1
|
Chauchat L, Guerin C, Sahyoun M, Guillon M, Calonge M. Management of Oxidative Stress and Inflammation in Patients with Symptomatic Dry Eye Disease Treated with a Preservative-Free Ophthalmic Emulsion Combining Alpha-Lipoic Acid and High Molecular Weight Sodium Hyaluronate. Adv Ther 2025; 42:2219-2233. [PMID: 40080240 DOI: 10.1007/s12325-025-03139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 03/15/2025]
Abstract
INTRODUCTION This study aimed to explore the beneficial effect of a preservative-free (PF) emulsion eyedrop combining high molecular weight sodium hyaluronate (HMW-HA) and alpha-lipoic acid on oxidative stress and ocular surface inflammation in patients with dry eye disease (DED). METHODS In this prospective exploratory study, patients with moderate to severe DED symptoms were treated with the study eyedrop, 4-6 times/day for 1 month. Two visits were scheduled: baseline (D0) and after 35 days (D35). The following parameters were assessed: quality of life (OSDI score); superoxide dismutase (SODase) concentration in tears; goblet cell (GC) density (impression cytology); conjunctival hyperemia (Efron scale); corneal, conjunctival, and eyelid staining (Oxford scale); and meibomian gland (MG) blockage. Data were compared between D0 and D35 in subgroups of patients with a significant abnormality of the study outcome at baseline. RESULTS Forty patients were involved, with a highly significant improvement of OSDI score at D35. The mean concentration of SODase significantly increased by 3.2 and 2.4 times for SODase1 and SODase2 respectively, in patients with deficient SODase at baseline. In patients with abnormal GC density at baseline, GC count increased by five times at D35. Conjunctival hyperemia and corneal staining scores significantly improved in the subpopulation of patients with a baseline grade ≥ 2. Eyelid margin staining was significantly reduced at D35 in patients with significant abnormalities at baseline. A significant reduction of MG obstruction was shown in the lower eyelid in patients with significant blockage at baseline. CONCLUSION The use of a PF ophthalmic emulsion combining alpha-lipoic acid and HMW-HA shows a beneficial effect on the ocular surface through the improved quality of life score. Noteworthy, patients presenting high oxidative and inflammatory conditions experienced significant improvement in oxidative stress and inflammation markers; this synergic effect is likely due to the well-known properties of alpha-lipoic acid and HMW-HA, enhancing DED management. TRIAL REGISTRATION ISRCTN.com identifier, 17861788.
Collapse
Affiliation(s)
- Laure Chauchat
- Laboratoires Horus Pharma, 22, Allée Camille MUFFAT, Inedi 5, 06200, Nice, France.
| | - Camille Guerin
- Laboratoires Horus Pharma, 22, Allée Camille MUFFAT, Inedi 5, 06200, Nice, France
| | - Marwan Sahyoun
- Laboratoires Horus Pharma, 22, Allée Camille MUFFAT, Inedi 5, 06200, Nice, France
| | - Michel Guillon
- Ocular Technology Group - International (OTG-i), London, UK
| | - Margarita Calonge
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Centre Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
2
|
de Sousa Silva M, Passos JS, Daré RG, Nunes JR, Adriani PP, Lopes LB. Microemulsions Improve the Cutaneous Co-Localization of Lipoic Acid and Quercetin and Antioxidant Effects in Cutaneous Cells and Tissue. AAPS PharmSciTech 2025; 26:70. [PMID: 40011308 DOI: 10.1208/s12249-025-03062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Quercetin and α-lipoic acid are antioxidants with potential applications in the treatment of various skin conditions, such as wounds and chemoprevention of skin cancer. To enable their effective topical co-delivery and co-localization in the tissue, we developed microemulsions (ME). The selected ME (ME-50) formed a stable system with a mean droplet size of 134.4 ± 17.9 nm, increasing to 224.9 ± 19.9 nm upon antioxidants co-incorporation. The ME preserved the antioxidant capacities of the molecules, with DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay showing an IC50 of 6.2 ± 0.1 µg/mL, similar to the solution. Skin penetration studies revealed a 2.4-fold increase in quercetin (Q) accumulation in the stratum corneum and a 3.5-fold increase in the delivery to viable epidermis and dermis (ED) after a 12 h-treatment with the ME compared to control solutions; α-lipoic acid (LA) penetration improved up to 1.9-fold in ED upon ME incorporation. Treatment with Q + LA co-loaded ME enhanced the antioxidant activity in the stratum corneum and ED by 1.3-fold and 2.0-fold, respectively, compared to solutions. Treatment with the ME for 24 h also reduced oxidative species levels by 55% in H2O2-exposed keratinocytes compared to the control (untreated) cells. Taken together, these results suggest that ME-50 is a promising delivery system for enhancing the cutaneous co-delivery of quercetin and α-lipoic acid and the antioxidant effects in the tissue, offering a potential topical treatment for oxidative stress-related skin conditions.
Collapse
Affiliation(s)
- Mariana de Sousa Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
- School of Pharmaceutical Sciences of São Paulo, University of São Paulo, Sao Paulo, Brazil
| | - Julia S Passos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Regina G Daré
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Jessica R Nunes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Patricia P Adriani
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
3
|
Shanaida M, Lysiuk R, Mykhailenko O, Hudz N, Abdulsalam A, Gontova T, Oleshchuk O, Ivankiv Y, Shanaida V, Lytkin D, Bjørklund G. Alpha-lipoic Acid: An Antioxidant with Anti-aging Properties for Disease Therapy. Curr Med Chem 2025; 32:23-54. [PMID: 38644711 DOI: 10.2174/0109298673300496240416114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
The anti-aging effects of alpha-lipoic acid (αLA), a natural antioxidant synthesized in human tissues, have attracted a growing interest in recent years. αLA is a short- -chain sulfur-containing fatty acid occurring in the mitochondria of all kinds of eukaryotic cells. Both the oxidized disulfide of αLA and its reduced form (dihydrolipoic acid, DHLA) exhibit prominent antioxidant function. The amount of αLA inside the human body gradually decreases with age resulting in various health disorders. Its lack can be compensated by supplying from external sources such as dietary supplements or medicinal dosage forms. The primary objectives of this study were the analysis of updated information on the latest two-decade research regarding the use of αLA from an anti-aging perspective. The information was collected from PubMed, Wiley Online Library, Scopus, ScienceDirect, SpringerLink, Google Scholar, and clinicaltrials.gov. Numerous in silico, in vitro, in vivo, and clinical studies revealed that αLA shows a protective role in biological systems by direct or indirect reactive oxygen/nitrogen species quenching. αLA demonstrated beneficial properties in the prevention and treatment of many age-related disorders such as neurodegeneration, metabolic disorders, different cancers, nephropathy, infertility, and skin senescence. Its preventive effects in case of Alzheimer's and Parkinson's diseases are of particular interest. Further mechanistic and clinical studies are highly recommended to evaluate the wide spectrum of αLA therapeutic potential that could optimize its dietary intake for prevention and alleviation disorders related to aging.
Collapse
Affiliation(s)
- Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Olha Mykhailenko
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
- Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy; 29-39 Brunswick Square, WC1N 1AX, London, United Kingdom
- CONEM Ukraine Bromatology and Medicinal Chemistry Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Nataliia Hudz
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052, Opole, Poland
| | | | - Tetiana Gontova
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | | | - Yana Ivankiv
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Department of Research Ternopil Ivan Puluj National Technical University, Ternopil, 46001, Ukraine
| | - Dmytro Lytkin
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | - Geir Bjørklund
- Department of Research Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
4
|
Banihani SA. Role of Lipoic Acid in Testosterone Production in Males. World J Mens Health 2025; 43:41-49. [PMID: 38772537 PMCID: PMC11704161 DOI: 10.5534/wjmh.230291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 02/06/2024] [Indexed: 05/23/2024] Open
Abstract
Testosterone extends its impact beyond sexual function, playing a crucial role in shaping overall male health, including aspects such as muscle mass, bone density, mood regulation, and energy levels. Lipoic acid, a cofactor for specific enzymes, particularly dehydrogenases involved in cellular energy production, has been studied for its impact on testosterone. This comprehensive review systematically scoured PubMed and Scopus databases using the keywords "lipoic acid" and "testosterone." It encompassed all relevant English papers published from November 1971 to the present, including full texts and abstracts, along with research elucidating the biochemical mechanisms linking lipoic acid to testosterone. In summary, lipoic acid consistently restores testosterone levels, offering promise as an intervention in testicular health, especially in cases of testicular toxicity caused by various harmful agents. Its mechanisms encompass nitric oxide enhancement, fortification of testicular antioxidants, elevation of luteinizing hormone, enhancement of steroidogenesis, and the maintenance of energy production. These mechanisms underscore the therapeutic potential of lipoic acid for testicular health.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
5
|
Junco M, Ventura C, Santiago Valtierra FX, Maldonado EN. Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer. Antioxidants (Basel) 2024; 13:1563. [PMID: 39765891 PMCID: PMC11673973 DOI: 10.3390/antiox13121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH2 originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
Collapse
Affiliation(s)
- Milagros Junco
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Virology Laboratory, Tandil Veterinary Research Center (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil B7000, Argentina
| | - Clara Ventura
- Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Buenos Aires, La Plata 1900, Argentina;
| | | | - Eduardo Nestor Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Wadhwa R, Hegde M, Zhang H, Kaul A, Wang J, Ishida Y, Terao K, Kunnumakkara AB, Kaul SC. Antistress and Antiaging Potentials of Alpha-Lipoic Acid: Insights from Cell Culture-Based Experiments. Appl Biochem Biotechnol 2024; 196:8791-8808. [PMID: 38941028 DOI: 10.1007/s12010-024-04994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Chronic stress has been linked to a large number of pathologies, including cancer, premature aging, and neurodegenerative diseases. The accumulation of molecular waste resulting from oxidative and heavy metal-induced stress has been ascribed as a major factor contributing to these diseases. With this in mind, we started by screening 13 small molecules to determine their antistress potential in heavy metal stress-exposed C6 glioblastoma and found that alpha-lipoic acid (ALA) (a natural antioxidant abundantly present in yeast, spinach, broccoli, and meat) was the most effective candidate. We then conducted molecular analyses to validate its mechanism of action. Dose-dependent toxicity assays of cells treated with two ALA enantiomers, R-ALA and S-ALA, showed that they are nontoxic and can be tolerated at relatively high doses. Cells exposed to heavy metal, heat, and oxidative stress showed better recovery when cultured in R-ALA-/S-ALA-supplemented medium, supported by reduction of reactive oxygen species (ROS), aggregated proteins, and mitochondrial and deoxyribonucleic acid (DNA) damage. Molecular analyses revealed protection against stress-induced apoptosis and induction of autophagy in R-ALA- and S-ALA-treated C6/U2OS cells. Consistent with these findings, normal human fibroblasts showed lifespan extension. Taken together, this study demonstrates that lipoic acid has antiaging and antistress potential and warrants further attention in laboratory and clinical studies.
