenols with high antioxidant capacity and pharmacological
effects; that waste could be used as a rich, low-cost source of these compounds, though
little is known about its composition and potential attributes. This work aims to review the polyphenols
present in this brewery waste stream, as well as the health benefits associated with their consumption.
Collapse
Affiliation(s)
- J. Pérez-Manríquez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| | - N. Escalona
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| | - J.R. Pérez-Correa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| |
Collapse
|
27
|
Ren J, Lu Y, Qian Y, Chen B, Wu T, Ji G. Recent progress regarding kaempferol for the treatment of various diseases. Exp Ther Med 2019; 18:2759-2776. [PMID: 31572524 PMCID: PMC6755486 DOI: 10.3892/etm.2019.7886] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Kaempferol, also known as kaempferol-3 or kaempferide, is a flavonoid compound that naturally occurs in tea, as well as numerous common vegetables and fruits, including beans, broccoli, cabbage, gooseberries, grapes, kale, strawberries, tomatoes, citrus fruits, brussel sprouts, apples and grapefruit. The present review mainly summarizes the application of kaempferol in treating diseases and the underlying mechanisms that are currently being studied. Due to its anti-inflammatory properties, it may be used to treat numerous acute and chronic inflammation-induced diseases, including intervertebral disc degeneration and colitis, as well as post-menopausal bone loss and acute lung injury. In addition, it has beneficial effects against cancer, liver injury, obesity and diabetes, inhibits vascular endothelial inflammation, protects the cranial nerve and heart function, and may be used for treating fibroproliferative disorders, including hypertrophic scar.
Collapse
Affiliation(s)
- Jie Ren
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yifei Lu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yanhong Qian
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Bozhou Chen
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
28
|
Kaempferol attenuates mitochondrial dysfunction and oxidative stress induced by H2O2 during porcine embryonic development. Theriogenology 2019; 135:174-180. [DOI: 10.1016/j.theriogenology.2019.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022]
|
29
|
Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou PV, Umair Arshad M, Khan H, Guerreiro SG, Martins N, Estevinho LM. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019; 24:molecules24122277. [PMID: 31248102 PMCID: PMC6631472 DOI: 10.3390/molecules24122277] [Citation(s) in RCA: 406] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/07/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
A marked decrease in human cancers, including breast cancer, bone cancer, and cervical cancer, has been linked to the consumption of vegetable and fruit, and the corresponding chemoprotective effect has been associated with the presence of several active molecules, such as kaempferol. Kaempferol is a major flavonoid aglycone found in many natural products, such as beans, bee pollen, broccoli, cabbage, capers, cauliflower, chia seeds, chives, cumin, moringa leaves, endive, fennel, and garlic. Kaempferol displays several pharmacological properties, among them antimicrobial, anti-inflammatory, antioxidant, antitumor, cardioprotective, neuroprotective, and antidiabetic activities, and is being applied in cancer chemotherapy. Specifically, kaempferol-rich food has been linked to a decrease in the risk of developing some types of cancers, including skin, liver, and colon. The mechanisms of action include apoptosis, cell cycle arrest at the G2/M phase, downregulation of epithelial-mesenchymal transition (EMT)-related markers, and phosphoinositide 3-kinase/protein kinase B signaling pathways. In this sense, this article reviews data from experimental studies that investigated the links between kaempferol and kaempferol-rich food intake and cancer prevention. Even though growing evidence supports the use of kaempferol for cancer prevention, further preclinical and clinical investigations using kaempferol or kaempferol-rich foods are of pivotal importance before any public health recommendation or formulation using kaempferol.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan.
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | | | - Farhan Saeed
- Department of Food Science, Nutrition & Home Economics, Institute of Home and Food Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Ali Imran
- Department of Food Science, Nutrition & Home Economics, Institute of Home and Food Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University of Agriculture, Multan 66000, Pakistan.
| | - Patrick Valere Tsouh Fokou
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon.
| | - Muhammad Umair Arshad
- Department of Food Science, Nutrition & Home Economics, Institute of Home and Food Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical & Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Susana G Guerreiro
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
- Faculty of Nutrition and Food Science, University of Porto, 4200-465 Porto, Portugal.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Leticia M Estevinho
- Department of Biology and Biotechnology, School of Agriculture of the Polytechnic Institute of Bragança (ESA-IPB), Campus de Santa Apolónia, 5301-854 Bragança, Portugal.
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança. Campus Santa Apolónia, 5301-855 Bragança, Portugal.
| |
Collapse
|
30
|
Lee CM, Lee J, Nam MJ, Choi YS, Park SH. Tomentosin Displays Anti-Carcinogenic Effect in Human Osteosarcoma MG-63 Cells via the Induction of Intracellular Reactive Oxygen Species. Int J Mol Sci 2019; 20:ijms20061508. [PMID: 30917517 PMCID: PMC6471964 DOI: 10.3390/ijms20061508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Tomentosin is a natural sesquiterpene lactone extracted from various plants and is widely used as a medicine because it exhibits essential therapeutic properties. In this study, we investigated the anti-carcinogenic effects of tomentosin in human osteosarcoma MG-63 cells by performing cell migration/viability/proliferation, apoptosis, and reactive oxygen species (ROS) analysis assays. MG-63 cells were treated with various doses of tomentosin. After treatment with tomentosin, MG-63 cells were analyzed using the MTT assay, colony formation assay, cell counting assay, wound healing assay, Boyden chamber assay, zymography assay, cell cycle analysis, FITC Annexin V apoptosis assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, western blot analysis, and ROS detection analysis. Our results indicated that tomentosin decreased cell viability and migration ability in MG-63 cells. Moreover, tomentosin induced apoptosis, cell cycle arrest, DNA damage, and ROS production in MG-63 cells. Furthermore, tomentosin-induced intracellular ROS decreased cell viability and induced apoptosis, cell cycle arrest, and DNA damage in MG-63 cells. Taken together, our results suggested that tomentosin exerted anti-carcinogenic effects in MG-63 cells by induction of intracellular ROS.