Collapse
Affiliation(s)
- Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Mangala Hegde
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Guwahati, Assam, 781 039, India
| | - Huayue Zhang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Ashish Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Jia Wang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Yoshiyuki Ishida
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-Ku, Kobe, 650 0047, Japan
| | - Keiji Terao
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-Ku, Kobe, 650 0047, Japan
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Guwahati, Assam, 781 039, India.
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan.
| |
Collapse
|
7
|
Leclercq L. Law and Order of Colloidal Tectonics: From Molecules to Self-Assembled Colloids. Molecules 2024; 29:5657. [PMID: 39683815 DOI: 10.3390/molecules29235657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Since biochemists and biologists have progressed in understanding the mechanisms involved in living organisms, biological systems have become a source of inspiration for chemists. In this context, the concept of colloidal tectonics, describing the spontaneous formation of colloidal particles or supracolloidal structures in which the building blocks are called "tectons", has emerged. Therefore, a bottom-up edification of tectons towards (supra) colloidal structures is allowed. Each (supra) colloidal system has at least one of the following properties: amphiphilicity, predictability, versatility, commutability, and reversibility. However, for these systems to perform even more interesting functions, it is necessary for tectons to have very precise chemical and physical properties so that new properties emerge in (supra) colloidal systems. In this way, colloidal tectonics enables engineering at the nano- and micrometric level and contributes to the development of smart bioinspired systems with applications in catalysis, drug delivery, etc. In this review, an overview of the concept of colloidal tectonics is illustrated by some biotic systems. The design of abiotic (supra) colloidal systems and their applications in various fields are also addressed (notably Pickering emulsions for catalysis or drug delivery). Finally, theoretical directions for the design of novel self-assembled (supra) colloidal systems are discussed.
Collapse
Affiliation(s)
- Loïc Leclercq
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS, Unité de Catalyse et Chimie du Solide, Lille 59000, France
| |
Collapse
|
8
|
Kim JY, Kim A, Kim JH, Gil YC, Kim YD, Shin DI, Seo JH. Ferroptosis in the Substantia Nigra Pars Compacta of Mice: Triggering Role of Ultrafine Diesel Exhaust Particles and Mitigation by α-Lipoic Acid. Neurochem Res 2024; 50:37. [PMID: 39601947 DOI: 10.1007/s11064-024-04278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Recent epidemiological and experimental studies have increasingly highlighted the association between environmental pollution, especially ultrafine particulate matter (PM), and the risk of neurodegenerative diseases, such as Parkinson's disease (PD). These previous studies suggest a potential mechanism by which ultrafine PM contributes to neuronal damage through processes, such as iron accumulation and oxidative stress. In this study, we aimed to elucidate the effects of ultrafine PM on ferroptosis, an iron-dependent form of cell death, in the mouse substantia nigra pars compacta (SNc) and to evaluate the protective role of α-lipoic acid (ALA). Mice were exposed to ultrafine diesel exhaust particles (ufDEP), a type of ultrafine PM, intranasally and injected ALA intraperitoneally for seven consecutive days. Iron accumulation and lipid peroxidation were significantly increased, and antioxidant capacity was significantly decreased in the SNc after ufDEP exposure, highlighting the deleterious effects of ufDEP on tyrosine hydroxylase (TH)-positive neurons. In contrast, ALA treatment effectively mitigated these effects by reducing iron accumulation, decreasing lipid peroxidation, and restoring antioxidant levels, resulting in the protection of TH-positive neurons from ferroptotic damage. Our results provide evidence that ufDEP can induce ferroptosis in dopaminergic neurons in the SNc, potentially contributing to PD pathogenesis. Furthermore, ALA showed protective effects against ufDEP-induced ferroptotic damage, suggesting its potential as a therapeutic intervention for PD.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Anatomy, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Aryun Kim
- Department of Neurology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, Chungbuk, 28503, Republic of Korea
| | - Young-Chun Gil
- Department of Anatomy, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Yong-Dae Kim
- Department of Preventive Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 28644, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
- Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
- Chungbuk Environmental Health Center, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Dong-Ick Shin
- Department of Neurology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Je Hoon Seo
- Department of Anatomy, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea.
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
9
|
Halabitska I, Oksenych V, Kamyshnyi O. Exploring the Efficacy of Alpha-Lipoic Acid in Comorbid Osteoarthritis and Type 2 Diabetes Mellitus. Nutrients 2024; 16:3349. [PMID: 39408316 PMCID: PMC11478474 DOI: 10.3390/nu16193349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives. The comorbidity of osteoarthritis and type 2 diabetes mellitus poses a complex clinical challenge, complicating patient management due to overlapping pathophysiological mechanisms. This research aims to analyze the exacerbation of clinical symptoms and biochemical markers in patients with OA and T2DM compared to those with OA alone. Methods. We employed various assessment methods to evaluate inflammation, oxidative stress, and glycemic control in both cohorts. This study includes the administration of alpha-lipoic acid (ALA) to patients with comorbid OA and T2DM, monitoring its effects on joint function, inflammatory markers, oxidative stress levels, and glycemic control. Results. The findings indicate that T2DM significantly worsens clinical symptoms and biochemical markers in OA patients. Those with both conditions exhibited elevated indicators of inflammation and oxidative stress compared to OA-only patients. Additionally, correlations among metabolic, psychological, and inflammatory factors were identified. Body mass index emerged as a potential predictor for the deterioration of evaluated parameters. The analysis revealed that ALA administration led to statistically significant improvements in WOMAC pain scores, the Lequesne Algofunctional Index, and the AIMS-P compared to the control group. Conclusions. Further research into ALA's effects on OA progression in patients with comorbidities is essential for developing personalized treatment approaches.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
10
|
Gómez-Fernández D, Romero-González A, Suárez-Rivero JM, Cilleros-Holgado P, Álvarez-Córdoba M, Piñero-Pérez R, Romero-Domínguez JM, Reche-López D, López-Cabrera A, Ibáñez-Mico S, Castro de Oliveira M, Rodríguez-Sacristán A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. A Multi-Target Pharmacological Correction of a Lipoyltransferase LIPT1 Gene Mutation in Patient-Derived Cellular Models. Antioxidants (Basel) 2024; 13:1023. [PMID: 39199267 PMCID: PMC11351668 DOI: 10.3390/antiox13081023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Mutations in the lipoyltransferase 1 (LIPT1) gene are rare inborn errors of metabolism leading to a fatal condition characterized by lipoylation defects of the 2-ketoacid dehydrogenase complexes causing early-onset seizures, psychomotor retardation, abnormal muscle tone, severe lactic acidosis, and increased urine lactate, ketoglutarate, and 2-oxoacid levels. In this article, we characterized the disease pathophysiology using fibroblasts and induced neurons derived from a patient bearing a compound heterozygous mutation in LIPT1. A Western blot analysis revealed a reduced expression of LIPT1 and absent expression of lipoylated pyruvate dehydrogenase E2 (PDH E2) and alpha-ketoglutarate dehydrogenase E2 (α-KGDH E2) subunits. Accordingly, activities of PDH and α-KGDH were markedly reduced, associated with cell bioenergetics failure, iron accumulation, and lipid peroxidation. In addition, using a pharmacological screening, we identified a cocktail of antioxidants and mitochondrial boosting agents consisting of pantothenate, nicotinamide, vitamin E, thiamine, biotin, and α-lipoic acid, which is capable of rescuing LIPT1 pathophysiology, increasing the LIPT1 expression and lipoylation of mitochondrial proteins, improving cell bioenergetics, and eliminating iron overload and lipid peroxidation. Furthermore, our data suggest that the beneficial effect of the treatment is mainly mediated by SIRT3 activation. In conclusion, we have identified a promising therapeutic approach for correcting LIPT1 mutations.
Collapse
Affiliation(s)
- David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Salvador Ibáñez-Mico
- Hospital Clínico Universitario Virgen de la Arrixaca, Servicio de Neuropediatría, 30120 Murcia, Spain;
| | - Marta Castro de Oliveira
- Neuropediatria, Neurolinkia, C. Jardín de la Isla, 8, Local 4 y 5, 41014 Sevilla, Spain;
- FEA Pediatría, Centro Universitario Hospitalar de Faro, R. Leão Penedo, 8000-386 Faro, Portugal
- Neuropediatria, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
| | - Andrés Rodríguez-Sacristán
- Neuropediatria, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
- Departamento de Farmacología, Radiología y Pediatría de la Facultad de Medicina de la Universidad de Sevilla, 41009 Sevilla, Spain
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| |
Collapse
|
11
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
12
|
Ñaupas LVS, Gomes FDR, Ferreira ACA, Morais SM, Alves DR, Teixeira DIA, Alves BG, Watanabe Y, Figueiredo JR, Tetaping GM, Rodrigues APR. Alpha lipoic acid controls degeneration and ensures follicular development in ovine ovarian tissue cultured in vitro. Theriogenology 2024; 225:55-66. [PMID: 38795511 DOI: 10.1016/j.theriogenology.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
This study aims to evaluate the effects of adding alpha lipoic acid (ALA) to the in vitro ovarian tissue culture medium, either fresh or after vitrification/warming. For this purpose, 10 ovaries from five adult sheep were used. Each pair of ovaries gave rise to 16 fragments and were randomly distributed into two groups: fresh (n = 8) and vitrified (n = 8). Two fresh fragments were fixed immediately and considered the control, while another six were cultured in vitro for 14 days in the absence; presence of a constant (100 μM/0-14 day) or dynamic (50 μM/day 0-7 and 100 μM/day 8-14) concentration of ALA. As for the vitrified fragments, two were fixed and the other six were cultured in vitro under the same conditions described for the fresh group. All the fragments were subjected to morphological evaluation, follicular development and stromal density (classical histology), DNA fragmentation (TUNEL), senescence (Sudan Black), fibrosis (Masson's Trichome), and endoplasmic reticulum stress (immunofluorescence). Measurements of the antioxidant capacity against the free radicals 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and estradiol (E2) levels in the culture medium was performed. The results showed that in the absence of ALA, in vitro culture of vitrified ovarian fragments showed a significant reduction (P < 0.05) in follicular morphology and increased the presence of senescence and tissue fibrosis (P < 0.05). Dynamic ALA maintained E2 levels unchanged (P > 0.05) until the end of vitrified ovarian tissue culture and controlled the levels of ABTS and DPPH radicals in fresh or vitrified cultures. Therefore, it is concluded that ALA should be added to the vitrified ovarian tissue in vitro culture medium to reduce the damage that leads to loss of ovarian function. To ensure steroidogenesis during in vitro culture, ALA should be added dynamically (different concentrations throughout culture).