Collapse
Affiliation(s)
- Chang Min Lee
- Department of Biological Science, Gachon University, Seongnam 13120, Korea.
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Seongnam 13120, Korea.
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Department of Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| |
Collapse
|
31
|
Budisan L, Gulei D, Jurj A, Braicu C, Zanoaga O, Cojocneanu R, Pop L, Raduly L, Barbat A, Moldovan A, Moldovan C, Tigu AB, Ionescu C, Atanasov AG, Irimie A, Berindan-Neagoe I. Inhibitory Effect of CAPE and Kaempferol in Colon Cancer Cell Lines-Possible Implications in New Therapeutic Strategies. Int J Mol Sci 2019; 20:E1199. [PMID: 30857282 PMCID: PMC6429399 DOI: 10.3390/ijms20051199] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Phytochemicals are natural compounds synthesized as secondary metabolites in plants and represent an important source of molecules with therapeutic applications. Attention is accorded to their potential in anti-cancer therapies as single agents or adjuvant treatment. Herby, we evaluated the in vitro effects of a panel of natural compounds with focus on caffeic acid phenethyl ester (CAPE) and Kaempferol for the treatment of human colon cancer. METHODS We exposed two human colon cancer cell lines, RKO and HCT-116, followed by functional examination of cell viability, cell proliferation and invasion, cell cycle, apoptosis, and autophagy. Modifications in gene expression were investigated through microarray and detection of existing mutations and finding of new ones was done with the help of Next Generation Sequencing (NGS). RESULTS Both CAPE and Kaempferol inhibit cell proliferation, motility and invasion, and stimulate apoptosis and autophagy, concomitant with modifications in coding and noncoding genes' expression. Moreover, there are pathogenic mutations that are no longer found upon treatment with CAPE and Kaempferol. CONCLUSIONS Our findings indicate that CAPE and Kaempferol have the ability to negatively influence the development and advancement of colon cancer in vitro by specifically altering the cells at the molecular level; this activity can be exploited in possible adjuvant therapies once the optimal dose concentration with minimal side effects but with cancer inhibitory activity is set in vivo.
Collapse
Affiliation(s)
- Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Laura Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Alexandru Barbat
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Alin Moldovan
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Cristian Moldovan
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Adrian Bogdan Tigu
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Calin Ionescu
- 5th Surgical Department, Municipal Hospital, 400139 Cluj-Napoca, Romania.
- "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania.
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
32
|
Abdullah A, Talwar P, d'Hellencourt CL, Ravanan P. IRE1α is critical for Kaempferol-induced neuroblastoma differentiation. FEBS J 2019; 286:1375-1392. [PMID: 30719816 DOI: 10.1111/febs.14776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
Abstract
Neuroblastoma is an embryonic malignancy that arises out of the neural crest cells of the sympathetic nervous system. It is the most common childhood tumor known for its spontaneous regression via the process of differentiation. The induction of differentiation using small molecules such as retinoic acid is one of the therapeutic strategies to treat the residual disease. In this study, we have reported the effect of kaempferol (KFL) in inducing differentiation of neuroblastoma cells in vitro. Treatment of neuroblastoma cells with KFL reduced the proliferation and enhanced apoptosis along with the induction of neuritogenesis. Analysis of the expression of neuron-specific markers such as β-III tubulin, neuron-specific enolase, and N-myc downregulated gene 1 revealed the process of differentiation accompanying KFL-induced apoptosis. Further analysis to understand the molecular mechanism of action showed that the effect of KFL is mediated by the activation of the endoribonuclease activity of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum-resident transmembrane protein. In silico docking analysis and biochemical assays using recombinant human IRE1α confirm the binding of KFL to the ATP-binding site of IRE1α, which thereby activates IRE1α ribonuclease activity. Treatment of cells with the small molecule STF083010, which specifically targets and inhibits the endoribonuclease activity of IRE1α, showed reduced expression of neuron-specific markers and curtailed neuritogenesis. The knockdown of IRE1α using plasmid-based shRNA lentiviral particles also showed diminished changes in the morphology of the cells upon KFL treatment. Thus, our study suggests that KFL induces differentiation of neuroblastoma cells via the IRE1α -XBP1 pathway.