Collapse
Affiliation(s)
- L V S Ñaupas
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - F D R Gomes
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - A C A Ferreira
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - S M Morais
- Laboratory of Natural Products Chemistry, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - D R Alves
- Laboratory of Natural Products Chemistry, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - D I A Teixeira
- Laboratory of Image Diagnosis Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, E, Brazil
| | - B G Alves
- Ovid Research Company, Berkeley, CA, United States
| | - Y Watanabe
- Vitrogen YVF Biotech, Cravinhos, SP, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - G M Tetaping
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - A P R Rodrigues
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
13
|
Maeso L, Antezana PE, Hvozda Arana AG, Evelson PA, Orive G, Desimone MF. Progress in the Use of Hydrogels for Antioxidant Delivery in Skin Wounds. Pharmaceutics 2024; 16:524. [PMID: 38675185 PMCID: PMC11053627 DOI: 10.3390/pharmaceutics16040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The skin is the largest organ of the body, and it acts as a protective barrier against external factors. Chronic wounds affect millions of people worldwide and are associated with significant morbidity and reduced quality of life. One of the main factors involved in delayed wound healing is oxidative injury, which is triggered by the overproduction of reactive oxygen species. Oxidative stress has been implicated in the pathogenesis of chronic wounds, where it is known to impair wound healing by causing damage to cellular components, delaying the inflammatory phase of healing, and inhibiting the formation of new blood vessels. Thereby, the treatment of chronic wounds requires a multidisciplinary approach that addresses the underlying causes of the wound, provides optimal wound care, and promotes wound healing. Among the promising approaches to taking care of chronic wounds, antioxidants are gaining interest since they offer multiple benefits related to skin health. Therefore, in this review, we will highlight the latest advances in the use of natural polymers with antioxidants to generate tissue regeneration microenvironments for skin wound healing.
Collapse
Affiliation(s)
- Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (L.M.); (G.O.)
| | - Pablo Edmundo Antezana
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina
| | - Ailen Gala Hvozda Arana
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| | - Pablo Andrés Evelson
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (L.M.); (G.O.)
- NanoBioCel Research Group, Bioaraba, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martín Federico Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
14
|
Ye J, Fan H, Shi R, Song G, Wu X, Wang D, Xia B, Zhao Z, Zhao B, Liu X, Wang Y, Dai X. Dietary lipoic acid alleviates autism-like behavior induced by acrylamide in adolescent mice: the potential involvement of the gut-brain axis. Food Funct 2024; 15:3395-3410. [PMID: 38465655 DOI: 10.1039/d3fo05078e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Consuming fried foods has been associated with an increased susceptibility to mental health disorders. Nevertheless, the impact of alpha-lipoic acid (α-LA, LA) on fried food-induced autism-like behavior remains unclear. This study aimed to explore how LA affects autism-related behavior and cognitive deficits caused by acrylamide in mice, a representative food hazard found in fried foods. This improvement was accomplished by enhanced synaptic plasticity, increased neurotrophin expression, elevated calcium-binding protein D28k, and restored serotonin. Additionally, LA substantially influenced the abundance of bacteria linked to autism and depression, simultaneously boosted short-chain fatty acid (SCFA) levels in fecal samples, and induced changes in serum amino acid concentrations. In summary, these findings suggested that exposure to acrylamide in adolescent mice could induce the development of social disorders in adulthood. LA showed promise as a nutritional intervention strategy to tackle emotional disorders during adolescence.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Ge Song
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China.
| | - Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zhenting Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
15
|
Tompach MC, Gridley CK, Li S, Clark JM, Park Y, Timme-Laragy AR. Comparing the effects of developmental exposure to alpha lipoic acid (ALA) and perfluorooctanesulfonic acid (PFOS) in zebrafish (Danio rerio). Food Chem Toxicol 2024; 186:114560. [PMID: 38432440 PMCID: PMC11034762 DOI: 10.1016/j.fct.2024.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Alpha lipoic acid (ALA) is a dietary supplement that has been used to treat a wide range of diseases, including obesity and diabetes, and have lipid-lowering effects, making it a potential candidate for mitigating dyslipidemia resulting from exposures to the per- and polyfluoroalkyl substance (PFAS) family member perfluorooctanesulfonic acid (PFOS). ALA can be considered a non-fluorinated structural analog to PFOS due to their similar 8-carbon chain and amphipathic structure, but, unlike PFOS, is rapidly metabolized. PFOS has been shown to reduce pancreatic islet area and induce β-cell lipotoxicity, indicating that changes in β-cell lipid microenvironment is a mechanism contributing to hypomorphic islets. Due to structural similarities, we hypothesized that ALA may compete with PFOS for binding to proteins and distribution throughout the body to mitigate the effects of PFOS exposure. However, ALA alone reduced islet area and fish length, with several morphological endpoints indicating additive toxicity in the co-exposures. Individually, ALA and PFOS increased fatty acid uptake from the yolk. ALA alone increased liver lipid accumulation, altered fatty acid profiling and modulated PPARɣ pathway signaling. Together, this work demonstrates that ALA and PFOS have similar effects on lipid uptake and metabolism during embryonic development in zebrafish.
Collapse
Affiliation(s)
- Madeline C Tompach
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Charlotte K Gridley
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
16
|
Yun H, Wang K, Zhang J, Peng G, Zhao H. Construction of Peptide-Lipoic Acid Cationic Polymers with Redox Responsiveness and Low Toxicity for Gene Delivery. ACS OMEGA 2024; 9:3499-3506. [PMID: 38284089 PMCID: PMC10809251 DOI: 10.1021/acsomega.3c07194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024]
Abstract
As gene therapy continues to evolve, the development of safe and effective cationic polymer carriers is critical. In this work, three polymers have been prepared by ring-opening polymerization on the basis of peptide-lipoic acid monomers. By adjusting the sequence of the peptides, redox-responsive cationic polymers with different positive charge numbers were obtained, as well as investigating their performance as gene carriers. The results showed that the polymers complexed with negatively charged genes by electrostatic interaction and successfully transported the genes into the cells, additionally degrading and releasing the genes under glutathione (GSH) conditions. Furthermore, the polymers as gene carriers in different cell lines demonstrated lower cytotoxicity, with an excellent cell survival rate of 8 times higher than the "gold standard" polyethylenimine (PEI) at the same concentration. In vitro transfection experiments showed that the polymers successfully released and transfected genes into cells, demonstrating their immense potential in gene therapy.
Collapse
Affiliation(s)
- Hui Yun
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kang Wang
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Zhang
- Shandong
Pharmaceutical Glass Co., Ltd., Zibo 256100, China
| | - Guofeng Peng
- Shandong
Rike Chemical Co., Ltd, Changle 262400, China
| | - Hui Zhao
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Jewell DE, Motsinger LA, Paetau-Robinson I. Effect of dietary antioxidants on free radical damage in dogs and cats. J Anim Sci 2024; 102:skae153. [PMID: 38828917 PMCID: PMC11185959 DOI: 10.1093/jas/skae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Alpha-tocopherol (vitamin E) is an antioxidant that is largely involved in immune defense and enhancing the ability of biological systems to respond to oxidative stress. During the process of free radical scavenging, vitamin C supports the regeneration of vitamin E. Although the functions of antioxidants and their importance have been widely studied, the intricate interplay between antioxidants has yet to be fully elucidated, especially in dogs and cats. As such, the objective of the present study was to determine the effect of a combination of dietary antioxidants on DNA damage and antioxidant status in dogs and cats. Forty adult mixed-breed dogs and 40 adult domestic shorthair cats were randomly assigned to one of four treatment groups per species. Dogs and cats remained in these groups for the 84-d duration of the study. The food differed in antioxidant supplementation with the control food meeting all of the Association of American Feed Control Officials requirements for complete and balanced nutrition, including sufficient vitamin E to exceed the published minimum. The treatment diets were targeted to include either 500, 1,000, or 1,500 IU vitamin E/kg as well as 100 ppm of vitamin C and 1.5 ppm of β-carotene in the food. The effect of vitamin E supplementation level on serum vitamin E concentration, DNA damage, and total antioxidant power was evaluated. Feeding diets enriched with antioxidants resulted in an increased (P < 0.05) circulating vitamin E concentration, increased (P < 0.05) immune cell protection, reduced (P < 0.05) DNA damage in dogs, and an improved (P < 0.05) antioxidant status. Overall, these data demonstrated that feeding a dry kibble with an antioxidant blend inclusive of vitamin E, vitamin C, and β-carotene enhanced cell protection and improved antioxidant status in dogs and cats.
Collapse
Affiliation(s)
- Dennis E Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | | | | |
Collapse
|
18
|
Seyedpour N, Motevaseli E, Taeb S, Nowrouzi A, Mirzaei F, Bahri M, Dehghan-Manshadi HR, Zhaleh M, Rashidi K, Azmoonfar R, Yahyapour R, Najafi M. Protective Effects of Alpha-lipoic Acid, Resveratrol, and Apigenin Against Oxidative Damages, Histopathological Changes, and Mortality Induced by Lung Irradiation in Rats. Curr Radiopharm 2024; 17:99-110. [PMID: 37909433 DOI: 10.2174/0118744710244357231018070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 11/03/2023]
Abstract
AIM This study investigated the protective effects of three antioxidants on radiationinduced lung injury. BACKGROUND Oxidative stress is one of the key outcomes of radiotherapy in normal tissues. It can induce severe injuries in lung tissue, which may lead to pneumonitis and fibrosis. Recently, interest in natural chemicals as possible radioprotectors has increased due to their reduced toxicity, cheaper price, and other advantages. OBJECTIVE The present study was undertaken to evaluate the radioprotective effect of Alpha-lipoic Acid (LA), Resveratrol (RVT), and Apigenin (APG) against histopathological changes and oxidative damage and survival induced by ionizing radiation (IR) in the lung tissues of rats. METHODS First, the lung tissue of 50 mature male Wistar rats underwent an 18 Gy gamma irradiation. Next, the rats were sacrificed and transverse sections were obtained from the lung tissues and stained with hematoxylin and eosin (H and E) and Mason trichrome (MTC) for histopathological evaluation. Then, the activity of Glutathione peroxidase (GPx), Superoxide Dismutase (SOD), and Malondialdehyde (MDA) was measured by an ELISA reader at 340, 405, and 550 nm. RESULTS Based on the results of this study, IR led to a remarkable increase in morphological changes in the lung. However, APG, RVT, and LA could ameliorate the deleterious effects of IR in lung tissue. IR causes an increase in GPX level, and APG+IR administration causes a decrease in the level of GPX compared to the control group. Also, the results of this study showed that RVT has significant effects in reducing MDA levels in the short term. In addition, compared to the control group, IR and RVT+IR decrease the activity of SOD in the long term in the lung tissues of rats. Also, the analysis of results showed that weight changes in IR, LA+IR, APG+IR, and control groups were statistically significant. CONCLUSION APG and RVT could prevent tissue damage induced by radiation effects in rat lung tissues. Hence, APG, LA, and RVT could provide a novel preventive action with their potential antioxidant anti-inflammatory properties, as well as their great safety characteristic.