Collapse
Affiliation(s)
- Ahmad Abdullah
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India
| | - Christian Lefebvre d'Hellencourt
- Institut National de la Santé et de la Recherche Médicale, UMR Diabète Athérothombose Thérapies Réunion Océan Indien, Université de La Réunion, Saint-Denis de La Réunion, France
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
33
|
Shang HS, Lu HF, Lee CH, Chiang HS, Chu YL, Chen A, Lin YF, Chung JG. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:1168-1181. [PMID: 30152185 DOI: 10.1002/tox.22623] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 05/20/2023]
Abstract
Quercetin is one of the natural components from natural plant and it induces cell apoptosis in many human cancer cell lines. However, no available reports show that quercetin induces apoptosis and altered associated gene expressions in human gastric cancer cells, thus, we investigated the effect of quercetin on the apoptotic cell death and associated gene expression in human gastric cancer AGS cells. Results indicated that quercetin induced cell morphological changes and reduced total viability via apoptotic cell death in AGS cells. Furthermore, results from flow cytometric assay indicated that quercetin increased reactive oxygen species (ROS) production, decreased the levels of mitochondrial membrane potential (ΔΨm ), and increased the apoptotic cell number in AGS cells. Results from western blotting showed that quercetin decreased anti-apoptotic protein of Mcl-1, Bcl-2, and Bcl-x but increased pro-apoptotic protein of Bad, Bax, and Bid. Furthermore, quercetin increased the gene expressions of TNFRSF10D (Tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain), TP53INP1 (tumor protein p53 inducible nuclear protein 1), and JUNB (jun B proto-oncogene) but decreased the gene expression of VEGFB (vascular endothelial growth factor B), CDK10 (cyclin-dependent kinase 10), and KDELC2 (KDEL [Lys-Asp-Glu-Leu] containing 2) that are associated with apoptosis pathways. Thus, those findings may offer more information regarding the molecular, gene expression, and signaling pathway for quercetin induced apoptotic cell death in human gastric cancer cells.
Collapse
Affiliation(s)
- Hung-Sheng Shang
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng-Hsin General Hospital, Taipei, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Han-Sun Chiang
- Graduate Institute of Basic Medicine, Fu-Jen Catholic University, New Taipei city, Taiwan
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ann Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
34
|
Chen CF, Lu CC, Chiang JH, Chiu HY, Yang JS, Lee CY, Way TD, Huang HJ. Synergistic inhibitory effects of cetuximab and curcumin on human cisplatin-resistant oral cancer CAR cells through intrinsic apoptotic process. Oncol Lett 2018; 16:6323-6330. [PMID: 30333889 PMCID: PMC6176463 DOI: 10.3892/ol.2018.9418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Cetuximab, an epidermal growth factor receptor (EGFR)-targeting monoclonal antibody (mAb), is a novel targeted therapy for the treatment of patients with oral cancer. Cetuximab can be used in combination with chemotherapeutic agents to prolong the overall survival rates of patients with oral cancer. Curcumin is a traditional Chinese medicine, and it has been demonstrated to have growth-inhibiting effects on oral cancer cells. However, information regarding the combination of cetuximab and curcumin in drug-resistant oral cancer cells is lacking, and its underlying mechanism remains unclear. The purpose of the present study was to explore the oral anticancer effects of cetuximab combined with curcumin on cisplatin-resistant oral cancer CAR cell apoptosis in vitro. The results demonstrated that combination treatment synergistically potentiated the effect of cetuximab and curcumin on the suppression of cell viability and induction of apoptosis in CAR cells. Cetuximab and curcumin combination induced apoptosis and dramatically increased caspase-3 and caspase-9 activities compared with singular treatment. Combination treatment also markedly suppressed the protein expression levels of EGFR and mitogen-activated protein kinases (MAPKs) signaling (phosphorylation of ERK, JNK and p38). The results demonstrated that co-treatment with cetuximab and curcumin exerts synergistic oral anticancer effects on CAR cells through the suppression of the EGFR signaling by regulation of the MAPK pathway.
Collapse
Affiliation(s)
- Chin-Fu Chen
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jo-Hua Chiang
- Department of Nursing, Chung Jen Catholic Junior College, Chiayi County 622, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chao-Ying Lee
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C.,Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
35
|
Lin CH, Funayama S, Peng SF, Kuo CL, Chung JG. The ethanol extraction of prepared Psoralea corylifolia induces apoptosis and autophagy and alteres genes expression assayed by cDNA microarray in human prostate cancer PC-3 cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:770-788. [PMID: 29667321 DOI: 10.1002/tox.22564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/25/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Prostate cancer is the most common male reproductive system cancer. The prevalence of prostate cancer in Europe and the United States is higher than that in the Asian region. However, the treatment of prostate cancer remains unsatisfactory. Psoralea corylifolia has been used to cure this disease as Chinese medicine in the Asian region. In this study, we analyzed the components of ethanol extraction of unprepared and prepared P. corylifolia by HPLC. Psoralen and isopsoralen content from the prepared P. corylifolia is twofold higher than that from unprepared, so we use the prepared extraction in this study. However, the effects of the ethanol extraction of P. corylifolia (PCE) on PC-3 human prostate cancer cells remain unclear. PC-3 cells were treated with PCE for different time periods and cells were examined for cell morphological change and total viable cells by using contrast phase microscopy and flow cytometer, respectively. Results indicated that PCE induced cell morphological changes and cytotoxic effect in PC-3 cells in dose-dependent manners. PCE induced chromatin condensation of PC-3 cells dose-dependently. PCE also induced apoptosis and autophagy in PC-3 by western blotting and acridine orange (AO) staining, respectively. Furthermore, a complementary DNA microarray analysis demonstrated that PCE treatment led to 944 genes upregulation and 872 genes downregulation. For example, the DNA damage-associated gene DNA-damage-inducible transcript 3 (DDIT 3) had a 62.1-fold upregulation and CDK1 2.68-fold downregulation. The differential genes were classified according to the Gene Ontology. Furthermore, GeneGo software was used for the key genes involved and their possible interaction pathways. Those genes were affected by P. corylifolia, which provided information for the understanding of the antiprostate cancer mechanism at the genetic level and provide additional targets for the treatments of human prostate cancer.