Collapse
Affiliation(s)
- Nasrin Seyedpour
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Azin Nowrouzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mirzaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mina Bahri
- Central Research Laboratory, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Zhaleh
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rasool Azmoonfar
- Department of Radiology, School of Paramedical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
Bhattacharya K, Dey R, Sen D, Paul N, Basak AK, Purkait MP, Shukla N, Chaudhuri GR, Bhattacharya A, Maiti R, Adhikary K, Chatterjee P, Karak P, Syamal AK. Polycystic ovary syndrome and its management: In view of oxidative stress. Biomol Concepts 2024; 15:bmc-2022-0038. [PMID: 38242137 DOI: 10.1515/bmc-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
In the past two decades, oxidative stress (OS) has drawn a lot of interest due to the revelation that individuals with many persistent disorders including diabetes, polycystic ovarian syndrome (PCOS), cardiovascular, and other disorders often have aberrant oxidation statuses. OS has a close interplay with PCOS features such as insulin resistance, hyperandrogenism, and chronic inflammation; there is a belief that OS might contribute to the development of PCOS. PCOS is currently recognized as not only one of the most prevalent endocrine disorders but also a significant contributor to female infertility, affecting a considerable proportion of women globally. Therefore, the understanding of the relationship between OS and PCOS is crucial to the development of therapeutic and preventive strategies for PCOS. Moreover, the mechanistic study of intracellular reactive oxygen species/ reactive nitrogen species formation and its possible interaction with women's reproductive health is required, which includes complex enzymatic and non-enzymatic antioxidant systems. Apart from that, our current review includes possible regulation of the pathogenesis of OS. A change in lifestyle, including physical activity, various supplements that boost antioxidant levels, particularly vitamins, and the usage of medicinal herbs, is thought to be the best way to combat this occurrence of OS and improve the pathophysiologic conditions associated with PCOS.
Collapse
Affiliation(s)
- Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Bhubaneswar, Odisha, India
| | - Rajen Dey
- Department of Medical Laboratory Technology, Swami Vivekananda University, Barrackpore, West Bengal, India
| | - Debanjana Sen
- Post-Graduate Department of Physiology, Hooghly Mohsin College, Chinsurah, West-Bengal, India
| | - Nimisha Paul
- Department of General Human Physiology and Biochemistry, Hitkarini Dental College and Hospital, Jabalpur, Madhya Pradesh, India
| | - Asim Kumar Basak
- School of Allied Health Sciences, Brainware University, Barasat, West-Bengal, India
| | | | - Nandini Shukla
- Department of Anatomy, Pt. J.N.M. Medical College, Raipur, Chhattisgarh, India
| | - Gargi Ray Chaudhuri
- Department of Physiotherapy, Nopany Institute of Health Care Studies, Kolkata, West-Bengal, India
| | - Aniruddha Bhattacharya
- Department of Physiology, International Medical School, Management and Science University, Selangor, Malaysia
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, India
| | - Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda Road, Bhubaneswar, Odisha, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College, Durgapur, West Bengal, India
| | - Prithviraj Karak
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, India
| | - Alak Kumar Syamal
- Post-Graduate Department of Physiology, Hooghly Mohsin College, Chinsurah, West-Bengal, India
| |
Collapse
|
20
|
Gholami S, Badalzadeh R, Alihemmati A. Alpha-lipoic acid enhances ischemic postconditioning-mediated improvement of myocardial infarction and apoptosis in diabetic rats with ischemia/reperfusion injury. Can J Physiol Pharmacol 2023; 101:682-691. [PMID: 37523770 DOI: 10.1139/cjpp-2023-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
This work evaluated the combined effects of alpha-lipoic acid (ALA) and ischemic postconditioning (Post) on myocardial infarction and cell death in rats with chronic type-II diabetes following ischemia/reperfusion injury. The rats received a high-fat diet and were given one intraperitoneal injection of 35 mg/kg streptozotocin to induce chronic diabetes. They were then pretreated with ALA (100 mg/kg/day, orally) for 5 weeks before undergoing ischemia/reperfusion (I/R) insult. The hearts experienced 35 min regional ischemia through ligating the left anterior descending coronary artery, followed by 60 min reperfusion. The Post protocol involved 6 cycles of a 10/10 s algorithm, applied during the early stage of reperfusion. The use of Post alone did not significantly alter lactate dehydrogenase and infarct size levels, while ALA showed positive effects. Similar findings were observed for apoptotic changes with single treatments. However, the concurrent administration of ALA and Post significantly reduced the protein expressions of Bax, Bax/Bcl2, and cleaved caspase-3 while increasing Bcl2 expression. Additionally, the histopathological findings of the combined therapy were superior to those of single treatments. The concomitant use of ALA and Post effectively inhibited apoptosis, leading to cardiac recovery after I/R injury in diabetic conditions. This strategy could improve outcomes for preserving diabetic hearts following I/R insults.
Collapse
Affiliation(s)
- Sanaz Gholami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
- Department of PhysiologyFaculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Alireza Alihemmati
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
- Department of Anatomical SciencesFaculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| |
Collapse
|
21
|
Xi Y, Pan W, Liu Y, Liu J, Xu G, Su Y, Chen D, Ye X. α-Lipoic acid loaded hollow gold nanoparticles designed for osteoporosis treatment: preparation, characterization and in vitro evaluation. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:131-138. [PMID: 36912372 DOI: 10.1080/21691401.2022.2149542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 03/14/2023]
Abstract
Osteoporosis is a common disease among the ageing society. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) is the aetiology of osteoporosis. α-Lipoic acid (ALA) is an antioxidant in the body, which can eliminate excess ROS in the body and inhibits levels of oxidative stress in cells. Herein, we designed PEGylated hollow gold nanoparticles (HGNPs) loaded with ALA (mPEG@HGNPs-ALA) to remove ROS in the treatment of osteoporosis. First, mPEG@HGNPs with a particle size of ∼63 nm has been successfully synthesized. By comparing the drug loading of mPEG@HGNPs, it was concluded that the optimal mass ratio of mPEG@HGNPs (calculated by the amount of gold) to ALA was ∼1:2. ABTS antioxidant assay showed that free radical removal ability. In vitro results revealed that the preparation had good biocompatibility. At the gold concentration of 1-150 μg/mL, the cell viability of mPEG@HGNPs was more than 100%, which indicated that it could promote the proliferation of osteoblasts. What's more, mPEG@HGNPs-ALA could effectively remove the ROS caused by H2O2 injury and improve the cell viability. According to these results, it can be considered that mPEG@HGNPs-ALA has the potential to treat osteoporosis.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wenming Pan
- Department of Spine Surgery, the Second People's Hospital of Changshu, Changshu, China
| | - Yanyan Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Ji Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Guohua Xu
- Department of Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yanguo Su
- School of Pharmacy, Yantai University, Yantai, China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai, China
| | - Xiaojian Ye
- Department of Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
22
|
Siano F, Sammarco AS, Fierro O, Castaldo D, Caruso T, Picariello G, Vasca E. Insights into the Structure-Capacity of Food Antioxidant Compounds Assessed Using Coulometry. Antioxidants (Basel) 2023; 12:1963. [PMID: 38001816 PMCID: PMC10669202 DOI: 10.3390/antiox12111963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
CDAC (coulometrically determined antioxidant capacity) involves the determination of the antioxidant capacity of individual compounds or their mixtures using constant-current coulometry, with electrogenerated Br2 as the titrant, and biamperometric detection of the endpoint via Br2 excess. CDAC is an accurate, sensitive, rapid, and cheap measurement of the mol electrons (mol e-) transferred in a redox process. In this study, the CDAC of 48 individual antioxidants commonly found in foods has been determined. The molar ratio CDAC (CDACχ, mol e- mol-1) of representative antioxidants is ranked as follows: tannic acid > malvidin-3-O-glucoside ≃ curcumin > quercetin > catechin ≃ ellagic acid > gallic acid > tyrosol > BHT ≃ hydroxytyrosol > chlorogenic acid ≃ ascorbic acid ≃ Trolox®. In many cases, the CDACχ ranking of the flavonoids did not comply with the structural motifs that promote electron or hydrogen atom transfers, known as the Bors criteria. As an accurate esteem of the stoichiometric coefficients for reactions of antioxidants with Br2, the CDACχ provides insights into the structure-activity relationships underlying (electro)chemical reactions. The electrochemical ratio (ER), defined as the antioxidant capacity of individual compounds relative to ascorbic acid, represents a dimensionless nutritional index that can be used to estimate the antioxidant power of any foods on an additive basis.
Collapse
Affiliation(s)
- Francesco Siano
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy; (F.S.); (O.F.)
| | - Anna Sofia Sammarco
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.S.S.); (T.C.)
| | - Olga Fierro
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy; (F.S.); (O.F.)
| | - Domenico Castaldo
- Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA), Azienda Speciale CCIAA di Reggio Calabria, Via G. Tommasini 2, 89125 Reggio Calabria, Italy;
- Ministero delle Imprese e del Made in Italy, Via Molise 2, 00187 Roma, Italy
- Dipartimento di Ingegneria Industriale e ProdAl Scarl, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Tonino Caruso
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.S.S.); (T.C.)
| | - Gianluca Picariello
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy; (F.S.); (O.F.)
| | - Ermanno Vasca
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.S.S.); (T.C.)