Collapse
Affiliation(s)
- Chia-Hsin Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Shinji Funayama
- Department of Kampo Pharmaceutical Sciences, Nihon Pharmaceutical University Saitama, Saitama, Japan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, 404, Taiwan, Taichung
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
36
|
Shih YL, Hung FM, Lee CH, Yeh MY, Lee MH, Lu HF, Chen YL, Liu JY, Chung JG. Fisetin Induces Apoptosis of HSC3 Human Oral Cancer Cells Through Endoplasmic Reticulum Stress and Dysfunction of Mitochondria-mediated Signaling Pathways. ACTA ACUST UNITED AC 2018; 31:1103-1114. [PMID: 29102932 DOI: 10.21873/invivo.11176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM Oral cancer has been reported to be one of the major cancer-related diseases in human populations and the treatment of oral cancer is still unsatisfied. Fisetin, is a flavonoid from plants and has several biological activities such as antioxidant, anti-inflammatory and anticancer function, but its cytotoxicity in human oral cancer cells is unknown. In the present study, we investigated fisetin-induced cytotoxic effects on HSC3 human oral cancer cells in vitro. Materials and Methods/Results: We used flow cytometric assay to show fisetin induced apoptotic cell death through increased reactive oxygen species and Ca2+, but reduced the mitochondrial membrane potential and increased caspase-8, -9 and -3 activities in HSC3 cells. Furthermore, we also used 4' 6-diamidino-2-phenylindole staining to show that fisetin induced chromatin condensation (apoptotic cell death), and Comet assay to show that fisetin induced DNA damage in HSC3 cells. Western blotting was used to examine the levels of apoptotic-associated protein and results indicated that fisetin increased expression of pro-apoptotic proteins such as B-cell lymphoma 2 (BCL2) antagonist/killer (BAK) and BCL2-associated X (BAX) but reduced that of anti-apoptotic protein such as BCL2 and BCL-x, and increased the cleaved forms of caspase-3, -8 and -9, and cytochrome c, apoptosis-inducing factor (AIF) and endonuclease G (ENDO G) in HSC3 cells. Confocal microscopy showed that fisetin increased the release of cytochrome c, AIF and ENDO G from mitochondria into the cytoplasm. CONCLUSION Based on these observations, we suggest that fisetin induces apoptotic cell death through endoplasmic reticulum stress- and mitochondria-dependent pathways.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, R.O.C.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan, R.O.C
| | - Fang-Ming Hung
- Department of Surgical Intensive Care Unit, Far Eastern Memorial Hospital, New Taipei, Taiwan, R.O.C
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan, R.O.C
| | - Ming-Yang Yeh
- Department of Medical Education and Research, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City, Taiwan, R.O.C.,Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan, R.O.C
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
37
|
Seydi E, Salimi A, Rasekh HR, Mohsenifar Z, Pourahmad J. Selective Cytotoxicity of Luteolin and Kaempferol on Cancerous Hepatocytes Obtained from Rat Model of Hepatocellular Carcinoma: Involvement of ROS-Mediated Mitochondrial Targeting. Nutr Cancer 2018; 70:594-604. [PMID: 29693446 DOI: 10.1080/01635581.2018.1460679] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To evaluate the cytotoxicity effects of luteolin (LUT) and kaempferol (KAE) via reactive oxygen species (ROS) mediated mitochondrial targeting on hepatocytes obtained from the liver of hepatocellular carcinoma (HCC) rats. In this study, HCC induced by diethylnitrosamine (DEN) and 2-acetylaminofluorene (2-AAF). In the following, rat liver hepatocytes and mitochondria were isolated and tested for every eventual apoptotic and anti-HCC effects of LUT and KAE. The results of MTT assay showed that LUT and KAE were able to induce selective cytotoxicity in hepatocytes of HCC group in a dose- and time-dependent manner. Treatment of mitochondria from hepatocytes of HCC group with LUT and KAE were accompanied by loss of mitochondrial membrane potential (MMP) and mitochondrial swelling and release of cytochrome c (P < 0.001) via reactive oxygen species (ROS) generation before cytotoxicity ensued. LUT and KAE also increased activation of caspase-3 (P < 0.001 and P < 0.01, respectively). Flow-cytometry analysis indicated that the mode of cell death induced by these flavonoids were mostly apoptosis. Importantly, LUT and KAE were nontoxic for healthy hepatocytes and mitochondria. Therefore, we suggest that LUT and KAE are a good candidate for the complementary therapeutic agent against HCC.