| |
Collapse
|
23
|
Fan H, Bai Q, Yang Y, Shi X, Du G, Yan J, Shi J, Wang D. The key roles of reactive oxygen species in microglial inflammatory activation: Regulation by endogenous antioxidant system and exogenous sulfur-containing compounds. Eur J Pharmacol 2023; 956:175966. [PMID: 37549725 DOI: 10.1016/j.ejphar.2023.175966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Aberrant innate immunity in the brain has been implicated in the pathogenesis of several central nervous system (CNS) disorders, including Alzheimer's disease, Huntington's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and depression. Except for extraparenchymal CNS-associated macrophages, which predominantly afford protection against peripheral invading pathogens, it has been reported that microglia, a population of macrophage-like cells governing CNS immune defense in nearly all neurological diseases, are the main CNS resident immune cells. Although microglia have been recognized as the most important source of reactive oxygen species (ROS) in the CNS, ROS also may underlie microglial functions, especially M1 polarization, by modulating redox-sensitive signaling pathways. Recently, endogenous antioxidant systems, including glutathione, hydrogen sulfide, superoxide dismutase, and methionine sulfoxide reductase A, were found to be involved in regulating microglia-mediated neuroinflammation. A series of natural sulfur-containing compounds, including S-adenosyl methionine, S-methyl-L-cysteine, sulforaphane, DMS, and S-alk(enyl)-l-cysteine sulfoxide, modulating endogenous antioxidant systems have been discovered. We have summarized the current knowledge on the involvement of endogenous antioxidant systems in regulating microglial inflammatory activation and the effects of sulfur-containing compounds on endogenous antioxidant systems. Finally, we discuss the possibilities associated with compounds targeting the endogenous antioxidant system to treat neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Qianqian Bai
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yang Yang
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Ganqin Du
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jian Shi
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
24
|
Watson PR, Stollmaier JG, Christianson DW. Crystal structure of histone deacetylase 6 complexed with (R)-lipoic acid, an essential cofactor in central carbon metabolism. J Biol Chem 2023; 299:105228. [PMID: 37703993 PMCID: PMC10622836 DOI: 10.1016/j.jbc.2023.105228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
The enzyme cofactor (R)-lipoic acid plays a critical role in central carbon metabolism due to its catalytic function in the generation of acetyl-CoA, which links glycolysis with the tricarboxylic acid cycle. This cofactor is also essential for the generation of succinyl CoA within the tricarboxylic acid cycle. However, the biological functions of (R)-lipoic acid extend beyond metabolism owing to its facile redox chemistry. Most recently, the reduced form of (R)-lipoic acid, (R)-dihydrolipoic acid, has been shown to inhibit histone deacetylases (HDACs) with selectivity for the inhibition of HDAC6. Here, we report the 2.4 Å-resolution X-ray crystal structure of the complex between (R)-dihydrolipoic acid and HDAC6 catalytic domain 2 from Danio rerio, and we report a dissociation constant (KD) of 350 nM for this complex as determined by isothermal titration calorimetry. The crystal structure illuminates key affinity determinants in the enzyme active site, including thiolate-Zn2+ coordination and S-π interactions in the F583-F643 aromatic crevice. This study provides the first visualization of the connection between HDAC function and the biological response to oxidative stress: the dithiol moiety of (R)-dihydrolipoic acid can serve as a redox-regulated pharmacophore capable of simultaneously targeting the catalytic Zn2+ ion and the aromatic crevice in the active site of HDAC6.
Collapse
Affiliation(s)
- Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Juana Goulart Stollmaier
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
| |
Collapse
|
25
|
Watson PR, Stollmaier JG, Christianson DW. Crystal Structure of Histone Deacetylase 6 Complexed with ( R )-Lipoic Acid, an Essential Cofactor in Central Carbon Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552419. [PMID: 37609266 PMCID: PMC10441330 DOI: 10.1101/2023.08.08.552419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The enzyme cofactor ( R )-lipoic acid plays a critical role in central carbon metabolism due to its catalytic function in the generation of acetyl-CoA, which links glycolysis with the tricarboxylic acid cycle. This cofactor is also essential for the generation of succinyl CoA within the tricarboxylic acid cycle. However, the biological functions of ( R )-lipoic acid extend beyond metabolism owing to its facile redox chemistry. Most recently, the reduced form of ( R )-lipoic acid, ( R )-dihydrolipoic acid, has been shown to inhibit histone deacetylases (HDACs) with selectivity for the inhibition of HDAC6. Here, we report the 2.4 Å-resolution X-ray crystal structure of the HDAC6-( R )-dihydrolipoic acid complex, and we report a dissociation constant (K D ) of 350 nM for this complex as determined by isothermal titration calorimetry. The crystal structure illuminates key affinity determinants in the enzyme active site, including thiolate-Zn 2+ coordination and S-π interactions in the F583-F643 aromatic crevice. This study provides the first visualization of the connection between HDAC function and the biological response to oxidative stress: the dithiol moiety of ( R )-dihydrolipoic acid can serve as a redox-regulated pharmacophore capable of simultaneously targeting the catalytic Zn 2+ ion and the aromatic crevice in the active site of HDAC6.
Collapse
Affiliation(s)
- Paris R. Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - Juana Goulart Stollmaier
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
26
|
Mahmoudi F, Arasteh O, Elyasi S. Preventive and therapeutic use of herbal compounds against doxorubicin induced hepatotoxicity: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1595-1617. [PMID: 36892626 DOI: 10.1007/s00210-023-02429-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Doxorubicin (DOX) is associated with numerous acute and chronic dose-related toxicities including hepatotoxicity. This adverse reaction may limit the use of other chemotherapeutic agents with hepatic excretion, and so, its prevention is an important issue. The aim of this study was to conduct a comprehensive review of in vitro, in vivo and human studies regarding the protective effects of synthetic and naturally-occurring compounds against DOX-induced liver injury. The search was conducted in Embase, PubMed, and Scopus databases using the following keywords: "doxorubicin," "Adriamycin," "hepatotoxicity," "liver injury," "liver damage," and "hepatoprotective," and all articles published in English were included without time restriction. Forty eligible studies to the end of May 2022 finally were reviewed. Our results demonstrated that all of these drugs, except acetylsalicylic acid, had considerable hepatoprotective effects against DOX. In addition, none of the studied compounds attenuated the antitumor efficacy of DOX treatment. Silymairn was the only compound which is assessed in human studies and showed promising preventive and therapeutic effects. Altogether, our results demonstrated that most of compounds with antioxidant, anti-apoptosis, and anti-inflammatory properties are efficacious against DOX-induced hepatotoxicity and may be considered as a potential adjuvant agent for prevention of hepatotoxicity in cancer patients, after fully been assessed in well-designed large clinical trials.
Collapse
Affiliation(s)
- Faezeh Mahmoudi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | - Omid Arasteh
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran.
| |
Collapse
|
27
|
Zhang Y, Fang M, Jiang C, Zhang YA, Li L. Preparation of lipoic acid compound alginic acid cooling dressing and its anti-aging properties. Colloids Surf A Physicochem Eng Asp 2023; 670:131578. [DOI: 10.1016/j.colsurfa.2023.131578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
29
|
Celik A, Bakar-Ates F. Alpha-lipoic acid induced apoptosis of PC3 prostate cancer cells through an alteration on mitochondrial membrane depolarization and MMP-9 mRNA expression. Med Oncol 2023; 40:244. [PMID: 37453954 DOI: 10.1007/s12032-023-02113-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Cancer has become an important cause of mortality and morbidity in the world. Over the past decades, biomedical research revealed insights into the molecular events and signaling pathways involved in carcinogenesis and cancer progression. Matrix metalloproteinases (MMPs) are a diverse family of enzymes that can degrade various components of the extracellular matrix and are considered as potential diagnostic and prognostic biomarkers for many cancer types and cancer stages. Recently, studies on the role of natural-origin active substances in the prevention of cancer development gained importance. Among them, the α-lipoic acid, which is commonly found in plants, displayed potent anti-proliferative effects on cancer cell lines. However, the effect of the compound on the induction of apoptosis and mRNA expression of MMPs in human prostate cancer cells remains unclear. The present study aimed to evaluate the anti-proliferative and apoptotic activity of α-lipoic acid in human PC3 prostate carcinoma cells considering different concentrations and exposure durations. The findings showed that, α-lipoic acid significantly decreased PC3 cell viability with an IC50 value of 1.71 mM at 48 h (p < 0.05). Additionally, the compound significantly increased Annexin-V binding in cells compared to control and induced a significant alteration in mitochondrial membrane potential and caspase levels (p < 0.05). Furhermore, the RT-PCR analyses have revealed that α-lipoic acid reduced MMP-9 mRNA expression in PC3 cells compared to the control (p < 0.05). In conclusion, this study highlights that α-lipoic acid induced apoptosis in human PC3 prostate cancer cells and inhibited the MMP-9 gene at the mRNA level, which is known to play a role in metastasis development.
Collapse
Affiliation(s)
- Aybuke Celik
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Anadolu, 06560, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Anadolu, 06560, Ankara, Turkey.
| |
Collapse
|
30
|
Bera A, Ghosh P, Ghosh S, Mukherjee A, De P. Antioxidant Polymers with Enhanced Neuroprotection Against Insulin Fibrillation. Macromol Biosci 2023; 23:e2300100. [PMID: 37092867 DOI: 10.1002/mabi.202300100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Indexed: 04/25/2023]
Abstract
Lipoic acid (LA) and dihydrolipoic acid (DHLA) are well established antioxidants to scavenge reactive oxygen species (ROS). However, they are carboxylates with ≈4.7 pKa making them negatively charged at physiological pH (7.4) reducing their passive diffusion through cell membranes. LA is known to be capable of reducing protein fibrillation. Incorporation of LA and especially DHLA in polymer side chains are scarce. Herein, the first examples of the anti-amyloidogenic effect of LA and DHLA incorporated into the side-chain of a block copolymer with a water-soluble poly(polyethylene glycol methyl ether methacrylate) (PPEGMA) segment are presented. The resultant polymers show improved ROS scavenging activity and improved ability to reduce insulin fibrillation compared to free LA and DHLA. Furthermore, the resultant polymers are also capable of disintegrating preformed insulin firbrils. Interestingly, polymers with dihydro-lipoate moieties showed 93% free radical scavenging activity with 91% anti-fibrillating efficacies for insulin protein confirmed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and Thioflavin T (ThT) dye binding study, respectively. Further, the antioxidant polymers increase the cell viability against fibrillar insulin aggregates that may be involved in the etiology of several diseases. Overall, this work reveals that antioxidant polymer-based therapeutic agents can serve as a powerful modulation strategy for developing novel drugs in future against amyloid-related disorders.
Collapse
Affiliation(s)
- Avisek Bera
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Pooja Ghosh
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Shilpendu Ghosh
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Arindam Mukherjee
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Priyadarsi De
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
31
|
Skibska B, Kochan E, Stanczak A, Lipert A, Skibska A. Antioxidant and Anti-inflammatory Effects of α-Lipoic Acid on Lipopolysaccharide-induced Oxidative Stress in Rat Kidney. Arch Immunol Ther Exp (Warsz) 2023; 71:16. [PMID: 37378741 DOI: 10.1007/s00005-023-00682-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
α-Lipoic acid (α-LA) is a naturally occurring organosulfur component. Oxidative stress plays an essential role in the pathogenesis of various diseases, such as kidney and cardiovascular diseases, diabetes, neurodegenerative disorders, cancer and aging. Kidneys are especially vulnerable to oxidative stress and damage. The aim of the study was to evaluate the effect of α-LA on lipopolysaccharide (LPS)-induced oxidative stress parameters in rat kidneys. The experimental rats were divided into four groups: I-control (0.9% NaCl i.v.); II-α-LA (60 mg/kg b.w. i.v.); III-LPS (30 mg/kg b.w. i.v.); and IV-LPS + LA (30 mg/kg b.w. i.v. and 60 mg/kg b.w. i.v., respectively). In kidney homogenates the concentration of thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), sulfhydryl groups (-SH), total protein, superoxide dismutase (SOD), total glutathione (tGSH), reduced glutathione (GSH), glutathione disulphide (GSSG) and the GSH/GSSG ratio were determined. In addition, the levels of tumour necrosis factor (TNF)-α, and interleukin (IL)-6 were measured to assess inflammation and was estimated kidney oedema. Studies have shown that α-LA administered after LPS administration attenuated kidney oedema and significantly decreased TBARS, H2O2, TNF-α, and IL-6 levels in rat kidneys. α-LA also resulted in increase -SH group, total protein, and SOD levels and ameliorated the GSH redox status when compared to the LPS group. The results suggest that α-LA plays an important role against LPS-induced oxidative stress in kidney tissue as well as downregulating the expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Beata Skibska
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland.
| | - Ewa Kochan
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Andrzej Stanczak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Skibska
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
32
|
Yazğan B, Yazğan Y, Nazıroğlu M. Alpha-lipoic acid modulates the diabetes mellitus-mediated neuropathic pain via inhibition of the TRPV1 channel, apoptosis, and oxidative stress in rats. J Bioenerg Biomembr 2023:10.1007/s10863-023-09971-w. [PMID: 37357235 DOI: 10.1007/s10863-023-09971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Diabetes mellitus (DM) is a chronic syndrome involving neuropathic pain. Increased oxidative stress in DM is assumed to increase free reactive oxygen radicals (ROS) and causes diabetic damage. The sciatic nerve (ScN) and dorsal root ganglion (DRG) both contain high levels of the TRPV1 channel, which is triggered by capsaicin and ROSs and results in increased Ca2+ entry into the neurons. Alpha-lipoic acid (ALA) is considered an important part of the antioxidant system. To better characterize the protective effects of ALA on the DM-induced neuronal through TRPV1 modulation, we investigated the role of ALA on DM-induced neuropathic pain, oxidative ScN, and DRG damage in diabetic rats. Forty adult Wistar albino female rats were divided into four groups as control, ALA (50 mg/kg for 14 days), streptozotocin (STZ and 45 mg/kg and single dose), and STZ + ALA. Rats were used for the pain tests. After obtaining the DRGs and ScN, they were used for plate reader, patch-clamp, and laser confocal microscope analyses. We observed the modulator role of ALA on the thresholds of mechanical withdrawal pain (von Frey test) and hot sensitivity pain (hot plate test) in the STZ + ALA group. The treatment of ALA decreased STZ-induced increase of TRPV1 current densities, intracellular free Ca2+ concentrations (Fura-2 and Fluo - 3/AM), ROS, caspase 3, caspase 9, mitochondrial membrane potential, and apoptosis values in the ScN and DRG neurons, although its treatment induced the increase of cell viability and body weight gain. The treatment of ALA acted a neuroprotective role on the TRPV1 channel stimulation-mediated Ca2+ influx, neuropathic pain, and neuronal damage in diabetic rats. The neuroprotective role of ALA treatment can be explained by its modulating the TRPV1 channel activity, intracellular Ca2+ increase-induced oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Betül Yazğan
- Department of Physiology, Medical Faculty, Kastamonu University, Kastamonu, Türkiye, Turkey
| | - Yener Yazğan
- Department of Biophysics, Medical Faculty, Kastamonu University, Kastamonu, Türkiye, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Türkiye, Turkey.
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Türkiye, Turkey.
- Departments of Biophysics and Neuroscience, Faculty of Medicine, Suleyman Demirel University, Isparta, Türkiye, Turkey.
| |
Collapse
|
33
|
Lee SH, Sun MH, Jiang WJ, Li XH, Heo G, Zhou D, Chen Z, Cui XS. Alpha-lipoic acid attenuates heat stress-induced apoptosis via upregulating the heat shock response in porcine parthenotes. Sci Rep 2023; 13:8427. [PMID: 37225872 PMCID: PMC10209172 DOI: 10.1038/s41598-023-35587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023] Open
Abstract
Heat stress (HS) is a long-standing hurdle that animals face in the living environment. Alpha-lipoic acid (ALA) is a strong antioxidant synthesized by plants and animals. The present study evaluated the mechanism of ALA action in HS-induced early porcine parthenotes development. Parthenogenetically activated porcine oocytes were divided into three groups: control, high temperature (HT) (42 °C for 10 h), and HT + ALA (with 10 µM ALA). The results show that HT treatment significantly reduced the blastocyst formation rate compared to the control. The addition of ALA partially restored the development and improved the quality of blastocysts. Moreover, supplementation with ALA not only induced lower levels of reactive oxygen species and higher glutathione levels but also markedly reduced the expression of glucose regulatory protein 78. The protein levels of heat shock factor 1 and heat shock protein 40 were higher in the HT + ALA group, which suggests activation of the heat shock response. The addition of ALA reduced the expression of caspase 3 and increased the expression of B-cell lymphoma-extra-large protein. Collectively, this study revealed that ALA supplementation ameliorated HS-induced apoptosis by suppressing oxidative and endoplasmic reticulum stresses via activating the heat shock response, which improved the quality of HS-exposed porcine parthenotes.
Collapse
Affiliation(s)
- Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
34
|
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S, Ge J. Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother 2023; 164:114312. [PMID: 37210894 DOI: 10.1016/j.biopha.2023.114312] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by massive loss of specific neurons. It is a progressive disabling, severe and fatal complex disease. Due to its complex pathogenesis and limitations of clinical treatment strategies, it poses a serious medical challenge and medical burden worldwide. The pathogenesis of AD is not clear, and its potential biological mechanisms include aggregation of soluble amyloid to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFT), neuroinflammation, ferroptosis, oxidative stress and metal ion disorders. Among them, ferroptosis is a newly discovered programmed cell death induced by iron-dependent lipid peroxidation and reactive oxygen species. Recent studies have shown that ferroptosis is closely related to AD, but the mechanism remains unclear. It may be induced by iron metabolism, amino acid metabolism and lipid metabolism affecting the accumulation of iron ions. Some iron chelating agents (deferoxamine, deferiprone), chloroiodohydroxyquine and its derivatives, antioxidants (vitamin E, lipoic acid, selenium), chloroiodohydroxyquine and its derivatives Fer-1, tet, etc. have been shown in animal studies to be effective in AD and exert neuroprotective effects. This review summarizes the mechanism of ferroptosis in AD and the regulation of natural plant products on ferroptosis in AD, in order to provide reference information for future research on the development of ferroptosis inhibitors.
Collapse
Affiliation(s)
- Da Zhao
- Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Chen
- Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
35
|
Mondal A, Das S, Ali SM, Kolay S, Sengupta A, Molla MR. Bioderived Lipoic Acid-Based Dynamic Covalent Nanonetworks of Poly(disulfide)s: Enhanced Encapsulation Stability and Cancer Cell-Selective Delivery of Drugs. Bioconjug Chem 2023; 34:489-500. [PMID: 36693213 DOI: 10.1021/acs.bioconjchem.2c00493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dynamic covalent poly(disulfide)-based cross-linked nanoaggregates, termed nanonetworks (NNs), endowed with pH- and redox-responsive degradation features have been fabricated for stable noncovalent encapsulation and triggered cargo release in a controlled fashion. A bioderived lipoic acid-based Gemini surfactant-like amphiphilic molecule was synthesized for the preparation of nanoaggregates. It self-assembles by a entropy-driven self-assembly process in aqueous milieu. To further stabilize the self-assembled nanostructure, the core was cross-linked by ring-opening disulfide exchange polymerization (RODEP) of 1,2-dithiolane rings situated inside the core of the nanoaggregates. The cross-linked nanoaggregates, i.e., nanonetwork, are found to be stable in the presence of blood serum, and also, they maintain the self-assembled structure even below the critical aggregation concentration (CAC) as probed by dynamic light scattering (DLS) experiments. The nanonetwork showed almost 50% reduction in guest leakage compared to that of the nanoaggregates as shown by the release profile in the absence of stimuli, suggesting high encapsulation stability as evidenced by the fluorescence resonance energy transfer (FRET) experiment. The decross-linking of the nanonetwork occurs in response to redox and pH stimuli due to disulfide reduction and β-thioester hydrolysis, respectively, thus empowering disassembly-mediated controlled cargo release up to ∼87% for 55 h of incubation. The biological evaluation of the doxorubicin (DOX)-loaded nanonetwork revealed environment-specific surface charge modulation-mediated cancer cell-selective cellular uptake and cytotoxicity. The benign nature of the nanonetwork toward normal cells makes the system very promising in targeted drug delivery applications. Thus, the ease of synthesis, nanonetwork fabrication reproducibility, robust stability, triggered drug release in a controlled fashion, and cell-selective cytotoxicity behavior, we believe, will make the system a potential candidate in the development of robust materials for chemotherapeutic applications.
Collapse
Affiliation(s)
- Arun Mondal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shreya Das
- Department of Life Science & Biotechnology, Jadavpur University, 188 R. S. C. M. Road, Jadavpur, Kolkata 700032, India
| | - Sk Mursed Ali
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Soumya Kolay
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Arunima Sengupta
- Department of Life Science & Biotechnology, Jadavpur University, 188 R. S. C. M. Road, Jadavpur, Kolkata 700032, India
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
36
|
Li Z, Han Y, Ji Y, Sun K, Chen Y, Hu K. The effect of a-Lipoic acid (ALA) on oxidative stress, inflammation, and apoptosis in high glucose-induced human corneal epithelial cells. Graefes Arch Clin Exp Ophthalmol 2023; 261:735-748. [PMID: 36058948 PMCID: PMC9988813 DOI: 10.1007/s00417-022-05784-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Oxidative stress and inflammation had been proved to play important role in the progression of diabetic keratopathy (DK). The excessive accumulation of AGEs and their bond to AGE receptor (RAGE) in corneas that cause the formation of oxygen radicals and the release of inflammatory cytokines, induce cell apoptosis. Our current study was aimed to evaluate the effect of ALA on AGEs accumulation as well as to study the molecular mechanism of ALA against AGE-RAGE axis mediated oxidative stress, apoptosis, and inflammation in HG-induced HCECs, so as to provide cytological basis for the treatment of DK. METHODS HCECs were cultured in a variety concentration of glucose medium (5.5, 10, 25, 30, 40, and 50 mM) for 48 h. The cell proliferation was evaluated by CCK-8 assay. Apoptosis was investigated with the Annexin V- fluorescein isothiocyanate (V-FITC)/PI kit, while, the apoptotic cells were determined by flow cytometer and TUNEL cells apoptosis Kit. According to the results of cell proliferation and cell apoptosis, 25 mM glucose medium was used in the following HG experiment. The effect of ALA on HG-induced HCECs was evaluated. The HCECs were treated with 5.5 mM glucose (normal glucose group, NG group), 5.5 mM glucose + 22.5 mM mannitol (osmotic pressure control group, OP group), 25 mM glucose (high glucose group, HG group) and 25 mM glucose + ALA (HG + ALA group) for 24 and 48 h. The accumulation of intracellular AGEs was detected by ELISA kit. The RAGE, catalase (CAT), superoxide dismutase 2 (SOD2), cleaved cysteine-aspartic acid protease-3 (Cleaved caspase-3), Toll-like receptors 4 (TLR4), Nod-like receptor protein 3 (NLRP3) inflammasome, interleukin 1 beta (IL-1 ß), and interleukin 18 (IL-18) were quantified by RT-PCR, Western blotting, and Immunofluorescence, respectively. Reactive oxygen species (ROS) production was evaluated by fluorescence microscope and fluorescence microplate reader. RESULTS When the glucose medium was higher than 25 mM, cell proliferation was significantly inhibited and apoptosis ratio was increased (P < 0.001). In HG environment, ALA treatment alleviated the inhibition of HCECs in a dose-dependent manner, 25 μM ALA was the minimum effective dose. ALA could significantly reduce the intracellular accumulation of AGEs (P < 0.001), activate protein and genes expression of CAT and SOD2 (P < 0.001), and therefore inhibited ROS-induced oxidative stress and cells apoptosis. Besides, ALA could effectively down-regulate the protein and gene level of RAGE, TLR4, NLRP3, IL-1B, IL-18 (P < 0.05), and therefore alleviated AGEs-RAGE-TLR4-NLRP3 pathway-induced inflammation in HG-induced HCECs. CONCLUSION Our study indicated that ALA could be a desired treatment for DK due to its potential capacity of reducing accumulation of advanced glycation end products (AGEs) and down-regulating AGE-RAGE axis-mediated oxidative stress, cell apoptosis, and inflammation in high glucose (HG)-induced human corneal epithelial cells (HCECs), which may provide cytological basis for therapeutic targets that are ultimately of clinical benefit.