Collapse
Affiliation(s)
- Enayatollah Seydi
- a Research Center for Health, Safety and Environment, Alborz University of Medical Sciences , Karaj , Iran.,b Department of Occupational Health Engineering , Alborz University of Medical Sciences , Karaj , Iran
| | - Ahmad Salimi
- c Department of Pharmacology and Toxicology , School of Pharmacy, Ardabil University of Medical Sciences , Ardabil , Iran
| | - Hamid Reza Rasekh
- d Department of Pharmacology and Toxicology , Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zhaleh Mohsenifar
- e Ayatollah Taleghani Educational Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Jalal Pourahmad
- d Department of Pharmacology and Toxicology , Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
38
|
Park H, Park S, Bazer FW, Lim W, Song G. Myricetin treatment induces apoptosis in canine osteosarcoma cells by inducing DNA fragmentation, disrupting redox homeostasis, and mediating loss of mitochondrial membrane potential. J Cell Physiol 2018; 233:7457-7466. [PMID: 29663365 DOI: 10.1002/jcp.26598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/14/2018] [Indexed: 01/25/2023]
Abstract
Canine osteosarcoma is an aggressive primary bone tumor that shows metastasis to distal regions and is associated with a high mortality rate. However, the pathophysiological mechanisms of canine osteosarcoma are not well characterized. In addition, development of prognostic factors and novel therapeutic agents is necessary to efficiently treat osteosarcoma. Therefore, we studied the effects of myricetin, an antioxidant found in berries, nuts, teas, wine, and vegetables, on apoptosis and signal transduction in the canine osteosarcoma cell lines, D-17 and DSN. Results of the present study demonstrated that treatment with myricetin decreased cell proliferation and DNA replication, while it increased apoptotic DNA fragmentation in D-17 and DSN cells. In addition, it increased generation of ROS, lipid peroxidation, and depolarization of MMP in both D-17 and DSN cells. Myricetin treatment activated phosphorylation of AKT, p70S6K, ERK1/2, JNK, and p90RSK in canine osteosarcoma cells. Moreover, inhibition of PI3K and MAPK using LY294002, U0126, or SP600125, in addition to myricetin treatment, effectively suppressed cell proliferation compared to treatment with myricetin or each inhibitor alone. Therefore, we concluded that myricetin may be a potentially effective and less toxic therapeutic agent to prevent and control progression of canine osteosarcoma.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, Texas
| | - Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Chiu YJ, Hour MJ, Jin YA, Lu CC, Tsai FJ, Chen TL, Ma H, Juan YN, Yang JS. Disruption of IGF‑1R signaling by a novel quinazoline derivative, HMJ‑30, inhibits invasiveness and reverses epithelial-mesenchymal transition in osteosarcoma U‑2 OS cells. Int J Oncol 2018; 52:1465-1478. [PMID: 29568964 PMCID: PMC5873869 DOI: 10.3892/ijo.2018.4325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most common primary malignancy of the bone and is characterized by local invasion and distant metastasis. Over the past 20 years, long-term outcomes have reached a plateau even with aggressive therapy. Overexpression of insulin-like growth factor 1 receptor (IGF‑1R) is associated with tumor proliferation, invasion and migration in osteosarcoma. In the present study, our group developed a novel quinazoline derivative, 6-fluoro‑2-(3-fluorophenyl)-4-(cyanoanilino)quinazoline (HMJ‑30), in order to disrupt IGF‑1R signaling and tumor invasiveness in osteosarcoma U‑2 OS cells. Molecular modeling, immune-precipitation, western blotting and phosphorylated protein kinase sandwich ELISA assays were used to confirm this hypothesis. The results demonstrated that HMJ‑30 selectively targeted the ATP-binding site of IGF‑1R and inhibited its downstream phosphoinositide 3-kinase/protein kinase B, Ras/mitogen-activated protein kinase, and IκK/nuclear factor-κB signaling pathways in U‑2 OS cells. HMJ‑30 inhibited U‑2 OS cell invasion and migration and downregulated protein levels and activities of matrix metalloproteinase (MMP)‑2 and MMP-9. An increase in protein levels of tissue inhibitor of metalloproteinase (TIMP)‑1 and TIMP‑2 was also observed. Furthermore, HMJ‑30 caused U‑2 OS cells to aggregate and form tight clusters, and these cells were flattened, less elongated and displayed cobblestone-like shapes. There was an increase in epithelial markers and a decrease in mesenchymal markers, indicating that the cells underwent the reverse epithelial-mesenchymal transition (EMT) process. Overall, these results demonstrated the potential molecular mechanisms underlying the effects of HMJ‑30 on invasiveness and EMT in U‑2 OS cells, suggesting that this compound deserves further investigation as a potential anti-osteosarcoma drug.
Collapse
Affiliation(s)
- Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei 112, Taiwan, R.O.C
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yi-An Jin
- Department of Dermatology, Taipei Medical University Hospital, Taipei 110, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Tai-Lin Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 112, Taiwan, R.O.C
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei 112, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
40
|
Chang HP, Lu CC, Chiang JH, Tsai FJ, Juan YN, Tsao JW, Chiu HY, Yang JS. Pterostilbene modulates the suppression of multidrug resistance protein 1 and triggers autophagic and apoptotic mechanisms in cisplatin-resistant human oral cancer CAR cells via AKT signaling. Int J Oncol 2018; 52:1504-1514. [PMID: 29512708 PMCID: PMC5873834 DOI: 10.3892/ijo.2018.4298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/20/2018] [Indexed: 01/12/2023] Open
Abstract
Pterostilbene is a natural polyphenolic compound that is primarily found in fruits, such as blueberries and has a similar structure to resveratrol. Pterostilbene exhibits antioxidant, anti-inflammatory and antitumor activity but the effects of pterostilbene on drug-resistant oral cancer cells and its underlying mechanisms of action have not yet been explored. Therefore, the present study was performed to clarify the anticancer effects of pterostilbene on cisplatin-resistant human oral cancer CAR cells. The results demonstrated that CAR cells exhibited marked shrinkage, cell membrane breakage and autophagic vacuole formation following treatment with pterostilbene. Pterostilbene also effectively inhibited cell viability and suppressed cell confluence in a time- and concentration-dependent manner. Probing with acridine orange, monodansylcadaverine and LysoTracker Red demonstrated that the number of acidic vesicular organelles was increased, indicating increased autophagy. Furthermore, Heochst 33342 staining determined that DNA condensation, a characteristic of apoptosis, was enhanced following treatment with pterostilbene. Furthermore, pterostilbene upregulated mRNA levels of LC3-II and Atg12, as well as the expression of Atgs/Beclin-1/LC3-associated signaling, suggesting that it enhances autophagy. The autophagy inhibitors 3-methyladenine and chloroquine were used to confirm that pterostilbene induces autophagy. It was also determined that pterostilbene triggered caspase-dependent apoptosis by directly testing DNA breakage and using the pan-caspase inhibitor carbobenzoxyvalyl-alanyl-aspartyl fluoromethyl ketone. The results demonstrated that pterostilbene mediates the apoptosis of CAR cells via the intrinsic apoptotic cascade. In addition, pterostilbene inhibited MDR1 expression and the phosphorylation of AKT on the Ser473 site in CAR cells. Therefore, pterostilbene may elicit an oral anticancer response in drug-resistant cells and may be used as a chemotherapeutic adjuvant to treat patients with oral cancer.
Collapse
Affiliation(s)
- Hui-Ping Chang
- Department of Traditional Chinese Medicine, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan 701, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jo-Hua Chiang
- Department of Nursing, Chung Jen Catholic Junior College, Chiayi 622, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Je-Wei Tsao
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
41
|
Chou GL, Peng SF, Liao CL, Ho HC, Lu KW, Lien JC, Fan MJ, La KC, Chung JG. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:127-141. [PMID: 29098808 DOI: 10.1002/tox.22497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/26/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca2+ production, levels of ΔΨm and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca2+ productions, decreases the levels of ΔΨm , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells.
Collapse
Affiliation(s)
- Guan-Ling Chou
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Heng-Chien Ho
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Kuang-Chi La
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
42
|
Chhikara N, Kaur R, Jaglan S, Sharma P, Gat Y, Panghal A. Bioactive compounds and pharmacological and food applications of Syzygium cumini– a review. Food Funct 2018. [DOI: 10.1039/c8fo00654g pmid: 30379170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The present review explores the nutritional, phytochemical and pharmacological potential as well as diverse food usages ofSyzygium cumini.
Collapse
Affiliation(s)
- Navnidhi Chhikara
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Ravinder Kaur
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Sundeep Jaglan
- Division of Microbial Biotechnology
- Indian Institute of Integrative Medicine-CSIR
- India
| | | | - Yogesh Gat
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Anil Panghal
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| |
Collapse
|
43
|
Chhikara N, Kaur R, Jaglan S, Sharma P, Gat Y, Panghal A. Bioactive compounds and pharmacological and food applications ofSyzygium cumini– a review. Food Funct 2018; 9:6096-6115. [DOI: 10.1039/c8fo00654g] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The present review explores the nutritional, phytochemical and pharmacological potential as well as diverse food usages ofSyzygium cumini.
Collapse
Affiliation(s)
- Navnidhi Chhikara
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Ravinder Kaur
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Sundeep Jaglan
- Division of Microbial Biotechnology
- Indian Institute of Integrative Medicine-CSIR
- India
| | | | - Yogesh Gat
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Anil Panghal
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| |
Collapse
|
44
|
Chang LC, Hsieh MT, Yang JS, Lu CC, Tsai FJ, Tsao JW, Chiu YJ, Kuo SC, Lee KH. Effect of bis(hydroxymethyl) alkanoate curcuminoid derivative MTH-3 on cell cycle arrest, apoptotic and autophagic pathway in triple-negative breast adenocarcinoma MDA-MB-231 cells: An in vitro study. Int J Oncol 2017; 52:67-76. [PMID: 29138806 PMCID: PMC5743386 DOI: 10.3892/ijo.2017.4204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/29/2017] [Indexed: 12/27/2022] Open
Abstract