Collapse
Affiliation(s)
- Zhen Li
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
- Department of Ophthalmology, The People’s Hospital of Leshan, Leshan, Sichuan Province China
| | - Yu Han
- Department of Ophthalmology, The People’s Hospital of Leshan, Leshan, Sichuan Province China
| | - Yan Ji
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Kexin Sun
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Yanyi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Ke Hu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Alshammari GM, Al-Ayed MS, Abdelhalim MA, Al-Harbi LN, Yahya MA. Effects of Antioxidant Combinations on the Renal Toxicity Induced Rats by Gold Nanoparticles. Molecules 2023; 28:molecules28041879. [PMID: 36838869 PMCID: PMC9959587 DOI: 10.3390/molecules28041879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
This study investigated some possible mechanisms underlying the nephrotoxic effect of gold nanoparticles (AuNPs) in rats and compared the protective effects of selected known antioxidants-namely, melanin, quercetin (QUR), and α-lipoic acid (α-LA). Rats were divided into five treatment groups (eight rats per group): control, AuNPs (50 nm), AuNPs + melanin (100 mg/kg), AuNPs + QUR (200 mg/kg), and AuNPs + α-LA (200 mg/kg). All treatments were administered i.p., daily, for 30 days. AuNPs promoted renal glomerular and tubular damage and impaired kidney function, as indicated by the higher serum levels of creatinine (Cr), urinary flow, and urea and albumin/Cr ratio. They also induced oxidative stress by promoting mitochondrial permeability transition pore (mtPTP) opening, the expression of NOX4, increasing levels of malondialdehyde (MDA), and suppressing glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). In addition, AuNPs induced renal inflammation and apoptosis, as evidenced by the increase in the total mRNA and the cytoplasmic and nuclear levels of NF-κB, mRNA levels of Bax and caspase-3, and levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Treatment with melanin, QUR, and α-lipoic acid (α-LA) prevented the majority of these renal damage effects of AuNPs and improved kidney structure and function, with QUR being the most powerful. In conclusion, in rats, AuNPs impair kidney function by provoking oxidative stress, inflammation, and apoptosis by suppressing antioxidants, promoting mitochondrial uncoupling, activating NF-κB, and upregulating NOX4. However, QUR remains the most powerful drug to alleviate this toxicity by reversing all of these mechanisms.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Mohammed S. Al-Ayed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
38
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
39
|
Namata F, Sanz Del Olmo N, Molina N, Malkoch M. Synthesis and Characterization of Amino-Functional Polyester Dendrimers Based On Bis-MPA with Enhanced Hydrolytic Stability and Inherent Antibacterial Properties. Biomacromolecules 2023; 24:858-867. [PMID: 36689269 PMCID: PMC9930107 DOI: 10.1021/acs.biomac.2c01286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polyester dendrimers based on 2,2 bis(hydroxymethyl)propionic acid have been reported to be degradable, non-toxic, and exhibit good antimicrobial activity when decorated with cationic charges. However, these systems exhibit rapid depolymerization, from the outer layer inwards in physiological neutral pHs, which potentially restricts their use in biomedical applications. In this study, we present a new generation of amine functional bis-MPA polyester dendrimers with increased hydrolytic stability as well as antibacterial activity for Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) planktonic bacteria strains. These new derivatives show generally good cytocompatibility for the concentrations they are active toward bacteria, in monocyte/macrophage-like cells (Raw 264.7), and human dermal fibroblasts. Fluoride - promoted esterification chemistry, anhydride chemistry, and click reactions were utilized to produce a library from generations 1-3 and with cationic peripheral groups ranging from 6 to 24 groups, respectively. The dendrimers were successfully purified using conventional purification techniques as well as characterized by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, nuclear magnetic resonance, and size exclusion chromatography. As proof of synthetic versatility, dendritic-linear-dendritic block copolymer were successfully synthesized to display cysteamine peripheral functionalities as well as the scaffolding ability with biomedically relevant lipoic acid and methoxy polyethylene glycol.
Collapse
Affiliation(s)
- Faridah Namata
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Natalia Sanz Del Olmo
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Noemi Molina
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Michael Malkoch
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| |
Collapse
|
40
|
Himaki T, Hano K. Effects of alpha lipoic acid treatment during in vitro maturation on the development of porcine somatic cell nuclear transfer embryos. Anim Sci J 2023; 94:e13889. [PMID: 38031165 DOI: 10.1111/asj.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Oxidative stress influences the embryo production efficiency in vitro. We investigated the effects of alpha lipoic acid (ALA) treatment during the in vitro maturation (IVM) period on the porcine somatic cell nuclear transfer (SCNT) embryo production. After IVM, maturation rates of the 12.5- and 25-μM ALA-treated groups were not significantly different from those of the 0-μM ALA-treated group. Compared to those in the 0-μM ALA-treated group, the reactive oxygen species and glutathione levels were significantly decreased and increased, respectively, in the cytoplasm of matured oocytes in the 12.5-50-μM ALA-treated groups. Apoptosis rate in cumulus cells after IVM was significantly lower in the 12.5-50-μM ALA-treated groups than in the 0-μM ALA-treated group. Blastocyst formation rate was significantly higher in parthenogenetic oocytes treated with 12.5-μM ALA than in the 0-, 25-, and 50-μM ALA-treated groups. Similarly, in SCNT embryos, the 12.5-μM ALA-treated group showed a significantly higher blastocyst formation rate than the 0-μM ALA-treated group. Apoptosis rate in SCNT blastocysts was significantly decreased by 12.5-μM ALA treatment. The results showed that treatment with 12.5-μM ALA during IVM improves porcine SCNT embryo development and partial quality.
Collapse
Affiliation(s)
- Takehiro Himaki
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kazuki Hano
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
41
|
Naidu SAG, Clemens RA, Naidu AS. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. J Diet Suppl 2023; 20:312-371. [PMID: 35603834 DOI: 10.1080/19390211.2022.2075072] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Severe imbalance in iron metabolism among SARS-CoV-2 infected patients is prominent in every symptomatic (mild, moderate to severe) clinical phase of COVID-19. Phase-I - Hypoxia correlates with reduced O2 transport by erythrocytes, overexpression of HIF-1α, altered mitochondrial bioenergetics with host metabolic reprogramming (HMR). Phase-II - Hyperferritinemia results from an increased iron overload, which triggers a fulminant proinflammatory response - the acute cytokine release syndrome (CRS). Elevated cytokine levels (i.e. IL6, TNFα and CRP) strongly correlates with altered ferritin/TF ratios in COVID-19 patients. Phase-III - Thromboembolism is consequential to erythrocyte dysfunction with heme release, increased prothrombin time and elevated D-dimers, cumulatively linked to severe coagulopathies with life-threatening outcomes such as ARDS, and multi-organ failure. Taken together, Fe-R-H dysregulation is implicated in every symptomatic phase of COVID-19. Fe-R-H regulators such as lactoferrin (LF), hemoxygenase-1 (HO-1), erythropoietin (EPO) and hepcidin modulators are innate bio-replenishments that sequester iron, neutralize iron-mediated free radicals, reduce oxidative stress, and improve host defense by optimizing iron metabolism. Due to its pivotal role in 'cytokine storm', ferroptosis is a potential intervention target. Ferroptosis inhibitors such as ferrostatin-1, liproxstatin-1, quercetin, and melatonin could prevent mitochondrial lipid peroxidation, up-regulate antioxidant/GSH levels and abrogate iron overload-induced apoptosis through activation of Nrf2 and HO-1 signaling pathways. Iron chelators such as heparin, deferoxamine, caffeic acid, curcumin, α-lipoic acid, and phytic acid could protect against ferroptosis and restore mitochondrial function, iron-redox potential, and rebalance Fe-R-H status. Therefore, Fe-R-H restoration is a host biomarker-driven potential combat strategy for an effective clinical and post-recovery management of COVID-19.
Collapse
Affiliation(s)
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
42
|
Capece U, Moffa S, Improta I, Di Giuseppe G, Nista EC, Cefalo CMA, Cinti F, Pontecorvi A, Gasbarrini A, Giaccari A, Mezza T. Alpha-Lipoic Acid and Glucose Metabolism: A Comprehensive Update on Biochemical and Therapeutic Features. Nutrients 2022; 15:nu15010018. [PMID: 36615676 PMCID: PMC9824456 DOI: 10.3390/nu15010018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Alpha-lipoic acid (ALA) is a natural compound with antioxidant and pro-oxidant properties which has effects on the regulation of insulin sensitivity and insulin secretion. ALA is widely prescribed in patients with diabetic polyneuropathy due to its positive effects on nerve conduction and alleviation of symptoms. It is, moreover, also prescribed in other insulin resistance conditions such as metabolic syndrome (SM), polycystic ovary syndrome (PCOS) and obesity. However, several cases of Insulin Autoimmune Syndrome (IAS) have been reported in subjects taking ALA. The aim of the present review is to describe the main chemical and biological functions of ALA in glucose metabolism, focusing on its antioxidant activity, its role in modulating insulin sensitivity and secretion and in symptomatic peripheral diabetic polyneuropathy. We also provide a potential explanation for increased risk for the development of IAS.