Curcumin has been shown to exert potential antitumor activity in vitro and in vivo involved in multiple signaling pathways. However, the application of curcumin is still limited because of its poor hydrophilicity and low bio-availability. In the present study, we investigated the therapeutic effects of a novel and water soluble bis(hydroxymethyl) alkanoate curcuminoid derivative, MTH-3, on human breast adenocarcinoma MDA-MB-231 cells. This study investigated the effect of MTH-3 on cell viability, cell cycle and induction of autophagy and apoptosis in MDA-MB-231 cells. After 24-h treatment with MTH-3, a concentration-dependent decrease in MDA-MB-231 cell viability was observed, and the IC50 value was 5.37±1.22 μM. MTH-3 significantly triggered G2/M phase arrest and apoptosis in MDA-MB-231 cells. Within a 24-h treatment, MTH-3 decreased the CDK1 activity by decreasing CDK1 and cyclin B1 protein levels. MTH-3-induced apoptosis was further confirmed by morphological assessment and Annexin V/PI staining assay. Induction of apoptosis caused by MTH-3 was accompanied by an apparent increase of DR3, DR5 and FADD and, as well as a marked decrease of Bcl-2 and Bcl-xL protein expression. MTH-3 also decreased the protein levels of Ero1, PDI, PERK and calnexin, as well as increased the expression of IRE1α, CHOP and Bip that consequently led to ER stress and MDA-MB-231 cell apoptosis. In addition, MTH-3-treated cells were involved in the autophagic process and cleavage of LC3B was observed. MTH-3 enhanced the protein levels of LC3B, Atg5, Atg7, Atg12, p62 and Beclin-1 in MDA-MB-231 cells. Finally, DNA microarray was carried out to investigate the level changes of gene expression modulated by MTH-3 in MDA-MB-231 cells. Taken together, our results suggest that MTH-3 might be a novel therapeutic agent for the treatment of triple-negative breast cancer in the near future.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 404, R.O.C
| | - Min-Tsang Hsieh
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 404, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, R.O.C
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung 404, R.O.C
| | - Je-Wei Tsao
- School of Pharmacy, China Medical University, Taichung 404, R.O.C
| | - Yu-Jen Chiu
- Division of Reconstructive and Plastic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| | - Sheng-Chu Kuo
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 404, R.O.C
| | - Kuo-Hsiung Lee
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 404, R.O.C
| |
Collapse
|
45
|
Bjørklund G, Dadar M, Chirumbolo S, Lysiuk R. Flavonoids as detoxifying and pro-survival agents: What's new? Food Chem Toxicol 2017; 110:240-250. [PMID: 29079495 DOI: 10.1016/j.fct.2017.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 10/22/2017] [Indexed: 02/06/2023]
Abstract
The role of flavonoids in the survival machinery of cells has come in the spotlight due to the recent evidence of their effect on the relationship mitochondria-ER stress-proteasome, including the intracellular mechanisms of autophagy and apoptosis. Numerous experimental animal investigations and even human clinical studies have highlighted the major role of these natural compounds in the economy of life and their deep relationship with autotrophic organisms in the evolutionary space. Their role as anti-oxidant and oxidative stress preventive molecules has to date been investigated extensively in the literature. Despite this great amount of promising evidence, many concerns, however, remain, most of which dealing with biochemistry, bioavailability, pharmacokinetics, and interaction of flavonoids with gut microbiome, issues that make difficult any good attempt to introduce these molecules in the human healthcare systems as possible, encouraging therapeutic substances. This review tries to address and elucidate these items.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
46
|
Cao Y, Huang B, Gao C. Salvia miltiorrhiza extract dihydrotanshinone induces apoptosis and inhibits proliferation of glioma cells. Bosn J Basic Med Sci 2017; 17:235-240. [PMID: 28485251 DOI: 10.17305/bjbms.2017.1800] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/07/2017] [Accepted: 12/26/2016] [Indexed: 01/11/2023] Open
Abstract
Dihydrotanshinone, a functional food in China, is an effective anti-cardiovascular disease substance isolated from Salvia miltiorrhiza (S. miltiorrhiza). Glioma is considered to be fatal due to its poor prognosis and few effective therapeutic options. In this study, we investigated the anticancer effects of S. miltiorrhiza extract dihydrotanshinone on human glioma SHG-44 cells, by using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide assay, Hoechst 33258 nuclear staining, Annexin V/propidium iodide double staining, as well as western blot analysis. The results showed that dihydrotanshinone effectively suppressed SHG-44 cells proliferation and induced apoptosis in both dose- and time-dependent manner. Moreover, we demonstrated that dihydrotanshinone increased the activation of caspases (caspase-3 and caspase-9) and the release of cytochrome c in SHG-44 cells. Overall, dihydrotanshinone could induce apoptosis and inhibit proliferation of glioma cells by regulating caspases and cytochrome c. This study suggests that dihydrotanshinone may serve as a potential treatment option for patients with glioma.
Collapse
Affiliation(s)
- Yong Cao
- Department of Neurosurgery, Henan Province Hospital of TCM, Zhengzhou, China.
| | | | | |
Collapse
|
47
|
Rasouli H, Farzaei MH, Khodarahmi R. Polyphenols and their benefits: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1354017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
48
|
Tsai SC, Huang SF, Chiang JH, Chen YF, Huang CC, Tsai MH, Tsai FJ, Kao MC, Yang JS. The differential regulation of microRNAs is associated with oral cancer. Oncol Rep 2017; 38:1613-1620. [PMID: 28713923 DOI: 10.3892/or.2017.5811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/04/2017] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), is the most frequently occurring malignant head and neck tumor, generally it exhibits a poor prognosis, and metastasis is the main cause of death in these cancer patients. The discovery of reliable prognostic indicators for tumors progression would greatly improve clinical treatments. MicroRNAs (miRNAs) play a critical role in the degradation of mRNA and the inhibition of protein synthesis. The miRNAs function either as tumor suppressors or as oncogenes in tumorigenesis, and little is known about the clinical significance of miRNA expression profiles in oral cancers. In the present study, we investigated the expression profiles of miR-375, miR-204 and miR-196a in 39 healthy and tumor tissue pairs of oral cancer patients using TaqMan real-time quantitative polymerase chain reaction (qPCR). The predicted target genes for miR-375, miR-204 and miR-196a were confirmed using luciferase reporter-based assays and western blot analyses. In oral cancer tissue, the expression of miR-375 and miR-204 decreased, whereas the expression of miR-196a was significantly elevated. In OSCC, HOXB8 and p27 (CDKN1B) were the direct target genes of miR-196a, whereas HMGA2 was the direct target gene of miR-204. HOXB8 and p27 (CDKN1B) protein expression levels were inhibited by miR-196a, whereas the protein expression level of HMGA2 was inhibited by miR-204. Furthermore, the miR-196a inhibitor blocked cell proliferation. Our results indicate that the combined expression signatures of miR-375, miR-204 and miR-196a are promising biomarkers for the diagnosis, prognosis and treatment of OSCC.