Collapse
Affiliation(s)
- Umberto Capece
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Simona Moffa
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ilaria Improta
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Enrico Celestino Nista
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Chiara M. A. Cefalo
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Cinti
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Andrea Giaccari
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| | - Teresa Mezza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
43
|
Alpha-Lipoic Acid as an Antioxidant Strategy for Managing Neuropathic Pain. Antioxidants (Basel) 2022; 11:antiox11122420. [PMID: 36552628 PMCID: PMC9774895 DOI: 10.3390/antiox11122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain (NP) is the most prevalent and debilitating form of chronic pain, caused by injuries or diseases of the somatosensory system. Since current first-line treatments only provide poor symptomatic relief, the search for new therapeutic strategies for managing NP is an active field of investigation. Multiple mechanisms contribute to the genesis and maintenance of NP, including damage caused by oxidative stress. The naturally occurring antioxidant alpha-lipoic acid (ALA) is a promising therapeutic agent for the management of NP. Several pre-clinical in vitro and in vivo studies as well as clinical trials demonstrate the analgesic potential of ALA in the management of NP. The beneficial biological activities of ALA are reflected in the various patents for the development of ALA-based innovative products. This review demonstrates the therapeutic potential of ALA in the management of NP by discussing its analgesic effects by multiple antioxidant mechanisms as well as the use of patented ALA-based products and how technological approaches have been applied to enhance ALA's pharmacological properties.
Collapse
|
44
|
Effect of Antioxidant Supplementation on Endometriosis-Related Pain: A Systematic Review. Curr Nutr Rep 2022; 11:753-764. [PMID: 35948825 DOI: 10.1007/s13668-022-00432-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This study was conducted to determine the effects of antioxidant supplementation on endometriosis-related chronic pelvic pain, dysmenorrhea, and dyspareunia. METHODS PubMed/MEDLINE, Scopus, and Cochrane Library databases and the Google Scholar search engine were searched from early 2012 to 2022 using appropriate keywords for clinical trials receiving antioxidant supplements and reporting endometriosis-related pelvic pain (PROSPERO registration number CRD42022318924). The qualities of the included studies were evaluated using the Joanna Briggs Institute (JBI) Checklists Critical Appraisal Tools and the National Institutes of Health (NIH) quality assessment tool for before-after (Pre-Post) study with no control group. This systematic review was reported according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guideline. RESULTS In this systematic review, 8 studies (5 RCTs and 3 non-comparative trials) published in 2012-2022 were included. CONCLUSIONS The studies we included showed promising results in the use of antioxidants in endometriosis-related pain. However, many scientific studies are needed for clear statements.
Collapse
|
45
|
α-Lipoic Acid Derivatives as Allosteric Modulators for Targeting AMPA-Type Glutamate Receptors' Gating Modules. Cells 2022; 11:cells11223608. [PMID: 36429036 PMCID: PMC9688225 DOI: 10.3390/cells11223608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
The ionotropic glutamate receptor subtype α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) is responsible for most excitatory transmission in the brain. AMPA receptor function is altered in numerous neurological illnesses, making AMPA receptors appealing therapeutic targets for clinical intervention. Alpha-Lipoic acid (α-LA) is a naturally occurring compound, which functions as a co-factor in metabolism and energy production. α-LA is an antioxidant with various benefits in treating diabetes, including managing symptomatic diabetic neuropathy. This study will test a novel and innovative strategy to synthesize a new isomer of lipoic acid (R-LA) derivatives (bifunctional NO-donor/antioxidant) in one chemical on homomeric and heteromeric AMPA receptor subunits. We used patch-clamp electrophysiology to examine LA derivatives expressed in human embryonic kidney 293 cells (HEK293) for inhibition and changes in desensitization or deactivation rates. LA derivatives were shown to be potent antagonists of AMPA receptors, with an 8-11-fold reduction in AMPA receptor currents seen following the delivery of the compounds. Furthermore, the LA derivatives influenced the rates of desensitization and deactivation of AMPA receptors. Based on our results, especially given that α-LA is closely connected to the nervous system, we may better understand using AMPA receptors and innovative drugs to treat neurological diseases associated with excessive activation of AMPA receptors.
Collapse
|
46
|
Lipoic/Capsaicin-Related Amides: Synthesis and Biological Characterization of New TRPV1 Agonists Endowed with Protective Properties against Oxidative Stress. Int J Mol Sci 2022; 23:ijms232113580. [DOI: 10.3390/ijms232113580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
α-Lipoic acid is a sulfur-containing nutrient endowed with pleiotropic actions and a safe biological profile selected to replace the unsaturated alkyl acid of capsaicin with the aim of obtaining lipoic amides potentially active as a TRPV1 ligand and with significant antioxidant properties. Thus, nine compounds were obtained in good yields following a simple synthetic procedure and tested for their functional TRPV1 activity and radical-scavenger activity. The safe biological profile together with the protective effect against hypoxia damage as well as the in vitro antioxidant properties were also evaluated. Although less potent than capsaicin, almost all lipoic amides were found to be TRPV1 agonists and, specifically, compound 4, the lipoic analogue of capsaicin, proved to be the best ligand in terms of efficacy and potency. EPR experiments and in vitro biological assays suggested the potential protective role against oxidative stress of the tested compounds and their safe biological profile. Compounds 4, 5 and 9 significantly ameliorated the mitochondrial membrane potential caused by hypoxia condition and decreased F2-isoprostanes, known markers of oxidative stress. Thus, the experimental results encourage further investigation of the therapeutic potential of these lipoic amides.
Collapse
|
47
|
Alpha-lipoic acid in ovarian vitrification solution for in vitro culture or autotransplantation as future strategies for the restoration of ovarian function in sheep. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Pravda J. Evidence-based pathogenesis and treatment of ulcerative colitis: A causal role for colonic epithelial hydrogen peroxide. World J Gastroenterol 2022; 28:4263-4298. [PMID: 36159014 PMCID: PMC9453768 DOI: 10.3748/wjg.v28.i31.4263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
In this comprehensive evidence-based analysis of ulcerative colitis (UC), a causal role is identified for colonic epithelial hydrogen peroxide (H2O2) in both the pathogenesis and relapse of this debilitating inflammatory bowel disease. Studies have shown that H2O2 production is significantly increased in the non-inflamed colonic epithelium of individuals with UC. H2O2 is a powerful neutrophilic chemotactic agent that can diffuse through colonic epithelial cell membranes creating an interstitial chemotactic molecular “trail” that attracts adjacent intravascular neutrophils into the colonic epithelium leading to mucosal inflammation and UC. A novel therapy aimed at removing the inappropriate H2O2 mediated chemotactic signal has been highly effective in achieving complete histologic resolution of colitis in patients experiencing refractory disease with at least one (biopsy-proven) histologic remission lasting 14 years to date. The evidence implies that therapeutic intervention to prevent the re-establishment of a pathologic H2O2 mediated chemotactic signaling gradient will indefinitely preclude neutrophilic migration into the colonic epithelium constituting a functional cure for this disease. Cumulative data indicate that individuals with UC have normal immune systems and current treatment guidelines calling for the suppression of the immune response based on the belief that UC is caused by an underlying immune dysfunction are not supported by the evidence and may cause serious adverse effects. It is the aim of this paper to present experimental and clinical evidence that identifies H2O2 produced by the colonic epithelium as the causal agent in the pathogenesis of UC. A detailed explanation of a novel therapeutic intervention to normalize colonic H2O2, its rationale, components, and formulation is also provided.
Collapse
Affiliation(s)
- Jay Pravda
- Disease Pathogenesis, Inflammatory Disease Research Centre, Palm Beach Gardens, FL 33410, United States
| |
Collapse
|
49
|
Carota G, Distefano A, Spampinato M, Giallongo C, Broggi G, Longhitano L, Palumbo GA, Parenti R, Caltabiano R, Giallongo S, Di Rosa M, Polosa R, Bramanti V, Vicario N, Li Volti G, Tibullo D. Neuroprotective Role of α-Lipoic Acid in Iron-Overload-Mediated Toxicity and Inflammation in In Vitro and In Vivo Models. Antioxidants (Basel) 2022; 11:1596. [PMID: 36009316 PMCID: PMC9405239 DOI: 10.3390/antiox11081596] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
Hemoglobin and iron overload is considered the major contributor to intracerebral hemorrhage (ICH)-induced brain injury. Accumulation of iron in the brain leads to microglia activation, inflammation and cell loss. Current available treatments for iron overload-mediated disorders are characterized by severe adverse effects, making such conditions an unmet clinical need. We assessed the potential of α-lipoic acid (ALA) as an iron chelator, antioxidant and anti-inflammatory agent in both in vitro and in vivo models of iron overload. ALA was found to revert iron-overload-induced toxicity in HMC3 microglia cell line, preventing cell apoptosis, reactive oxygen species generation and reducing glutathione depletion. Furthermore, ALA regulated gene expression of iron-related markers and inflammatory cytokines, such as IL-6, IL-1β and TNF. Iron toxicity also affects mitochondria fitness and biogenesis, impairments which were prevented by ALA pre-treatment in vitro. Immunocytochemistry assay showed that, although iron treatment caused inflammatory activation of microglia, ALA treatment resulted in increased ARG1 expression, suggesting it promoted an anti-inflammatory phenotype. We also assessed the effects of ALA in an in vivo zebrafish model of iron overload, showing that ALA treatment was able to reduce iron accumulation in the brain and reduced iron-mediated oxidative stress and inflammation. Our data support ALA as a novel approach for iron-overload-induced brain damage.
Collapse
Affiliation(s)
- Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cesarina Giallongo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe A. Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Riccardo Polosa
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Vincenzo Bramanti
- Division of Clinical Pathology, “Giovanni Paolo II” Hospital-A.S.P. Ragusa, 97100 Ragusa, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
50
|
Novel Drugs in a Pipeline for Progressive Multiple Sclerosis. J Clin Med 2022; 11:jcm11123342. [PMID: 35743410 PMCID: PMC9225445 DOI: 10.3390/jcm11123342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple sclerosis (MS) is a widely known inflammatory, demyelinating disease of the central nervous system. The pathogenesis of progressive multiple sclerosis (PMS) is a complex, multi-level process that causes therapeutic difficulties. Along with variables such as age and duration of the disease, pathogenetic mechanisms change from inflammatory to neurodegenerative processes. Therefore, the efficacy of available anti-inflammatory drugs approved for the treatment of PMS, such as ocrelizumab or siponimod, is limited in time. In search of innovative solutions, several research studies have been conducted to evaluate the effectiveness of drugs with neuroprotective or remyelinating effects in PMS, including biotin, ibudilast, simvastatin, alpha-lipoic acid, clemastine, amiloride, fluoxetine, riluzole, masitinib, opicinumab, and lamotrigine. The current review includes those compounds, which have entered the clinical phase of assessment, and the authors discuss future prospects for successful PMS treatment.
Collapse
|