Collapse
Affiliation(s)
- Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Sheng-Fong Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Jo-Hua Chiang
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi County, Taiwan, R.O.C
| | - Yen-Fu Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Chia-Chang Huang
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Ming-Hsui Tsai
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Ming-Ching Kao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
49
|
Varshney R, Gupta S, Roy P. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway. Mol Cell Endocrinol 2017; 448:1-20. [PMID: 28237721 DOI: 10.1016/j.mce.2017.02.033] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 01/31/2017] [Accepted: 02/20/2017] [Indexed: 01/07/2023]
Abstract
Lipotoxicity of pancreatic β-cells is the pathological manifestation of obesity-linked type II diabetes. We intended to determine the cytoprotective effect of kaempferol on pancreatic β-cells undergoing apoptosis in palmitic acid (PA)-stressed condition. The data showed that kaempferol treatment increased cell viability and anti-apoptotic activity in PA-stressed RIN-5F cells and murine pancreatic islets. Furthermore, kaempferol's ability to instigate autophagy was illustrated by MDC-LysoTracker red staining and TEM analysis which corroborated well with the observed increase in LC3 puncta and LC3-II protein expressions along with the concomitant decline in p62 expression. Apart from this, the data showed that kaempferol up/down-regulates AMPK/mTOR phosphorylation respectively. Subsequently, upon inhibition of AMPK phosphorylation by AMPK inhibitors, kaempferol-mediated autophagy was abolished which further led to the decline in β-cell survival. Such observations collectively lead to the conclusion that, kaempferol exerts its cytoprotective role against lipotoxicity by activation of autophagy via AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Ritu Varshney
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Sumeet Gupta
- College of Pharmacy, Maharishi Markandeshwar University, Mullana, Ambala 133 207, Haryana, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| |
Collapse
|
50
|
Lee MR, Lin C, Lu CC, Kuo SC, Tsao JW, Juan YN, Chiu HY, Lee FY, Yang JS, Tsai FJ. YC-1 induces G 0/G 1 phase arrest and mitochondria-dependent apoptosis in cisplatin-resistant human oral cancer CAR cells. Biomedicine (Taipei) 2017; 7:12. [PMID: 28612710 PMCID: PMC5479426 DOI: 10.1051/bmdcn/2017070205] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022] Open
Abstract
Oral cancer is a serious and fatal disease. Cisplatin is the first line of chemotherapeutic agent for oral cancer therapy. However, the development of drug resistance and severe side effects cause tremendous problems clinically. In this study, we investigated the pharmacologic mechanisms of YC-1 on cisplatin-resistant human oral cancer cell line, CAR. Our results indicated that YC-1 induced a concentration-dependent and time-dependent decrease in viability of CAR cells analyzed by MTT assay. Real-time image analysis of CAR cells by IncuCyte™ Kinetic Live Cell Imaging System demonstrated that YC-1 inhibited cell proliferation and reduced cell confluence in a time-dependent manner. Results from flow cytometric analysis revealed that YC-1 promoted G0/G1 phase arrest and provoked apoptosis in CAR cells. The effects of cell cycle arrest by YC-1 were further supported by up-regulation of p21 and down-regulation of cyclin A, D, E and CDK2 protein levels. TUNEL staining showed that YC-1 caused DNA fragmentation, a late stage feature of apoptosis. In addition, YC-1 increased the activities of caspase-9 and caspase-3, disrupted the mitochondrial membrane potential (AYm) and stimulated ROS production in CAR cells. The protein levels of cytochrome c, Bax and Bak were elevated while Bcl-2 protein expression was attenuated in YC-1-treated CAR cells. In summary, YC-1 suppressed the viability of cisplatin-resistant CAR cells through inhibiting cell proliferation, arresting cell cycle at G0/G1 phase and triggering mitochondria-mediated apoptosis. Our results provide evidences to support the potentially therapeutic application of YC-1 on fighting against drug resistant oral cancer in the future.
Collapse
Affiliation(s)
- Miau-Rong Lee
- Department of Biochemistry, China Medical University, Taichung 404, Taiwan
| | - Chingju Lin
- Department of Physiology, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Lu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan - Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Sheng-Chu Kuo
- Chinese Medicinal Research and Development Center, China Medical University Hospital, China Medical University, Taichung 404, Taiwan - School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Je-Wei Tsao
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Fang-Yu Lee
- Yung-Shin Pharmaceutical Industry Co., Ltd., Tachia, Taichung 437, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Fuu-Jen Tsai
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan - School of Chinese Medicine, China Medical University, Taichung 404, Taiwan - Department of Medical Genetics, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|